JP2021129138A - 発振器 - Google Patents

発振器 Download PDF

Info

Publication number
JP2021129138A
JP2021129138A JP2020020690A JP2020020690A JP2021129138A JP 2021129138 A JP2021129138 A JP 2021129138A JP 2020020690 A JP2020020690 A JP 2020020690A JP 2020020690 A JP2020020690 A JP 2020020690A JP 2021129138 A JP2021129138 A JP 2021129138A
Authority
JP
Japan
Prior art keywords
circuit
temperature
oscillator
clock signal
oscillation clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020020690A
Other languages
English (en)
Inventor
典仁 松川
Norihito Matsukawa
典仁 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2020020690A priority Critical patent/JP2021129138A/ja
Priority to CN202110179047.9A priority patent/CN113258877B/zh
Priority to US17/171,092 priority patent/US11239844B2/en
Publication of JP2021129138A publication Critical patent/JP2021129138A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/04Constructional details for maintaining temperature constant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/028Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only of generators comprising piezoelectric resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

【課題】周波数の変動を低減することが可能な発振器を提供すること。【解決手段】発振器1は、振動子2と、振動子2を加熱する温度調整回路110と、温度検出回路120と、温度制御回路245と、発振クロック信号出力回路230と、周波数補正回路222と、を有する。温度調整回路110は、振動子2を加熱する。温度検出回路120は、振動子2よりも温度調整回路110の近くに位置し、温度検出信号を出力する。温度制御回路245は、温度検出信号に基づき温度調整回路110の温度を制御する。発振クロック信号出力回路230は、振動子2を発振させ、発振クロック信号を出力する。周波数補正回路222は、発振クロック信号の過渡的な周波数変動を、温度検出信号の時間変化量又は温度制御信号の時間変化量に基づいて補償する。【選択図】図11

Description

本発明は、発振器に関する。
高精度な発振出力を得るための発振器として、発振回路、水晶振動子、ヒーター及び温度検出器を1つの槽内に備えた恒温槽型水晶発振器(OCXO:Oven Controlled crystal oscillator)が知られている。恒温槽型水晶発振器では、ヒーターが、恒温槽型水晶発振器の電源電圧を入力するための入力端子と接続され、温度検出器が、恒温槽型水晶発振器の槽内の温度を検出する。そして、温度検出器の検出値に応じてヒーターに流れる電流を制御することで、槽内の温度を一定に制御している。これにより、水晶振動子などの振動子の温度が安定し、振動子から出力される周波数が安定する。
特許文献1には、パッケージの薄底部に発振部を配置し、厚底部に発熱素子を配置し、発熱素子上に振動素子を搭載するとともに、薄底部と厚底部とを熱的に接続する熱伝導部を備えることで、発振部の温度変化を低減し、発振部に含まれる発振素子の温度特性による発振周波数変化を減少させる発振器の技術が開示されている。
特開2017−028360号公報
しかしながら、特許文献1に記載のような発振器では、例えば発熱素子に印加される電源電圧が変動した場合、発熱素子における消費電流が変動し、その結果、発熱素子における発熱量が変動するおそれがある。このように発熱素子の発熱量が変動した場合、発振器における温度制御によって温度が安定するまでの期間において、振動子に過渡的な温度変動が生じる。これにより、振動子から出力される周波数が一時的に変動し、その結果、恒温槽型水晶発振器から出力される発振信号の周波数精度が低下するおそれがある。
本発明に係る発振器の一態様は、
振動子と、
前記振動子を加熱する発熱回路と、
前記振動子よりも前記発熱回路の近くに位置し、温度検出信号を出力する温度センサーと、
前記温度検出信号に基づき前記発熱回路の温度を制御する温度制御信号を出力する温度制御回路と、
前記振動子を発振させ、発振クロック信号を出力する発振クロック信号出力回路と、
前記発振クロック信号の周波数変動を補正する補正回路と、
を備え、
前記補正回路は、前記発振クロック信号の過渡的な周波数変動を、前記温度検出信号の時間変化量、又は前記温度制御信号の時間変化量に基づいて補償する。
発振器の構造の一例を示す平面図。 図1に示すA−a線の断面図。 発振器を構成する容器の構造の一例を示す平面図。 図3に示すB−b線の断面図。 発振器の電気的構成を示す機能ブロック図。 第2回路装置の具体的な構成例を示す図。 集積回路として構成された第2回路装置の構造例を示す図。 周波数補正回路の構成の一例を示す図。 温度制御回路の温度変動に応じて温度制御信号の電圧値に生じる時間変動の一例を示す図。 図9に示す温度制御信号に応じた発振クロック信号の周波数偏差(ΔF/F)の一例を示す図。 発振器の変形例の電気的構成を示す機能ブロック図。 発振器の変形例が有する周波数補正回路の構成の一例を示す図。 第2実施形態の発振器の電気的構成を示す機能ブロック図。 第2実施形態の発振器が有する周波数補正回路の構成の一例を示す図。 第3実施形態の発振器の電気的構成を示す機能ブロック図。 第3実施形態の周波数補正回路及びトリガー回路の構成の一例を示す図。 第3実施形態の周波数補正回路の構成の一例を示す図である。
以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
1.第1実施形態
1.1 発振器の構造
図1〜図4を用いて発振器1の構造について説明する。第1実施形態における発振器1は、恒温槽型水晶発振器(OCXO:Oven Controlled crystal oscillator)である。図1は、発振器1の構造の一例を示す平面図である。図2は、図1に示すA−a線の断面図である。図3は、発振器1を構成する容器40の構造の一例を示す平面図である。図4は、図3に示すB−b線の断面図である。なお、図1及び図3では、発振器1と容器40の内部の構造を説明する便宜上、カバー64と蓋部材44を取り外した状態を図示している。また、以下の説明では、互いに直交する3つの軸として、X軸、Y軸、及びZ軸を用いる。この場合において、図示するX軸の先端側を+X側、起点側を−X側と称し、Y軸の先端側を+Y側、起点側を−Y側と称し、Z軸の先端側を+Z側、起点側を−Z側と称する場合がある。さらに、以下の説明では、Y軸に沿って+Y側から見た場合を平面視と称する場合あり、平面視において、+Y側の面を上面、−Y側の面を下面と称する場合がある。なお、ベース基板62の上面に形成された配線パターンや電極パッド、容器40の外面に形成された接続端子、容器40の内部に形成された配線パターンや電極パッド等の図示は、省略している。
図1及び図2に示すように、発振器1は、振動子2、発振回路を含む第1回路装置3、及び温度制御回路を含む第2回路装置4を内部に収納する容器40と、容器40の外部でベース基板62の上面に配置された回路素子16と、を含む。振動子2は、例えば、外部応力感度が小さく、周波数安定性に優れているSCカット水晶振動子であってもよい。
また、発振器1のベース基板62の上面には、リードフレーム66を介して容器40がベース基板62と遊離して配置され、複数の容量や抵抗等の回路部品20,22,24が配置されている。さらに、容器40や回路素子16は、カバー64で覆われ、容器60の内部に収納されている。なお、容器60の内部は、真空等の減圧雰囲気、又は窒素、アル
ゴン、ヘリウム等の不活性気体雰囲気に気密封止されている。
以上のように第1実施形態の発振器1では、振動子2又は第1回路装置3に含まれる発振回路等を調整するための回路素子16や回路部品20,22,24が容器40の外部に配置されている。そのため、容器40に収容されている第2回路装置4に含まれる発熱回路の熱によって、回路素子16を構成する樹脂部材や回路素子16及び回路部品20,22,24と容器40とを接続する接続部材であるハンダや導電性接着剤等からガスが発生するおそれが低減される。また、仮にガスが発生したとしても振動子2が容器40に収納されているが故に、振動子2がガスの影響を受けるおそれが低減し、その結果、振動子2は安定した周波数特性を維持する。すなわち、高い周波数安定性を有する発振器1を得ることができる。
図3及び図4に示すように、容器40の内部には、第1回路装置3、第2回路装置4、及び振動子2が収納されている。また、振動子2は、第2回路装置4の上面に配置されている。なお、容器40の内部は真空等の減圧雰囲気、又は窒素、アルゴン、ヘリウム等の不活性気体雰囲気に気密封止されている。
容器40は、パッケージ本体42と蓋部材44とを含んで構成されている。図4に示すように、パッケージ本体42は、積層された第1基板46、第2基板48、第3基板50、第4基板52、及び第5基板54を有する。また、第2基板48、第3基板50、第4基板52、及び第5基板54は中央部が除去された環状体であり、第5基板54の上面周縁にシールリングや低融点ガラス等の封止部材56が形成されている。第2基板48と第3基板50とは、第1回路装置3が収容される凹部を形成し、第4基板52と第5基板54とは、第2回路装置4及び振動子2を収容する凹部を形成する。
第1基板46の上面の所定の位置には、接合部材36により第1回路装置3が接合されている。そして、第1回路装置3は、ボンディングワイヤー30によって、第2基板48の上面に配置された不図示の電極パッドと電気的に接続されている。
第3基板50の上面の所定の位置には、接合部材34により第2回路装置4が接合されている。第2回路装置4の上面である能動面15には、電極パッド26が設けられている。第2回路装置4に設けられた電極パッド26は、ボンディングワイヤー30によって、第4基板52の上面に配置された不図示の電極パッドと電気的に接続されている。
以上のように、第1回路装置3と第2回路装置4とは容器40の内部で離間して配置されている。そのため、振動子2を加熱するために生じる第2回路装置4の熱が、第1回路装置3に直接伝わり難く、その結果、第2回路装置4で生じた熱が、第1回路装置3に寄与するおそれが低減し、第2回路装置4が過熱されることによる、第1回路装置3に含まれる発振回路の特性が劣化するおそれが低減される。
振動子2は、第2回路装置4の能動面15に配置されている。すなわち、第2回路装置4は、第1回路装置3より振動子2の近くに位置している。具体的には、振動子2は、第2回路装置4の能動面15に形成された電極パッド26と、振動子2の下面に形成された不図示の電極パッドと、を電気的に接続する金属製のバンプや導電性接着剤等の接合部材32を介して、第2回路装置4に接合されている。換言すれば、振動子2は、第2回路装置4によって支持されている。なお、振動子2の上下の面に設けられた不図示の励振電極と、振動子2の下面に形成された不図示の電極パッドとが、それぞれ電気的に接続されている。なお、振動子2と第2回路装置4とは、第2回路装置4で発生した熱が振動子2に伝わるように接続されていれば良い。そのため、例えば、振動子2と第2回路装置4とが非導電性の接合部材で接続され、振動子2と第2回路装置4又はパッケージ本体42とが
、不図示のボンディングワイヤー等の導電性部材を用いて電気的に接続されていても良い。
以上のように発振器1は、振動子2が第2回路装置4上に配置されることで、第2回路装置4で生じた熱を効率よく振動子2へ伝えることが可能となり、その結果、振動子2の温度制御を低消費で安定化させることができる。
なお、図1では、平面視において振動子2の形状を矩形状として図示しているが、振動子2の形状は、矩形状に限定されず、例えば円形状であっても良い。また、振動子2は、SCカット水晶振動子に限定されず、ATカット水晶振動子であってもよく、音叉型水晶振動子、弾性表面波共振片などの圧電振動子やMEMS(Micro Electro Mechanical Systems)共振素子であってもよい。なお、振動子2としてATカット水晶振動子を用いた場合、Bモード抑圧回路が不要となるため、発振器1の小型化が可能となる。
1.2 発振器の電気的構成
図5は、第1実施形態の発振器1の電気的構成を示す機能ブロック図である。図5に示すように、第1実施形態の発振器1は、振動子2、第1回路装置3、及び第2回路装置4を含む。
第2回路装置4は、温度調整回路110と温度検出回路120とを含む。ここで、第1実施形態における温度調整回路110と温度検出回路120とを含む第2回路装置4は、集積回路として一体に構成されている。換言すれば、発振器1は、第2回路装置4として温度調整回路110と温度検出回路120とを含む集積回路を備える。この集積回路として構成される第2回路装置4が第1集積回路の一例である。
温度調整回路110は、振動子2の温度を調整するための素子である発熱素子を含む。温度調整回路110が発生させる熱は、第1回路装置3から供給される温度制御信号VHCによって制御される。前述の通り、振動子2は第2回路装置4に接合されている。そのため、温度調整回路110が発生させる熱は、振動子2に伝わる。すなわち、温度調整回路110から発生する熱を制御することによって、振動子2の温度を所望の温度に近づけることができる。すなわち、温度調整回路110が振動子2を加熱している。この振動子2を加熱する温度調整回路110が発熱回路の一例である。
温度検出回路120は、温度を検出し、検出した温度に応じた電圧レベルの第1温度検出信号VT1を第1回路装置3に出力する。前述の通り、振動子2は第2回路装置4に接合されている。すなわち、第2回路装置4に含まれる温度検出回路120は、振動子2の近傍に位置している。そのため、温度検出回路120は、振動子2の周囲温度を検出することができる。また、温度調整回路110と温度検出回路120とは、集積回路である第2回路装置4に一体に構成されている。そのため、温度検出回路120は、温度調整回路110の近傍にも位置している。すなわち、温度検出回路120は、温度調整回路110の周辺温度を検出しているともいえる。以上のように、温度検出回路120は、振動子2の周辺温度及び温度調整回路110の周辺温度を検出する。ここで、第1温度検出信号VT1が温度検出信号の一例であり、第1温度検出信号VT1を出力する温度検出回路120が温度センサーの一例である。
第1回路装置3は、インターフェース回路(I/F:Interface)210、レジスター211、ROM212、デジタル信号処理回路(DSP:Digital Signal Processor)220、発振クロック信号出力回路230、A/D変換回路(ADC:Analog to Digital Converter)241、セレクター242、レベルシフター(L/S:Level Shifter)243、温度検出回路244、温度制御回路245、D/A変換回路(DAC:Digital to A
nalog Converter)246、及びレギュレーター261を有する。
インターフェース回路210は、発振器1と接続される不図示の外部装置との間でデータ通信を行う。インターフェース回路210は、例えば、IC(Inter-Integrated Circuit)バスに対応した回路であってもよく、SPI(Serial Peripheral Interface)バスに対応した回路であってもよい。
レジスター211とROM212とは、発振器1の各種情報を記憶する。レジスター211は、揮発性メモリーを含み、ROM212は、不揮発性メモリーを含んで構成されている。発振器1の製造時の検査工程等において、外部装置は、インターフェース回路210を介して、発振器1が有する各回路の動作を制御するための各種のデータを、レジスター211に書き込むことで、発振器1に含まれる各回路の調整を行う。そして、外部装置は、当該調整により決定した各種調整値の最適なデータを、インターフェース回路210を介してROM212に記憶させる。その後、発振器1に電源が投入されると、ROM212に記憶されている各種のデータが、レジスター211に転送されて保持される。そして、レジスター211に保持された各種のデータが各回路に供給される。
レギュレーター261は、第1回路装置3の外部から供給される電源電圧VDDの電圧値を昇圧又は降圧することで、第1回路装置3が有する各回路を動作させるための動作電圧や、第1回路装置3が有する各回路の基準電位を生成する。
温度制御回路245は、レジスター211から入力される振動子2の温度設定値TCと、温度検出回路120が検出した第1温度検出信号VT1とに基づいて、温度調整回路110の温度を制御するための温度制御信号VHCを生成する。すなわち、温度制御回路245は、温度検出回路120が出力する第1温度検出信号VT1に基づいて温度調整回路110の温度を制御するための温度制御信号VHCを出力する。ここで、温度制御信号VHCが温度制御信号の一例であり、温度制御信号VHCを出力する温度制御回路245が温度制御回路の一例である。
また、レジスター211が出力する温度設定値TCは、振動子2の目標温度の設定値であって、ROM212の所定の記憶領域に記憶されていてもよい。そして、発振器1の電源が投入されることで、ROM212に記憶されている温度設定値TCが読み出され、レジスター211に含まれる所定の記憶領域に転送されて保持される。その後、レジスター211に含まれる所定の記憶領域に保持された温度設定値TCが、温度制御回路245に供給される。
レベルシフター243は、発振器1の外部から供給される周波数制御信号VCを所望の電圧レベルに変換することで、周波数制御信号VFCを生成する。
温度検出回路244は、温度を検出し、検出した温度に応じた電圧レベルの第2温度検出信号VT2を出力する。前述の通り、第1回路装置3は第1基板46の上面に接合されている。すなわち、第1回路装置3は、第2回路装置4よりも振動子2から離れた位置に設けられている。換言すれば、第1回路装置3に含まれる温度検出回路244は、温度検出回路120よりも振動子2や温度調整回路110から離れた位置に設けられている。そして、温度検出回路244は、振動子2や温度調整回路110から離れた位置における容器40の内部温度を検出する。
セレクター242には、レベルシフター243が生成する周波数制御信号VFC、温度制御回路245が生成する温度制御信号VHC、温度検出回路244が生成する第2温度検出信号VT2、及び発振器1に供給される電源電圧VDDが入力される。そして、セレ
クター242は、周波数制御信号VFC、温度制御信号VHC、第2温度検出信号VT2、及び電源電圧VDDのいずれかを選択して出力する。なお、第1実施形態においてセレクター242は、周波数制御信号VFC、温度制御信号VHC、第2温度検出信号VT2、及び電源電圧VDDを時分割に選択して出力する。
A/D変換回路241は、セレクター242から時分割に出力される周波数制御信号VFC、温度制御信号VHC、第2温度検出信号VT2、及び電源電圧VDDのそれぞれを、順次デジタル信号である周波数制御コードDFC、温度制御コードDHC、第2温度検出コードDT2、及び電源電圧コードDVDに変換する。
デジタル信号処理回路220は、発振制御回路221及び周波数補正回路222を含む。デジタル信号処理回路220には、レジスター211が出力する設定信号DCと、A/D変換回路241が出力する周波数制御コードDFC、温度制御コードDHC、第2温度検出コードDT2、及び電源電圧コードDVDとが入力される。
発振制御回路221は、レジスター211から入力される設定信号DCに基づいて、発振クロック信号出力回路230の動作を制御する発振制御信号MCを生成する。発振制御信号MCは、後述する発振クロック信号出力回路230に入力される。そして、発振制御信号MCに応じて、発振クロック信号出力回路230に含まれるPLL回路232の逓倍率、分周回路233の分周率、及びバッファー回路234のバッファリング周期等の発振クロック信号出力回路230の各種設定値が変更される。すなわち、発振制御回路221は、発振クロック信号出力回路230の動作を制御する。この発振制御回路221が制御回路の一例である。
周波数補正回路222は、周波数制御コードDFC、温度制御コードDHC、第2温度検出コードDT2、及び電源電圧コードDVDに基づいて、発振クロック信号出力回路230が出力する発振クロック信号CKOの周波数を補正するための周波数補正コードDOCを出力する。第1実施形態における周波数補正回路222は、第2温度検出コードDT2に基づいて発振クロック信号出力回路230が出力する発振クロック信号CKOの周波数が所望の周波数となるように制御するための信号に対して、発振クロック信号CKOの過渡的な周波数変動を、温度制御信号VHCに応じた温度制御コードDHCの時間変化量に基づいて補償することで、発振クロック信号CKOの周波数を補正するための周波数補正コードDOCを生成する。なお、周波数補正回路222の詳細については後述する。
D/A変換回路246は、デジタル信号処理回路220に含まれる周波数補正回路222が生成した周波数補正コードDOCをアナログ信号である周波数補正信号VOCに変換し、発振クロック信号出力回路230に出力する。
発振クロック信号出力回路230は、発振用回路231、PLL回路232、分周回路233、及びバッファー回路234を含む。
発振用回路231は、振動子2の両端と電気的に接続されており、振動子2の出力信号を増幅して振動子2にフィードバックすることにより、振動子2を発振させる。発振用回路231は、例えば、増幅素子としてインバーターを用いた回路であってもよく、増幅素子としてバイポーラトランジスターを用いた回路であってもよい。第1実施形態における発振用回路231は、D/A変換回路246から供給される周波数補正信号VOCの電圧値に応じた周波数で、振動子2を発振させる。具体的には、発振用回路231は、振動子2の負荷容量となる不図示の可変容量素子を有する。そして、当該可変容量素子に周波数補正信号VOCに応じた電圧が印加されることで、可変容量素子の負荷容量の大きさが当該電圧に応じた値となる。すなわち、周波数補正信号VOCに応じた電圧値により、発振
用回路231が有する可変容量素子の負荷容量の大きさが制御されることで、発振用回路231から出力される発振信号の周波数が補正される。
PLL回路232は、発振用回路231から出力される発振信号の周波数を逓倍する。
分周回路233は、PLL回路232から出力される発振信号を分周する。
バッファー回路234は、分周回路233から出力される発振信号をバッファリングし、発振クロック信号CKOとして第1回路装置3の外部に出力する。この発振クロック信号CKOが、発振器1の出力信号となる。
ここで、第1実施形態における第1回路装置3は、集積回路として構成されている。換言すれば、発振器1は、第1回路装置3として、発振クロック信号出力回路230と周波数補正回路222とを含む集積回路を備える。この集積回路として構成される第1回路装置3が第2集積回路の一例である。また、振動子2を発振させ、発振クロック信号CKOを出力する発振クロック信号出力回路230が、発振クロック信号出力回路の一例であり、発振クロック信号CKOの周波数変動を補正する周波数補正回路222が補正回路の一例である。
1.3 温度調整回路110及び温度検出回路120の構成
次に、第2回路装置4に含まれる温度調整回路110及び温度検出回路120の具体的な構成例について図6及び図7を用いて説明する。
図6は、第2回路装置4の具体的な構成例を示す図である。図6に示すように、第2回路装置4に含まれる温度調整回路110は、電源電圧VDDとグラウンドGNDとの間に抵抗111とMOSトランジスター112とが直列に接続されて構成されている。MOSトランジスター112のゲートには、温度制御信号VHCが入力される。この温度制御信号VHCにより、MOSトランジスター112が制御され、その結果、抵抗111を流れる電流が制御される。これにより、抵抗111の発熱量が制御される。
また、第2回路装置4に含まれる温度検出回路120は、電源電圧VDDとグラウンドGNDとの間に1又は複数のダイオード121が順方向に直列に接続されて構成されている。この温度検出回路120には、定電流源130により一定の電流が供給される。すなわち、1又は複数のダイオード121には、一定の順方向電流が流れる。ダイオード121に一定の順方向電流が流れている場合、ダイオード121の両端の電圧は温度変化に対してほぼ線形に変化する。そのため、ダイオード121のアノード側の電圧は、温度に対して線形に変化する。したがって、ダイオード121のアノードに発生する信号を第1温度検出信号VT1として利用することができる。
図7は、集積回路として構成された第2回路装置4の構造例を示す図である。図7に示すように、集積回路として一体に構成された第2回路装置4において、温度調整回路110と温度検出回路120とは、Y軸に沿った方向に積層されて配置されている。そして、前述の通り、振動子2は、温度調整回路110と温度検出回路120とが積層された方向であるY軸に沿った方向において、集積回路として一体に構成された第2回路装置4の上方に位置している。
具体的には、温度調整回路110は、集積回路として一体に構成された第2回路装置4の内部において−Y側に位置し、温度検出回路120は、集積回路として一体に構成された第2回路装置4の内部において温度調整回路110の+Y側に積層されている。そして、集積回路として一体に構成された第2回路装置4の+Y側の上方に振動子2が電極パッ
ド26、及び接合部材32を介して接合されている。すなわち、温度検出回路120は、温度調整回路110の上方であって、温度調整回路110よりも振動子2の近くに位置している。
これにより、仮に温度調整回路110の温度変動した場合、温度検出回路120は、当該変動した温度が振動子2に伝導するよりも前に、当該温度変動を検出することが可能となる。そして、温度検出回路120が検出した温度変動に対して、第1回路装置3が振動子2の発振周波数を補正することで、当該温度変化により振動子2の発振周波数が変動するおそれを低減することができる。
1.4 周波数補正回路の構成及び動作
次に、発振器1の周波数変動を低減する周波数補正回路222の構成及び動作について説明する。図8は、周波数補正回路222の構成の一例を示す図である。図8に示すように周波数補正回路222は、補正信号生成回路310、微分回路320、乗算器330、及び加算器340を有する。
補正信号生成回路310は、第2温度検出信号VT2に応じた第2温度検出コードDT2に基づいて発振クロック信号出力回路230から出力される発振クロック信号CKOの周波数を補正する。第1実施形態では、補正信号生成回路310は、第2温度検出コードDT2に基づいて、発振クロック信号CKOの周波数が所望の周波数になるように温度補償するためのデジタル信号である基周波数補正コードBOCを出力する。具体的には、発振器1の製造時の検査工程において、補正信号生成回路310が振動子2の周波数温度特性に対して概ね逆の特性となる温度補償値を生成するための温度補償データが生成される。そして、生成された温度補償データは、ROM212に記憶される。発振器1に電源が投入されると、当該温度補償データは、ROM212からレジスター211に含まれる所定の記憶領域に転送され保持される。そして、補正信号生成回路310は、当該温度補償データ、及び第2温度検出コードDT2に基づいて、発振クロック信号出力回路230から出力される発振クロック信号CKOの周波数を補正するための基周波数補正コードBOCを生成する。なお、補正信号生成回路310は、温度補償データ、及び第2温度検出コードDT2に加えて、周波数制御信号VFCに応じた周波数制御コードDFCを用いて基周波数補正コードBOCを生成してもよい。
微分回路320には、温度制御回路245が生成する温度制御信号VHCに応じた温度制御コードDHCが入力される。そして、微分回路320は、温度制御コードDHCを微分することで、温度制御コードDHCの時間変化量を示す微分温度制御コードdDHCを生成する。
ここで、前述の通り温度制御信号VHCは、温度調整回路110を制御するための信号である。そのため、例えば、温度調整回路110の温度が所定の温度よりも高い場合、温度制御信号VHCは、温度調整回路110の温度を低下させるための情報を含み、温度調整回路110の温度が所定の温度よりも低い場合、温度制御信号VHCは、温度調整回路110の温度を上昇させるための情報を含む。すなわち、温度制御信号VHCは、温度調整回路110の温度に応じた信号であって、温度調整回路110の温度変化に連動して変化する信号でもある。したがって、微分回路320が出力する微分温度制御コードdDHCは、温度調整回路110の温度の時間変化量を示す信号といえる。すなわち、微分回路320は、温度調整回路110に過渡的な温度変化が生じた場合に、微分温度制御コードdDHCを出力する。
なお、第1実施形態では、温度調整回路110に過渡的な温度変化が生じたか否かを、微分回路320を用いて検出しているが、温度調整回路110に過渡的な温度変化が生じ
たか否かを検出できる構成であればよく、例えば、微分回路320に替えてハイパスフィルター回路やバンドパスフィルター回路が用いられてもよい。
乗算器330は、微分回路320から出力された微分温度制御コードdDHCに所定のゲインGainを掛ける。
加算器340は、微分温度制御コードdDHCに所定のゲインGainが掛け合わされた信号と、補正信号生成回路310から出力される基周波数補正コードBOCとを足し合わせ、周波数補正コードDOCを出力する。
以上のように構成された周波数補正回路222から出力される周波数補正コードDOCには、温度調整回路110に過渡的な温度変化が生じた場合に、微分温度制御コードdDHCが加算される。すなわち、周波数補正回路222は、発振クロック信号CKOの過渡的な周波数変動を、温度制御信号VHCの時間変化量に基づいて補償する。これにより、温度調整回路110に過渡的な温度変化が生じた場合、発振クロック信号出力回路230から出力される発振クロック信号CKOの周波数の補正精度を高めることができる。すなわち、温度調整回路110の温度に短期的な変動が生じた場合、当該変動が生じた要因に依らず発振器1から出力される発振クロック信号CKOの周波数変動を低減することができる。
1.5 作用効果
以上のように構成された発振器1では、発振クロック信号CKOの周波数変動を補正する周波数補正回路222が、温度検出回路120が検出した温度調整回路110の温度に基づいて生成された温度調整回路110の温度を制御するための温度制御信号VHCの時間変化量に基づいて、発振クロック信号CKOの周波数変動を補償する。すなわち、周波数補正回路222は、振動子2を加熱する温度調整回路110の温度変化に基づいて、発振クロック信号CKOの周波数変動を補正する。したがって、周波数補正回路222は、振動子2を加熱する温度調整回路110に温度変化が生じた要因に依らず、発振クロック信号CKOに生じる過渡的な周波数変動を補償することができる。ここで、本実施形態では、過渡的な周波数変動とは、発振器1に一時的な温度変動が生じた後、温度調整回路110によって発振器1の温度が制御され、発振器1から出力される発振クロック信号CKOの周波数が所望の周波数範囲で安定するまでの期間における周波数変動を意味し、例えば、発振クロック信号CKOの周波数が所望の周波数範囲で安定するまでの期間において短時間に生じる発振クロック信号CKOの周波数の急峻な変動等が含まれる。
ここで、第1実施形態における作用効果の具体例について図9及び図10を用いて説明する。図9は、温度調整回路110の温度変動に応じて温度制御信号VHCの電圧値に生じる時間変動の一例を示す図である。図10は、図9に示す温度制御信号VHCに応じた発振クロック信号CKOの周波数偏差(ΔF/F)の一例を示す図である。なお、図10には、周波数補正回路222が、上述した温度制御信号VHCの時間変化量に基づいて発振クロック信号CKOの周波数変動を補償する構成を備えていない場合の発振クロック信号CKOの周波数偏差(ΔF/F)を破線aで図示し、周波数補正回路222が、上述した温度制御信号VHCの時間変化量に基づいて発振クロック信号CKOの周波数変動を補償する構成を備えている場合の発振クロック信号CKOの周波数偏差(ΔF/F)を実線bで図示している。また、図9に示す時刻t1〜t9のそれぞれと、図10に示す時刻t1〜t9のそれぞれとは、互いに対応する時刻を示す。すなわち、図9に示す時刻t1と図10に示す時刻t1とは、略同じタイミングである。
図9に示す例では、時刻t1から時刻t2において、温度制御回路245は、略一定の電圧値の温度制御信号VHCを出力している。すなわち、時刻t1から時刻t2の期間に
おいて、温度調整回路110の温度は略一定に保たれている。したがって、図10に示すように、時刻t1から時刻t2の期間において、発振クロック信号CKOの周波数偏差も略一定に保たれている。
図9及び図10に示す時刻t2から時刻t3の期間において、発振器1の外的要因、又は内的要因によって温度調整回路110の温度が短時間に変動する。これにより、温度制御回路245は、温度調整回路110の温度を略一定に保つための温度制御信号VHCを出力する。具体的には、時刻t2から時刻t3の期間において温度調整回路110の温度が短時間変動した場合、温度制御回路245は、図9の例に示すように、時刻t2から時刻t3の期間において、当該温度変動を補償するための温度制御信号VHCを短時間のみ出力する。このような温度調整回路110の短時間の温度変動は、例えば、発振器1の設定変更や温度調整回路110に供給される電源電圧VDDの電圧値の変動等によって生じる。
そして、時刻t2から時刻t3の期間において温度調整回路110に短時間の温度変動が生じた場合、周波数補正回路222が、図10の破線aに示すような温度制御信号VHCの時間変化量に基づいて発振クロック信号CKOの周波数変動を補償するため構成を備えていない場合、当該温度調整回路110の過渡的な温度変動に応じて振動子2の発振周波数が変動し、その結果、発振器1から出力される発振クロック信号CKOの周波数偏差が悪化する。
これに対して、図10の実線bに示すように周波数補正回路222が、第1実施形態に示す温度制御信号VHCの時間変化量に基づいて発振クロック信号CKOの周波数変動を補償するための構成を備えている場合、温度調整回路110の過渡的な温度変動に応じた振動子2の発振周波数の変動が低減し、その結果、発振器1から出力される発振クロック信号CKOの周波数偏差が悪化するおそれが低減する。
なお、図9及び図10に示す時刻t3から時刻t4の期間、時刻t5から時刻t6の期間、及び時刻t7から時刻t8の期間は、いずれも上述した時刻t1から時刻t2の期間と同様であり、時刻t4から時刻t5の期間、時刻t6から時刻t7の期間、及び時刻t8から時刻t9の期間では、いずれも上述した時刻t2から時刻t3の期間と同様であるため、詳細な説明を省略する。
以上のように、第1実施形態における発振器1では、発振クロック信号CKOの周波数変動を補正する周波数補正回路222が、温度検出回路120が検出した温度調整回路110の温度に基づいて生成された温度調整回路110の温度を制御するための温度制御信号VHCの時間変化量に基づいて、発振クロック信号CKOの周波数変動を補償することで、発振器1から出力される発振クロック信号CKOの周波数の変動が低減することができる。
また、第1実施形態における発振器1では、温度検出回路120は、振動子2よりも温度調整回路110の近くに位置し、温度検出回路120は、振動子2と温度調整回路110との間に位置している。これにより、温度調整回路110に過渡的な温度変化が生じた場合に、当該温度変化に起因した熱が、振動子2に伝わるよりも前に、温度調整回路110に過渡的な温度変換が生じたか否かを、温度検出回路120で検出することができる。すなわち、温度調整回路110に生じた過渡的な温度変化が振動子2の周波数に影響を及ぼすおそれのある時間を短くすることができる。したがって、温度検出回路120は、振動子2よりも温度調整回路110の近くに位置し、温度検出回路120は、振動子2と温度調整回路110との間に位置することで、発振器1から出力される発振クロック信号CKOの周波数の変動をさらに低減することができる。
1.6 変形例
以上に説明した第1実施形態における発振器1では、周波数補正回路222は、発振クロック信号CKOの過渡的な周波数変動を、温度制御回路245が出力する温度制御信号VHCの時間変化量に基づいて補償しているが、変形例の発振器1が有する周波数補正回路222は、発振クロック信号CKOの過渡的な周波数変動を、温度検出回路120が出力する第1温度検出信号VT1の時間変化量に基づいて補償する。
図11及び図12を用いて、発振器1の変形例について説明する。図11は、発振器1の変形例の電気的構成を示す機能ブロック図である。
図11に示すように、発振器1の変形例では、セレクター242に、レベルシフター243が生成する周波数制御信号VFCと、温度検出回路120が生成する第1温度検出信号VT1と、温度検出回路244が生成する第2温度検出信号VT2と、発振器1に供給される電源電圧VDDとが入力される。そして、セレクター242は、周波数制御信号VFC、第1温度検出信号VT1、第2温度検出信号VT2、及び電源電圧VDDのいずれか1つを選択して出力する。なお、セレクター242は、周波数制御信号VFC、第1温度検出信号VT1、第2温度検出信号VT2、及び電源電圧VDDを時分割に選択して出力する。
A/D変換回路241は、セレクター242から時分割に出力される周波数制御信号VFC、第1温度検出信号VT1、第2温度検出信号VT2、及び電源電圧VDDのそれぞれを、順次デジタル信号である周波数制御コードDFC、第1温度検出コードDT1、第2温度検出コードDT2、及び電源電圧コードDVDに変換する。
A/D変換回路241で変換された周波数制御コードDFC、第1温度検出コードDT1、第2温度検出コードDT2、及び電源電圧コードDVDの内の、少なくとも第1温度検出コードDT1及び第2温度検出コードDT2は、デジタル信号処理回路220が有する周波数補正回路222に入力される。
図12は、発振器1の変形例が有する周波数補正回路222の構成の一例を示す図である。図12に示すように、発振器1の変形例が有する周波数補正回路222は、補正信号生成回路310、微分回路320、乗算器330、及び加算器340を有する。なお、補正信号生成回路310は、図8を用いて説明した補正信号生成回路310と同様であり、説明を省略する。
微分回路320には、温度検出回路120が生成する第1温度検出信号VT1に応じた第1温度検出コードDT1が入力される。そして、微分回路320は、第1温度検出コードDT1の時間変換量を示す微分第1温度検出コードdDT1を出力する。
ここで、前述の通り、第1温度検出信号VT1は、温度検出回路120で検出した温度調整回路110の温度に応じた信号であって、温度調整回路110の温度変化に連動して変化する信号である。したがって、微分回路320が出力する微分第1温度検出コードdDT1は、温度調整回路110の温度の時間変化量を示す信号といえる。すなわち、微分回路320は、温度調整回路110に過渡的な温度変化が生じた場合に、微分第1温度検出コードdDT1を出力する。
そして、乗算器330が、微分回路320から出力された微分第1温度検出コードdDT1に所定のゲインGainを掛け、その後、加算器340が、微分第1温度検出コードdDT1に所定のゲインGainが掛け合わされた信号と、補正信号生成回路310から
出力される基周波数補正コードBOCとを足し合わせることで、周波数補正コードDOCを出力する。
以上のように発振器1の変形例では、発振クロック信号CKOの周波数変動を補正する周波数補正回路222が、温度調整回路110の温度に応じて温度検出回路120が検出した第1温度検出信号VT1の時間変化量に基づいて、発振クロック信号CKOの周波数変動を補償する。すなわち、周波数補正回路222は、振動子2を加熱する温度調整回路110の温度変化に基づいて、発振クロック信号CKOの周波数変動を補正する。したがって、上述した第1実施形態における発振器1と同様の作用効果を奏することができる。
また、以上に説明した第1実施形態における発振器1において、発振クロック信号出力回路230に含まれるPLL回路232が、発振用回路231から出力される発振信号の周波数を、デルタシグマ変調された分周比制御信号によって指示される分周比に応じた周波数に変換する、所謂フラクショナルN−PLL(Phase Locked Loop)回路であってもよい。この場合、周波数補正回路222は、発振クロック信号CKOの周波数を補正するための信号として、当該フラクショナルN−PLL回路の分周比を決定するための周波数補正コードDOCを生成し、D/A変換回路246を介さずに当該フラクショナルN−PLL回路に供給してもよい。以上のように構成された発振器1の変形例であっても、上述した第1実施形態における発振器1と同様の作用効果を奏することができる。
2.第2実施形態
次に第2実施形態の発振器1について説明する。第2実施形態にける発振器1では、周波数補正回路222が、発振器1及び第2回路装置4に供給される電源電圧VDDの時間変化量に基づいて、発振クロック信号CKOの過渡的な周波数変動を補償する点で第1実施形態の発振器1と異なる。なお、第2実施形態における発振器1を説明するにあたり、第1実施形態の発振器1と同様の構成については、同じ符号を付し、その説明を簡略化、又は省略する。
図13は、第2実施形態の発振器1の電気的構成を示す機能ブロック図である。図13に示すように、第2実施形態の発振器1では、セレクター242に、レベルシフター243が生成する周波数制御信号VFCと、温度検出回路244が生成する第2温度検出信号VT2と、発振器1に供給される電源電圧VDDとが入力される。そして、セレクター242は、周波数制御信号VFC、第2温度検出信号VT2、及び電源電圧VDDのいずれか1つを選択して出力する。なお、第1実施形態の発振器1と同様に、セレクター242は、周波数制御信号VFC、第2温度検出信号VT2、及び電源電圧VDDを時分割に選択して出力する。
A/D変換回路241は、セレクター242から時分割に出力される周波数制御信号VFC、第2温度検出信号VT2、及び電源電圧VDDのそれぞれを、順次デジタル信号である周波数制御コードDFC、第2温度検出コードDT2、及び電源電圧コードDVDに変換する。
A/D変換回路241で変換された周波数制御コードDFC、第2温度検出コードDT2、及び電源電圧コードDVDの内の、少なくとも第2温度検出コードDT2及び電源電圧コードDVDは、デジタル信号処理回路220が有する周波数補正回路222に入力される。
図14は、第2実施形態の発振器1が有する周波数補正回路222の構成の一例を示す図である。図14に示すように、第2実施形態の発振器1が有する周波数補正回路222は、補正信号生成回路310、微分回路320、乗算器330、及び加算器340を有す
る。なお、補正信号生成回路310は、第1実施形態と同様の構成であり、説明を省略する。
微分回路320には、発振器1及び第2回路装置4の電源である電源電圧VDDに応じた電源電圧コードDVDが入力される。そして、微分回路320は、電源電圧コードDVDの時間変換量を示す微分電源電圧コードdDVDを出力する。
ここで、第2回路装置4は、前述した図6と同様の構成である。このように構成された第2回路装置4に供給される電源電圧VDDが短時間で変化した場合、温度調整回路110が有する抵抗111に流れる電流が短時間変化する。その結果、抵抗111の温度が短時間で変化する。すなわち、温度調整回路110の短時間の温度変化は、電源電圧VDDの短時間の変化に応じて引き起こされると言える。
第2実施形態における発振器1が備える周波数補正回路222は、このような温度調整回路110の温度変動に応じた信号である電源電圧VDDに基づいて、温度調整回路110の過渡的な温度変化を検出し、当該温度変化に基づいて、発振器1から出力される発振クロック信号CKOの過渡的な周波数変動を補償する。これにより、第1実施形態における発振器1と同様の作用効果を奏することができる。
さらに、図6に示すような構成の温度調整回路110の場合、供給される電源電圧VDDの電圧値が変動すると、抵抗111に流れる電流が変動し、その結果、温度調整回路110の温度が変化するおそれがある。すなわち、温度調整回路110の温度は、電源電圧VDDの電圧値に応じて変動する。
第2実施形態における発振器1では、電源電圧VDDの電圧値の時間変化量を検出することで、温度調整回路110の温度に変動が生じるおそれがあるか否かを、事前に検出することが可能となる。その結果、温度調整回路110に短時間の温度変動が生じてから周波数補正回路222において発振クロック信号CKOの過渡的な周波数変動を補償するまでの時間差を小さくすることが可能となり、発振器1から出力される発振クロック信号CKOの周波数の変動をさらに低減することが可能となる。
3.第3実施形態
次に第3実施形態の発振器1について図15及び図16を用いて説明する。第3実施形態にける発振器1では、デジタル信号処理回路220が、トリガー信号TRGを出力するトリガー回路223を備え、周波数補正回路222は、トリガー回路223が出力するトリガー信号TRGに基づいて発振クロック信号CKOの過渡的な周波数変動の補償を実行するか否かを切り替える点で、第1実施形態及び第2実施形態の発振器1と異なる。なお、第3実施形態における発振器1を説明するにあたり、第1実施形態及び第2実施形態の発振器1と同様の構成については、同じ符号を付し、その説明を簡略化、又は省略する。
図15は、第3実施形態の発振器1の電気的構成を示す機能ブロック図である。図15に示すように第3実施形態の発振器1が有するデジタル信号処理回路220は、発振制御回路221及び周波数補正回路222に加え、トリガー回路223を備える。このトリガー回路223がトリガー信号出力回路の一例である。
図16は、第3実施形態の周波数補正回路222及びトリガー回路223の構成の一例を示す図である。周波数補正回路222は、補正信号生成回路310、微分回路320、乗算器330、加算器340、及び補償要否切替回路370を有する。なお、補正信号生成回路310、微分回路320、乗算器330、及び加算器340は、第1実施形態の発振器1と同様であり、説明を省略する。
補償要否切替回路370は、加算器340から出力される周波数補正コードDOCと、トリガー回路223が出力するトリガー信号TRGと、が入力される。そして、トリガー回路223は、トリガー信号TRGに応じて発振クロック信号CKOに対して、温度調整回路110の短時間の温度変動に起因する周波数変動の補償の要否を切り替える。
トリガー回路223は、電源電圧検出回路350と比較回路360とを有する。電源電圧検出回路350には、温度調整回路110に供給される電源電圧VDDに応じた電源電圧コードDVDが入力される。そして、電源電圧検出回路350は、電源電圧VDDに応じた電源電圧コードDVDに基づいて電源電圧VDDの変化量を検出し、当該変化量に応じた電源変動信号VFを出力する。
具体的には、電源電圧検出回路350は、フィルター回路351と減算器352とを有する。電源電圧検出回路350に入力された電源電圧コードDVDは、電源電圧検出回路350において分岐された後、一方の電源電圧コードDVDが減算器352に入力され、他方の電源電圧コードDVDがフィルター回路351に入力される。
フィルター回路351は、不図示の移動平均フィルターを含む。そして、入力される電源電圧コードDVDの移動平均を示す信号を減算器352に入力する。ここで、フィルター回路351は、電源電圧コードDVDに応じた電源電圧VDDの生じる短時間の電圧値の変動を除去できる構成であればよく、例えば、ローパスフィルター回路等であってもよい。
減算器352は、電源電圧コードDVDと、電源電圧コードDVDの移動平均を示す信号との差分を電源変動信号VFとして電源電圧検出回路350から出力する。
比較回路360には、所定の閾値電圧を示す基準電圧Vrefに応じた閾値コードVREFと、電源電圧検出回路350が出力する電源変動信号VFとが入力される。そして、比較回路360は、閾値コードVREFに対して電源変動信号VFが大きい場合、すなわち、電源電圧VDDの電圧値の変化量が所定の閾値以上である場合に、周波数補正回路222における発振クロック信号CKOの周波数変動の補償を実行するためのトリガー信号TRGを出力し、比較回路360は、閾値コードVREFに対して電源変動信号VFが小さい場合、すなわち、電源電圧VDDの電圧値の変化量が所定の閾値未満である場合に、周波数補正回路222における発振クロック信号CKOの周波数変動の補償を停止するためのトリガー信号TRGを出力する。
ここで、トリガー回路223が、周波数補正回路222における発振クロック信号CKOの周波数変動の補償を停止するためのトリガー信号TRGを出力している状態から、周波数補正回路222における発振クロック信号CKOの周波数変動の補償を実行するためのトリガー信号TRGを出力していない場合に遷移する場合の閾値コードVREFと、トリガー回路223が、周波数補正回路222における発振クロック信号CKOの周波数変動の補償を実行するためのトリガー信号TRGを出力している状態から、周波数補正回路222における発振クロック信号CKOの周波数変動の補償を停止するためのトリガー信号TRGを出力する状態に遷移する場合の閾値コードVREFとは、異なる値であってもよい。
発振器1では、発振クロック信号CKOに過渡的な周波数変動が生じるおそれが高まる要因の1つに、温度調整回路110に供給される電源電圧VDDの電圧値の過渡的な変動が挙げられる。第3実施形態の発振器1では、電源電圧VDDの電圧値の変動を検出し、発振器1が出力する発振クロック信号CKOに過渡的な周波数変動が生じるおそれが高い
場合に、発振クロック信号CKOの過渡的な周波数変動を補償し、発振クロック信号CKOに過渡的な周波数変動が生じるおそれが低い場合に、発振クロック信号CKOの過渡的な周波数変動の補償を停止する。これにより、発振クロック信号CKOに過渡的な周波数変動を常時保証する場合と比較して、発振器1の消費電力を低減でき、さらに、微分回路320等の動作に伴って生じたノイズ等が発振クロック信号CKOに寄与するおそれが低減する。すなわち、第3実施形態における発振器1では、第1実施形態、及び第2実施形態における発振器1の作用効果に加えて、発振器1の消費電力の低減、及び発振クロック信号CKOの周波数制度のさらなる向上が可能となる。
4.第4実施形態
次に第4実施形態の発振器1について図17を用いて説明する。図17は、第3実施形態の周波数補正回路222の構成の一例を示す図である。第4実施形態にける発振器1では、図17に示すように発振クロック信号CKOの周波数変動の補償の要否を発振制御信号MCに基づいて切り替える点が、第3実施形態における発振器1と異なる。すなわち、第4実施形態における発振器1は、発振制御回路221が発振クロック信号出力回路230の設定を変更するための発振制御信号MCを出力した場合に、当該発振制御信号MCに基づいて発振クロック信号CKOの周波数変動の補償の要否を切り替える。すなわち、第4実施形態の発振器1における発振制御信号MCが、第3実施形態の発振器1におけるトリガー信号TRGとして機能する。発振器1において、発振クロック信号CKOに過渡的な周波数変動が生じるおそれが高まる要因の1つに、発振クロック信号出力回路230の設定を変更に伴う発振器1の動作状態の変化が挙げられる。したがって、発振クロック信号CKOの周波数変動の補償の要否を発振制御信号MCに基づいて切り替える場合であっても、第3実施形態に示す発振器1と同様の作用効果を奏することができる。
以上、実施形態及び変形例について説明したが、本発明はこれらの実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。例えば、上記の実施形態を適宜組み合わせることも可能である。
本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
上述した実施形態及び変形例から以下の内容が導き出される。
発振器の一態様は、
振動子と、
前記振動子を加熱する発熱回路と、
前記振動子よりも前記発熱回路の近くに位置し、温度検出信号を出力する温度センサーと、
前記温度検出信号に基づき前記発熱回路の温度を制御する温度制御信号を出力する温度制御回路と、
前記振動子を発振させ、発振クロック信号を出力する発振クロック信号出力回路と、
前記発振クロック信号の周波数変動を補正する補正回路と、
を備え、
前記補正回路は、前記発振クロック信号の過渡的な周波数変動を、前記温度検出信号の時間変化量、又は前記温度制御信号の時間変化量に基づいて補償する。
この発振器によれば、補正回路は、振動子を加熱する発熱回路の温度を制御する温度制御信号、又は振動子を加熱する発熱回路の近くに位置し、温度検出信号を出力する温度センサーが出力する温度検出信号の時間変化量に基づいて、発振クロック信号の過渡的な周波数変動を補償する。ここで、温度制御信号は、振動子を加熱する発熱回路の温度を制御するための信号であり、温度検出信号は、温度センターによって検出した振動子の温度を含む信号である。すなわち、温度制御信号、及び温度検出信号は、発熱回路の温度に応じた信号である。このような発熱回路の温度に応じた信号に基づいて、発振クロック信号の過渡的な周波数変動を補償することで、発振器1に加わる様々な要因によりヒーターの温度に短期的な変動が生じた場合であっても、発振器から出力される信号に周波数変動が生じるおそれを低減することができる。
前記発振器の一態様において、
振動子と、
前記振動子を加熱する発熱回路と、
前記振動子よりも前記発熱回路の近くに位置し、温度検出信号を出力する温度センサーと、
前記温度検出信号に基づき前記発熱回路の温度を制御する温度制御信号を出力する温度制御回路と、
前記振動子を発振させ、発振クロック信号を出力する発振クロック信号出力回路と、
前記発振クロック信号の周波数変動を補正する補正回路と、
を備え、
前記補正回路は、前記発振クロック信号の過渡的な周波数変動を、前記発熱回路に供給される電源電圧の時間変化量に基づいて補償する。
この発振器によれば、補正回路は、振動子を加熱する発熱回路に供給される電源電圧の時間変化量に基づいて、発振クロック信号の過渡的な周波数変動を補償する。ここで、発熱回路に供給される電源電圧が短時間で変化した場合、発熱回路に流れる電流が短時間変化する。その結果、発熱回路の温度が短時間で変化する。すなわち、発熱回路の温度変化は、電源電圧の短時間の変化に応じて引き起こされる。このような発熱回路に供給される電源電圧の短時間の変化量に基づいて、発振クロック信号の過渡的な周波数変動を補償することで、発振器1に加わるヒーターの温度に短期的な変動が生じた場合であっても、発振器から出力される信号に周波数変動が生じるおそれを低減することができる。
前記発振器の一態様において、
トリガー信号を出力するトリガー信号出力回路を備え、
前記補正回路は、前記トリガー信号に基づいて前記発振クロック信号の周波数変動の補償を実行してもよい。
この発振器によれば、トリガー信号に基づいて発振クロック信号の周波数変動の補償を実行するか否かが制御できるため、発振クロック信号の周波数変動の補償を必要としないタイミングでは、発振クロック信号の周波数変動の補償を停止することができる。したがって、発振クロック信号の周波数変動の補償を実行することに起因する発振器の消費電力を低減できるとともに、発振クロック信号の周波数変動の補償を実行することに起因したノイズが発振器を構成する他の回路に寄与するおそれが低減できる。したがって、発振器から出力される信号に周波数変動が生じるおそれをさらに低減することができる。
前記発振器の一態様において、
前記トリガー信号出力回路は、前記発熱回路に供給される電源電圧の変化量が所定値以上である場合に、前記発振クロック信号の周波数変動の補償を実行する前記トリガー信号を出力してもよい。
前記発振器の一態様において、
前記補正回路は、前記トリガー信号が入力される補償要否切替回路を備え、
前記トリガー信号出力回路は、
前記発熱回路に供給される電源電圧の変化量に応じた電源変動信号を出力する電源電圧検出回路と、
前記電源変動信号により示される電源電圧の電圧値の変化量の幅と、所定の閾値とを比較し、比較結果に応じて前記トリガー信号を出力する比較回路と、
を有し、
前記補償要否切替回路は、前記トリガー信号に応じて前記発振クロック信号の周波数変動の補償の要否を切り替えてもよい。
前記発振器の一態様において、
前記発振クロック信号出力回路の動作を制御する制御回路を備え、
前記補正回路は、前記制御回路が前記発振クロック信号出力回路の設定を変更する場合に出力する設定変更信号に基づいて前記発振クロック信号の周波数変動の補償の要否を切り替えてもよい。
前記発振器の一態様において、
前記発熱回路と前記温度センサーとを含む第1集積回路を備えてもよい。
前記発振器の一態様において、
前記発熱回路と前記温度センサーとは、前記第1集積回路において積層された状態で配置され、
前記振動子は、前記発熱回路と前記温度センサーとが積層されている方向において、前記第1集積回路の上方に位置し、
前記第1集積回路において、前記温度センサーは、前記発熱回路の上方に位置していてもよい。
この発振器によれば、温度センサーが、発熱回路と振動子との間に位置するが故に、発熱回路の意図しない温度変動により生じた熱が振動子に伝導するよりも前に、温度センサーが、当該温度変動を検出することができる。したがって、振動子に意図しない温度が加わる時間を短くすることが可能となり、その結果、発振器から出力される信号に周波数変動が生じるおそれをさらに低減することができる。
前記発振器の一態様において、
前記発振クロック信号出力回路と前記補正回路とを含む第2集積回路を備え、
前記温度センサーは、前記第2集積回路より前記振動子の近くに位置していてもよい。
この発振器によれば、前記発熱回路と前記温度センサーとを含む第1集積回路が、前記発振クロック信号出力回路と前記補正回路とを含む第2集積回路よりも振動子の近くに位置することで、第1集積回路による振動子に温度制御の精度が向上する。したがって、振動子に温度変動が生じるおそれが低減し、その結果、発振器から出力される信号に周波数変動が生じるおそれをさらに低減することができる。
1…発振器、2…振動子、3…第1回路装置、4…第2回路装置、15…能動面、16…回路素子、20,22,24…回路部品、26…電極パッド、30…ボンディングワイヤー、32,34,36…接合部材、40…容器、42…パッケージ本体、44…蓋部材、46…第1基板、48…第2基板、50…第3基板、52…第4基板、54…第5基板
、56…封止部材、60…容器、62…ベース基板、64…カバー、66…リードフレーム、110…温度調整回路、111…抵抗、112…MOSトランジスター、120…温度検出回路、121…ダイオード、130…定電流源、210…インターフェース回路、211…レジスター、212…ROM、220…デジタル信号処理回路、221…発振制御回路、222…周波数補正回路、223…トリガー回路、230…発振クロック信号出力回路、231…発振用回路、232…PLL回路、233…分周回路、234…バッファー回路、241…A/D変換回路、242…セレクター、243…レベルシフター、244…温度検出回路、245…温度制御回路、246…D/A変換回路、261…レギュレーター、310…補正信号生成回路、320…微分回路、330…乗算器、340…加算器、350…電源電圧検出回路、351…フィルター回路、352…減算器、360…比較回路、370…補償要否切替回路

Claims (9)

  1. 振動子と、
    前記振動子を加熱する発熱回路と、
    前記振動子よりも前記発熱回路の近くに位置し、温度検出信号を出力する温度センサーと、
    前記温度検出信号に基づき前記発熱回路の温度を制御する温度制御信号を出力する温度制御回路と、
    前記振動子を発振させ、発振クロック信号を出力する発振クロック信号出力回路と、
    前記発振クロック信号の周波数変動を補正する補正回路と、
    を備え、
    前記補正回路は、前記発振クロック信号の過渡的な周波数変動を、前記温度検出信号の時間変化量、又は前記温度制御信号の時間変化量に基づいて補償する、発振器。
  2. 振動子と、
    前記振動子を加熱する発熱回路と、
    前記振動子よりも前記発熱回路の近くに位置し、温度検出信号を出力する温度センサーと、
    前記温度検出信号に基づき前記発熱回路の温度を制御する温度制御信号を出力する温度制御回路と、
    前記振動子を発振させ、発振クロック信号を出力する発振クロック信号出力回路と、
    前記発振クロック信号の周波数変動を補正する補正回路と、
    を備え、
    前記補正回路は、前記発振クロック信号の過渡的な周波数変動を、前記発熱回路に供給される電源電圧の時間変化量に基づいて補償する、発振器。
  3. トリガー信号を出力するトリガー信号出力回路を備え、
    前記補正回路は、前記トリガー信号に基づいて前記発振クロック信号の周波数変動の補償を実行する、請求項1又は2に記載の発振器。
  4. 前記トリガー信号出力回路は、前記発熱回路に供給される電源電圧の変化量が所定値以上である場合に、前記発振クロック信号の周波数変動の補償を実行する前記トリガー信号を出力する、請求項3に記載の発振器。
  5. 前記補正回路は、前記トリガー信号が入力される補償要否切替回路を備え、
    前記トリガー信号出力回路は、
    前記発熱回路に供給される電源電圧の変化量に応じた電源変動信号を出力する電源電圧検出回路と、
    前記電源変動信号により示される電源電圧の電圧値の変化量の幅と、所定の閾値とを比較し、比較結果に応じて前記トリガー信号を出力する比較回路と、
    を有し、
    前記補償要否切替回路は、前記トリガー信号に応じて前記発振クロック信号の周波数変動の補償の要否を切り替える、請求項3又は4に記載の発振器。
  6. 前記発振クロック信号出力回路の動作を制御する制御回路を備え、
    前記補正回路は、前記制御回路が前記発振クロック信号出力回路の設定を変更する場合に出力する設定変更信号に基づいて前記発振クロック信号の周波数変動の補償の要否を切り替える、請求項1又は2に記載の発振器。
  7. 前記発熱回路と前記温度センサーとを含む第1集積回路を備える、請求項1乃至6のい
    ずれか1項に記載の発振器。
  8. 前記発熱回路と前記温度センサーとは、前記第1集積回路において積層された状態で配置され、
    前記振動子は、前記発熱回路と前記温度センサーとが積層されている方向において、前記第1集積回路の上方に位置し、
    前記第1集積回路において、前記温度センサーは、前記発熱回路の上方に位置している、請求項7に記載の発振器。
  9. 前記発振クロック信号出力回路と前記補正回路とを含む第2集積回路を備え、
    前記第1集積回路は、前記第2集積回路より前記振動子の近くに位置している、請求項7又は8に記載の発振器。
JP2020020690A 2020-02-10 2020-02-10 発振器 Pending JP2021129138A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020020690A JP2021129138A (ja) 2020-02-10 2020-02-10 発振器
CN202110179047.9A CN113258877B (zh) 2020-02-10 2021-02-08 振荡器
US17/171,092 US11239844B2 (en) 2020-02-10 2021-02-09 Oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020020690A JP2021129138A (ja) 2020-02-10 2020-02-10 発振器

Publications (1)

Publication Number Publication Date
JP2021129138A true JP2021129138A (ja) 2021-09-02

Family

ID=77176993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020020690A Pending JP2021129138A (ja) 2020-02-10 2020-02-10 発振器

Country Status (3)

Country Link
US (1) US11239844B2 (ja)
JP (1) JP2021129138A (ja)
CN (1) CN113258877B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023103894A (ja) * 2022-01-14 2023-07-27 旭化成エレクトロニクス株式会社 発振回路および発振回路の温度補償方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008048563A2 (en) * 2006-10-17 2008-04-24 Marvell World Trade Ltd. Crystal oscillator emulator
EP2328272A4 (en) 2008-08-28 2014-08-27 Panasonic Corp SYNTHESIZER AND RECEIVING DEVICE AND ELECTRONIC DEVICE THEREFOR
JP5188484B2 (ja) * 2009-10-01 2013-04-24 日本電波工業株式会社 恒温型の水晶発振器
JP2014197751A (ja) * 2013-03-29 2014-10-16 セイコーエプソン株式会社 発振器、電子機器及び移動体
JP6548411B2 (ja) 2014-03-31 2019-07-24 日本電波工業株式会社 発振装置
JP6460458B2 (ja) 2014-12-05 2019-01-30 セイコーNpc株式会社 デジタル温度補償型発振器
JP6740572B2 (ja) 2015-07-16 2020-08-19 セイコーエプソン株式会社 電子デバイス、電子機器、および基地局装置
US10630298B2 (en) * 2017-08-17 2020-04-21 Greenray Industries, Inc. Thermally locked oven controlled crystal oscillator
JP6669191B2 (ja) * 2018-04-19 2020-03-18 セイコーエプソン株式会社 発振器、電子機器及び移動体

Also Published As

Publication number Publication date
US20210250029A1 (en) 2021-08-12
CN113258877B (zh) 2023-06-13
CN113258877A (zh) 2021-08-13
US11239844B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP5086479B2 (ja) 発振器
JP5072418B2 (ja) 表面実装用の温度補償水晶発振器
CN111751029B (zh) 温度传感器、电路装置、振荡器、电子设备以及移动体
CN113258877B (zh) 振荡器
JP5381162B2 (ja) 温度補償型発振器
CN111697925B (zh) 电路装置、振荡器、电子设备以及移动体
CN111756330A (zh) 振荡器、电子设备以及移动体
CN111614323B (zh) 振荡器、电子设备和移动体
JP6092643B2 (ja) 温度補償型水晶発振器
CN112117969B (zh) 电路装置、振荡器、电子设备以及移动体
JP2011035487A (ja) 発振装置
US11063557B2 (en) Oscillation circuit, oscillator, electronic apparatus, and vehicle
US11929710B2 (en) Oscillator
JP2023125261A (ja) 回路装置及び発振器
JP2021002613A (ja) 半導体集積回路装置及び発振器
JP2022103739A (ja) 回路装置及び発振器
JP2024017214A (ja) 回路装置及び発振器
JP2022083614A (ja) 発振器
JP2014146958A (ja) 水晶発振器
JP2010062747A (ja) 温度補償型広可変電圧制御発振回路
JP2013146016A (ja) 温度補償型水晶発振器