JP2021132509A - 並列運転電源装置 - Google Patents
並列運転電源装置 Download PDFInfo
- Publication number
- JP2021132509A JP2021132509A JP2020027840A JP2020027840A JP2021132509A JP 2021132509 A JP2021132509 A JP 2021132509A JP 2020027840 A JP2020027840 A JP 2020027840A JP 2020027840 A JP2020027840 A JP 2020027840A JP 2021132509 A JP2021132509 A JP 2021132509A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- input
- current
- phase
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Rectifiers (AREA)
Abstract
【課題】低コストで入力電圧を安定させることができる並列運転電源装置を提供する。【解決手段】並列運転電源装置は、3相3線電源にY結線で接続され、中性点用端子が共通接続された3個の電力制御装置と、前記3個の電力制御装置の各入力端子と前記中性点用端子間に接続され、各入力端子間の入力電圧の変動を抑制して該入力電圧をバランスさせる外部バランス回路とを備えている。前記外部バランス回路は、入力電流を全波整流後、突入電流防止抵抗を介して充電するコンデンサと、このコンデンサの両端に接続され、前記コンデンサの充電電荷を放電する放電用抵抗とを備えている。【選択図】図1
Description
この発明は、特に中性点接続なしの3相3線電源にY結線で接続され、3相電源と直流負荷の間に3台の電源制御装置を並列接続して並列運転を行う並列運転電源装置に関する。
3相電源により直流負荷を駆動する場合、3相電源にAC−DC変換を行う3台の電源制御装置を接続する。電源がΔ結線又はY結線の3相3線電源である場合は、R(第1相)、S(第2相)、T(第3相)電源端子を、電源制御装置のR、S、Tの各端子に接続する。また、電源がY結線の3相4線電源である場合は、R、S、T電源端子を、電源制御装置のR、S、Tの各端子に接続し、N(中性相)電源端子を電源制御装置の中性用端子に接続する。
このような3相電源の接続法において、電源がY結線の3相4線電源である場合には、中性相のN電源端子が3台の電源制御装置の中性用端子に接続されるため、3台の電源制御装置の入力側においての各相電圧は安定する。仮に、いずれかの電源制御装置の入力インピーダンスが変化して入力相電流が増えたとしても、入力相電圧は変動しない。このため、内部電圧の制御破綻に至らない。ところが、低圧線などでは、結線を容易にするため、電源としてY結線の3相3線電源を使用する場合がある。この3相3線電源を用いる方式では、電源側に中性相のN電源端子がない。この方式では、電源系統は一箇所で接地されるが、N電源端子の保護接地導体は供給されず、電源制御装置側の接地は系統の接地とは独立して行なわれる。この方式は、電源システムにおいてTT方式(中性線無)と称され、日本、ベルギー、スイス、ニュージーランド、ノルウエー等で採用されている(非特許文献1)。
このため、上記TT方式では、3台の電源制御装置の中性用端子はそれぞれ共通に接続される。
しかし、上記のTT方式では各電源制御装置の入力電圧が不安定になる問題がある。
例えば、いずれかの電源制御装置の入力インピーダンスが変化して、その電源制御装置の入力電流が変化すると、入力電圧も変化する。このような不平衡な状態は、安定化に遷移せず、より一層不平衡となる状態、つまり、各電源制御装置の入力電圧の差が大きくなる方向に遷移する可能性がある。これは、3台の電源制御装置が相互に調整することなく各々独立に制御を行うことに原因がある。そして、不平衡状態が進行すると、いずれかの電源制御装置の入力電圧(相電圧)が極端に大きくなり、装置の入力電圧と内部電圧が異常状態となって、電源制御装置側において安全確保のために設けられている遮断スイッチが解列して運転停止となる。また、それ以降は、装置入力電圧と内部電圧が正常状態にならない限り、電源制御装置の再運転がされなくなる。
例えば、いずれかの電源制御装置の入力インピーダンスが変化して、その電源制御装置の入力電流が変化すると、入力電圧も変化する。このような不平衡な状態は、安定化に遷移せず、より一層不平衡となる状態、つまり、各電源制御装置の入力電圧の差が大きくなる方向に遷移する可能性がある。これは、3台の電源制御装置が相互に調整することなく各々独立に制御を行うことに原因がある。そして、不平衡状態が進行すると、いずれかの電源制御装置の入力電圧(相電圧)が極端に大きくなり、装置の入力電圧と内部電圧が異常状態となって、電源制御装置側において安全確保のために設けられている遮断スイッチが解列して運転停止となる。また、それ以降は、装置入力電圧と内部電圧が正常状態にならない限り、電源制御装置の再運転がされなくなる。
このような問題を解消するために、各電源制御装置間に通信手段(CPUとソフトウエア)を設け、相間通信により各電源制御装置の制御を調整することで電流バランスが崩れることを防止する提案がなされている(例えば特許文献1)。この方式では、各電源制御装置間の不平衡が生じても、制御情報がすべての電源制御装置で共有され、調整されるため、平衡状態に戻す修正が可能であり、結果として安定な制御を行うことが出来る。
https://www.techspire.co.jp/images/lucas-nuelle/UniTrain-I_SO4204-4M.pdf
しかしながら、各電源制御装置間の通信によって、各相の制御情報を共有し調整する構成では次の問題がある。
第1に、通信手段を含む回路には必然的に制御遅れがあり、且つ、それらの制御遅れは各相で一定でない。このため、各相の入力電圧を安定させることが困難である。第2に、通信手段を高速制御するためのCPUとソフトウエアを組み込む必要があり、高コストとなる。
そこで、この発明は、低コストで入力電圧を安定させることができる並列運転電源装置を提供することを目的とする。
この発明の並列運転電源装置は、
中性点接続なしの3相3線電源にY結線で接続され、中性点用端子が共通接続された3個の電力制御装置を備える。
中性点接続なしの3相3線電源にY結線で接続され、中性点用端子が共通接続された3個の電力制御装置を備える。
前記3個の電力制御装置のそれぞれは、入力電圧と入力電流の位相を同相にして力率を改善する力率改善回路と、力率改善された電流をスイッチングして所定の電流を出力するDC−DCコンバータとを備える。
並列運転電源装置は、さらに、前記3個の電力制御装置の各入力端子と前記中性点用端子間に接続され、各入力端子間の入力電圧の変動を抑制して該入力電圧をバランスさせる外部バランス回路を備えている。
前記外部バランス回路は、入力電流を整流後、突入電流防止抵抗を介して充電するコンデンサと、このコンデンサの両端に接続され、前記コンデンサの充電電荷を放電する放電用抵抗とを備える。
入力電流は、3個の電力制御装置に入力し、外部バランス回路にも入力する。
各電力制御装置では、力率改善回路によって、入力電流と入力電圧の位相が同じになるように制御される。力率改善回路の出力側には、平滑コンデンサが設けられ、電力形態がDCに変換される。電力変換されたDC電力はDC−DCコンバータ回路でスイッチング制御され、所定のDC電圧に変換されて負荷に供給される。
外部バランス回路は、前記3個の電力制御装置の外部回路として設けられる。外部バランス回路は、各相の入力電流をコンデンサに充電し、同時にコンデンサ両端に接続されている放電用抵抗で放電を行う。したがって、コンデンサと放電用抵抗の定数を適切に選択すれば、安定状態では、コンデンサの充電電位は各相毎に、入力電圧の変化に応じて少し変動する程度の大きさで変化する。
外部バランス回路は、前記3個の電力制御装置の各入力端子と前記中性点用端子間に接続されるため、安定状態では各相の入力電圧に対してコンデンサの充電電圧は同様な挙動となる。
一方、いずれかの電力制御装置の入力電圧が変化して不平衡な状態になろうとすると、その電力制御装置に接続されるコンデンサへの入力電流が増加する。このときのコンデンサの充電電圧の上昇分v(t)は、v(t)=1/C・∫i(t)・d(t)として求められるが、コンデンサ容量Cが十分に大きければ、同式よりv(t)はわずかな変化である。したがって、入力電圧の上昇分はコンデンサで吸収できる。
このような動作で、各相の入力電圧の安定化を実現できる。
この発明によれば、通信手段を設けず、コンデンサと放電抵抗等で構成できる外部回路で、入力電圧を安定化させることが出来るから、低コストとなる。
図1は、本発明の実施形態の3相並列運転電源装置の結線図を示す。また、図2は、電源制御装置1R、1S、1Tの回路図である。
この電源装置では、AC400V系のY結線RST電源端子に対し、3台の電源制御装置1R、1S、1Tの入力端子をY接続する。電源システムは、電源側(系統側)に中性相のN電源端子がないTT方式(中性線無)である。
すなわち、電源側のR端子は電源制御装置1Rの端子TB1に接続される。電源側のS端子は電源制御装置1Sの端子TB1に接続される。電源側のT端子は電源制御装置1Tの端子TB1に接続される。中性相のN電源端子は電源側から供給されず、電源制御装置1R、1S、1Tの中性点用端子TB2は中性線5により相互に接続されている。各電源装置の出力は並列接続して出力電流を合流し、負荷2に供給する。
各電源制御装置1R、1S、1Tは、AC−DC変換を行って電流制御を行うため、整流回路を含む力率改善コンバータ部10R、10S、10TとDC−DCコンバータ部11R、11S、11Tと、フィードバック制御回路12R、12S、12Tとを含む。
各電源制御装置1R、1S、1Tは、それぞれ出力電流Iоを検出する出力電流検出器3R、3S、3Tと、出力電圧Vоを検出する出力電圧検出器4R、4S、4Tとを備えている。
図3は、電源制御装置1R内に設けられているフィードバック制御回路12Rの回路図である。なお、電源制御装置1S、1T内に設けられているフィードバック制御回路12S、12Tは、フィードバック制御回路12Rと同じ構成であるため、以下、フィードバック制御回路12Rについてのみ説明する。
フィードバック制御回路12Rは、3相並列運転電源装置の出力電圧Voが予め設定した基準電圧VREFとなるようにフィードバック制御を行う。フィードバック制御回路12Rは、電流制御指令値回路120RとPWM制御回路130Rとを備える。なお、フィードバック制御回路12Sは、電流制御指令値回路120SとPWM制御回路130Sとを備え、フィードバック制御回路12Tは、電流制御指令値回路120TとPWM制御回路130Tとを備えている。
電流制御指令値回路120Rは、前記基準電圧VREFと前記出力電圧Voとの差に対応する電圧を前記出力電流Ioに対する電流制御指令値として出力する。
PWM制御回路130Rは、電流制御指令値と出力電流Ioの差から電流制御値を演算し、これに基づいてスイッチング素子を駆動するPWM信号を生成する。
電流制御指令値回路120Rは、基準電圧VREF設定部120と、第1エラー検出部121と、第1ゲイン制御部122と、抵抗分圧回路123とを備える。
PWM制御回路130Rは、第2エラー検出部130と、第2ゲイン制御部131と、PWM制御部132と、鋸歯状波発生回路133と、スイッチング制御部134とを備える。
電流制御指令値回路120Rにおいて、第1エラー検出部121は、出力電圧検出器4Rで検出した出力電圧Voに対応する電圧と基準電圧VREFとを比較し、その差電圧を検出する。第1ゲイン制御部122は、前記差電圧を適切なゲインで増幅し、Vi_REF_1として出力する。
抵抗分圧回路123は、前記Vi_REF_1を抵抗RaとRbで分圧する。この分圧した電圧は電流制御指令値に対応したものとなる。電源制御装置1S、1Tのフィードバック制御回路12S、12Tにおいても同様にVi_REF_2、Vi_REF_3を抵抗RaとRbで分圧する。
PWM制御回路130Rにおいて、第2エラー検出部130は、Vi_REF_1の抵抗分圧値と、出力電流検出器3Rで検出した出力電流Ioに対応する電圧Vi_DETとを比較し、その差電圧を検出する。第2ゲイン制御部131は、前記差電圧を適切なゲインで増幅し、電流制御値Vi_Cとして出力する。
電流制御値Vi_Cは、PWM制御部132に出力される。PWM制御部132には、鋸歯状波発生回路133から鋸歯状波が入力する。PWM制御部132は、前記電流制御値Vi_Cと前記鋸歯状波とを比較してPWM制御信号を出力する。スイッチング制御部134は、前記PWM制御信号に応じてDC−DCコンバータ部11Rのスイッチング素子のスイッチング周波数を変動させる。
以上のフィードバック制御回路12Rは以下のように動作する。
出力電圧Voが基準電圧VREFから下降すると、第2ゲイン制御部131の出力である電流制御値Vi_Cが大きくなり、出力電流Ioを大きくするようにPWM制御信号が制御される。出力電流Ioが大きくなると負荷に加わる出力電圧Voが上昇しようとする。また、出力電圧Voが基準電圧VREFから上昇すると、第2ゲイン制御部131の出力である電流制御値Vi_Cが小さくなり、出力電流Ioを小さくするようにPWM制御信号が制御される。出力電流Ioが小さくなると負荷に加わる出力電圧Voが下降しようとする。このようにして、電源制御装置1Rにおいては、フィードバック制御回路12Rによる出力電圧が基準電圧VREFに安定するように動作する。電源制御装置1S、電源制御装置1Tにおいても同様に動作する。
本実施形態では、図1に示すように、外部バランス回路6を設けている。外部バランス回路6は、電源制御装置1R、1S、1Tの外部回路として、Y結線RST電源端子と、中性線5との間に設けられている。中性線5は、電源制御装置1R、1S、1Tの中性点用端子TB2、TB2、TB2を共通接続したものである。
外部バランス回路6は、3台の電源制御装置1R、1S、1Tからの電流を全波整流するダイオードD1、D2と、ダイオードD1のカソード側と、ダイオードD2のアノード側にそれぞれ接続される突入電流防止抵抗R1、R3と、突入電流防止抵抗R1、R3に接続される平滑用のコンデンサC1、C2と、コンデンサC1、C2それぞれの両端に接続される放電用抵抗R2、R4とで構成されている。
なお、ダイオードD1とダイオードD2は、電源端子R、S、Tからの各相毎に全波整流を行う。突入電流防止抵抗R1、R3は、コンデンサC1、C2に突入電流が流れるのを防止する。コンデンサC1、C2は、入力電流を充電しつつ、放電用抵抗R2、R4で充電電荷を放電する。
外部バランス回路6は、以下の動作をする。
電源端子Rから外部バランス回路6に入力する入力電流iRの正の成分は、充電モードにおいて、ダイオードD1→突入電流防止抵抗R1→コンデンサC1と放電用抵抗R2との並列回路→中性線5→電源制御装置1Rの中性点用端子TB2に流れ、コンデンサC1を充電する。また、放電モードではコンデンサC1から放電用抵抗R2に放電電流が流れる。
また、電源端子Rから外部バランス回路6に入力する入力電流iRの負の成分は、充電モードにおいて、ダイオードD2→突入電流防止抵抗R3→コンデンサC2と放電用抵抗R4との並列回路→中性線5→電源制御装置1Rの中性点用端子TB2に流れ、コンデンサC2を充電する。また、放電モードではコンデンサC2から放電用抵抗R4に放電電流が流れる。
電源端子S、Tからの入力電流iS、iTも同様にコンデンサC1、C2に対する充電を行い、コンデンサC1、C2からは放電用抵抗R2、R4に放電電流が流れる。
充電モードと放電モードの区別は、コンデンサC1、C2への充電が行われるときは充電モードとなり、コンデンサC1、C2から放電用抵抗R2、R4に放電が行われるときには放電モードとなる。つまり、コンデンサC1、C2の充電電位が入力電圧よりも低い時は充電モードとなり、コンデンサC1、C2の充電電位が入力電圧よりも高い時は放電モードとなる。
以上のように、充電モードと放電モードとを繰り返すことで、入力電流はコンデンサC1、C2で平滑され、充電電圧はほぼ一定の電圧に安定し、平衡状態となる。
以上の平衡状態において、いずれかの相電圧が何らかの原因で上昇しようとすると、その相の充電モードにおいてコンデンサC1、C2への充電電流が大きくなる。このときのコンデンサC1、C2の充電電圧の上昇分v(t)は、v(t)=1/C・∫i(t)・d(t)として求められる(Cは容量)。しかし、コンデンサ容量Cが大きいと、充電電圧の上昇分v(t)はわずかとなる。したがって、入力電圧の上昇分はコンデンサで吸収できる。結果として、相電圧の上昇を抑えることが出来、いずれかの相電圧が異常に上昇する不平衡状態となることを防止出来る。これにより、力率改善コンバータ部10Rの前段に配置される遮断スイッチRY部が開くこともない。
また、電源制御装置1R、1S、1T間の通信を必要としない。このため、通信のための高速チップやソフトを組み込む必要がない。
実施形態では、3相電源を入力側に接続した3つの電源制御装置1R、1S、1Tからなる並列運転電源装置を示したが、3つの電源制御装置1R、1S、1Tにそれぞれ単相電源を接続しても良い。
このように、本実施形態では、電源側(系統側)が、中性相のN電源端子がないTT方式(中性線無)の3相3線Y結線電源システムであっても、電源制御装置1R、1S、1Tを安定状態で運転可能である。
1R、1S、1T・・・電源制御装置
6・・・外部バランス回路
6・・・外部バランス回路
Claims (1)
- 中性点接続なしの3相3線電源にY結線で接続され、中性点用端子が共通接続された3個の電力制御装置と、
前記3個の電力制御装置の各入力端子と前記中性点用端子間に接続され、各入力端子間の入力電圧の変動を抑制して該入力電圧をバランスさせる外部バランス回路を備え、
前記3個の電力制御装置のそれぞれは、入力電圧と入力電流の位相を同相にして力率を改善する力率改善回路と、力率改善された電流をスイッチングして所定の電流を出力するDC−DCコンバータとを備え、
前記外部バランス回路は、入力電流を全波整流後、突入電流防止抵抗を介して充電するコンデンサと、このコンデンサの両端に接続され、前記コンデンサの充電電荷を放電する放電用抵抗とを備える、並列運転電源装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020027840A JP2021132509A (ja) | 2020-02-21 | 2020-02-21 | 並列運転電源装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020027840A JP2021132509A (ja) | 2020-02-21 | 2020-02-21 | 並列運転電源装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021132509A true JP2021132509A (ja) | 2021-09-09 |
Family
ID=77551350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020027840A Pending JP2021132509A (ja) | 2020-02-21 | 2020-02-21 | 並列運転電源装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021132509A (ja) |
-
2020
- 2020-02-21 JP JP2020027840A patent/JP2021132509A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10826378B2 (en) | Power conversion apparatus for interconnection with a three-phrase ac power supply | |
JP5066522B2 (ja) | 直流システムを平衡化するups動作用の装置および方法 | |
US5654591A (en) | Uninterruptible power supply with passing neutral, comprising a twin step-up chopper | |
US9960709B2 (en) | Power conversion device | |
EP3148067A1 (en) | Direct-current power transmission power conversion device and direct-current power transmission power conversion method | |
US9143052B2 (en) | Three-level unit inverter system | |
US20180062498A1 (en) | Power conversion device | |
US10978961B2 (en) | Pulsed rectifier architecture | |
TW201703390A (zh) | 不斷電電源裝置 | |
JPH11113256A (ja) | 3相力率改善形コンバータ | |
US6285570B1 (en) | Power mains supply unit for directly and/or indirectly supplying consumers with power | |
US11336114B2 (en) | Uninterruptible power supply apparatus | |
JP2021132509A (ja) | 並列運転電源装置 | |
JP2021132510A (ja) | 並列運転電源装置 | |
KR102071837B1 (ko) | 단일형 컨버터의 출력전압 제어 장치 | |
KR101506010B1 (ko) | 무정전 전원장치의 직류단 전압 불평형 제어 장치 | |
JP7102468B2 (ja) | 並列運転電源装置 | |
JP7491688B2 (ja) | 並列運転電源装置 | |
WO2021049016A1 (ja) | 電力変換装置 | |
US20240339862A1 (en) | Uninterruptible power supply apparatus | |
JP3886858B2 (ja) | 電圧変動補償装置 | |
JP2812345B2 (ja) | コンデンサ充電回路 | |
JP6731504B1 (ja) | 電力変換装置及び制御装置 | |
KR100275035B1 (ko) | 12 펄스 정류기의 전류 분담 제어회로 | |
CN111492569B (zh) | 电力变换系统 |