JP2021131199A - 冷却用熱交換器 - Google Patents

冷却用熱交換器 Download PDF

Info

Publication number
JP2021131199A
JP2021131199A JP2020027448A JP2020027448A JP2021131199A JP 2021131199 A JP2021131199 A JP 2021131199A JP 2020027448 A JP2020027448 A JP 2020027448A JP 2020027448 A JP2020027448 A JP 2020027448A JP 2021131199 A JP2021131199 A JP 2021131199A
Authority
JP
Japan
Prior art keywords
tube
outflow
battery
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020027448A
Other languages
English (en)
Inventor
和也 倉橋
Kazuya Kurahashi
和也 倉橋
鳴笛 王
Mingdi Wang
鳴笛 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Japan Co Ltd
Original Assignee
Valeo Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Japan Co Ltd filed Critical Valeo Japan Co Ltd
Priority to JP2020027448A priority Critical patent/JP2021131199A/ja
Publication of JP2021131199A publication Critical patent/JP2021131199A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】下流側でもバッテリの冷却能力を有する熱交換器の提供。【解決手段】冷却用熱交換器(30;30A;30B)は、流入部(31)が設けられた流入ヘッダ(H1)と、中間ヘッダ(H2)と、流出部(32)が設けられた流出ヘッダ(H4)と、流入ヘッダを通過して冷媒が流入する第1チューブ(Ta1;Tb1)と、通過した冷媒が流入ヘッダへ流入する流出チューブ(Ta3;Tb3)とを有する。バッテリ冷却面に対するチューブの面積は、第1チューブよりも流出チューブが大きい。【選択図】図1

Description

本発明は、車両に搭載された高温のバッテリセルを冷却する冷却用熱交換器に関する。
電気自動車やハイブリッド車は、充電可能なバッテリに蓄積された電力により走行用モータを駆動して走行する。バッテリは充電時に発熱し、劣化の一因となる。そこで、バッテリの劣化を抑制するために、バッテリの冷却が行われる。特許文献1には、バッテリを冷却するための冷媒式の冷却用熱交換器が開示されている。
特許文献1の冷却用熱交換器は、2本のヘッダ(マニホルド)の間に設けられてバッテリと接触する複数の平坦なチューブ(冷媒管)を有している。ヘッダは上下方向に延びるように配置され、チューブはバッテリの側面と熱的に結合している。すなわち、チューブとバッテリの側面とは、熱交換が可能となるように接触している。バッテリの冷却を行うとき、ヘッダおよびチューブにより形成される冷媒流路のうち、比較的上流側のチューブ内を流れる冷媒は、液体を十分に含む気液混合状態であり、バッテリの冷却能力を十分に有している。冷媒はチューブの中を流れてゆくときにバッテリの熱により加熱され、これにより、液体状態の冷媒が蒸発して減少し、気体状態の冷媒の割合が増加してゆく。
特許文献2のバッテリモジュールは、バッテリパックケースの内部に複数のバッテリが配置されている。バッテリは上下方向や左右方向に積層されてそれぞれグループを形成しており、複数のグループが1つのバッテリパックケースの内部に配置されている。
特許文献1の冷却用熱交換器を、特許文献2のバッテリパックケースの内部に配置してそれぞれのバッテリのグループを冷却する場合、冷却用熱交換器の形状に工夫が求められる。すなわち、特許文献1の冷却用熱交換器ではヘッダを2本としていたところ、ヘッダを3本以上に増やし、隣接するヘッダとの間にチューブを配置することが好ましい。ヘッダを2本のままとして、長いチューブを各バッテリのグループに接触させると、チューブの寸法が長いために容易に変形し、チューブとバッテリの側面との熱的な結合が困難となる。そこで、ヘッダを3本以上となるように冷却用熱交換器を構成し、中間ヘッダをバッテリのグループの間に配置することで、チューブの意図しない変形を抑制し、各バッテリのグループの側面と熱的な結合を形成することができる。
特開2016−035378号公報 特開2015−072819号公報
チューブを流れる冷媒は、上流側では液体を十分に含みバッテリの冷却能力を十分に有している一方、下流側へと進むにつれて液体の割合が減少し、冷却能力が低下する。特に冷媒が完全に気化すると、気化した位置よりも下流側では、蒸発潜熱を利用したバッテリの冷却が困難となる。このためバッテリは、冷却用熱交換器の下流側と接触する部分が十分に冷却されないおそれがあった。
本発明は、中間ヘッダを有するバッテリの冷却用熱交換器において、下流側でも十分にバッテリを冷却できる構成を提供することを、目的としている。
以下の説明では、本発明の理解を容易にするために添付図面中の参照符号を括弧書きで付記するが、それによって本発明は図示の形態に限定されるものではない。
本発明の一実施の形態によれば、内部に気液混合状態の冷媒が通流し、車両に搭載されるバッテリ(20)を冷却する冷却用熱交換器(30;30A;30B)であって、前記バッテリ(20)と熱交換する冷媒が流入する流入部(31)と、前記流入部(31)を通過した冷媒が流入する流入ヘッダ(H1)と、前記流入ヘッダ(H1)を通過した冷媒が流入する第1チューブ(Ta1;Tb1)と、前記第1チューブ(Ta1;Tb1)を通過した冷媒が直接的または間接的に流入する中間ヘッダ(H3)と、前記中間ヘッダ(H3)を通過した冷媒が流入する流出チューブ(Ta3;Tb3;Tc3;Ta3w;Tb3w;Ta3s;Tb3s)と、前記流出チューブ(Ta3;Tb3)を通過した冷媒が流入する流出ヘッダ(H4;H4s)と、前記流出ヘッダ(H4;H4s)を通過して冷媒が流入し前記冷却用熱交換器(30;30A;30B)から冷媒を流出する流出部(32)と、を有し、前記第1チューブ(Ta1;Tb1)が冷却するバッテリ冷却面(221)の面積に対する前記第1チューブの前記冷却面(221)側の面積で規定される第1面積比(r1)よりも、前記流出チューブ(Ta3;Tb3;Tc3;Ta3w,Tb3w;Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積に対する前記流出チューブの前記冷却面(223)側の面積で規定される流出面積比(r3)が大きい、冷却用熱交換器(請求項1)が提供される。
また、冷却用熱交換器(30;30A;30B)は、前記中間ヘッダ(H2;H3)を複数有し、複数の前記中間ヘッダ同志は第2チューブ(Ta2;Tb2)を介して接続され、前記第2チューブ(Ta2;Tb2)が冷却するバッテリ冷却面(222)の面積に対する前記第2チューブの前記冷却面(222)側の面積で規定される第2面積比(r2)よりも、前記流出チューブ(Ta3;Tb3;Tc3;Ta3w,Tb3w;Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積に対する前記流出チューブの前記冷却面(223)側の面積で規定される流出面積比(r3)が大きいものであってもよい(請求項2)。第2チューブは流出チューブよりも上流側に位置しており、バッテリの冷却能力が高い。この第2チューブよりも冷却能力に劣る流出チューブの形状を、第2面積比よりも流出面積比が大きくなるように設定することで、下流側でもバッテリの冷却能力を確保することができる。
また、冷却用熱交換器(30;30A;30B)は、前記第1面積比(r1)よりも、前記第2面積比(r2)が大きいことが好ましい(請求項3)。第1チューブは第2チューブよりも上流側に位置しており、バッテリの冷却能力が高い。この第1チューブよりも冷却能力に劣る第2チューブの形状を、第1面積比よりも第2面積比が大きくなるように設定することで、第2チューブでのバッテリの冷却能力をより確実に確保することができる。
具体的には、冷却用熱交換器(30)は、前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第1チューブ(Ta1;Tb1)と前記流出チューブ(Ta3;Tb3;Tc3;Ta3s;Tb3s)とは幅方向の寸法が同一であり、前記第1チューブよりも前記流出チューブは本数が多くなるよう設けられる(請求項4)。
あるいは、冷却用熱交換器(30A)は、前記流出チューブ(Ta3w;Tb3w)は、前記第1チューブ(Ta1;Tb1)と本数が同じであり、前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第1チューブ(Ta1;Tb1)よりも前記流出チューブ(Ta3w;Tb3w)の幅方向の寸法が大きくなるよう設けられる(請求項5)。
あるいは、冷却用熱交換器(30)は、前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第2チューブ(Ta2;Tb2)と前記流出チューブ(Ta3;Tb3;Tc3;Ta3s;Tb3s)とは幅方向の寸法が同一であり、前記第2チューブよりも前記流出チューブは本数が多くなるよう設けられる(請求項6)。
あるいは、冷却用熱交換器(30A)は、前記流出チューブ(Ta3w;Tb3w)は、前記第2チューブ(Ta2;Tb2)と本数が同じであり、前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第2チューブ(Ta2;Tb2)よりも前記流出チューブ(Ta3w;Tb3w)の幅方向の寸法が大きくなるよう設けられる(請求項7)。
あるいは、冷却用熱交換器(30B)は、前記第1チューブ(Ta1;Tb1)が冷却するバッテリ冷却面(221)の面積よりも、前記流出チューブ(Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積が小さいバッテリシステムに適用される(請求項8)。
あるいは、前記第2チューブ(Ta2;Tb2)が冷却するバッテリ冷却面(222)の面積よりも、前記流出チューブ(Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積が小さいバッテリシステムに適用される(請求項9)。
上記の実施形態によれば、中間ヘッダを有するバッテリの冷却用熱交換器において、下流側でも十分にバッテリを冷却できる構成を提供できる。
実施例1による冷却用熱交換器、この冷却用熱交換器が搭載されるバッテリパックおよびバッテリを示す、分解斜視図である。 実施例1による冷却用熱交換器を車両に搭載した状態の、側面概略図である。 実施例2による冷却用熱交換器を車両に搭載した状態の、側面概略図である。 実施例3による冷却用熱交換器を車両に搭載した状態の、側面概略図である。
本発明の実施の形態を添付図に基づいて以下に説明する。図中Leは左、Riは右、Upは上、Dnは下を示している。
<実施例1>
図1を参照する。図1には、電力が蓄えられる3つのバッテリ20と、これらのバッテリ20を冷却するための冷却用熱交換器30と、バッテリ20および冷却用熱交換器30とを収容するバッテリパックケース10とが示されている。これらのバッテリパックケース10、バッテリ20及び冷却用熱交換器30は、例えば、電力で走行用モータを駆動して走行する電気自動車や、動力源が内燃機関とモータとからなるハイブリッド車両に搭載される。
バッテリパックケース10は、車両に搭載されるもので、金属または樹脂により構成される。図1では、バッテリ20と冷却用熱交換器30とを内部に収容し、上方が解放されている容器として示されているが、一般には、バッテリパックケース10の内部を一定の気密性が確保されるように密閉容器として構成される。気密性を確保することで、精密な製品であるバッテリ20を、外界を飛来する塵埃や水、油脂等から隔離し、保護することができる。
それぞれのバッテリ20は、積層された複数のバッテリセル21と、冷却用熱交換器30に対向する面に配置された均熱層22(221;222;223)とを有する。バッテリセル21の積層方向は、図1に示されるように上下方向に積層される場合だけでなく、左右方向や前後方向の場合(図示せず)もある。均熱層22を設けることにより、各バッテリセル21の温度分布のばらつきを縮小することができる。均熱層22には、例えばアルミニウム合金やステンレス合金など、高い熱伝導性を有する材料が用いられる。バッテリセル21は、車両走行用のモータ(図示せず)に供給する電力を蓄積する機能を有し、充電時には発熱して高温となる。バッテリ20の均熱層22は、冷却用熱交換器30と熱的に結合され、高温となったバッテリセル21の熱を冷却用熱交換器30へ伝熱する。均熱層22は、バッテリ20の冷却面221;222;223と見なすことができる。
冷却用熱交換器30は図示しない冷凍サイクルに連結され、特に膨張装置の下流側に配置される。冷凍サイクルが稼働されると、内部に冷却用の熱媒体としての気液混合状態の冷媒が通流される。冷媒は、例えばフロン系冷媒(HFC−134a、R−1234yf、R−12)が用いられる。
図2を参照する。冷却用熱交換器30は、例えば、アルミニウム合金や銅合金等の熱伝導率の高い材料によって構成される。冷却用熱交換器30は、筒状に形成され上下に延びる4本のヘッダH(流入ヘッダH1、中間ヘッダH2、中間ヘッダH3、流出ヘッダH4)と、これらのヘッダHによって支持され内部に冷媒が流れる熱交換チューブT(第1チューブTa1;Tb1、第2チューブTa2;Tb2、流出チューブTa3;Tb3;Tc3)と、流出ヘッダH4の下部に接続され冷媒が流出する流出部32と、を有する。中間ヘッダH2の内部は中空となっており、必要に応じて図示しない仕切部材により、上側空間と、この上側空間の下方に位置する下側空間とに仕切られていてもよい。
流入部31は、金属の管に円周状のフランジ部が設けられ、流入ヘッダH1に形成された穴部に挿入される。流入部31の下流端は、流入ヘッダH1の内部空間に開放している。
流出部32は、金属の管に円周状のフランジ部が設けられ、流出ヘッダH4に形成された穴部に挿入される。流出部32の上流端は、流出ヘッダH4の内部空間に開放している。
熱交換チューブTは扁平状の筒体であり、内部には冷媒の流れ方向に沿って複数の壁を形成することもできる(図示せず)。製造に際し、押出し成型、2枚のチューブプレートの貼合わせ、1枚のチューブプレートのリールフォーミングなどの製造方法が用いられる。第1チューブ(上側第1チューブTa1と下側第1チューブTb1)は、流入ヘッダH1の内部空間と中間ヘッダH2の内部空間とを連絡する。第2チューブ(上側第2チューブTa2と下側第2チューブTb2)は、中間ヘッダH2の内部空間と中間ヘッダH3の内部空間とを連絡する。流出チューブ(上側流出チューブTa3、下側流出チューブTb3、中間流出チューブTc3)は、中間ヘッダH3の内部空間と流出ヘッダH4の内部空間とを連絡する。冷媒の通流方向に直交する方向をチューブの幅方向とするとき、実施例1に示される7本のチューブの幅寸法は、同一である。
4本のヘッダH1;H2;H3;H4は、それぞれ、流入部31が配置された流入ヘッダH1、流入ヘッダH1の下流側に配置されて上側第1チューブTa1および下側第1チューブTb1が連結した中間ヘッダH2、中間ヘッダH2の下流側に配置されて上側第2チューブTa2および下側第2チューブTb2が連結した中間ヘッダH3、中間ヘッダH3の下流側に配置されて上側第3チューブTa3、下側第3チューブTb3、および中間第3チューブTc3が連結した流出ヘッダH4、である。図1と図2に示されるように、実施例1の4本のヘッダH1;H2;H3;H4は、すべて同じ長さ寸法を有する。
なお、本発明の4本のヘッダは、後述するように長さが異なっていてもよい。例えば複数のバッテリ積層体20の高さ寸法が異なる場合には、これに対応するように、各ヘッダH1;H2;H3;H4の長さ寸法を適宜変更させてもよい。また、これに応じて、上側チューブTaと下側チューブTbの上下方向の位置を、適宜変更させてもよい。バッテリ20の局所的な冷却や偏った位置での冷却を回避して、バッテリ積層体20を均一な温度状態に維持することができる。
冷却用熱交換器30は、4本のヘッダHと、9本の熱交換チューブTと、流入部31と、流出部32とを、ろう付けによって一体的に接合することが好ましい。これにより、高い剛性を確保することができる。中間ヘッダH2;H3の内部に内部空間を仕切る仕切部材を設ける場合は、仕切部材も一体的にろう付けによって接合することが好ましい。
図1および図2を参照する。図中の矢印は冷媒の流れ方向を、黒色矢印は気液混合
冷媒であることを、白色矢印は気相冷媒を、それぞれ示す。
流入部31を通流し流入ヘッダH1に流入した気液混合の冷媒は、流入ヘッダH1の内部空間41を概ね上下方向に分かれて、一部は上側第1チューブTa1に、残りは下側第1チューブTb1に流入する。上側第1チューブTa1および下側第1チューブTb1を流れる冷媒は、均熱層22(バッテリ冷却面221)を介してバッテリ20と熱交換を行う。上側第1チューブTa1を流出した冷媒と、下側第1チューブTb1を流出した冷媒とは、中間ヘッダH2の内部空間に流入する。
中間ヘッダH2の内部空間に流入した気液混合の冷媒は、一部は上側第2チューブTa2に、残りは下側第2チューブTb2に流入する。上側第2チューブTa2および下側第2チューブTb2を流れる冷媒は、均熱層22(バッテリ冷却面222)を介してバッテリ20と熱交換を行う。上側第2チューブTa2を流出した冷媒と、下側第2チューブTb2を流出した冷媒とは、中間ヘッダH3の内部空間に流入する。
中間ヘッダH3の内部空間に流入した気液混合の冷媒は、上側流出チューブTa3と、下側流出チューブTb3と、中間流出チューブTc3とに分かれて流入する。3本の流出チューブTa3;Tb3;Tc3を流れる冷媒は、均熱層22(バッテリ冷却面223)を介してバッテリ20と熱交換を行う。上側流出チューブTa3、下側流出チューブTb3、中間流出チューブTc3のいずれかから流出した冷媒は、流出ヘッダH4の内部空間に流入する。
流出ヘッダH4の内部空間に流入した冷媒は、流出部32を介して、図示しない冷凍サイクルに流入する。
流入ヘッダH1に流入する冷媒は、ある程度の湿り度を有している。
中間ヘッダH2に流入した冷媒の気液混合状態は、流入ヘッダH1を通流する冷媒よりも、液相冷媒の割合が減少する。これは、冷媒が上側第1チューブTa1および下側第1チューブTb1を通流する際にバッテリ20の熱を吸収し、液相冷媒の一部が蒸発して気相冷媒に変化するからである。しかしながら、中間ヘッダH2へ流入した冷媒は、依然として気液混合状態である。すなわち、ある程度の湿り度を有している。
中間ヘッダH3に流入した冷媒の気液混合状態は、中間ヘッダH2を通流する冷媒よりも、液相冷媒の割合が更に減少する。これは、冷媒が上側第2チューブTa2および下側第2チューブTb2を通流する際にバッテリ20の熱を吸収し、液相冷媒の一部が蒸発して気相冷媒に変化するからである。しかしながら、中間ヘッダH3へ流入した冷媒は、依然として気液混合状態である。すなわち、ある程度の湿り度を有している。
流出ヘッダH4に流入した冷媒の気液混合状態は、中間ヘッダH3を通流する冷媒よりも、液相冷媒の割合が更に減少する。これは、冷媒が上側流出チューブTa3、下側流出チューブTb3、および中間流出チューブTc3を通流する際にバッテリ20の熱を吸収し、液相冷媒の一部が蒸発して気相冷媒に変化するからである。ここで、流出ヘッダH4へ流入した冷媒は、液相冷媒をほとんど含まないか、あるいは完全に気相状態となる。湿り度がゼロとあるだけでなく、過熱度を有する。
ここで、流入ヘッダH1と中間ヘッダH2との間、および中間ヘッダH2と中間ヘッダH3との間は、それぞれ2本のチューブで連結されている。一方、中間ヘッダH3と流出ヘッダH4との間は、3本の流出チューブTa3;Tb3;Tc3により連結されて、バッテリ20と熱交換が可能に設けられている。また、3組のバッテリ20はいずれも、熱交換チューブの幅方向(すなわち、上下方向)において寸法が同一となっている。
すなわち、流出チューブTa3;Tb3;Tc3が冷却するバッテリ冷却面223の面積を分母とし、3本の流出チューブの冷却面223側の面積を分子としたときの流出面積比r3は、第1チューブTa1;Tb1が冷却するバッテリ冷却面221の面積を分母とし、2本の第1チューブの冷却面221側の面積を分子としたときの第1面積比r1よりも、大きい。
このため、第1チューブTa1;Tb1では液相冷媒が存在してチューブの単位面積当たりの冷却能力が高く、一方で流出チューブTa3;Tb3;Tc3では過熱度を有するまでに液相冷媒が失われてチューブの単位面積当たりの冷却能力が低くなっても、第1チューブよりも流出チューブの本数が多く、流出面積比r3が第1面積比r1よりも大きいことで、バッテリ20を広い範囲で冷却することができる。このため、相対的に下流側に配置されたバッテリ20(流出チューブにより均熱層223を介して冷却されるバッテリ20)の冷却能力と、相対的に上流側に配置されたバッテリ20(第1チューブにより均熱層221を介して冷却されるバッテリ20)の冷却能力との乖離を抑制することができる。すなわち複数のバッテリ20;20の温度を、大きな差が発生することなく維持することができる。
また、流出チューブTa3;Tb3;Tc3が冷却するバッテリ冷却面223の面積を分母とし、3本の流出チューブの冷却面223側の面積を分子としたときの流出面積比r3は、第2チューブTa2;Tb2が冷却するバッテリ冷却面222の面積を分母とし、2本の第2チューブの冷却面222側の面積を分子としたときの第2面積比r2よりも、大きい。
このため、第2チューブTa2;Tb2では液相冷媒が存在してチューブの単位面積当たりの冷却能力が高く、一方で流出チューブTa3;Tb3;Tc3では過熱度を有するまでに液相冷媒が失われてチューブの単位面積当たりの冷却能力が低くなっても、第2チューブよりも流出チューブの本数が多く、流出面積比r3が第2面積比r2よりも大きいことで、バッテリ20を広い範囲で冷却することができる。このため、相対的に下流側に配置されたバッテリ20(流出チューブにより均熱層223を介して冷却されるバッテリ20)の冷却能力と、相対的に上流側に配置されたバッテリ20(第2チューブにより均熱層222を介して冷却されるバッテリ20)の冷却能力との乖離を抑制することができる。すなわち複数のバッテリ20;20の温度を、大きな差が発生することなく維持することができる。
なお、この実施例1では、流出チューブの本数を増やすことで冷媒の流路断面積を拡大している。このため、液相冷媒が蒸発し熱交換器の下流側ほど圧力が上昇しやすいところ圧力の上昇が抑制される。過熱度を有する冷媒は、圧力と温度とが一義的に対応しているから、第3ヘッダH3と流出ヘッダH4との間の冷媒温度の上昇も抑制される。このため、流出チューブの本数を増やすことで、バッテリ20を広い範囲で冷却できることに加えて、仮に過熱度を有する冷媒であっても温度の低い冷媒を用いてバッテリ20を冷却することができる。
<実施例2>
次に、実施例2による冷却用熱交換器30Aを、図面に基づいて説明する。
図3を参照する。実施例2による冷却用熱交換器30Aは、バッテリパックケース10の内部に配置されており、実施例1の冷却用熱交換器30と共通する部分については、符号を流用すると共に、詳細な説明を省略する。
冷却用熱交換器30Aは、バッテリ20を冷却するもので、実施例1の冷却用熱交換器30に対する相違点は、流出チューブTa3w;Tb3wの本数が2本である点と、チューブの幅方向の寸法が、第1チューブTa1;Tb1や第2チューブTa2;Tb2よりも大きい点である。
この実施例2の形態であっても、流出チューブTa3w;Tb3wが冷却するバッテリ冷却面223の面積を分母とし、2本の流出チューブの冷却面223側の面積を分子としたときの流出面積比r3は、第1チューブTa1;Tb1が冷却するバッテリ冷却面221の面積を分母とし、2本の第1チューブの冷却面221側の面積を分子としたときの第1面積比r1よりも、大きい。
このため、相対的に下流側に配置されたバッテリ20(流出チューブにより均熱層223を介して冷却されるバッテリ20)の冷却能力と、相対的に上流側に配置されたバッテリ20(第1チューブにより均熱層221を介して冷却されるバッテリ20)の冷却能力との乖離を抑制することができる。すなわち複数のバッテリ20;20の温度を、大きな差が発生することなく維持することができる。
また、流出面積比r3は、第2チューブTa2;Tb2が冷却するバッテリ冷却面222の面積を分母とし、2本の第2チューブの冷却面222側の面積を分子としたときの第2面積比r2よりも、大きい。
このため、相対的に下流側に配置されたバッテリ20(流出チューブにより均熱層223を介して冷却されるバッテリ20)の冷却能力と、相対的に上流側に配置されたバッテリ20(第2チューブにより均熱層222を介して冷却されるバッテリ20)の冷却能力との乖離を抑制することができる。すなわち複数のバッテリ20;20の温度を、大きな差が発生することなく維持することができる。
なお、この実施例2では、流出チューブの幅寸法を広げることで冷媒の流路断面積を拡大している。このため、実施例1と同様に、バッテリ20を広い範囲で冷却できることに加えて、仮に過熱度を有する冷媒であっても温度の低い冷媒を用いてバッテリ20を冷却することができる。
<実施例3>
次に、実施例3による冷却用熱交換器30Bを、図面に基づいて説明する。
図4を参照する。実施例3による冷却用熱交換器30Bは、バッテリパックケース10の内部に配置されており、実施例1の冷却用熱交換器30と共通する部分については、符号を流用すると共に、詳細な説明を省略する。
冷却用熱交換器30Bは、バッテリ20を冷却するもので、実施例1の冷却用熱交換器30に対する相違点は、流出チューブTa3s;Tb3sの本数が2本である点、流出チューブの位置に対応するバッテリ20sの上下方向の寸法が上流側に配置されたバッテリ20;20の寸法よりも小さい点、流出ヘッダH4sの寸法が他の上流側のヘッダH1;H2;H3よりも小さい点である。バッテリ20sは、上下方向の寸法が上流側に配置されたバッテリ20;20の寸法よりも小さいので、冷却面223の面積が上流側に配置されたバッテリ20;20の冷却面221;222よりも小さい。
この実施例3の形態であっても、流出チューブTa3s;Tb3sが冷却するバッテリ冷却面223の面積を分母とし、2本の流出チューブの冷却面223側の面積を分子としたときの流出面積比r3は、第1チューブTa1;Tb1が冷却するバッテリ冷却面221の面積を分母とし、2本の第1チューブの冷却面221側の面積を分子としたときの第1面積比r1よりも、大きい。
また、流出面積比r3は、第2チューブTa2;Tb2が冷却するバッテリ冷却面222の面積を分母とし、2本の第2チューブの冷却面222側の面積を分子としたときの第2面積比r2よりも、大きい。
このため、実施例1、実施例2と同様に、すなわち複数のバッテリ20;20の温度を、大きな差が発生することなく維持することができる。
<その他の実施例>
以上、実施例1乃至実施例3により冷却用熱交換器30;30A;30Bを説明したが、本発明の作用及び効果を奏する限りにおいて、本発明は実施例1乃至実施例3の態様に限られるものではない。例えば、流出面積比r3が第2面積比r2よりも大きい状態を維持しつつ、さらに第2チューブTa2;Tb2の幅方向の寸法を第1チューブTa1;Tb1よりも若干大きく設定して、第2面積比r2を第1面積比r1よりも大きく設定する。すなわち、第1面積比r1<第2面積比r2<流出面積比r3の関係とする。第1ヘッダH1に流入した気液混合状態の冷媒は、第2ヘッダH2、第3ヘッダH3、流出ヘッダH4へと通流するにつれて湿り度が低下し、チューブにおける単位面積当たりの冷却能力が低下する。このとき、このような面積比の関係となるよう設定することで、3つのバッテリ20;20の温度を、大きな差が発生することなく維持することができる。
本発明のバッテリ冷却装置は、電気自動車やハイブリッド車両に搭載するのに好適である。
10…バッテリパックケース
20…バッテリ
21…バッテリセル
22…均熱層
221、222、223…バッテリの冷却面
30、30A、30B…冷却用熱交換器
31…流入部
32…流出部
H…ヘッダ
H1…流入ヘッダ
H2…中間ヘッダ
H3…中間ヘッダ
H4…流出ヘッダ
T…熱交換チューブ
Ta1…上側第1チューブ
Ta2…上側第2チューブ
Ta3…上側流出チューブ
Tb1…下側第1チューブ
Tb2…下側第2チューブ
Tb3…下側流出チューブ
Tc3…中間流出チューブ
r1…第1面積比
r2…第2面積比
r3…流出面積比

Claims (9)

  1. 内部に気液混合状態の冷媒が通流し、車両に搭載されるバッテリ(20)を冷却する冷却用熱交換器(30;30A;30B)であって、
    前記バッテリ(20)と熱交換する冷媒が流入する流入部(31)と、
    前記流入部(31)を通過した冷媒が流入する流入ヘッダ(H1)と、
    前記流入ヘッダ(H1)を通過した冷媒が流入する第1チューブ(Ta1;Tb1)と、
    前記第1チューブ(Ta1;Tb1)を通過した冷媒が直接的または間接的に流入する中間ヘッダ(H3)と、
    前記中間ヘッダ(H3)を通過した冷媒が流入する流出チューブ(Ta3;Tb3;Tc3;Ta3w;Tb3w;Ta3s;Tb3s)と、
    前記流出チューブ(Ta3;Tb3)を通過した冷媒が流入する流出ヘッダ(H4;H4s)と、
    前記流出ヘッダ(H4;H4s)を通過して冷媒が流入し前記冷却用熱交換器(30;30A;30B)から冷媒を流出する流出部(32)と、
    を有し、
    前記第1チューブ(Ta1;Tb1)が冷却するバッテリ冷却面(221)の面積に対する前記第1チューブの前記冷却面(221)側の面積で規定される第1面積比(r1)よりも、
    前記流出チューブ(Ta3;Tb3;Tc3;Ta3w,Tb3w;Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積に対する前記流出チューブの前記冷却面(223)側の面積で規定される流出面積比(r3)が大きいことを特徴とする冷却用熱交換器(30;30A;30B)。
  2. 前記中間ヘッダ(H2;H3)を複数有し、複数の前記中間ヘッダ同志は第2チューブ(Ta2;Tb2)を介して接続され、
    前記第2チューブ(Ta2;Tb2)が冷却するバッテリ冷却面(222)の面積に対する前記第2チューブの前記冷却面(222)側の面積で規定される第2面積比(r2)よりも、
    前記流出チューブ(Ta3;Tb3;Tc3;Ta3w,Tb3w;Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積に対する前記流出チューブの前記冷却面(223)側の面積で規定される流出面積比(r3)が大きいことを特徴とする請求項1に記載の冷却用熱交換器(30;30A;30B)。
  3. 前記第1面積比(r1)よりも、前記第2面積比(r2)が大きいことを特徴とする請求項2に記載の冷却用熱交換器(30;30A;30B)。
  4. 前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第1チューブ(Ta1;Tb1)と前記流出チューブ(Ta3;Tb3;Tc3;Ta3s;Tb3s)とは幅方向の寸法が同一であり、
    前記第1チューブよりも前記流出チューブは本数が多いことを特徴とする請求項1乃至3のいずれかに記載の冷却用熱交換器(30)。
  5. 前記流出チューブ(Ta3w;Tb3w)は、前記第1チューブ(Ta1;Tb1)と本数が同じであり、
    前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第1チューブ(Ta1;Tb1)よりも前記流出チューブ(Ta3w;Tb3w)の幅方向の寸法が大きいことを特徴とする請求項1乃至3のいずれかに記載の冷却用熱交換器(30A)。
  6. 前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第2チューブ(Ta2;Tb2)と前記流出チューブ(Ta3;Tb3;Tc3;Ta3s;Tb3s)とは幅方向の寸法が同一であり、
    前記第2チューブよりも前記流出チューブは本数が多いことを特徴とする請求項2又は3のいずれかに記載の冷却用熱交換器(30)。
  7. 前記流出チューブ(Ta3w;Tb3w)は、前記第2チューブ(Ta2;Tb2)と本数が同じであり、
    前記冷媒の通流方向に直交する方向をチューブの幅方向とするとき、第2チューブ(Ta2;Tb2)よりも前記流出チューブ(Ta3w;Tb3w)の幅方向の寸法が大きいことを特徴とする請求項2又は3のいずれかに記載の冷却用熱交換器(30A)。
  8. 前記バッテリ(20)は、前記第1チューブ(Ta1;Tb1)が冷却するバッテリ冷却面(221)の面積よりも、前記流出チューブ(Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積が小さいことを特徴とする請求項1乃至3のいずれかに記載の冷却用熱交換器(30B)。
  9. 前記バッテリ(20)は、前記第2チューブ(Ta2;Tb2)が冷却するバッテリ冷却面(222)の面積よりも、前記流出チューブ(Ta3s;Tb3s)が冷却するバッテリ冷却面(223)の面積が小さいことを特徴とする請求項2又は3のいずれかに記載の冷却用熱交換器(30B)。
JP2020027448A 2020-02-20 2020-02-20 冷却用熱交換器 Pending JP2021131199A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020027448A JP2021131199A (ja) 2020-02-20 2020-02-20 冷却用熱交換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020027448A JP2021131199A (ja) 2020-02-20 2020-02-20 冷却用熱交換器

Publications (1)

Publication Number Publication Date
JP2021131199A true JP2021131199A (ja) 2021-09-09

Family

ID=77552143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020027448A Pending JP2021131199A (ja) 2020-02-20 2020-02-20 冷却用熱交換器

Country Status (1)

Country Link
JP (1) JP2021131199A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022479A1 (zh) * 2022-07-29 2024-02-01 比亚迪股份有限公司 换热器、电池包以及车辆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022479A1 (zh) * 2022-07-29 2024-02-01 比亚迪股份有限公司 换热器、电池包以及车辆

Similar Documents

Publication Publication Date Title
US9989315B2 (en) Cold storage heat exchanger
JP5910415B2 (ja) 蓄冷熱交換器
CN102778083B (zh) 冷却储存式热交换器
JP6183100B2 (ja) 蓄冷熱交換器
JP2010091250A (ja) 蓄冷熱交換器
JP5920087B2 (ja) 蓄冷熱交換器
JP5552309B2 (ja) 蓄冷機能付きエバポレータ
JP2021131199A (ja) 冷却用熱交換器
JP5849883B2 (ja) 蓄冷熱交換器
KR101756213B1 (ko) 축냉 열교환기
JP6409836B2 (ja) 蓄冷熱交換器
WO2021145317A1 (ja) 冷却用熱交換器
JP2010243066A (ja) 蓄冷熱交換器
US8893521B2 (en) Multi-cooling module for vehicle
JP6128188B2 (ja) 蓄冷熱交換器
JP6206209B2 (ja) 蓄冷熱交換器
JP2021174662A (ja) 車両用バッテリ冷却装置の熱交換器
WO2019093065A1 (ja) 蒸発器
JP6573030B2 (ja) 蓄冷熱交換器
KR20090108380A (ko) 증발기
JP6327386B2 (ja) 蓄冷熱交換器
WO2017057174A1 (ja) 蓄冷熱交換器
KR101855850B1 (ko) 일체형 열교환기
JP2018096568A (ja) 熱交換器
JPH08152288A (ja) 熱交換器