JP2021127048A - Vehicle processing device and object detection method - Google Patents

Vehicle processing device and object detection method Download PDF

Info

Publication number
JP2021127048A
JP2021127048A JP2020023867A JP2020023867A JP2021127048A JP 2021127048 A JP2021127048 A JP 2021127048A JP 2020023867 A JP2020023867 A JP 2020023867A JP 2020023867 A JP2020023867 A JP 2020023867A JP 2021127048 A JP2021127048 A JP 2021127048A
Authority
JP
Japan
Prior art keywords
light
light receiving
vehicle
unit
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020023867A
Other languages
Japanese (ja)
Other versions
JP7412837B2 (en
Inventor
良平 滝澤
Ryohei Takizawa
良平 滝澤
孝宣 境澤
Takanobu Sakaizawa
孝宣 境澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MK Seiko Co Ltd
Original Assignee
MK Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MK Seiko Co Ltd filed Critical MK Seiko Co Ltd
Priority to JP2020023867A priority Critical patent/JP7412837B2/en
Publication of JP2021127048A publication Critical patent/JP2021127048A/en
Application granted granted Critical
Publication of JP7412837B2 publication Critical patent/JP7412837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

To provide a technique for improving accuracy of vehicle detection.SOLUTION: A vehicle processing device (10) includes a light-emitting part (EU) and a light-receiving part (RU), and has a processing function of detecting a vehicle by light passage and light shielding based on a threshold (S) of a light-receiving quantity between the light-emitting part (EU) and the light-receiving part (RU). The light-receiving part (RU) has a plurality of light-receiving elements (R) aligned in a vertical direction. Before detecting a vehicle (C), calibration values (rc) are set in each of the plurality of light-receiving elements (R) from the light-receiving quantity according to presence/absence of light emission of the light-emitting part (EU), and the threshold (S) is set from the calibration values (rc) with reference to different ratios (h1 and h2) in a vertical direction.SELECTED DRAWING: Figure 5

Description

本発明は、物体検出技術に関し、特に、物体として車両を検出処理し、その形状(車形)に合わせて処理を行う機能を備える車両処理装置に適用して有効な技術に関する。 The present invention relates to an object detection technique, and more particularly to a technique effective when applied to a vehicle processing device having a function of detecting and processing a vehicle as an object and processing the vehicle according to its shape (vehicle shape).

特許第4035379号(特許文献1)には、対向した発光素子の発光に伴う受光素子での受光量の増加分が所定の閾値以下と認められるときに車体を検出したと判断する技術が記載されている。その閾値は実行しようとする洗車内容に応じて各素子に算出・設定されるが、閾値を設定する際の比率は共通(同じ)とされている。すなわち、比率は洗車内容により適宜設定されるが、各素子の基礎データ(校正値)に対して同じ比率が参照(乗算)され、それぞれに閾値が設定されている。 Patent No. 4035379 (Patent Document 1) describes a technique for determining that a vehicle body is detected when the increase in the amount of light received by the light receiving element due to the light emission of the opposing light emitting elements is recognized to be equal to or less than a predetermined threshold value. ing. The threshold value is calculated and set for each element according to the content of the car wash to be executed, but the ratio when setting the threshold value is common (same). That is, the ratio is appropriately set according to the content of the car wash, but the same ratio is referenced (multiplied) with respect to the basic data (calibration value) of each element, and a threshold value is set for each.

特許第4035379号(特に、請求項1、段落0038〜0040)Japanese Patent No. 4035379 (in particular, claim 1, paragraphs 0038 to 0040)

しかしながら、各受光素子の閾値を設定する際に同じ比率を参照すると、検出する際の環境や車両(物体)によって正確に検出できないおそれが生じてしまう。 However, if the same ratio is referred to when setting the threshold value of each light receiving element, there is a possibility that accurate detection may not be possible depending on the environment at the time of detection or the vehicle (object).

本発明の一目的は、検出精度を向上することのできる技術を提供することにある。 An object of the present invention is to provide a technique capable of improving detection accuracy.

一解決手段に係る車両処理装置は、対向する発光部および受光部と、前記発光部と前記受光部との間において受光量の閾値を基準とした通光、遮光により車両を検出する検出部と、を備える。前記受光部は、鉛直方向に沿って並んだ複数の受光素子を有する。前記検出部は、車両を検出する前段階において、前記複数の受光素子のそれぞれに前記発光部の発光の有無による受光量から校正値を設定し、鉛直方向で異なる比率を参照して前記校正値から前記閾値を設定する機能を有する。 The vehicle processing device according to one solution includes a light emitting unit and a light receiving unit that face each other, and a detecting unit that detects a vehicle by light transmission and shading based on a threshold value of the light receiving amount between the light emitting unit and the light receiving unit. , Equipped with. The light receiving unit has a plurality of light receiving elements arranged along the vertical direction. In the stage before detecting the vehicle, the detection unit sets a calibration value for each of the plurality of light receiving elements from the amount of light received depending on the presence or absence of light emission of the light emitting unit, and refers to the ratio different in the vertical direction to the calibration value. It has a function of setting the threshold value from.

本発明の一解決手段によれば、検出精度を向上することができる。 According to one solution of the present invention, the detection accuracy can be improved.

本発明の一実施形態に係る車両処理装置の正面視からの概略図である。It is the schematic from the front view of the vehicle processing apparatus which concerns on one Embodiment of this invention. 図1に示す車両処理装置の側面視からの概略図である。It is the schematic from the side view of the vehicle processing apparatus shown in FIG. 図1に示す車両処理装置の制御系の概略図である。It is the schematic of the control system of the vehicle processing apparatus shown in FIG. 図1に示す車両処理装置の車形検出フロー図である。It is a vehicle shape detection flow chart of the vehicle processing apparatus shown in FIG. 図4に示す車形検出フロー中の閾値設定フロー図である。It is a threshold value setting flow chart in the vehicle shape detection flow shown in FIG. 車形データの説明図であり、(a)は閾値の比率が高いもの、(b)は閾値の比率が低いもの、(c)は閾値の比率を組み合わせたものである。It is explanatory drawing of the vehicle shape data, (a) is the thing with a high threshold value ratio, (b) is the thing with a low threshold value ratio, (c) is the thing which combined the threshold value ratio. 種々の環境下における閾値の比率を示す表である。It is a table which shows the ratio of the threshold value under various environments.

以下に、本発明に係る車両処理装置および物体検出方法の実施形態について説明する。本発明の実施形態では、車両処理装置として、車両(物体)を検出し、その形状に合わせて洗浄処理を行う機能を備える洗車装置に適用した場合について説明する。なお、必要な場合に複数のセクションなどに分けて説明するが、原則、それらはお互いに無関係ではなく、一方は他方の一部または全部の変形例、詳細などの関係にある。このため、全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、構成要素の数については、特に明示した場合や原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。 Hereinafter, embodiments of the vehicle processing device and the object detection method according to the present invention will be described. In the embodiment of the present invention, a case where the vehicle processing device is applied to a car washing device having a function of detecting a vehicle (object) and performing a cleaning process according to the shape thereof will be described. If necessary, the explanation will be divided into a plurality of sections, but in principle, they are not unrelated to each other, and one is related to a part or all of the other, such as modifications and details. Therefore, in all the drawings, members having the same function are designated by the same reference numerals, and the repeated description thereof will be omitted. In addition, the number of components is not limited to a specific number, except when explicitly stated or when the number is clearly limited in principle, and may be greater than or less than a specific number. good.

(洗車装置の構成)
まず、洗車装置10の構成について図面を参照して説明する。図1および図2はそれぞれに正面視および側面視からの洗車装置10の概略図である。また、図3は洗車装置10の制御系のブロック図である。
(Configuration of car wash device)
First, the configuration of the car wash device 10 will be described with reference to the drawings. 1 and 2 are schematic views of the car wash device 10 from the front view and the side view, respectively. Further, FIG. 3 is a block diagram of the control system of the car wash device 10.

洗車装置10は、地面G(敷設面)に起立して設けられた本体部11(本体機ともいう)を備えている。本体部11は、処理対象となる車両Cを跨ぐように門型状のフレーム(筐体)で構成されている。このため、本体部11は、地面Gから起立する一対の脚フレーム11Aと、この一対の脚フレーム11Aにかかる梁フレーム11Bとを有している。 The car wash device 10 includes a main body portion 11 (also referred to as a main body machine) provided upright on the ground G (laying surface). The main body 11 is composed of a gate-shaped frame (housing) so as to straddle the vehicle C to be processed. Therefore, the main body 11 has a pair of leg frames 11A that stand up from the ground G, and a beam frame 11B that covers the pair of leg frames 11A.

また、洗車装置10は、レール12と、車輪13、14とを備えている。一対のレール12は、互いが平行となるように延在して地面Gに設けられている。車輪13、14は、一対の脚フレーム11Aの底部のそれぞれに設けられている。洗車装置10では、車輪13を駆動輪、車輪14を従動輪としている。洗車装置10では、この一対のレール12間に車両Cが停車(図2では車両Cの前端を本体部11に向けて停車)した状態で、一対のレール12上を車輪13、14(計4輪)を介して本体部11が前後に移動(往復走行)することとなる。なお、図2の右方向が本体部11の前方向、左方向が後方向となる。 Further, the car wash device 10 includes rails 12 and wheels 13 and 14. The pair of rails 12 are provided on the ground G so as to extend so as to be parallel to each other. The wheels 13 and 14 are provided on the bottoms of the pair of leg frames 11A, respectively. In the car wash device 10, the wheels 13 are the driving wheels and the wheels 14 are the driven wheels. In the car wash device 10, the wheels 13 and 14 (4 in total) are placed on the pair of rails 12 in a state where the vehicle C is stopped between the pair of rails 12 (in FIG. 2, the front end of the vehicle C is directed toward the main body 11). The main body 11 moves back and forth (reciprocating) via the wheel). The right direction of FIG. 2 is the front direction of the main body 11, and the left direction is the rear direction.

また、洗車装置10は、モータ15と、エンコーダ16とを備えている。モータ15は、地面Gに対して車輪13よりも高い位置から車輪13と接続されるように本体部11の一対の脚フレーム11Aのそれぞれに設けられている。このモータ15は、正逆転可能に構成されており、車輪13(駆動輪)を介して本体部11を前後に移動させる。エンコーダ16は、本体部11の脚フレーム11Aの一方に設けられ、その一方側のモータ15の出力軸に連結されている。エンコーダ16は、レール12上における本体部11の走行位置を検出する。すなわち、エンコーダ16は、モータ15の回転方向すなわち車輪13の回転方向を検出しながら単位角度回転ごとにパルス信号を出力することで、レール12上における本体部11の位置を与えることができる。 Further, the car wash device 10 includes a motor 15 and an encoder 16. The motor 15 is provided on each of the pair of leg frames 11A of the main body 11 so as to be connected to the wheel 13 from a position higher than the wheel 13 with respect to the ground G. The motor 15 is configured to be capable of forward and reverse rotation, and moves the main body 11 back and forth via wheels 13 (driving wheels). The encoder 16 is provided on one of the leg frames 11A of the main body 11, and is connected to the output shaft of the motor 15 on the one side. The encoder 16 detects the traveling position of the main body 11 on the rail 12. That is, the encoder 16 can give the position of the main body 11 on the rail 12 by outputting a pulse signal for each unit angle rotation while detecting the rotation direction of the motor 15, that is, the rotation direction of the wheels 13.

また、洗車装置10は、前後スイッチ17およびドック18A、18Bを備えている。前後スイッチ17は、一方の脚フレーム11Aの底部に設けられている。また、ドック18Aは、一方のレール12の一端側(本体部11の前後方向前側)に設けられ、ドック18Bは、同じレール12の他端側(前後方向後側)に設けられている。前後スイッチ17は、本体部11の移動によりドック18A、18Bでスイッチングし、ドック18Aとドック18Bとの間で本体部11の移動限界を検出する。このため、洗車装置10では、本体部11が停車した車両Cを跨いで車長方向に通過するように移動限界の範囲内で移動することができる。 Further, the car wash device 10 includes a front / rear switch 17 and docks 18A and 18B. The front / rear switch 17 is provided on the bottom of one leg frame 11A. Further, the dock 18A is provided on one end side of one rail 12 (front side in the front-rear direction of the main body 11), and the dock 18B is provided on the other end side (rear side in the front-rear direction) of the same rail 12. The front / rear switch 17 switches between the docks 18A and 18B by moving the main body 11, and detects the movement limit of the main body 11 between the dock 18A and the dock 18B. Therefore, in the car wash device 10, the main body 11 can move within the range of the movement limit so as to straddle the stopped vehicle C and pass in the vehicle length direction.

また、洗車装置10は、本体部11に設けられたトップブラシ20および一対のサイドブラシ21を備えている。トップブラシ20(回転ブラシ)は、待機時に門型状の本体部11の開口上部側(梁フレーム11B側)に収容されている。このトップブラシ20は、可動部として本体部11の移動に伴って回転しながら上下に昇降し、主に車両Cの上面をブラッシングすることができる。また、一対のサイドブラシ21(回転ブラシ)は、それぞれ待機時に門型状の本体部11の開口側部側(一対の脚フレーム11A側)に収容されている。一対のサイドブラシ21は、可動部として本体部11の移動に伴って回転しながら開閉動作(互いが近づいたり離れたりする動作)し、主に車両Cの前面、側面および後面をブラッシングすることができる。 Further, the car wash device 10 includes a top brush 20 and a pair of side brushes 21 provided on the main body 11. The top brush 20 (rotary brush) is housed on the opening upper side (beam frame 11B side) of the gate-shaped main body 11 during standby. The top brush 20 can move up and down while rotating as the main body 11 moves as a movable portion, and can mainly brush the upper surface of the vehicle C. Further, each of the pair of side brushes 21 (rotating brushes) is housed on the opening side (pair of leg frames 11A side) of the gate-shaped main body 11 during standby. The pair of side brushes 21 can open and close (moving toward and away from each other) while rotating as the main body 11 moves as a movable part, and can mainly brush the front surface, side surface, and rear surface of the vehicle C. can.

また、洗車装置10は、本体部11に設けられるトップスプレー22および一対のサイドスプレー23を備えている。トップスプレー22は、門型状の本体部11の開口上部側(梁フレーム11B側)に収容されている。トップスプレー22は、本体部11の移動に伴ってパイプに設けられた複数の噴射ノズル(不図示)から水などの洗浄液を噴射し、主に車両Cの上面を洗浄することができる。また、一対のサイドスプレー23は、それぞれ門型状の本体部11の開口側部側(一対の脚フレーム11A側)に収容されている。一対のサイドスプレー23は、本体部11の移動に伴ってパイプに設けられた複数の噴射ノズル(不図示)から水などの洗浄液を噴射し、主に車両Cの側面を洗浄することができる。 Further, the car wash device 10 includes a top spray 22 and a pair of side sprays 23 provided on the main body 11. The top spray 22 is housed on the opening upper side (beam frame 11B side) of the gate-shaped main body 11. The top spray 22 can mainly clean the upper surface of the vehicle C by injecting a cleaning liquid such as water from a plurality of injection nozzles (not shown) provided on the pipe as the main body 11 moves. Further, the pair of side sprays 23 are housed on the opening side (the pair of leg frames 11A side) of the gate-shaped main body 11, respectively. The pair of side sprays 23 can mainly clean the side surface of the vehicle C by injecting a cleaning liquid such as water from a plurality of injection nozzles (not shown) provided on the pipe as the main body 11 moves.

また、洗車装置10は、本体部11に設けられるトップノズル24(ブロワノズル)および一対のサイドノズル25(ブロワノズル)を備えている。トップノズル24は、待機時に門型状の本体部11の開口上部側(梁フレーム11B側)に収容されている。トップノズル24は、可動部として本体部11の移動に伴って送風しながら車両Cと接触せずに上下に昇降し、主に車両Cの上面を乾燥することができる。また、一対のサイドノズル25は、それぞれ待機時に門型状の本体部11の開口側部側(一対の脚フレーム11A側)に収容されている。一対のサイドノズル25は、可動部として本体部11の移動に伴って送風しながら車両Cと接触せずに開閉動作(互いが近づいたり離れたりする動作)し、主に車両Cの側面を乾燥することができる。 Further, the car wash device 10 includes a top nozzle 24 (blower nozzle) and a pair of side nozzles 25 (blower nozzles) provided in the main body 11. The top nozzle 24 is housed on the opening upper side (beam frame 11B side) of the gate-shaped main body 11 during standby. The top nozzle 24 can move up and down without contacting the vehicle C while blowing air as the main body 11 moves as a movable portion, and can mainly dry the upper surface of the vehicle C. Further, each of the pair of side nozzles 25 is housed on the opening side (pair of leg frames 11A side) of the gate-shaped main body 11 during standby. The pair of side nozzles 25 open and close (moving toward and away from each other) without contacting the vehicle C while blowing air as the main body 11 moves as a movable portion, and mainly dries the side surfaces of the vehicle C. can do.

また、洗車装置10は、本体部11に設けられ、車両Cを検出するセンサ部26を備えている。センサ部26は、例えば透過型の光電センサとして、一対の脚フレーム11Aのそれぞれに設けられた発光部EUおよび受光部RUを備え、発光部EUと受光部RUとの間で車両Cを検出するよう構成されている。発光部EUと受光部RUとが対向するように設けられている。発光部EUは、門型状の本体部11の開口右側部側(一方の脚フレーム11A側)に設けられ、受光部RUは、門型状の本体部11の開口左側部側(他方の脚フレーム11A側)に設けられている。洗車装置10は、対向する発光部EUと受光部RUとの間での通光、遮光により車両C(物体)を検出することができる。 Further, the car wash device 10 is provided in the main body portion 11 and includes a sensor portion 26 for detecting the vehicle C. The sensor unit 26 includes a light emitting unit EU and a light receiving unit RU provided on each of the pair of leg frames 11A, for example, as a transmissive photoelectric sensor, and detects the vehicle C between the light emitting unit EU and the light receiving unit RU. It is configured as. The light emitting unit EU and the light receiving unit RU are provided so as to face each other. The light emitting portion EU is provided on the right side of the opening of the gate-shaped main body 11 (one leg frame 11A side), and the light receiving portion RU is on the left side of the opening of the gate-shaped main body 11 (the other leg). It is provided on the frame 11A side). The car wash device 10 can detect the vehicle C (object) by passing light and shading between the light emitting unit EU and the light receiving unit RU facing each other.

センサ部26は、発光部EUが有する複数(m個)の発光素子E(例えば、LED)と、受光部RUが有する複数(m個)の受光素子R(例えば、フォトダイオード)とを備えている。複数の発光素子Eは、本体部11の起立方向(鉛直方向)に沿って等間隔に並んで設けられている。また、複数の受光素子Rは、本体部11の起立方向(鉛直方向)に沿って等間隔に並んで設けられている。例えば、図1に示すように、地面Gから同じ高さに設置されて対向している発光素子Eと受光素子Rとの間で光信号(例えば、赤外線)の授受を行うことで、地面Gに水平な光軸Bが形成される。この光軸Bの通光/遮光を基に、洗車装置10は車両Cの有無を検出し、種々のデータを取得することができる。 The sensor unit 26 includes a plurality of (m) light emitting elements E (for example, LEDs) included in the light emitting unit EU and a plurality (m) light receiving elements R (for example, photodiodes) included in the light receiving unit RU. There is. The plurality of light emitting elements E are provided side by side at equal intervals along the upright direction (vertical direction) of the main body 11. Further, the plurality of light receiving elements R are provided side by side at equal intervals along the upright direction (vertical direction) of the main body portion 11. For example, as shown in FIG. 1, by exchanging an optical signal (for example, infrared rays) between a light emitting element E and a light receiving element R which are installed at the same height from the ground G and face each other, the ground G A horizontal optical axis B is formed on the surface. Based on the light transmission / shading of the optical axis B, the car wash device 10 can detect the presence / absence of the vehicle C and acquire various data.

また、洗車装置10(図3)は、発光部EU用の走査駆動部30と、受光部RU用の走査駆動部31とを備えている。走査駆動部30は、本体部11の起立方向(行方向)に並ぶ発光素子Eを下から上(もしくは上から下)へ順次点灯する。また、走査駆動部31は、発光素子Eの走査に向かい合う受光素子Rを順次受光状態とする。これにより、対応する発光素子Eと受光素子Rとの間で光信号の授受がなされ、地面Gに水平な光軸Bが形成される。なお、水平光軸ごとに光信号の授受を行う水平検出動作に加えて、例えば、発光素子E2からの発光をそれと水平に対向する受光素子R2の上下の受光素子R1、R2で光信号の授受(傾斜光軸)を検出する傾斜検出動作を行うことで、配列した素子数(m個)よりも多い分解能で車両を検出するようにしてもよい。 Further, the car wash device 10 (FIG. 3) includes a scanning drive unit 30 for the light emitting unit EU and a scanning drive unit 31 for the light receiving unit RU. The scanning drive unit 30 sequentially lights the light emitting elements E arranged in the standing direction (row direction) of the main body 11 from the bottom to the top (or from the top to the bottom). Further, the scanning drive unit 31 sequentially puts the light receiving element R facing the scanning of the light emitting element E into a light receiving state. As a result, an optical signal is exchanged between the corresponding light emitting element E and the light receiving element R, and an optical axis B horizontal to the ground G is formed. In addition to the horizontal detection operation in which an optical signal is transmitted and received for each horizontal optical axis, for example, light emitted from the light emitting element E2 is transmitted and received by the light receiving elements R1 and R2 above and below the light receiving element R2 which is horizontally opposed to the light emitting element E2. By performing the tilt detection operation for detecting the (tilt optical axis), the vehicle may be detected with a resolution larger than the number of arranged elements (m).

また、洗車装置10は、車形制御部32を備えている。車形制御部32(例えば、制御装置)は、CPU、RAM、ROMなどの電子部品から構成され、種々の処理機能(プログラムを実行する手段)を有している。このため、洗車装置10(車形制御部32)は、処理機能として、走行位置検出部33と、受光検出部34と、閾値設定部35と、車両検出部36と、多数決判定部37と、車形データ作成部38と、画像処理部40と、データ記憶部41とを備えている。車形制御部32は、本体部11に内蔵されている。 Further, the car wash device 10 includes a vehicle shape control unit 32. The vehicle-shaped control unit 32 (for example, a control device) is composed of electronic components such as a CPU, RAM, and ROM, and has various processing functions (means for executing a program). Therefore, the car wash device 10 (vehicle shape control unit 32) has, as processing functions, a traveling position detection unit 33, a light receiving detection unit 34, a threshold value setting unit 35, a vehicle detection unit 36, a majority decision determination unit 37, and the like. It includes a vehicle shape data creation unit 38, an image processing unit 40, and a data storage unit 41. The vehicle shape control unit 32 is built in the main body unit 11.

走行位置検出部33は、走行エンコーダ16からのパルス信号により本体部11の走行位置を検出する。また、受光検出部34は、各受光素子Rでの受光量(受光レベル)を検出する。また、閾値設定部35は、車両を検出する前段階(車両Cが存在しない状態)において、複数の受光素子Rのそれぞれに発光部EUの発光の有無による受光量から校正値を設定し、比率hを参照して校正値から閾値を設定する。 The traveling position detection unit 33 detects the traveling position of the main body 11 by the pulse signal from the traveling encoder 16. Further, the light receiving detection unit 34 detects the amount of light received (light receiving level) at each light receiving element R. Further, the threshold value setting unit 35 sets a calibration value for each of the plurality of light receiving elements R in the stage before detecting the vehicle (a state in which the vehicle C does not exist) based on the amount of light received by the light emitting unit EU depending on the presence or absence of light emission, and the ratio is set. The threshold value is set from the calibration value with reference to h.

ここで、閾値とは、発光部EU(発光素子E)が発光したことによって対応する受光素子Rで受ける受光量の増加分と対比される数値である。洗車装置10は、発光部EUと受光部RUとの間において受光量の閾値を基準とした通光/遮光により車両C(物体)を検出することができる。より具体的には、発光により受光量が閾値以上増加すればその光軸Bは通光しているとして車両非検出と判定し、閾値に達しなければその光軸Bは遮光されているとして車両検出と判定される。 Here, the threshold value is a numerical value to be compared with an increase in the amount of light received by the corresponding light receiving element R due to the light emitted by the light emitting unit EU (light emitting element E). The car wash device 10 can detect the vehicle C (object) between the light emitting unit EU and the light receiving unit RU by passing light / light shielding based on the threshold value of the light receiving amount. More specifically, if the amount of received light increases by more than the threshold value due to light emission, it is determined that the optical axis B is transmitting light and the vehicle is not detected. It is determined to be detected.

また、車両検出部36は、走行エンコーダ16からのパルス信号をトリガとして走査駆動部30、31を動作させ、受光検出部34で検出される各受光素子Rの受光量を、閾値設定部35で設定した閾値と比較して各光軸Bの通光/遮光を判定する。この際、車両検出部36は、本体部11の走行位置に関して同一位置で複数回(例えば、5回)の走査を行い、1回の走査で判定される各光軸Bの判定結果をその回毎にまとめて車形データとしてデータ記憶部41に記憶させる。また、多数判決部37は、走査で行った回数分の車形データを用いて各光軸Bの判定結果を多数決判決する。多数決で判定された各光軸Bの通光/遮光の結果は1走査分の車両データとして確定し、車形データ作成部38に送られる。 Further, the vehicle detection unit 36 operates the scanning drive units 30 and 31 with the pulse signal from the traveling encoder 16 as a trigger, and the threshold value setting unit 35 sets the amount of light received by each light receiving element R detected by the light receiving detection unit 34. The light transmission / shading of each optical axis B is determined by comparing with the set threshold value. At this time, the vehicle detection unit 36 scans at the same position a plurality of times (for example, five times) with respect to the traveling position of the main body portion 11, and determines the determination result of each optical axis B determined by one scan each time. It is stored in the data storage unit 41 as vehicle shape data collectively for each. In addition, the majority decision unit 37 makes a majority decision on the determination result of each optical axis B using the vehicle shape data for the number of times of scanning. The result of light transmission / shading of each optical axis B determined by the majority vote is determined as vehicle data for one scan and sent to the vehicle shape data creation unit 38.

また、車形データ作成部38は、走行位置検出部33から与えられる本体部11の走行位置と車両検出部36および多数判決部37で検出した各光軸Bの通光/遮光から2値画像データを作成する。画像処理部40は、車形データ作成部38で作成した2値画像データを解析処理し、洗車用データを作成する。データ記憶部41は、走行位置検出部33で検出される本体部11の走行位置データ、閾値設定部35で設定される閾値、車形データ作成部38で作成される2値画像データや、画像処理部40で抽出される洗車用データなどが記憶される。 Further, the vehicle shape data creating unit 38 is a binary image from the traveling position of the main body 11 given by the traveling position detecting unit 33 and the light transmission / shading of each optical axis B detected by the vehicle detecting unit 36 and the majority judgment unit 37. Create data. The image processing unit 40 analyzes and processes the binary image data created by the vehicle shape data creation unit 38 to create car wash data. The data storage unit 41 includes traveling position data of the main body 11 detected by the traveling position detecting unit 33, a threshold value set by the threshold value setting unit 35, binary image data created by the vehicle shape data creating unit 38, and an image. Car wash data and the like extracted by the processing unit 40 are stored.

また、洗車装置10は、洗車制御部42と、洗車駆動部43と、操作パネル44とを備えている。洗車制御部42(例えば、制御装置)は、洗車処理プロブラムに従って洗車駆動部43を介してトップブラシ20、トップノズル24などの処理装置(可動部)や本体部11のモータ15などを駆動し、本体部11を移動させつつ、車両Cの洗浄、乾燥といった洗車処理を行わせる。例えば、洗車制御部42は、作成された洗車用車形データに基づいてトップブラシ20およびトップノズル24を昇降制御し、車体面を忠実にトレースするよう操作する。操作パネル44は、本体部11とは別設される洗車受付装置(図示しない)に設けられ、ユーザによって洗車内容の選択入力や洗車開始入力が行われる。 Further, the car wash device 10 includes a car wash control unit 42, a car wash drive unit 43, and an operation panel 44. The car wash control unit 42 (for example, a control device) drives a processing device (moving unit) such as the top brush 20 and the top nozzle 24 and a motor 15 of the main body 11 via the car wash drive unit 43 according to the car wash processing program. While moving the main body 11, a car wash process such as washing and drying of the vehicle C is performed. For example, the car wash control unit 42 controls the top brush 20 and the top nozzle 24 to move up and down based on the created car wash car shape data, and operates so as to faithfully trace the vehicle body surface. The operation panel 44 is provided in a car wash reception device (not shown) provided separately from the main body 11, and the user performs selection input of car wash contents and car wash start input.

(車形検出方法)
次に、洗車装置10における車両検出方法(物体検出方法)について図面を参照して説明する。図4は、洗車装置10の車形検出フロー図である。また、図5は、車形検出フロー中の閾値設定フロー図である。車形検出処理は、閾値設定処理(工程S10)、車両検出処理(工程S30)、判定処理(工程S50)、車形データ作成処理(工程S70)、画像処理(工程S90)を含み、この順に行われる。
(Vehicle shape detection method)
Next, the vehicle detection method (object detection method) in the car wash device 10 will be described with reference to the drawings. FIG. 4 is a vehicle shape detection flow diagram of the car wash device 10. Further, FIG. 5 is a threshold value setting flow diagram in the vehicle shape detection flow. The vehicle shape detection process includes a threshold setting process (process S10), a vehicle detection process (process S30), a determination process (process S50), a vehicle shape data creation process (process S70), and an image process (process S90), in that order. Will be done.

<閾値設定処理(工程S10)>
閾値設定部35では、車両Cを検出する前段階において、複数の受光素子Rのそれぞれに、対応する複数の発光素子E(発光部EU)の発光の有無による受光量から校正値を設定し、鉛直方向で異なる比率hを参照して校正値から閾値を設定する。この閾値は、各発光素子Eや受光素子Rの個々の性能や精度に応じて通光/遮光を判別する基準値となるため、汚れの付着等による受光量低下も許容できるように車両検出前には必ず個々の受光素子R毎に設定される。
<Threshold setting process (step S10)>
In the threshold value setting unit 35, in the stage before detecting the vehicle C, a calibration value is set for each of the plurality of light receiving elements R from the amount of light received by the corresponding plurality of light emitting elements E (light emitting unit EU) depending on the presence or absence of light emission. The threshold value is set from the calibration value with reference to the ratio h that differs in the vertical direction. Since this threshold value serves as a reference value for discriminating light transmission / shading according to the individual performance and accuracy of each light emitting element E and light receiving element R, it is possible to allow a decrease in the amount of received light due to adhesion of dirt or the like before vehicle detection. Is always set for each light receiving element R.

より具体的には、まず、受光部RUの走査駆動部31のみを駆動し(工程S11)、発光部EUを発光させる前の受光素子R1の受光レベルra1(受光量)を取り込む(工程S12)。次いで、発光部EUの走査駆動部30と受光部RUの走査駆動部31を同期駆動させ(工程S13)、発光素子E1を発光させた時の受光素子R1の受光レベルrb1(受光量)を取り込む(工程S14)。次いで、受光レベルra1と、受光レベルrb1との差を取ることで、汚れの付着等による受光量を校正した差分受光レベルrc1(校正値となる)を算出する(工程S15)。次いで、発光部EUと受光部RUとの間の環境などによって鉛直方向で異なって設定される比率hを参照して、差分受光レベルrc1(校正値)から閾値S1を設定する(工程S16)。次いで、受光素子R1の閾値S1としてデータ記憶部41に記憶する(工程S17)。同様にして工程S11〜S17を繰り返すことで、複数(m個)の受光素子R1〜Rmのそれぞれに閾値S1〜Smを設定する(工程S18)。 More specifically, first, only the scanning drive unit 31 of the light receiving unit RU is driven (step S11), and the light receiving level ra1 (light receiving amount) of the light receiving element R1 before the light emitting unit EU is made to emit light is taken in (step S12). .. Next, the scanning drive unit 30 of the light emitting unit EU and the scanning drive unit 31 of the light receiving unit RU are synchronously driven (step S13), and the light receiving level rb1 (light receiving amount) of the light receiving element R1 when the light emitting element E1 is made to emit light is taken in. (Step S14). Next, by taking the difference between the light receiving level ra1 and the light receiving level rb1, the differential light receiving level rc1 (which becomes the calibration value) obtained by calibrating the amount of light received due to the adhesion of dirt or the like is calculated (step S15). Next, the threshold value S1 is set from the differential light receiving level rc1 (calibration value) with reference to the ratio h which is set differently in the vertical direction depending on the environment between the light emitting unit EU and the light receiving unit RU (step S16). Next, it is stored in the data storage unit 41 as the threshold value S1 of the light receiving element R1 (step S17). By repeating steps S11 to S17 in the same manner, threshold values S1 to Sm are set for each of the plurality of (m) light receiving elements R1 to Rm (step S18).

本実施形態では、閾値Sを設定するにあたり、鉛直方向で異なる比率hを参照している。例えば、鉛直方向上側の比率h1と、これよりも低い鉛直方向下側の比率h2とを参照している。後の車形検出処理とあわせてトップスプレー22から洗浄液が噴射される洗浄処理が行われることで、発光部EUと受光部RUとの間の環境によって、比率h1、h2が鉛直方向で異なって設定される。なお、異なった比率hを参照して閾値Sを設定すると、これを基に検出される車形データも異なる(図6(a)は比率h1、図6(b)は比率h2の場合の車形データ)。閾値設定で参照される比率h1、h2については後述する。 In the present embodiment, when setting the threshold value S, different ratios h are referred to in the vertical direction. For example, the ratio h1 on the upper side in the vertical direction and the ratio h2 on the lower side in the vertical direction, which are lower than this, are referred to. By performing the cleaning process in which the cleaning liquid is sprayed from the top spray 22 together with the subsequent vehicle shape detection process, the ratios h1 and h2 differ in the vertical direction depending on the environment between the light emitting unit EU and the light receiving unit RU. Set. If the threshold value S is set with reference to different ratios h, the vehicle shape data detected based on the threshold values will also be different (FIG. 6 (a) is the vehicle with the ratio h1 and FIG. 6 (b) is the vehicle with the ratio h2. Shape data). The ratios h1 and h2 referred to in the threshold setting will be described later.

<車両検出処理(工程S30)>
車両検出部36では、まず、受光部RUの走査駆動部31を駆動し、発光素子Eを発光させる前の受光素子Rの受光レベルra’の取り込みが行われる。次いで、発光部EUの走査駆動部30と受光部RUの走査駆動部31とを同期駆動し、発光素子Eを発光させた時の受光素子Rの受光レベルrb’の取り込みが行われる。その後、受光レベルra’と受光レベルrb’との差分受光レベルrc’を算出する。
<Vehicle detection process (process S30)>
The vehicle detection unit 36 first drives the scanning drive unit 31 of the light receiving unit RU to capture the light receiving level ra'of the light receiving element R before causing the light emitting element E to emit light. Next, the scanning drive unit 30 of the light emitting unit EU and the scanning drive unit 31 of the light receiving unit RU are synchronously driven, and the light receiving level rb'of the light receiving element R when the light emitting element E is made to emit light is taken in. After that, the difference light receiving level rc'between the light receiving level ra'and the light receiving level rb'is calculated.

次いで、閾値設定処理によってデータ記憶部41に記憶された閾値Sを読み出して、算出した差分受光量レベルrc’と比較する。差分受光レベルrc’が閾値Sよりも低ければ光軸Bを「遮光」と判定し、閾値Sよりも高ければ光軸Bを「通光」と判定する。そして、一走査分の検出が終わると、それを車両データとしてデータ記憶部41に記憶する。同様にして、車両検出処理で行う車両走査は、停車している車両Cに対して本体部11が移動する中で、車両Cの同一位置で複数回実行される。なお、車両Cの同一位置で行う車両走査の回数は、例えば、本体部11の走行速度に応じて決定される。 Next, the threshold value S stored in the data storage unit 41 by the threshold value setting process is read out and compared with the calculated difference light receiving amount level rc'. If the differential light receiving level rc'is lower than the threshold value S, the optical axis B is determined to be "light-shielding", and if it is higher than the threshold value S, the optical axis B is determined to be "light-transmitting". Then, when the detection for one scan is completed, it is stored in the data storage unit 41 as vehicle data. Similarly, the vehicle scanning performed by the vehicle detection process is executed a plurality of times at the same position of the vehicle C while the main body 11 moves with respect to the stopped vehicle C. The number of vehicle scans performed at the same position of the vehicle C is determined according to, for example, the traveling speed of the main body 11.

<判定処理(工程S50)>
多数決判定部37では、データ記憶部41に記憶された車両データに関して各光軸Bの判定結果について多数決判定を行う。例えば、車両Cの同一位置において5回走査された場合、発光素子E1と受光素子R1とで形成される光軸B1では通光が3回、遮光が2回のとき、最終的な同一位置の光軸Bでは「通光」と多数決判定する。以上のようにして、全ての光軸B1〜Bmについて判定結果が確定されると、一走査分の車両データとして車形データ作成部38に送られる。
<Judgment process (process S50)>
The majority decision unit 37 makes a majority decision on the determination result of each optical axis B with respect to the vehicle data stored in the data storage unit 41. For example, when the vehicle C is scanned 5 times at the same position, the optical axis B1 formed by the light emitting element E1 and the light receiving element R1 transmits light 3 times and blocks light 2 times, and the final position is the same. On the optical axis B, a majority vote is determined as "light transmission". When the determination results are determined for all the optical axes B1 to Bm as described above, they are sent to the vehicle shape data creation unit 38 as vehicle data for one scan.

<車形データ作成(工程S70)>
車形データ作成部38では、多数決判定部37から受けた車両データに含まれる「通光」を「0」、「遮光」を「1」とした2値データを作成する。そして、この2値データを本体部11が所定距離走行するごとに作成し、例えば、本体部11が往行するまで実行して、横軸を本体部11の移動ピッチpx、縦軸を光軸B1〜Bmの配列ピッチpyとした行列上に展開された車形データを形成する(例えば、図6(c)参照)。作成した車形データは、データ記憶部41に記憶され、画像処理部40で洗車用データに画像処理される。
<Vehicle shape data creation (process S70)>
The vehicle shape data creation unit 38 creates binary data in which the “light transmission” included in the vehicle data received from the majority decision unit 37 is “0” and the “light shielding” is “1”. Then, this binary data is created every time the main body 11 travels a predetermined distance, and is executed, for example, until the main body 11 goes back and forth, the horizontal axis is the movement pitch px of the main body 11, and the vertical axis is the optical axis. Vehicle shape data developed on a matrix with an array pitch of B1 to Bm is formed (see, for example, FIG. 6C). The created vehicle shape data is stored in the data storage unit 41, and the image processing unit 40 performs image processing on the vehicle wash data.

<画像処理(工程S90)>
画像処理部40では、2値化した車形データに論理フィルターをかけて輪郭線を抽出する。この処理は、車形データにおいて「1」が隣どうし連続して存在している連結成分の、最も下でかつ最も左に位置するセルを追跡開始点とし、この点を中心にその周りに隣接する8セルを右まわりに調べ、「0」から「1」に変わるセルを検出していき、検出したセルを輪郭線とするものである。実際には、本体部11の走行とともに車両Cの車体画像データが順次送られてきて展開されつつ輪郭線を追跡するため、車両全体の画像データ取り込みを完了した時点で全体の輪郭線が抽出される。こうして得られた車両Cの輪郭から、本体部11の前後方向に対する本体部11の起立方向のデータを決定した洗車用データを作成することができる。
<Image processing (process S90)>
The image processing unit 40 applies a logical filter to the binarized vehicle shape data to extract contour lines. In this process, the cell located at the bottom and the leftmost of the connected components in which "1" exists consecutively next to each other in the vehicle shape data is set as the tracking start point, and the cell is adjacent to the center of this point. 8 cells are examined clockwise, cells changing from "0" to "1" are detected, and the detected cells are used as contour lines. Actually, since the vehicle body image data of the vehicle C is sequentially sent and expanded as the main body 11 travels and the contour line is tracked, the entire contour line is extracted when the image data acquisition of the entire vehicle is completed. NS. From the contour of the vehicle C thus obtained, it is possible to create car wash data in which the data of the standing direction of the main body 11 with respect to the front-rear direction of the main body 11 is determined.

(洗車装置の動作)
次に、洗車装置10の動作(洗車方法)について説明する。洗車装置10は、ユーザによって操作パネル44(受付装置)で受付がなされると、所定の停車位置に車両Cを停車させるよう表示機などによってユーザに案内を出す。これにより、車両Cはセンサ部26で検出されない所定の停車位置に停車させられる。次いで、前述したように、車形検出処理が行われ、洗車用データが作成される。この洗車用データの作成は、本体部11が往路を走行する間継続して実行され、連続した車両Cの上面輪郭が得られる。
(Operation of car wash device)
Next, the operation of the car wash device 10 (car wash method) will be described. When the user makes a reception on the operation panel 44 (reception device), the car wash device 10 notifies the user by a display or the like to stop the vehicle C at a predetermined stop position. As a result, the vehicle C is stopped at a predetermined stop position that is not detected by the sensor unit 26. Then, as described above, the vehicle shape detection process is performed and the vehicle wash data is created. The creation of the car wash data is continuously executed while the main body 11 travels on the outbound route, and a continuous upper surface contour of the vehicle C is obtained.

車両Cの形状が検出されると、検出された車両Cの輪郭に基づいて洗浄動作が行われる。洗浄動作は、本体部11の走行に伴い、例えば、洗浄液の噴射を伴う車両Cへのブラッシング洗浄処理と、高速風の噴射によるブロー処理が順次実行される。このうち、トップブラシ20およびトップノズル24は、検出された車両Cの輪郭に沿って昇降制御される。洗車動作が終了すると、洗車装置10は表示機などによってユーザに車両Cの退出を促す。なお、一往行中に車形検出処理と洗浄処理を同時に行うことが可能である。 When the shape of the vehicle C is detected, the cleaning operation is performed based on the detected contour of the vehicle C. In the cleaning operation, for example, a brushing cleaning process for the vehicle C accompanied by injection of the cleaning liquid and a blow process by injection of high-speed wind are sequentially executed as the main body 11 travels. Of these, the top brush 20 and the top nozzle 24 are controlled to move up and down along the detected contour of the vehicle C. When the car wash operation is completed, the car wash device 10 prompts the user to leave the vehicle C by means of a display or the like. It is possible to perform the vehicle shape detection process and the cleaning process at the same time during one trip.

(閾値設定の比率)
ここでは、閾値設定の際に参照される比率について説明する。図6は、車形データの説明図であり、(a)は閾値の比率h1が高いもの、(b)は閾値の比率h2が低いもの、(c)は閾値の比率h1、h2を組み合わせたものである。図7は、種々の環境下における閾値の比率を示す表である。
(Threshold setting ratio)
Here, the ratio referred to when setting the threshold value will be described. 6A and 6B are explanatory views of vehicle shape data, in which FIG. 6A is a combination of those having a high threshold value ratio h1, (b) having a low threshold value ratio h2, and (c) a combination of threshold value ratios h1 and h2. It is a thing. FIG. 7 is a table showing the ratio of threshold values under various environments.

従来技術(例えば、特許文献1)では、洗車動作ごとに閾値を設定する際には、同じ環境下にある(光信号の減衰が同じ)としてそれぞれの受光素子Rについて同じ比率hを参照していた。受光素子Rの受光レベルの減衰(例えば70%)が見込まれることを考慮し、閾値の比率(例えば10%)が設定される。例えば、最上部の受光素子Rmの差分受光レベルrcmを1000、最下部の受光素子R1の差分受光レベルrc1を300とした場合、閾値の比率h(例えば10%)を参照すると、最上部の閾値Smが100、最下部の閾値S1が30となる。このように、車両Cの同一位置で起立方向(鉛直方向)に走査駆動される複数の受光素子Rのそれぞれで設定される閾値の比率はすべて同じであった。 In the prior art (for example, Patent Document 1), when setting the threshold value for each car wash operation, the same ratio h is referred to for each light receiving element R under the same environment (the attenuation of the optical signal is the same). rice field. The threshold ratio (for example, 10%) is set in consideration of the expected attenuation (for example, 70%) of the light receiving level of the light receiving element R. For example, when the differential light receiving level rcm of the uppermost light receiving element Rm is 1000 and the differential light receiving level rc1 of the lowermost light receiving element R1 is 300, referring to the threshold ratio h (for example, 10%), the uppermost threshold value is used. Sm is 100, and the lowermost threshold value S1 is 30. As described above, the ratios of the threshold values set by each of the plurality of light receiving elements R which are scanned and driven in the upright direction (vertical direction) at the same position of the vehicle C are all the same.

しかしながら、車形検出を行いながら洗浄処理を行うような環境においては、次のような問題があることを発明者らは見いだした。すなわち、トップスプレー22が洗車装置10の本体部11の上側(梁フレーム11B側)から洗浄液を車両Cに噴射するため、鉛直方向下側(車両C側)に向かって洗浄液が広がってしまう。このため、車両Cのルーフ上(センサ部26の上部)よりもボンネット上(センサ部26の下部)での飛沫が多くなってしまう。また、センサ部26の上部よりも下部の方へ飛沫の飛び込みが多く、また付着する水滴も鉛直方向上側から下側へ流れ落ちるため、センサ部26の下部に水滴の影響が汚れとして生じてしまう。 However, the inventors have found that there are the following problems in an environment in which the cleaning process is performed while detecting the vehicle shape. That is, since the top spray 22 injects the cleaning liquid onto the vehicle C from the upper side (beam frame 11B side) of the main body 11 of the car washing device 10, the cleaning liquid spreads toward the lower side in the vertical direction (vehicle C side). Therefore, the amount of droplets on the bonnet (lower part of the sensor part 26) is larger than that on the roof of the vehicle C (upper part of the sensor part 26). In addition, more droplets jump into the lower part than the upper part of the sensor unit 26, and the adhering water droplets also flow down from the upper side to the lower side in the vertical direction, so that the influence of the water droplets is generated as dirt on the lower part of the sensor unit 26.

この点、従来技術では閾値の比率hが一律に同じであるので、ルーフ上のアンテナなどの装備品を車形データで検出可能な高い比率h1に設定した場合、センサ部26の下部からは、車両Cのボンネット上で飛沫を検出してしまう(図6(a)参照)。他方、この飛沫を検出しないような低い比率h2(h1より低い)に設定した場合、センサ部26の上部からは、車両Cのルーフ上のアンテナを検出できなくなってしまう(図6(b)参照)。 In this respect, since the threshold ratio h is uniformly the same in the prior art, when the equipment such as the antenna on the roof is set to a high ratio h1 that can be detected by the vehicle shape data, the lower part of the sensor unit 26 can be seen. Splashes are detected on the hood of vehicle C (see FIG. 6A). On the other hand, when the ratio is set to a low h2 (lower than h1) so as not to detect the droplets, the antenna on the roof of the vehicle C cannot be detected from the upper part of the sensor unit 26 (see FIG. 6B). ).

そこで、本実施形態では、閾値Sを設定するにあたり、センサ部26を上下に2分割し、鉛直方向で異なる比率hを参照している。より具体的には、発光部EUと受光部RUとの間の環境や、車両の装備品を考慮して、鉛直方向上側の比率h1と、これよりも低い鉛直方向下側の比率h2とを設定し、これらを参照して閾値Sを設定している。鉛直方向上側(例えば、m個の半分上側)の各受光素子Rには、それぞれの差分受光レベルrc(校正値)に比率h1を乗算した閾値Sが設定される。また、鉛直方向下側(例えば、m個の半分下側)の各受光素子Rには、それぞれの差分受光レベルrc(校正値)に比率h2を乗算した閾値Sが設定される。なお、センサ部26を上下に分割する境界は、m個の半分に限るものではない。 Therefore, in the present embodiment, when setting the threshold value S, the sensor unit 26 is divided into upper and lower parts, and different ratios h are referred to in the vertical direction. More specifically, in consideration of the environment between the light emitting unit EU and the light receiving unit RU and the equipment of the vehicle, the ratio h1 on the upper side in the vertical direction and the ratio h2 on the lower side in the vertical direction, which are lower than this, are set. The threshold value S is set with reference to these. A threshold value S obtained by multiplying each difference light receiving level rc (calibration value) by the ratio h1 is set for each light receiving element R on the upper side in the vertical direction (for example, half upper side of m pieces). Further, a threshold value S obtained by multiplying each differential light receiving level rc (calibration value) by the ratio h2 is set for each light receiving element R on the lower side in the vertical direction (for example, half lower side of m pieces). The boundary that divides the sensor unit 26 into upper and lower parts is not limited to half of m pieces.

このように、センサ部26の上部と下部で異なる閾値の比率h(%)を設定することで、図6(c)に示すように、上部はアンテナなどの装備品を検出し、下部は飛沫を検出しない車形データを得ることができ、検出精度を向上することができる。例えば、最上部の受光素子Rmの差分受光レベルrcmを1000、最下部の受光素子R1の差分受光レベルrc1を300とした場合、閾値の比率h1(例えば30%)、h2(例えば10%)を参照すると、最上部の閾値Smが300、最下部の閾値S1が30となり、素子汚れにも、飛沫がある場合にも有効となる。 By setting different threshold ratios h (%) between the upper part and the lower part of the sensor unit 26 in this way, as shown in FIG. 6C, the upper part detects equipment such as an antenna, and the lower part detects droplets. It is possible to obtain vehicle shape data that does not detect the above, and it is possible to improve the detection accuracy. For example, when the differential light receiving level rcm of the uppermost light receiving element Rm is 1000 and the differential light receiving level rc1 of the lowermost light receiving element R1 is 300, the threshold ratios h1 (for example, 30%) and h2 (for example, 10%) are set. By reference, the uppermost threshold value Sm is 300 and the lowermost threshold value S1 is 30, which is effective both when the element is dirty and when there are droplets.

ここで、最上部の閾値Sm、最下部の閾値S1が設定される手順について図5を参照して概略する。前述したように、最上部の受光素子Rmに、発光部EU(例えば発光素子Em)の発光の有無による受光量から差分受光レベルrcm(第1校正値)を算出する(工程S11〜S15)。また、最下部の受光素子R1に、発光部EU(例えば発光素子E1)の発光の有無による受光量から差分受光レベルrc1(第2校正値)を算出する(工程S11〜S15)。次いで、比率h1を参照して差分受光レベルrcmから受光素子Rmに閾値Smを設定する(工程S16)。また、比率h2を参照して差分受光レベルrc1から受光素子R1に閾値S2を設定する(工程S16)。 Here, the procedure for setting the uppermost threshold value Sm and the lowermost threshold value S1 will be outlined with reference to FIG. As described above, the differential light receiving level rcm (first calibration value) is calculated from the amount of light received by the light emitting unit EU (for example, the light emitting element Em) depending on the presence or absence of light emission from the uppermost light receiving element Rm (steps S11 to S15). Further, the differential light receiving level rc1 (second calibration value) is calculated from the light receiving amount depending on the presence or absence of light emission of the light emitting unit EU (for example, the light emitting element E1) in the light receiving element R1 at the lowermost part (steps S11 to S15). Next, a threshold value Sm is set from the differential light receiving level rcm to the light receiving element Rm with reference to the ratio h1 (step S16). Further, the threshold value S2 is set in the light receiving element R1 from the differential light receiving level rc1 with reference to the ratio h2 (step S16).

また、閾値の比率hの設定は、洗車環境などに応じて行われる。図7に示すように、トップスプレー22から通常の圧力で洗浄液が噴射される場合は、比率h1を30%、比率h2を10%と設定する。また、トップスプレー22から高い圧力で洗浄液が噴射される場合は、比率h1を20%、比率h2を10%と設定する。また、湯気の発生が見込まれる寒冷時の場合は、比率h1を15%、比率h2を10%と設定する。これらは操作パネル44で選択された洗車内容に従って設定したり、温湿度計(不図示)からの温度、湿度に従って設定したりすることができる。 Further, the threshold ratio h is set according to the car wash environment and the like. As shown in FIG. 7, when the cleaning liquid is sprayed from the top spray 22 at a normal pressure, the ratio h1 is set to 30% and the ratio h2 is set to 10%. When the cleaning liquid is sprayed from the top spray 22 at a high pressure, the ratio h1 is set to 20% and the ratio h2 is set to 10%. Further, in the case of cold weather where steam is expected to be generated, the ratio h1 is set to 15% and the ratio h2 is set to 10%. These can be set according to the car wash content selected on the operation panel 44, or can be set according to the temperature and humidity from a thermo-hygrometer (not shown).

以上、本発明を実施形態に基づき具体的に説明したが、本発明は前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 Although the present invention has been specifically described above based on the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments and can be variously modified without departing from the gist thereof.

前記実施形態では、地面に停車した車両に対して本体部が移動する両処理装置を説明した。これに限らず、例えば、車両の車長方向に移動可能なキャリア(コンベヤ)に車両を搭乗させて、地面に固定された本体部に対して車両が移動する場合や、車両および本体部が共に移動する場合であってもよい。このため、本発明には、処理対象となる車両に対して本体部が相対移動する関係が含まれる。 In the above-described embodiment, both processing devices in which the main body moves with respect to a vehicle parked on the ground have been described. Not limited to this, for example, when the vehicle is mounted on a carrier (conveyor) that can move in the direction of the vehicle length and the vehicle moves with respect to the main body fixed to the ground, or both the vehicle and the main body are used. It may be the case of moving. Therefore, the present invention includes a relationship in which the main body moves relative to the vehicle to be processed.

また、前記実施形態では、センサ部の上部と下部とを2分割して、それぞれ異なる閾値の比率を設定する場合について説明した。これに限らず、発光部と受光部との間の環境や、車両の装備品などを考慮して、鉛直方向に3分割、4分割と多分割に閾値の比率を異ならせて設定してもよい。その際、鉛直方向上側より下側に分割されたものを低く設定したり、逆に鉛直方向上側より下側に分割されたものが高くなるよう設定したりすることもできる。 Further, in the above-described embodiment, the case where the upper part and the lower part of the sensor unit are divided into two and different threshold ratios are set for each has been described. Not limited to this, considering the environment between the light emitting part and the light receiving part, the equipment of the vehicle, etc., even if the threshold ratio is set differently for 3 divisions, 4 divisions and multiple divisions in the vertical direction. good. At that time, it is possible to set the one divided below the upper side in the vertical direction to be lower, or conversely set the one divided below the upper side in the vertical direction to be higher.

10 洗車装置(車両処理装置)、 C 車両、 EU 発光部、 h 比率、 rc 差分受光レベル(校正値)、 RU 受光部 10 Car wash device (vehicle processing device), C vehicle, EU light emitting part, h ratio, rc differential light receiving level (calibration value), RU light receiving part

Claims (5)

発光部および受光部を備え、前記発光部と前記受光部との間において受光量の閾値を基準とした通光、遮光により車両を検出する処理機能を有する車両処理装置であって、
前記受光部は、鉛直方向に沿って並んだ複数の受光素子を有し、
車両を検出する前段階において、前記複数の受光素子のそれぞれに前記発光部の発光の有無による受光量から校正値を設定し、鉛直方向で異なる比率を参照して前記校正値から前記閾値を設定する、車両処理装置。
A vehicle processing device including a light emitting unit and a light receiving unit, and having a processing function of detecting a vehicle by light transmission and shading based on a threshold value of the light receiving amount between the light emitting unit and the light receiving unit.
The light receiving unit has a plurality of light receiving elements arranged in the vertical direction.
In the stage before detecting a vehicle, a calibration value is set for each of the plurality of light receiving elements based on the amount of light received depending on the presence or absence of light emission from the light emitting unit, and the threshold value is set from the calibration value with reference to different ratios in the vertical direction. Vehicle processing equipment.
前記発光部と前記受光部との間の環境によって、前記比率が鉛直方向で異なって設定されている、請求項1記載の車両処理装置。 The vehicle processing apparatus according to claim 1, wherein the ratio is set differently in the vertical direction depending on the environment between the light emitting unit and the light receiving unit. 車両の装備品によって、前記比率が鉛直方向で異なって設定されている、請求項1または2記載の車両処理装置。 The vehicle processing device according to claim 1 or 2, wherein the ratio is set differently in the vertical direction depending on the equipment of the vehicle. 前記比率は、鉛直方向上側より下側のものが低い請求項1〜3のいずれか一項に記載の車両処理装置。 The vehicle processing apparatus according to any one of claims 1 to 3, wherein the ratio is lower than that on the upper side in the vertical direction. 対向する発光部と受光部との間での通光、遮光により物体を検出する物体検出方法であって、
(a1)前記受光部が有する前記第1受光素子に、前記発光部の発光の有無による受光量から第1校正値を設定する工程と、
(a2)前記第1受光素子と所定方向に沿って並ぶ前記受光部が有する第2受光素子に、前記発光部の発光の有無による受光量から第2校正値を設定する工程と、
(b)前記所定方向で異なる第1および第2比率を設定する工程と、
(c1)前記第1比率を参照して前記第1校正値から前記第1受光素子に第1閾値を設定する工程と、
(c2)前記第2比率を参照して前記第2校正値から前記第2受光素子に第2閾値を設定する工程と、
(d1)前記発光部の発光による前記第1受光素子の受光量から前記第1閾値を基準として、通光、遮光を判定する工程と、
(d2)前記発光部の発光による前記第2受光素子の受光量から前記第2閾値を基準として、通光、遮光を判定する工程と、
を含む、物体検出方法。
It is an object detection method that detects an object by passing light and shading between the light emitting part and the light receiving part that face each other.
(A1) A step of setting a first calibration value in the first light receiving element of the light receiving unit from the amount of light received depending on the presence or absence of light emission of the light emitting unit.
(A2) A step of setting a second calibration value from the amount of light received by the light emitting unit depending on the presence or absence of light emission in the second light receiving element of the light receiving unit that is aligned with the first light receiving element in a predetermined direction.
(B) A step of setting different first and second ratios in the predetermined direction, and
(C1) A step of setting a first threshold value in the first light receiving element from the first calibration value with reference to the first ratio, and
(C2) A step of setting a second threshold value in the second light receiving element from the second calibration value with reference to the second ratio, and
(D1) A step of determining light transmission and shading based on the first threshold value from the amount of light received by the first light receiving element due to the light emitted from the light emitting unit.
(D2) A step of determining light transmission and shading based on the second threshold value from the amount of light received by the second light receiving element due to the light emitted from the light emitting unit.
Object detection methods, including.
JP2020023867A 2020-02-14 2020-02-14 Vehicle processing device and object detection method Active JP7412837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020023867A JP7412837B2 (en) 2020-02-14 2020-02-14 Vehicle processing device and object detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023867A JP7412837B2 (en) 2020-02-14 2020-02-14 Vehicle processing device and object detection method

Publications (2)

Publication Number Publication Date
JP2021127048A true JP2021127048A (en) 2021-09-02
JP7412837B2 JP7412837B2 (en) 2024-01-15

Family

ID=77487776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023867A Active JP7412837B2 (en) 2020-02-14 2020-02-14 Vehicle processing device and object detection method

Country Status (1)

Country Link
JP (1) JP7412837B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098218A (en) * 2004-09-29 2006-04-13 Sunx Ltd Vehicle shape recognition apparatus, vehicle washing machine, and sensor controller
JP4035379B2 (en) * 2002-06-11 2008-01-23 エムケー精工株式会社 Vehicle shape detection method and apparatus in car wash machine
JP2010023777A (en) * 2008-07-24 2010-02-04 Mk Seiko Co Ltd Method and device for detecting vehicle shape in car washing machine
JP2018020654A (en) * 2016-08-03 2018-02-08 エムケー精工株式会社 Vehicle shape detection device and vehicle washing machine including the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035379B2 (en) * 2002-06-11 2008-01-23 エムケー精工株式会社 Vehicle shape detection method and apparatus in car wash machine
JP2006098218A (en) * 2004-09-29 2006-04-13 Sunx Ltd Vehicle shape recognition apparatus, vehicle washing machine, and sensor controller
JP2010023777A (en) * 2008-07-24 2010-02-04 Mk Seiko Co Ltd Method and device for detecting vehicle shape in car washing machine
JP2018020654A (en) * 2016-08-03 2018-02-08 エムケー精工株式会社 Vehicle shape detection device and vehicle washing machine including the same

Also Published As

Publication number Publication date
JP7412837B2 (en) 2024-01-15

Similar Documents

Publication Publication Date Title
JP7013926B2 (en) Optical ranging device and its method
AU2006337466B2 (en) Method and apparatus for controlling a vehicle washing installation
JPH01262448A (en) Method and equipment for inspecting body of bottle
CN106705842B (en) Vehicle body position detecting device for carwash
JP6771984B2 (en) Car shape detection device and car wash machine equipped with this device
JP5148399B2 (en) Vehicle shape detection method and vehicle shape detection device in car wash machine
JP2021127048A (en) Vehicle processing device and object detection method
JP5255564B2 (en) Scanner system for charger
JP7328737B2 (en) vehicle processing equipment
JP3902026B2 (en) Car shape detection device and car wash machine equipped with the same
JP5492598B2 (en) Car shape detection device and car wash machine equipped with the same
JP7316896B2 (en) vehicle processing equipment
JP7062414B2 (en) Car shape detection device and car wash machine equipped with the same device
JP2021070387A (en) Vehicle processing device
JP7041554B2 (en) Car shape detection device and car wash machine equipped with the same device
JP5492665B2 (en) Car shape detection device and car wash machine equipped with the same
JPH10338103A (en) Car shape detecting device and car washer provided with this device
JP6779077B2 (en) Vehicle shape detection method and device in car wash machine
JP2004090887A (en) Car shape detection device and car washer with the same
JP4035379B2 (en) Vehicle shape detection method and apparatus in car wash machine
JP4339013B2 (en) Multi-optical axis photoelectric sensor, vehicle shape recognition device, and car wash machine
JP6002516B2 (en) Car shape detection device and car wash machine equipped with the same
JP4401920B2 (en) Vehicle shape recognition device, car wash machine and sensor controller
KR200444466Y1 (en) Car shape Washing appar sensing apparatus for washing machine
JP3916187B2 (en) Car shape detection device and car wash machine equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231221

R150 Certificate of patent or registration of utility model

Ref document number: 7412837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150