JP2006098218A - Vehicle shape recognition apparatus, vehicle washing machine, and sensor controller - Google Patents

Vehicle shape recognition apparatus, vehicle washing machine, and sensor controller Download PDF

Info

Publication number
JP2006098218A
JP2006098218A JP2004284791A JP2004284791A JP2006098218A JP 2006098218 A JP2006098218 A JP 2006098218A JP 2004284791 A JP2004284791 A JP 2004284791A JP 2004284791 A JP2004284791 A JP 2004284791A JP 2006098218 A JP2006098218 A JP 2006098218A
Authority
JP
Japan
Prior art keywords
light
vehicle
optical axes
optical axis
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004284791A
Other languages
Japanese (ja)
Other versions
JP4401920B2 (en
Inventor
Futoshi Nahata
太 名畑
Toshiharu Kawakami
寿治 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2004284791A priority Critical patent/JP4401920B2/en
Publication of JP2006098218A publication Critical patent/JP2006098218A/en
Application granted granted Critical
Publication of JP4401920B2 publication Critical patent/JP4401920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vehicle shape recognition apparatus which surely recognizes the shape of a vehicle. <P>SOLUTION: The detection sensitivity of optical axes at intervals of a predetermined number of optical axes is set to be different from that of the other optical axes. In discontinuous areas S, Q, optical axes which are decided to be a light entrance state or a light shielding state by a light receiving side CPU 19 do not continue by the number which exceeds a predetermined number of optical axes. For a predetermined area Q1 which is adjacent to a continuous light shielding area P, it is decided that a vehicle W is positioned within the optical axes. In a light projecting/receiving scanning operations continuous therewith, for a discontinuous area Q2 positioned within a predetermined range with respect to the area Q1 which is decided to be the vehicle W in other light projecting/receiving scanning operations, it is decided that the vehicle W is positioned within the optical axes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両形状認識装置及び洗車機並びにセンサコントローラに関する。   The present invention relates to a vehicle shape recognition device, a car wash machine, and a sensor controller.

従来より車両形状認識装置は、例えば、車両を自動で洗浄する洗車機などに用いられている。この洗車機としては、洗浄ブラシを昇降移動可能に備えた洗車機本体が車両に対して前後方向に相対的に移動するような構成が一般的であり、車両形状認識装置により認識された当該車両の形状(詳しくは上面形状)に応じて洗浄ブラシの昇降制御を行うようになっている。   Conventionally, a vehicle shape recognition device is used in, for example, a car wash machine that automatically cleans a vehicle. The car wash machine generally has a configuration in which a car wash machine body having a washing brush that can be moved up and down moves relative to the vehicle in the front-rear direction, and the vehicle recognized by the vehicle shape recognition device. The raising and lowering control of the cleaning brush is performed according to the shape (specifically, the shape of the upper surface).

ここで、上記車両形状認識装置は、車両の上下方向に一列状に並ぶ複数の投光素子を有する投光器と、各投光素子と上記車両を挟んで対向配置されやはり上下方向に一列状に並ぶ複数の受光素子を有する受光器とを備えている。そして、例えば投光素子を上から順に投光動作をさせるとともに、各投光素子の投光動作に同期してそれに正対する受光素子からの受光信号を順次有効化させる投受光スキャン動作を繰り返し、この有効化された受光信号レベルを所定の基準レベルと比較することにより、対向する投光素子及び受光素子が形成する各光軸について入光状態にあるかどうかを判定していく。ここで、複数の光軸のうち車両形状に応じた高さの光軸までが当該車両によって遮光状態となるから、各光軸が入光状態にあるか否かに基づき車両の各部の高さ(車両の上面形状の変位)を認識することが可能になる。そして、洗車機の本体の各移動位置において上記車両形状認識装置により認識される車両の上面形状の変位に応じて洗浄ブラシを昇降制御するようになっている(特許文献1参照)。
特開平7−165026号公報
Here, the vehicle shape recognition device includes a light projector having a plurality of light projecting elements arranged in a line in the vertical direction of the vehicle, and each light projecting element is opposed to the vehicle and is also arranged in a line in the vertical direction. A light receiver having a plurality of light receiving elements. Then, for example, the light projecting elements are sequentially projected from the top, and the light projecting / receiving scanning operation for sequentially enabling the light receiving signals from the light receiving elements that are directly opposed to the light projecting operations of the light projecting elements is repeated, By comparing this validated light reception signal level with a predetermined reference level, it is determined whether or not each optical axis formed by the opposing light projecting element and light receiving element is in the light incident state. Here, since up to the optical axis having a height corresponding to the vehicle shape among the plurality of optical axes is blocked by the vehicle, the height of each part of the vehicle is determined based on whether each optical axis is in the incident state. It is possible to recognize (displacement of the upper surface shape of the vehicle). And the raising / lowering control of a washing brush is carried out according to the displacement of the upper surface shape of the vehicle recognized by the said vehicle shape recognition apparatus in each movement position of the main body of a car wash machine (refer patent document 1).
JP-A-7-165026

ところで、車両形状を精度高く認識するためには、検出しやすい部分のみならず検出し難い微少部分(アンテナ部などの細い形状のもの等)についても全体形状として正確に認識することが望まれる。   By the way, in order to recognize the vehicle shape with high accuracy, it is desired to accurately recognize not only a portion that is easy to detect but also a minute portion that is difficult to detect (such as a thin shape such as an antenna portion) as an overall shape.

そこで、車両の形状を高い精度で認識するために、スリットを投光器もしくは受光器(または両方)に装備して受光量を減少させ、アンテナ等の微小部分による遮光によって生じるわずかな受光量の変化を精度良く検出することにより、車両の形状を高い精度で認識できるようにすることが考えられるが、かかる手段により車両を検出しようとすると、検出精度を高めるのにしたがってノイズが含まれることによる誤検出のおそれが多くなる。
特に、車両の形状を検出する必要がある洗車機に適用した場合には、屋外において水滴や泥などが付着する場合があるため、上記したように検出精度を高めたものを使用するとこれら水滴や泥などがノイズとして生じやすい。このような状態で車両の形状検出を行った場合には、水滴等によって遮られる光軸と車両の微小部分により遮光される光軸とを区別できないために、その部分を誤検出してしまい、車両の形状が正しく認識されないという問題があった。
Therefore, in order to recognize the shape of the vehicle with high accuracy, a slit is installed in the projector or receiver (or both) to reduce the amount of received light, and the slight change in the amount of received light caused by light shielding by a minute part such as an antenna is reduced. It is conceivable that the shape of the vehicle can be recognized with high accuracy by detecting it with high accuracy. However, if the vehicle is detected by such means, false detection due to inclusion of noise as the detection accuracy is increased. The risk of
In particular, when it is applied to a car wash machine that needs to detect the shape of the vehicle, water drops and mud may adhere outdoors. Mud is likely to be generated as noise. When the shape of the vehicle is detected in such a state, the optical axis that is blocked by water droplets or the like cannot be distinguished from the optical axis that is blocked by a minute portion of the vehicle, so that portion is erroneously detected. There was a problem that the shape of the vehicle was not correctly recognized.

本発明は上記のような事情に基づいて完成されたものであって、車両の形状を確実に認識可能な車両形状認識装置等を提供することを目的とする。   The present invention has been completed based on the above circumstances, and an object thereof is to provide a vehicle shape recognition device and the like that can reliably recognize the shape of a vehicle.

上記の目的を達成するための手段として、請求項1の発明は、複数の投光素子が車両の上下方向に並んで配置される投光器と、
前記複数の投光素子と対向して配置され、当該投光素子と複数の光軸を構成する複数の受光素子を備える受光器と、
前記各投光素子に所定のタイミングで順次投光動作を行わせるとともに、当該各投光素子の投光動作に同期させて、当該各投光素子と対応する受光素子から出力される受光信号を有効化させる投受光スキャン動作を繰り返させる制御手段と、
前記制御手段によって有効化された受光素子の受光信号レベルに基づいて、この有効化された受光素子とこれに対応する投光素子との間で生じる光軸が遮光状態であるか否かの判定を行う判定手段と、
前記車両と前記投光器及び前記受光器とが当該車両の長手方向に沿って相対的に移動するときの前記判定手段の判定結果に基づいて前記車両の形状を認識する車両形状認識手段と、を備える車両形状認識装置において、
前記複数の光軸において所定光軸数おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせて設定する感度設定手段を備え、
前記車両形状認識手段は、
前記各投受光スキャン動作ごとに、
前記判定手段により遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続遮光領域については、それらの光軸内に前記車両が位置すると判断し、
前記判定手段により入光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続入光領域については、それらの光軸内に前記車両が位置しないと判断し、
さらに、前記判定手段により入光状態又は遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続しない非連続領域のうち、前記連続遮光領域に隣接する所定領域については、光軸内に前記車両が位置すると判断する第一認識手段と、
連続する投受光スキャン動作において、
連続する他の投受光スキャン動作で車両と判断される領域に対して所定範囲内に位置する非連続領域については光軸内に前記車両が位置すると判断する第二認識手段とを備え、
前記第一認識手段及び前記第二認識手段において前記車両が位置すると判断された領域に基づいて前記車両の形状を認識する構成としたところに特徴を有する。
As means for achieving the above object, the invention of claim 1 is a projector in which a plurality of light projecting elements are arranged in the vertical direction of the vehicle,
A light receiver including a plurality of light receiving elements arranged opposite to the plurality of light projecting elements and constituting the light projecting elements and a plurality of optical axes;
Each of the light projecting elements is caused to sequentially perform a light projecting operation at a predetermined timing, and a light receiving signal output from a light receiving element corresponding to each light projecting element is synchronized with the light projecting operation of each of the light projecting elements. Control means for repeating the projecting / receiving light scanning operation to be enabled;
Based on the light reception signal level of the light receiving element activated by the control means, it is determined whether or not the optical axis generated between the activated light receiving element and the corresponding light projecting element is in a light shielding state. Determination means for performing,
Vehicle shape recognition means for recognizing the shape of the vehicle based on a determination result of the determination means when the vehicle, the light projector and the light receiver move relatively along the longitudinal direction of the vehicle. In the vehicle shape recognition device,
Sensitivity setting means for setting the detection sensitivity of the optical axis every predetermined number of optical axes in the plurality of optical axes to be different from the detection sensitivity of the other optical axes,
The vehicle shape recognition means
For each light emitting / receiving scan operation,
For continuous light shielding regions in which the number of optical axes determined to be in a light shielding state by the determining means exceeds the predetermined number of optical axes, it is determined that the vehicle is positioned within those optical axes,
For continuous light incident areas where the optical axis determined to be in the light incident state by the determination means continues for a number exceeding the predetermined optical axis number, it is determined that the vehicle is not located within those optical axes,
Further, among the non-continuous areas in which the optical axes determined to be in the light incident state or the light shielding state by the determining means do not exceed the predetermined number of optical axes, the predetermined axis adjacent to the continuous light shielding area is the optical axis. First recognition means for determining that the vehicle is located within,
In continuous light emitting / receiving scan operation,
A second recognizing unit that determines that the vehicle is positioned within the optical axis for a non-continuous region positioned within a predetermined range with respect to a region determined to be a vehicle by another continuous light projecting and receiving scan operation;
The first recognition unit and the second recognition unit recognize the shape of the vehicle based on an area where the vehicle is determined to be located.

なお、複数の投光素子が車両の上下方向に並んで配置される投光器と、前記複数の投光素子と対向して配置され、当該投光素子と複数の光軸を構成する複数の受光素子を備える受光器と、前記各投光素子に所定のタイミングで順次投光動作を行わせるとともに、当該各投光素子の投光動作に同期させて、当該各投光素子と対応する受光素子から出力される受光信号を有効化させる投受光スキャン動作を繰り返させる制御手段と、前記制御手段によって有効化された受光素子の受光信号レベルに基づいて、この有効化された受光素子とこれに対応する投光素子との間で生じる光軸が遮光状態であるか否かの判定を行う判定手段と、前記判定手段により判定された光軸のスキャン位置を記憶する記憶手段と、前記車両と前記投光器及び前記受光器とが当該車両の長手方向に沿って相対的に移動するときの前記判定手段の判定結果に基づいて前記車両の形状を認識する車両形状認識手段と、を備える車両形状認識装置において、前記複数の光軸において所定光軸数おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせて設定する感度設定手段を備え、前記車両形状認識手段は、前記各投受光スキャン動作ごとに、前記判定手段により遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続遮光領域については、それらの光軸内に前記車両が位置すると判断し、前記判定手段により入光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続入光領域については、それらの光軸内に前記車両が位置しないと判断し、さらに、前記判定手段により入光状態又は遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続しない非連続領域のうち、前記連続遮光領域に隣接する所定領域については、光軸内に前記車両が位置すると判断し、これらの判断結果及びスキャン位置を前記記憶手段に記憶する第一認識手段と、前記投受光スキャン動作と連続する投受光スキャン動作において、連続する他の投受光スキャン動作で車両と判断される領域に対して所定範囲内に位置する非連続領域については光軸内に前記車両が位置すると判断し、この判断結果及びスキャン位置を前記記憶手段に記憶する第二認識手段とからなる車両形状認識装置とする構成としてもよい。なお、スキャン位置とは、例えば、光軸のX軸(左右)方向及びY軸(上下)方向の位置、光軸以外であっても入光又は遮光される領域が特定される情報であればよく、例えば、投光器や受光器における投光素子や受光素子のX軸方向及びY軸方向の位置などのことであり、かかるスキャン位置が記憶されれば、例えば、光軸が斜めに形成される場合のように光軸のY軸方向の位置と投光素子や受光素子のY軸方向の位置が必ずしも一致しない場合であっても、入光又は遮光される領域を特定することができる。   A plurality of light projecting elements are arranged side by side in the vertical direction of the vehicle, and a plurality of light receiving elements are disposed opposite to the plurality of light projecting elements and constitute a plurality of optical axes with the light projecting elements. And a light receiving element corresponding to each light projecting element in synchronism with the light projecting operation of each light projecting element. Based on the light receiving signal level of the light receiving element validated by the control means for repeating the light projecting / receiving light scanning operation for validating the output light receiving signal, and the corresponding light receiving element. Determining means for determining whether or not the optical axis generated between the light projecting elements is in a light shielding state, storage means for storing a scan position of the optical axis determined by the determining means, the vehicle, and the projector And the receiver Vehicle shape recognition device comprising: vehicle shape recognition means for recognizing the shape of the vehicle based on a determination result of the determination means when the vehicle moves relatively along the longitudinal direction of the vehicle. A sensitivity setting means for setting the detection sensitivity of the optical axis every predetermined number of optical axes to be different from the detection sensitivity of the other optical axes, and the vehicle shape recognition means is provided for each of the light projection / reception scanning operations. For the continuous light-blocking regions in which the optical axis determined to be in the light-blocking state by the determination means continues for a number exceeding the predetermined number of optical axes, it is determined that the vehicle is located within those optical axes, and the determination means enters For continuous light incident regions where the number of optical axes determined to be in the optical state continues for a number exceeding the predetermined number of optical axes, it is determined that the vehicle is not located within those optical axes, and the incident light is input by the determination means. Among the non-continuous areas where the optical axes determined to be in the state or the light-shielding state do not continue by the number exceeding the predetermined optical axis number, the predetermined area adjacent to the continuous light-shielding area is determined that the vehicle is positioned within the optical axis. In the first recognition unit that stores the determination result and the scan position in the storage unit, and in the light projection / reception scan operation that is continuous with the light projection / reception scan operation, the vehicle is determined as another continuous light projection / reception scan operation. For a non-continuous area located within a predetermined range with respect to the area, it is determined that the vehicle is positioned within the optical axis, and the vehicle shape recognition comprising the second recognition means for storing the determination result and the scan position in the storage means It may be configured as a device. Note that the scan position is, for example, information in which an X axis (left and right) direction and a Y axis (up and down) direction of the optical axis, or an area other than the optical axis, where light is incident or shielded is specified. Well, for example, the position of the light projecting element and the light receiving element in the projector and the light receiver in the X-axis direction and the Y-axis direction. If the scan position is stored, for example, the optical axis is formed obliquely. Even in the case where the position of the optical axis in the Y-axis direction does not necessarily match the position of the light projecting element or the light receiving element in the Y-axis direction, it is possible to specify a region where light is incident or shielded.

請求項2の発明は、請求項1に記載のものにおいて、前記各投受光スキャン動作ごとに、前記車両が位置すると判断された領域を記憶する記憶手段と、
前記各投受光スキャン動作ごとに、前記記憶手段に記憶された領域の上端部と下端部とを特定する特定手段を備え、
前記車両形状認識手段は、前記各投受光スキャン動作ごとに前記特定手段により特定された上端部及び下端部を、連続する投受光スキャン動作において前記上端部同士及び前記下端部同士でつなぎ合わせることで車両の形状を認識するところに特徴を有する。
According to a second aspect of the present invention, there is provided the storage unit according to the first aspect, wherein the storage unit stores an area where the vehicle is determined to be located for each of the light projecting / receiving light scanning operations.
For each of the light projecting / receiving light scanning operations, a specifying unit for specifying an upper end portion and a lower end portion of an area stored in the storage unit is provided.
The vehicle shape recognizing means connects the upper end portion and the lower end portion specified by the specifying means for each of the light projecting / receiving light scanning operations by connecting the upper end portions and the lower end portions in a continuous light projecting / receiving light scanning operation. It is characterized by recognizing the shape of the vehicle.

請求項3の発明は、請求項1または請求項2に記載のものにおいて、前記車両と前記投光器及び前記受光器との相対移動開始時から終了時までの間に行われる所定回数のスキャン動作の全てで前記非連続領域が検出されたときに、異常状態であると判別する異常状態判別手段を備えるところに特徴を有する。   According to a third aspect of the present invention, in the first or second aspect of the present invention, a predetermined number of scan operations performed between the start of movement and the end of relative movement between the vehicle, the projector, and the light receiver are performed. The present invention is characterized in that it includes an abnormal state determination unit that determines that the state is abnormal when all of the discontinuous regions are detected.

請求項4の発明は、請求項1ないし請求項3のいずれかに記載のものにおいて、前記感度設定手段は、前記投光器及び前記受光器の少なくともいずれか一方に配置されて前記複数の光軸の少なくとも一部光軸を部分的に遮る遮光部材を有してなり、
この遮光部材は、前記所定光軸数おきの光軸の遮光面積を、それ以外の光軸の遮光面積と異ならせるよう構成されるところに特徴を有する。
According to a fourth aspect of the present invention, there is provided the method according to any one of the first to third aspects, wherein the sensitivity setting means is disposed in at least one of the projector and the light receiver, and the plurality of optical axes. Having a light shielding member that at least partially blocks the optical axis,
The light shielding member is characterized in that the light shielding area of the optical axis every predetermined number of optical axes is configured to be different from the light shielding area of the other optical axes.

請求項5の発明は、請求項4に記載のものにおいて、前記遮光部材の前面には表面がフラットな光透過性の前面カバーが設けられたところに特徴を有する。   The invention of claim 5 is characterized in that, in the invention of claim 4, a light-transmitting front cover having a flat surface is provided on the front surface of the light shielding member.

請求項6の発明は、請求項1ないし請求項5のいずれかに記載のものにおいて、前記所定光軸が1光軸おきに設定されているところに特徴を有する。   The invention of claim 6 is characterized in that, in any one of claims 1 to 5, the predetermined optical axis is set every other optical axis.

請求項7の発明は、車両に対してその前後方向に相対的に移動するとともに、洗浄ブラシを昇降移動可能に備えた洗車機であって、
請求項1ないし請求項6のいずれかに記載の車両形状認識装置を備え、その車両形状認識装置による車両形状認識結果に基づいて前記洗浄ブラシの昇降制御を行うところに特徴を有する。
The invention of claim 7 is a car wash machine that moves relative to the vehicle in the front-rear direction and is equipped with a cleaning brush that can be moved up and down.
A vehicle shape recognition device according to any one of claims 1 to 6 is provided, and the raising and lowering control of the cleaning brush is performed based on a vehicle shape recognition result by the vehicle shape recognition device.

請求項8の発明は、複数の投光素子が車両の上下方向に並んで配置される投光器と、前記複数の投光素子と対向して配置され、当該投光素子と複数の光軸を構成する複数の受光素子を備える受光器と、記各投光素子に所定のタイミングで順次投光動作を行わせるとともに、当該各投光素子の投光動作に同期させて、当該各投光素子と対応する受光素子から出力される受光信号を有効化させる投受光スキャン動作を繰り返させる制御手段と、前記制御手段によって有効化された受光素子の受光信号レベルに基づいて、この有効化された受光素子とこれに対応する投光素子との間で生じる光軸が遮光状態であるか否かの判定を行う判定手段とを備え、前記複数の光軸において所定光軸数おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせて設定可能とされた多光軸光電センサが接続され、前記多光軸光電センサから前記判定手段の判定結果を入力する入力手段と、
前記入力手段により入力した判定結果に基づいて、前記車両と前記投光器及び前記受光器とが当該車両の長手方向に沿って相対的に移動することにより車両の形状を認識する車両形状認識手段と、を備えるセンサコントローラであって、
前記車両形状認識手段は、
前記各投受光スキャン動作ごとに、
前記判定手段により遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続遮光領域については、それらの光軸内に前記車両が位置すると判断し、
前記判定手段により入光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続入光領域については、それらの光軸内に前記車両が位置しないと判断し、
さらに、前記判定手段により入光状態又は遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続しない非連続領域のうち、前記連続遮光領域に隣接する所定領域については、光軸内に前記車両が位置すると判断する第一認識手段と、
連続する投受光スキャン動作において、
連続する他の投受光スキャン動作で車両と判断される領域に対して所定範囲内に位置する非連続領域については光軸内に前記車両が位置すると判断する第二認識手段とを備え、
前記第一認識手段及び前記第二認識手段において前記車両が位置すると判断された領域に基づいて前記車両の形状を認識する構成としたところに特徴を有する。
The invention according to claim 8 is a projector in which a plurality of light projecting elements are arranged side by side in a vertical direction of a vehicle, and is disposed to face the plurality of light projecting elements, and constitutes the light projecting elements and a plurality of optical axes. A light receiving device including a plurality of light receiving elements, and causing each light projecting element to sequentially perform a light projecting operation at a predetermined timing, and in synchronization with the light projecting operation of each light projecting element, Based on the light receiving signal level of the light receiving element validated by the control means for repeating the light projecting / receiving light scanning operation for validating the light receiving signal output from the corresponding light receiving element, this activated light receiving element Determination means for determining whether or not the optical axis generated between the light projecting element and the corresponding light projecting element is in a light-shielding state, and the detection sensitivity of the optical axis for every predetermined number of optical axes in the plurality of optical axes Differ from the sensitivity of other optical axes. Allowed multi-optical axis photoelectric sensor can be set to is connected, an input means for inputting a judgment result of said judging means from said multi-optical axis photoelectric sensor,
Vehicle shape recognition means for recognizing the shape of the vehicle by relatively moving the vehicle, the projector and the light receiver along the longitudinal direction of the vehicle based on the determination result input by the input means; A sensor controller comprising:
The vehicle shape recognition means
For each light emitting / receiving scan operation,
For continuous light shielding regions in which the number of optical axes determined to be in a light shielding state by the determining means exceeds the predetermined number of optical axes, it is determined that the vehicle is positioned within those optical axes,
For continuous light incident areas where the optical axis determined to be in the light incident state by the determination means continues for a number exceeding the predetermined optical axis number, it is determined that the vehicle is not located within those optical axes,
Further, among the non-continuous areas in which the optical axes determined to be in the light incident state or the light shielding state by the determining means do not exceed the predetermined number of optical axes, the predetermined axis adjacent to the continuous light shielding area is the optical axis. First recognition means for determining that the vehicle is located within,
In continuous light emitting / receiving scan operation,
A second recognizing unit that determines that the vehicle is positioned within the optical axis for a non-continuous region positioned within a predetermined range with respect to a region determined to be a vehicle by another continuous light projecting and receiving scan operation;
The first recognition unit and the second recognition unit recognize the shape of the vehicle based on an area where the vehicle is determined to be located.

請求項9の発明は、請求項8に記載のものにおいて、前記各投受光スキャン動作ごとに、前記車両が位置すると判断された領域を記憶する記憶手段と、
前記各投受光スキャン動作ごとに、前記記憶手段に記憶された領域の上端部と下端部とを特定する特定手段を備え、
前記車両形状認識手段は、前記各投受光スキャン動作ごとに前記特定手段により特定された上端部及び下端部を、連続する投受光スキャン動作において前記上端部同士及び前記下端部同士でつなぎ合わせることで車両の形状を認識するところに特徴を有する。
The invention according to claim 9 is the storage device according to claim 8, wherein the storage unit stores an area where the vehicle is determined to be located for each of the light projection / reception scan operations.
For each of the light projecting / receiving light scanning operations, a specifying unit for specifying an upper end portion and a lower end portion of an area stored in the storage unit is provided.
The vehicle shape recognizing means connects the upper end portion and the lower end portion specified by the specifying means for each of the light projecting / receiving light scanning operations by connecting the upper end portions and the lower end portions in a continuous light projecting / receiving light scanning operation. It is characterized by recognizing the shape of the vehicle.

<請求項1及び請求項8の発明>
本構成によれば、複数の光軸において所定光軸数おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせるから、所定光軸数を超える数だけ連続して入光又は遮光の行われない非連続領域については、検出感度の弱い光軸のみを遮光する車両の微小部分等(アンテナ等)であると判断することができる。
ここで、非連続領域内の物体としては、車両の一部として車両に接続された微小部分(アンテナ等)以外に、水滴、泥などからなるノイズとしての微小物体等も含まれるが、車両の一部分としての微小部分は少なくとも1箇所で車両(連続遮光領域)と接続されているはずである。したがって、非連続領域のうち、所定光軸数を超える数だけ連続して遮光される連続遮光領域と隣接する領域については微小部分(車両)であると判断することができる。
<Invention of Claims 1 and 8>
According to this configuration, since the detection sensitivities of the optical axes every predetermined number of optical axes are different from the detection sensitivities of the other optical axes in a plurality of optical axes, the incident light continuously exceeds the predetermined number of optical axes. Alternatively, it is possible to determine that a non-continuous region where light is not shielded is a minute portion or the like (antenna or the like) of a vehicle that shields only the optical axis having a weak detection sensitivity.
Here, the objects in the non-continuous area include minute objects such as water droplets, mud and the like in addition to minute parts (antennas etc.) connected to the vehicle as a part of the vehicle. The minute part as a part should be connected to the vehicle (continuous light shielding region) at at least one place. Accordingly, it is possible to determine that a region adjacent to the continuous light shielding region that is continuously shielded by the number exceeding the predetermined number of optical axes among the non-continuous regions is a minute portion (vehicle).

ところで、例えば、微小部分が傾斜する場合(例えば、傾斜した状態で車両に接続されたアンテナ)には、投受光スキャン動作における非連続領域のうち、連続遮光領域と隣接しない部分(例えば、アンテナの中間部分から先端部分)については、微小部分(車両)と判断されなくなってしまう。
そこで、第二認識手段により、投受光スキャン動作と連続する投受光スキャン動作において、連続する他の投受光スキャン動作で車両と判断される領域に対して所定範囲内に位置する非連続領域を車両と判断するから、連続遮光領域と隣接しない部分についても微小部分(車両)と判断することができ、ノイズ等の影響を受けることなく車両形状を確実に認識できるようになる。
By the way, for example, when a minute portion is inclined (for example, an antenna connected to a vehicle in an inclined state), a portion that is not adjacent to a continuous light shielding region (for example, an antenna) The intermediate portion to the tip portion are not determined as a minute portion (vehicle).
Therefore, the second recognizing unit detects a discontinuous region located within a predetermined range with respect to a region determined as a vehicle by another continuous light projecting / receiving light scanning operation in the light projecting / receiving light scanning operation. Therefore, even a portion that is not adjacent to the continuous light shielding region can be determined as a minute portion (vehicle), and the vehicle shape can be reliably recognized without being affected by noise or the like.

<請求項2及び請求項9の発明>
本構成によれば、車両の全体形状を確実に認識することができる。
<Invention of Claims 2 and 9>
According to this configuration, the overall shape of the vehicle can be reliably recognized.

<請求項3の発明>
水滴などの付着物により光軸が遮光される場合には、かかる遮光により車両であると誤判定するおそれがある。ここで、水滴などの付着物は、長時間に亘って同一光軸を遮光しやすいが、アンテナなどの車両に付された微小物体は、車両の相対的な移動に伴って遮光しなくなるものであるため、長時間に亘って同一光軸を遮光することは考えにくい。そこで、本構成によれば、異常状態判別手段により、所定回数のスキャン動作の全てで非連続領域が検出されたときに、異常状態であると判別するから、かかる判別結果に基づいて、水滴などを取り除くことで、正常な車両形状認識が可能となる。
<Invention of Claim 3>
When the optical axis is blocked by an adhering substance such as water droplets, there is a possibility that the vehicle is erroneously determined due to the light blocking. Here, an adhering substance such as a water droplet tends to block the same optical axis for a long time, but a minute object attached to the vehicle such as an antenna does not block the light with relative movement of the vehicle. For this reason, it is difficult to conceal the same optical axis for a long time. Therefore, according to this configuration, when the non-continuous region is detected by all of the predetermined number of scanning operations by the abnormal state determination unit, it is determined that the state is abnormal. By removing, normal vehicle shape recognition becomes possible.

<請求項4の発明>
本構成によれば、感度設定を遮光部材の遮光面積を異ならせることで実現でき、車両の微小部分の検出を行う際に、当該微小部分を検出するのに必要な受光量に調整できるので、他の感度設定方法(増幅率可変、基準レベル可変など)にくらべてS/N比を向上させることができ、安定した検出が実現できる。
<Invention of Claim 4>
According to this configuration, the sensitivity setting can be realized by changing the light shielding area of the light shielding member, and when detecting the minute part of the vehicle, it can be adjusted to the amount of received light necessary to detect the minute part. Compared to other sensitivity setting methods (variable gain, variable reference level, etc.), the S / N ratio can be improved, and stable detection can be realized.

<請求項5の発明>
本構成によれば、水滴や泥などの物体が当該車両形状認識装置に付着しやすい環境下であっても、前面において表面がフラットな前面カバーが設けられているので、水滴、泥等のふき取りが容易に行え、メンテナンス作業を簡素化できる。
<Invention of Claim 5>
According to this configuration, even in an environment where objects such as water droplets and mud easily adhere to the vehicle shape recognition device, the front cover having a flat surface is provided on the front surface. Can be done easily and maintenance work can be simplified.

<請求項6の発明>
本構成によれば、1光軸おきに車両と非車両との区別ができるので、アンテナ等の微小部分についての形状認識の精度を高めることができる。
<Invention of Claim 6>
According to this configuration, since it is possible to distinguish between a vehicle and a non-vehicle every other optical axis, it is possible to improve the accuracy of shape recognition for a minute portion such as an antenna.

<請求項7の発明>
本構成によれば、車両形状認識装置が洗車機に備えられるから、水滴等のノイズの影響を受けることなく車両の形状を高精度に認識することが可能となり、これにより洗浄ブラシを車両形状に応じて正確に昇降制御を行うことで、洗浄ブラシの微小部分等への衝突による車両の損傷を確実に防止することができる。
<Invention of Claim 7>
According to this configuration, since the vehicle shape recognition device is provided in the car wash machine, it is possible to recognize the shape of the vehicle with high accuracy without being affected by noise such as water droplets. Accordingly, the vehicle can be reliably prevented from being damaged by the collision of the cleaning brush with a minute portion or the like by accurately performing the elevation control.

<実施形態1>
以下、本発明の第1実施形態について、図1ないし図9を参照しつつ説明する。
本実施形態に係る洗車機1は、洗浄対象となる車両Wに対して洗車機本体2が前後方向に相対移動しつつ、前記車両Wの上面形状の変位に応じて洗浄ブラシを昇降移動させるようになっている。なお、本明細書中において、前後方向は、X軸方向である車両Wの後退及び前進方向を意味し、車両Wの上下方向をY軸方向としている(図9参照)。ここでは洗車時においては車両Wの前方側が洗車機1の後方側へ相対的に進入するように構成されており、車両Wの前後の向きと洗車機1の前後の向きは逆とされている。なお、車両Wの進入方向は逆であってもよい。
<Embodiment 1>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 9.
The car wash machine 1 according to the present embodiment moves the washing brush up and down in accordance with the displacement of the upper surface shape of the vehicle W while the car wash machine body 2 relatively moves in the front-rear direction with respect to the vehicle W to be cleaned. It has become. In this specification, the front-rear direction means the backward and forward directions of the vehicle W, which is the X-axis direction, and the vertical direction of the vehicle W is the Y-axis direction (see FIG. 9). Here, the front side of the vehicle W is configured to relatively enter the rear side of the car wash machine 1 during the car wash, and the front-rear direction of the vehicle W and the front-rear direction of the car wash machine 1 are reversed. . The approach direction of the vehicle W may be reversed.

(1)洗車機の構成
洗車機本体2は、図1に示すように、洗車時において車両Wを左右に挟むように配される一対の脚部2a,2aとそれらの上端を連結する連結部2bとからなり、全体として門型形状をなしている。また、一対の脚部2a,2aの内面側において後端側(図1において紙面奥側、図2では紙面右側)には、互いに対向する投光器32及び受光器33が設けられている。具体的には、図1左側の脚部2aの内面側の後端側には複数の投光素子11が上下方向に所定の間隔で配列されてなる投光器32が設けられている、一方、図1右側脚部2aにおける内面側の後端側には、投光素子11に対応した受光素子12が上記各投光素子11のそれぞれと高さを同じくして対向して配列されてなる受光器33が設けられている(図2では投光器32側のみ図示している)。これらの投光器32及び受光器33は後述する車両形状認識装置13(図3参照)の構成要素とされている。ここでは、投光素子11及び受光素子12の個数を8としているが、これは複数の素子を概念的に例示するものであり、個数や配置間隔は、図7や図8にて例示するように様々に設定できる。また、一方の脚部2a(図1において右側の脚部2a)の前面には、洗車内容の設定や洗車開始の入力操作等を行うための入力手段(キーボード7)が設けられている。
(1) Structure of Car Wash Machine As shown in FIG. 1, the car wash machine main body 2 has a pair of leg portions 2a, 2a arranged so as to sandwich the vehicle W between the left and right during car wash and a connecting portion for connecting the upper ends thereof. 2b, and has a portal shape as a whole. A light projector 32 and a light receiver 33 are provided opposite to each other on the rear end side (the back side of the paper surface in FIG. 1 and the right side of the paper surface in FIG. 2) of the pair of leg portions 2a and 2a. Specifically, a light projector 32 in which a plurality of light projecting elements 11 are arranged at predetermined intervals in the vertical direction is provided on the rear end side on the inner surface side of the leg portion 2a on the left side of FIG. A light receiver in which a light receiving element 12 corresponding to the light projecting element 11 is arranged on the rear end side on the inner surface side of the right leg 2a so as to face each of the light projecting elements 11 at the same height. 33 is provided (only the projector 32 side is shown in FIG. 2). The projector 32 and the light receiver 33 are components of a vehicle shape recognition device 13 (see FIG. 3) described later. Here, the number of the light projecting elements 11 and the light receiving elements 12 is eight, but this is a conceptual illustration of a plurality of elements, and the numbers and arrangement intervals are exemplified in FIGS. 7 and 8. Various settings can be made. Further, an input means (keyboard 7) for performing setting of car wash contents, input operation for starting car wash, and the like is provided on the front surface of one leg 2a (right leg 2a in FIG. 1).

さらに、図2にも示すように、両脚部2a,2aの下方には車両Wの前後方向に沿って平行に並ぶ1対のレールL,Lが敷設されている。各脚部2aの下部には前後方向に並ぶ対の走行輪8,8がそれぞれ設けられ、前方の走行輪8は図示しない移動用のモータによって回転されるようになっている。他方、後方の走行輪8に対応して、単位角度回転毎にパルス信号Pを出力して洗車機本体2の走行位置を検知するエンコーダ9が設置されている。そして、これらの走行輪8,8が敷地に設置された上記レールL,L上に配置され、洗車機本体2が車両Wに対して前後方向に相対的に移動できるように構成されている。   Further, as shown in FIG. 2, a pair of rails L, L arranged in parallel along the front-rear direction of the vehicle W is laid below the both leg portions 2 a, 2 a. A pair of traveling wheels 8, 8 arranged in the front-rear direction are provided at the lower part of each leg 2 a, and the front traveling wheels 8 are rotated by a moving motor (not shown). On the other hand, corresponding to the rear traveling wheel 8, an encoder 9 is provided for detecting the traveling position of the car wash machine body 2 by outputting a pulse signal P every unit angle rotation. These traveling wheels 8 and 8 are arranged on the rails L and L installed on the site so that the car wash machine body 2 can move relative to the vehicle W in the front-rear direction.

次いで、図2に示すように、各脚部2aの内面側において上記投光器32及び受光器33の前方には、水、シャンプー、ワックス等の洗浄液を噴射する複数の洗浄ノズル3を上下方向に沿って並設してなる1対の洗浄ユニットが互いに対向した状態で設けられている。さらに、両脚部2a,2a内面における洗浄ユニットの前方には、上下方向に延びるガイド溝5,5がそれぞれ設けられ、車両Wの上面を洗浄するための円柱状のトップブラシ6の中心を通る支持軸の両端が、後述する昇降モータ31(図3参照)によって上記ガイド溝5,5に沿って昇降されるようになっている。   Next, as shown in FIG. 2, a plurality of cleaning nozzles 3 for injecting a cleaning liquid such as water, shampoo, and wax are provided in the vertical direction in front of the projector 32 and the light receiver 33 on the inner surface side of each leg 2 a. A pair of cleaning units arranged side by side are provided in a state of facing each other. Further, guide grooves 5 and 5 extending in the vertical direction are provided in front of the cleaning unit on the inner surfaces of both legs 2a and 2a, respectively, and support passing through the center of the columnar top brush 6 for cleaning the upper surface of the vehicle W. Both ends of the shaft are moved up and down along the guide grooves 5 and 5 by a lifting motor 31 (see FIG. 3) described later.

更に、ガイド溝5,5の前方には、上下方向の図示しない軸を回転中心として回転可能に設けられ、車両Wの側面を洗浄するように略円柱状の左右1対のサイドブラシ4(図2では一方側のサイドブラシ4を例示)が設けられている。   Further, in front of the guide grooves 5 and 5, a pair of left and right side brushes 4 (FIG. 2) are provided so as to be rotatable about a shaft (not shown) in the vertical direction as a rotation center. 2, an example of one side brush 4 is provided.

(2)洗車機の制御
図3に示すように、キーボード7にて洗車開始の入力操作を行うことにより出力される開始信号と、車両形状認識装置13からの車高信号T(Y軸方向の位置に関する信号)と、エンコーダ9からのパルス信号P(X軸方向の位置に関する信号)とが制御装置21に入力される。記憶手段22には、車両形状認識装置13(投光器32及び受光器33)とトップブラシ6との水平方向の距離Xが予め記憶されている。そして、制御装置21は、この距離X、車高信号T及びパルス信号Pに基づいてトップブラシ6の支持軸を昇降させる昇降モータ31に昇降信号を出力する。また、キーボード7からの開始信号に基づいて洗浄ノズル3、トップブラシ6及びサイドブラシ4に駆動信号を出力する。
(2) Control of Car Wash Machine As shown in FIG. 3, a start signal output by performing an input operation for starting a car wash with the keyboard 7 and a vehicle height signal T (in the Y-axis direction) from the vehicle shape recognition device 13 A signal related to the position) and a pulse signal P (signal related to the position in the X-axis direction) from the encoder 9 are input to the control device 21. The storage unit 22 stores in advance a horizontal distance X between the vehicle shape recognition device 13 (the projector 32 and the light receiver 33) and the top brush 6. And the control apparatus 21 outputs a raising / lowering signal to the raising / lowering motor 31 which raises / lowers the support shaft of the top brush 6 based on this distance X, the vehicle height signal T, and the pulse signal P. FIG. Further, based on a start signal from the keyboard 7, drive signals are output to the cleaning nozzle 3, the top brush 6 and the side brush 4.

(3)車両形状認識装置の構成
車両形状認識装置13は、図4に示すような多光軸光電センサ30を備えた構成をなしており、この多光軸光電センサ30は上述したように上下方向に並んで配置される複数の投光素子11を備える投光器32と、複数の投光素子11と対向配置される複数の受光素子12を備えて当該投光素子11と複数の光軸を構成する受光器33とが設けられ、各投光素子11を所定のタイミングに基づいて順次投光動作させると共に各投光素子11の投光動作に同期して対応する受光素子12から出力される受光信号を有効化させる投受光スキャン動作を行わせる受光側CPU19(本発明の「制御手段」に相当)を備えた構成をなしている。
(3) Configuration of Vehicle Shape Recognition Device The vehicle shape recognition device 13 includes a multi-optical axis photoelectric sensor 30 as shown in FIG. A projector 32 having a plurality of light projecting elements 11 arranged side by side and a plurality of light receiving elements 12 arranged to face the light projecting elements 11 constitute a plurality of optical axes with the light projecting element 11. And a light receiving device 33 for sequentially projecting the light projecting elements 11 based on a predetermined timing and outputting light from the corresponding light receiving elements 12 in synchronization with the light projecting operation of the light projecting elements 11. A light receiving side CPU 19 (corresponding to the “control means” of the present invention) for performing a light projecting / receiving light scanning operation for enabling a signal is provided.

そして、受光側CPU19は、全ての投受光素子11,12の投受光スキャン動作を所定時間(又はX軸方向の所定移動距離)ごと繰り返し行わせる。なお、図4では、説明上、光軸数が4のものを例示しているが、当然これより光軸数を多くすることができる。   Then, the light receiving side CPU 19 repeatedly performs the light projecting / receiving light scanning operation of all the light projecting / receiving elements 11, 12 every predetermined time (or a predetermined movement distance in the X-axis direction). In FIG. 4, the number of optical axes is exemplified for the sake of explanation, but naturally the number of optical axes can be increased.

また、受光側CPU19は、有効化された受光素子12の受光信号レベルに基づいて、この有効化された受光素子12とこれに対向配置される投光素子11との間で生じる光軸が遮光状態であるか否かの判定を行い、この判定結果及び光軸(光軸以外であっても入光又は遮光される領域が特定される情報であればよく、例えば、光軸が斜めに形成される場合のように、光軸のY軸方向の位置と投光素子11や受光素子12のY軸方向の位置が必ずしも一致しない場合には、投光素子11や受光素子12等の位置でもよい)のX軸方向及びY軸方向の位置を記憶手段22に記憶する。   The light receiving side CPU 19 blocks the optical axis generated between the activated light receiving element 12 and the light projecting element 11 disposed opposite thereto based on the light reception signal level of the activated light receiving element 12. It is only necessary to determine whether or not it is in a state, and this determination result and the optical axis (information other than the optical axis can be used to identify a region where light is incident or blocked, for example, the optical axis is formed obliquely. In the case where the position of the light axis in the Y-axis direction and the position of the light projecting element 11 or the light receiving element 12 in the Y axis direction do not always coincide with each other, the position of the light projecting element 11 or the light receiving element 12 or the like. (Good) in the X-axis direction and the Y-axis direction are stored in the storage means 22.

そして、受光側CPU19は、前記判定結果及び多光軸光電センサ30の光軸のX軸方向及びY軸方向の位置(車高)を記憶手段22から読み出し、投光器32及び受光器33と車両Wとを、当該車両Wの長手方向に沿って相対移動させたときの判定結果及びその光軸位置に基づいて車両Wの形状を認識する。したがって、受光側CPU19が本発明の「判定手段及び車両形状認識手段」としての機能をも果たしている。   Then, the light receiving side CPU 19 reads out the determination result and the positions (vehicle heights) of the optical axis of the multi-optical axis photoelectric sensor 30 in the X-axis direction and the Y-axis direction from the storage means 22, and the light projector 32, the light receiver 33 and the vehicle W. And the shape of the vehicle W are recognized based on the determination result when the relative movement is made along the longitudinal direction of the vehicle W and the optical axis position. Therefore, the light receiving side CPU 19 also functions as the “determination means and vehicle shape recognition means” of the present invention.

さらに、車両形状認識装置13は、複数の投光素子11と複数の受光素子12との間で上下に並んで生じる複数の光軸において、所定光軸数おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせて設定する感度設定手段を備えている。本実施形態では、図5に示す遮光部材41が感度設定手段として機能している。   Further, the vehicle shape recognition device 13 has a plurality of optical axes that are vertically arranged between the plurality of light projecting elements 11 and the plurality of light receiving elements 12, and detects the optical axis detection sensitivity for every predetermined number of optical axes. Sensitivity setting means for setting differently from the detection sensitivity of the optical axis other than the above is provided. In this embodiment, the light shielding member 41 shown in FIG. 5 functions as sensitivity setting means.

遮光部材41は、受光素子12への入光量を設定する入光量設定手段として機能するものであり、投光器32及び受光器33のうち少なくともいずれか一方に配置されて複数の光軸のうちの少なくとも一部の光軸を部分的に遮るように構成される。この遮光部材41は所定数おきの光軸の遮光面積を、それ以外の光軸の遮光面積と異ならせるよう構成することができ、本実施形態では、複数の光軸において光軸おきに遮光面積を異ならせている。遮光部材41は、各受光素子12に対応した開口部42を複数備えており、開口部42は、図5(A)に示すように開口の径が小さい径小開口部42Bと、径の大きい径大開口部42Aとが交互に配置されている。   The light shielding member 41 functions as an incident light amount setting means for setting an incident light amount to the light receiving element 12, and is disposed in at least one of the light projector 32 and the light receiver 33 and at least of the plurality of optical axes. A part of the optical axis is configured to be partially blocked. The light shielding member 41 can be configured so that the light shielding area of every predetermined number of optical axes is different from the light shielding area of the other optical axes. In the present embodiment, the light shielding area for every optical axis in a plurality of optical axes. Are different. The light shielding member 41 includes a plurality of openings 42 corresponding to the respective light receiving elements 12, and the openings 42 have a small diameter opening 42B with a small diameter and a large diameter as shown in FIG. Large diameter openings 42A are alternately arranged.

図6にて概念的に示すように遮光部材41の前面側において、表面(即ち、車両W側に面する外面)がフラットな光透過性の前面カバー50が設けられている。前面カバー50は、例えば図6(A)に示すように遮光部材41の遮光部41Aと別体のものとして構成することができる。具体的には例えば、遮光部材41の遮光部41Aから離れた位置に前面カバー50を配置してもよく、遮光部材41の遮光部41Aと前面カバー50を互いに接触させて配置してもよい。この場合、遮光部41Aに対し前面カバー50を着脱可能に構成してもよい。また、図6(B)に示すように遮光部41Aと一体的に構成してもよい。一体的に構成する方法としては、遮光部41Aと前面カバー50を一体成型したり、遮光部41Aに対し接着剤、溶接、その他の固定手段により固定する方法が挙げられる。   As conceptually shown in FIG. 6, a light-transmitting front cover 50 having a flat surface (that is, an outer surface facing the vehicle W) is provided on the front side of the light shielding member 41. The front cover 50 can be configured as a separate member from the light shielding portion 41A of the light shielding member 41, for example, as shown in FIG. Specifically, for example, the front cover 50 may be arranged at a position away from the light shielding part 41A of the light shielding member 41, or the light shielding part 41A of the light shielding member 41 and the front cover 50 may be arranged in contact with each other. In this case, the front cover 50 may be configured to be detachable from the light shielding portion 41A. Further, as shown in FIG. 6B, the light shielding portion 41A may be integrated. As a method of integrally configuring, there is a method in which the light shielding part 41A and the front cover 50 are integrally molded, or a method of fixing the light shielding part 41A with an adhesive, welding, or other fixing means.

次に電気的構成ついて説明する。
図4に示すように、投光側には上述した複数の投光素子11(図4では11a〜11d)をそれぞれ点灯させるための駆動回路15a〜15dが備えられ、各駆動回路15a〜15dはAND回路16a〜16dからの出力信号P1〜P4を受けるとそれに連なる投光素子11a〜11dにそれぞれ駆動電流を供給する。各AND回路16a〜16dは、その一方の入力端子が投光側CPU18に接続され、投光側CPU18から所定のタイミング(以下、「投光タイミング」という)で順次出力される投光タイミング信号P0が入力される。また、他方の入力端子はシフトレジスタ17の4つの出力端子にそれぞれ接続されている。シフトレジスタ17は投光側CPU18からのシフト信号S0を受ける毎に、信号出力をさせる出力端子を切り換えて、上記AND回路16a〜16dに順番にシフト出力信号S1(S2,S3,S4)を与えるよう動作する。
Next, the electrical configuration will be described.
As shown in FIG. 4, drive circuits 15 a to 15 d for lighting the plurality of light projecting elements 11 (11 a to 11 d in FIG. 4) are provided on the light projecting side, and each of the drive circuits 15 a to 15 d is provided. When the output signals P1 to P4 from the AND circuits 16a to 16d are received, drive currents are supplied to the light projecting elements 11a to 11d connected thereto. Each of the AND circuits 16a to 16d has one input terminal connected to the light projecting side CPU 18, and a light projecting timing signal P0 sequentially output from the light projecting side CPU 18 at a predetermined timing (hereinafter referred to as "light projecting timing"). Is entered. The other input terminal is connected to each of the four output terminals of the shift register 17. Each time the shift register 17 receives the shift signal S0 from the light-projecting CPU 18, the shift register 17 switches the output terminal to output the signal, and sequentially applies the shift output signal S1 (S2, S3, S4) to the AND circuits 16a to 16d. Works like this.

以上のような構成により、各AND回路16a〜16dの両入力端子が同時に上記投光タイミング信号P0及びシフト出力信号S1(S2,S3,S4)を受けたときに、それに対応する駆動回路15a〜15dに出力信号P1〜P4を与えてそれに連なる投光素子11a〜11dに投光動作を行わせる。   With the above configuration, when both input terminals of the AND circuits 16a to 16d simultaneously receive the light projection timing signal P0 and the shift output signal S1 (S2, S3, S4), the corresponding drive circuits 15a to 15a. The output signals P1 to P4 are given to 15d, and the light projecting elements 11a to 11d connected thereto are caused to perform the light projecting operation.

一方、受光側には、上述した受光素子12a〜12dからのそれぞれの信号を増幅して受光量に応じた受光信号E1〜E4を出力する受光回路27a〜27dが備えられている。各受光回路27a〜27dの出力はスイッチ素子26a〜26dを介して信号線に共通接続されており、その信号線はコンパレータ28の入力側に接続される。各スイッチ素子26a〜26dはそれぞれAND回路25a〜25dからの出力信号G1〜G4を受けることによりオン動作をして、受光回路27a〜27dからの受光信号E1〜E4を有効化させる。   On the other hand, on the light receiving side, light receiving circuits 27a to 27d that amplify the respective signals from the light receiving elements 12a to 12d and output light receiving signals E1 to E4 corresponding to the amount of received light are provided. Outputs of the light receiving circuits 27a to 27d are commonly connected to signal lines via switch elements 26a to 26d, and the signal lines are connected to the input side of the comparator 28. The switch elements 26a to 26d are turned on by receiving the output signals G1 to G4 from the AND circuits 25a to 25d, respectively, and validate the light reception signals E1 to E4 from the light reception circuits 27a to 27d.

AND回路25a〜25dは、一方の入力端子が受光側CPU19に接続され、受光側CPU19から所定のタイミング(以下、「受光タイミング」という)で順次出力される受光タイミング信号G0を入力する。また、他方の入力端子はシフトレジスタ24の4つの出力端子にそれぞれ接続されている。シフトレジスタ24は受光側CPU19からのシフト信号T0を受ける毎に、信号出力をさせる出力端子を切り換えて、上記AND回路25a〜25dに順番にシフト出力信号T1(T2,T3,T4)を与えるよう動作する。   Each of the AND circuits 25a to 25d has one input terminal connected to the light receiving side CPU 19 and inputs a light receiving timing signal G0 sequentially output from the light receiving side CPU 19 at a predetermined timing (hereinafter referred to as “light receiving timing”). The other input terminal is connected to each of the four output terminals of the shift register 24. Each time the shift register 24 receives the shift signal T0 from the light receiving side CPU 19, it switches the output terminal to output the signal and applies the shift output signal T1 (T2, T3, T4) to the AND circuits 25a to 25d in order. Operate.

以上のような構成により、各AND回25a〜25dの両入力端子が同時に上記受光タイミング信号G0及びシフト出力信号T1(T2,T3,T4)を受けたときに、それに対応する受光回路27a〜27dからの受光信号E1(E2,E3,E4)が順次コンパレータ28に与えられる。そして、コンパレータ28は、受けた受光信号E1〜E4を予め設定された所定の基準値と比較し、その基準値を上回ったときに受光側CPU19に入光検出信号(ハイレベル)を出力する。   With the configuration as described above, when both input terminals of the AND times 25a to 25d simultaneously receive the light reception timing signal G0 and the shift output signal T1 (T2, T3, T4), the light reception circuits 27a to 27d corresponding thereto. The light reception signal E1 (E2, E3, E4) from is sequentially supplied to the comparator 28. The comparator 28 compares the received light reception signals E1 to E4 with a predetermined reference value set in advance, and outputs a light incident detection signal (high level) to the light receiving side CPU 19 when the reference value is exceeded.

(4)車両形状認識装置の処理及び動作
車両形状認識装置13は、車両Wに対する相対的な移動ととともに、複数の投受光素子11,12について順次行う投受光スキャン動作を所定の移動距離(時間)ごとに繰り返し、受光側CPU19にて判定された入光状態又は遮光状態の判定結果及びその光軸(又は入光又は遮光される領域が特定される情報)のX軸方向及びY軸方向の位置を記憶手段22に記憶する。
(4) Processing and Operation of Vehicle Shape Recognition Device The vehicle shape recognition device 13 performs a light projection / reception scan operation sequentially performed on the plurality of light projection / reception elements 11 and 12 together with a relative movement with respect to the vehicle W by a predetermined movement distance (time). ) Repeatedly, the determination result of the light incident state or the light shielding state determined by the light receiving side CPU 19 and the optical axis (or information specifying the light incident or light shielding region) in the X axis direction and the Y axis direction. The position is stored in the storage means 22.

そして、車両形状認識装置13は、入光状態又は遮光状態の判定結果及びその光軸(遮光される領域が特定される情報)のX軸(前後)方向及びY軸(車高)方向の位置を記憶手段22から読み出し、この読み出した判定結果及び光軸位置により、受光側CPU19によって遮光状態と判定される光軸が所定光軸数(ここでは、1光軸)を超えた数(ここでは、2光軸以上)だけ連続する連続遮光領域Pについては車両Wと判断する(図8参照)。   Then, the vehicle shape recognition device 13 determines the light incident state or the light blocking state determination result and the position of the optical axis (information for specifying the light blocking region) in the X axis (front-rear) direction and the Y axis (vehicle height) direction. Is read from the storage means 22, and the number of optical axes determined to be in a light-shielding state by the light receiving side CPU 19 based on the read determination result and the optical axis position (here, one optical axis) exceeds the number (here, one optical axis). A continuous light shielding area P that is continuous by two or more optical axes) is determined to be a vehicle W (see FIG. 8).

また、受光側CPU19は、各投受光スキャン動作ごとに、連続遮光領域Pの上端部と下端部とを特定するとともに、この特定された上端部及び下端部を、連続する投受光スキャン動作において上端部同士及び前記下端部同士でつなぎ合わせる。したがって、受光側CPU19が本発明の「特定手段」に相当する。   The light receiving side CPU 19 specifies the upper end and the lower end of the continuous light-shielding region P for each light projecting / receiving scan operation, and uses the specified upper end and lower end as the upper end in the continuous light projecting / receiving scan operation. The parts are joined to each other and to the lower ends. Therefore, the light receiving side CPU 19 corresponds to the “specifying means” of the present invention.

これにより、車両Wの一部が特殊な形状等であって、かかる部分により車両の上下に空間が生じる場合であっても、かかる特殊な形状の上端部及び下端部が特定されるから、この部分の上下に生じる非連続領域について後述する微小部分の判定を行うことができ、車両Wの全体形状を確実に認識することができる。   Thereby, even if a part of the vehicle W has a special shape or the like and a space is generated above and below the vehicle by such a part, the upper end and the lower end of the special shape are specified. It is possible to determine a minute portion, which will be described later, with respect to the discontinuous regions generated above and below the portion, and to reliably recognize the entire shape of the vehicle W.

一方、受光側CPU19によって入光状態と判定される光軸が所定光軸数を超えた数(ここでは、2光軸以上)だけ連続する連続入光領域Rについては非車両(空間)と判断する。   On the other hand, the continuous light incident region R in which the number of optical axes determined to be in the light incident state by the light receiving side CPU 19 exceeds the predetermined number of optical axes (here, two or more optical axes) is determined as a non-vehicle (space). To do.

ここで、受光側CPU19は、読み出した判定結果及び光軸位置により、遮光状態もしくは入光状態と判定される光軸が所定光軸数(本実施形態では、2光軸以上)連続しない非連続領域(即ち、図8の入光○、遮光×が交互に繰り返される領域Q1〜Q3,S)については、以下に示す処理を行うことにより車両又は非車両の判断を行う。   Here, the light receiving side CPU 19 is not continuous with the predetermined number of optical axes (in this embodiment, two or more optical axes) where the optical axis determined to be in the light shielding state or the incident light state is not based on the read determination result and the optical axis position. For the regions (that is, the regions Q1 to Q3, S in which the incident light ◯ and the light shielding × in FIG. 8 are alternately repeated), the vehicle or non-vehicle is determined by performing the following processing.

受光側CPU19は、入光○、遮光×が交互に繰り返される非連続領域(ただし、入光又は遮光が2光軸連続しなければ1光軸のみの領域も含む)については、図7(A),図8(A)に示すように、当該非連続領域が上記連続遮光領域Pに隣接する場合、即ち1スキャン動作中における非連続領域の端部(上端部)の光軸の位置が連続遮光領域P(上記車両と判定された領域)の端部(下端部)の光軸の位置と隣接する場合には、当該非連続領域Q1は車両(当該光軸内車両が位置)であると判断する(本発明の「第一認識手段」に相当)。   The light-receiving side CPU 19 shows a non-continuous area in which the light incident ○ and the light shielding x are alternately repeated (however, if the light incident or light shielding is not continuous for two optical axes, the area including only one optical axis is also included in FIG. ), As shown in FIG. 8A, when the discontinuous region is adjacent to the continuous light shielding region P, that is, the position of the optical axis at the end (upper end) of the discontinuous region during one scan operation is continuous. When the position of the light axis is adjacent to the position of the optical axis at the end (lower end) of the light shielding area P (the area determined as the vehicle), the discontinuous area Q1 is a vehicle (the vehicle in the optical axis is located). Judgment (corresponding to "first recognition means" of the present invention).

次に、受光側CPU19は、次の投受光スキャン動作(連続する投受光スキャン動作)における非連続領域の光軸の位置が、図7(B),図8(B)に示すように、前の(他の)投受光スキャン動作における非連続領域のうちで車両と判定された領域Q1の光軸の位置から2光軸目にあたる(本発明の「所定範囲」び相当。感度の同じ光軸のうちで最も近い光軸までの範囲)場合には、次の投受光スキャン動作における当該2光軸目の光軸の位置の非連続領域Q2については、車両(当該光軸内車両が位置)と判断する(本発明の「第二認識手段」に相当)。なお、連続する投受光スキャン動作は、次の投受光スキャン動作でなくてもよく、例えば、所定回数(複数回)後までの投受光スキャン動作のうちに、上記車両と判定された非連続領域Q1に隣接する非連続領域Q2が存在する場合には、かかる領域を車両と判定するようにしてもよい。   Next, the light receiving side CPU 19 determines that the position of the optical axis of the non-continuous area in the next light projecting / receiving light scanning operation (continuous light projecting / receiving light scanning operation) is as shown in FIGS. Among the non-continuous areas in the (other) light projection / reception scan operation, the second optical axis corresponds to the second optical axis from the position of the optical axis in the area Q1 determined to be a vehicle (an optical axis having the same sensitivity in the present invention). (The range up to the nearest optical axis) in the case of the discontinuous area Q2 of the optical axis position of the second optical axis in the next light projection / reception scanning operation (vehicle in the optical axis is located) (Corresponding to “second recognition means” of the present invention). Note that the continuous light projection / reception scan operation may not be the next light projection / reception scan operation. For example, in the light projection / reception scan operation up to a predetermined number of times (a plurality of times), the discontinuous region determined as the vehicle. When there is a discontinuous area Q2 adjacent to Q1, the area may be determined as a vehicle.

そして、さらに、受光側CPU19は、次の投受光スキャン動作(連続する投受光スキャン動作)における非連続領域の光軸の位置が、図7(C),図8(C)に示すように、前の投受光スキャン動作における非連続領域のうちで車両と判定された領域Q2の光軸の位置から2光軸目にあたる(本発明の「所定範囲」。感度の同じ光軸のうちで最も近い光軸までの範囲)場合には、次の投受光スキャン動作における当該2光軸目の光軸の位置の非連続領域Q3については、車両と判断する(本発明の「第二認識手段」に相当)。   Further, the light receiving side CPU 19 indicates that the position of the optical axis in the non-continuous area in the next light projecting / receiving light scanning operation (continuous light projecting / receiving light scanning operation) is as shown in FIGS. 7 (C) and 8 (C). It corresponds to the second optical axis from the position of the optical axis of the region Q2 determined to be a vehicle among the discontinuous regions in the previous light projection / reception scan operation (the “predetermined range” of the present invention. In the case of the range up to the optical axis), the discontinuous area Q3 of the position of the optical axis of the second optical axis in the next light projection / reception scan operation is determined as a vehicle (in the “second recognition means” of the present invention). Equivalent).

以上の処理がアンテナ60を次の投受光スキャン動作(若しくは所定回数(時間)内における投受光スキャン動作)における非連続領域が車両と判定されなくなるまで続けられる。そして、非連続領域のうち上記動作により車両と判定されない領域Sについては、ノイズ(水滴など)として非車両判定される。なお、再び微小物体が検出されるときには、上記と同様の処理が行われる。   The above processing is continued until the non-continuous area in the next light projection / reception scan operation (or the light projection / reception scan operation within a predetermined number of times) is determined not to be a vehicle. And about the area | region S which is not determined with the said operation | movement among the non-continuous area | regions, a non-vehicle determination is carried out as noise (water droplet etc.). When a minute object is detected again, the same processing as described above is performed.

ここで、ノイズ(水滴など)が車両と判定される領域に隣接した領域に生じた状態で上記した処理を行った場合、かかる水滴等をアンテナ等として誤検出するおそれがある。そこで、受光側CPU19は、車両Wの前後に亘って(車両Wと投光器及び受光器との相対移動開始時から終了時までの間に)行われる投受光スキャン動作のうち全ての投受光スキャン動作(若しくは所定回数(時間)内における全ての投受光スキャン動作)で非連続領域と判定したときには、水滴等が付着した異常状態であると判別し、かかる旨を外部の表示手段(図示しない)等に表示する。   Here, when the above-described processing is performed in a state where noise (water droplets or the like) is generated in a region adjacent to the region determined to be a vehicle, such a water droplet or the like may be erroneously detected as an antenna or the like. Therefore, the light receiving side CPU 19 performs all the light projecting / receiving light scanning operations among the light projecting / receiving light scanning operations performed before and after the vehicle W (from the start to the end of the relative movement between the vehicle W, the projector, and the light receiver). (Or all light emitting / receiving scanning operations within a predetermined number of times (time)), when it is determined that the region is a non-continuous region, it is determined that there is an abnormal state with water droplets or the like attached, and an external display means (not shown) or the like To display.

これにより、水滴などの付着物は、長時間に亘って同一光軸を遮光しやすい一方で、アンテナなどの車両Wに付された微小物体は、車両Wの相対的な移動に伴って遮光しなくなるものであるため、長時間に亘って同一光軸を遮光することは考えにくいから、異常状態と判別された場合には水滴などを取り除くことで、正常な車両形状認識が可能となる。したがって、受光側CPU19が本発明の「異常状態判別手段」に相当する。   As a result, adhering substances such as water droplets are likely to shield the same optical axis for a long time, while minute objects attached to the vehicle W such as an antenna are shielded with relative movement of the vehicle W. Since it is difficult to shield the same optical axis for a long time, it is possible to recognize a normal vehicle shape by removing water droplets or the like when it is determined as an abnormal state. Therefore, the light receiving side CPU 19 corresponds to the “abnormal state determining means” of the present invention.

なお、多光軸光電センサ30は、以下のように感度調整される。即ち、複数の光軸において、各光軸の感度を、車両本体から延出されたアンテナ、キャリア等の延出部を検出可能な延出部検出可能感度と、この延出部を検出不能な延出部検出不能感度のうちのいずれかの感度に設定する。
具体的には、延出部検出可能感度、又は延出部検出不能感度のいずれかの感度が所定光軸数おきに規則性をもって設定されるように構成する。ここでは、径大開口部42Aにおいては延出部検出不能感度として設定(開口面積を調整)されており、他方、径小開口部42Bにおいては延出部検出可能感度として設定(開口面積を調整)されている。例えば、延出部検出可能感度としては、車両本体から延びるアンテナが検出可能な感度とすることができ、一方、延出部検出不能感度については、このアンテナが検出不能な感度として設定することができる。これにより、図5(B)のように延出部(ここではアンテナ60)を検出した際には遮光される部分と、遮光されない部分とが交互に生じることとなり、車両本体領域とは異なる独特の検出結果パターンとなる。
The sensitivity of the multi-optical axis photoelectric sensor 30 is adjusted as follows. That is, for a plurality of optical axes, the sensitivity of each optical axis, the extension part detectable sensitivity that can detect the extension part of the antenna, carrier, etc. extended from the vehicle body, and the extension part cannot be detected. The sensitivity is set to any one of the undetectable sensitivities.
Specifically, the sensitivity is set such that the sensitivity of the extension portion detectable sensitivity or the extension portion undetectable sensitivity is set with regularity every predetermined number of optical axes. Here, in the large-diameter opening portion 42A, the sensitivity is set as the undetectable sensitivity of the extension portion (adjustment of the opening area), while in the small-diameter opening portion 42B, it is set as the sensitivity of the detection of the extension portion (adjustment of the opening area). ) For example, the extension part detectable sensitivity can be a sensitivity that an antenna extending from the vehicle body can be detected, while the extension part undetectable sensitivity can be set as a sensitivity that the antenna cannot detect. it can. As a result, as shown in FIG. 5B, when the extension portion (in this case, the antenna 60) is detected, the light-shielded portion and the non-light-shielded portion are alternately generated, which is different from the vehicle main body region. This is a detection result pattern.

(5)洗車機全体の動作
次に、洗車機1全体の動作について図3及び図9を参照しつつ説明する。
まず車両Wを上記1対のレールL,L間に停車させて、キーボード7にて洗車内容を選択して洗浄開始の入力操作が行われると、図9において初期位置にあるトップブラシ6が回転し始めるとともに、洗車機本体2が後進駆動する(同図において白抜き矢印方向)。そして、洗車機本体2の移動にともないエンコーダ9から出力されるパルス信号Pを受信した制御装置21は、このパルス信号Pに基づいて車両形状認識装置13の位置を検出する。
(5) Operation of Entire Car Wash Machine Next, the operation of the entire car wash machine 1 will be described with reference to FIGS. 3 and 9.
First, when the vehicle W is stopped between the pair of rails L, L, the content of the car wash is selected with the keyboard 7 and the start operation of the washing is performed, the top brush 6 at the initial position in FIG. 9 rotates. At the same time, the car wash machine body 2 is driven backward (in the direction of the white arrow in the figure). And the control apparatus 21 which received the pulse signal P output from the encoder 9 with the movement of the car wash machine main body 2 detects the position of the vehicle shape recognition apparatus 13 based on this pulse signal P.

そして、このまま洗車機本体2が後進して上記投光器32及び受光器33が車両Wのボンネット部を挟む位置にくると、当該ボンネット部によって下からある高さまで遮光状態と判定され、それより上の光軸が入光状態と判定される。車両形状認識装置13の受光側CPU19は受光タイミングに同期して順次コンパレータ28からの入光検出信号の有無を判断(コンパレータ28からの出力信号のハイローレベルを判断)する。これにより、各光軸について入光状態かどうかを判定し、この判定結果から車両Wのボンネット部の高さを知ることができ、これに応じた車高信号Tを制御装置21に与える。   And if the car wash machine main body 2 moves backward as it is and the projector 32 and the light receiver 33 come to a position sandwiching the bonnet part of the vehicle W, it is determined that the hood part is in a light-shielded state from the bottom to a certain height, and above it. The optical axis is determined to be in the incident state. The light receiving side CPU 19 of the vehicle shape recognition device 13 sequentially determines the presence or absence of a light incident detection signal from the comparator 28 in synchronization with the light receiving timing (determines the high / low level of the output signal from the comparator 28). Thus, it is determined whether or not each optical axis is in a light incident state, and the height of the bonnet portion of the vehicle W can be known from the determination result, and a vehicle height signal T corresponding to the height is given to the control device 21.

制御装置21は、車両形状認識装置13からの車高信号Tと、そのときの走行位置でのエンコーダ9からのパルス信号Pとを読み込んで、当該車高信号Tに対応付けてこのときの洗車機本体2の走行位置を記憶手段22に記憶する。そして、記憶手段22に記憶された走行位置から距離X(車両形状認識装置13(投光器32及び受光器33)とトップブラシ6との水平方向の距離)だけ洗車機本体2が後進したときにそれに対応付けられて記憶された車高信号Tに応じた昇降信号を昇降モータ31に与える。これにより、トップブラシ6は車両Wのボンネット部の高さ(図9の位置B3)に位置するよう移動される。   The control device 21 reads the vehicle height signal T from the vehicle shape recognition device 13 and the pulse signal P from the encoder 9 at the traveling position at that time, and associates the vehicle height signal T with the vehicle height signal T at this time. The travel position of the machine body 2 is stored in the storage means 22. Then, when the car wash machine body 2 moves backward from the travel position stored in the storage means 22 by a distance X (the horizontal distance between the vehicle shape recognition device 13 (light projector 32 and light receiver 33) and the top brush 6). A lift signal corresponding to the stored vehicle height signal T is given to the lift motor 31. Accordingly, the top brush 6 is moved so as to be positioned at the height of the hood portion of the vehicle W (position B3 in FIG. 9).

同様に、投光器32及び受光器33が車両Wのルーフ部を挟む位置にきたときには、当該ルーフ部の高さ以下の光軸は遮光状態と判定され、それより上の光軸は入光状態と判定されて、その判定結果に基づくルーフ部の高さに応じた車高信号Tが制御装置21に与えられる。そして、その時点から距離Xだけ洗車機本体2が後進したときに当該車高信号T(ルーフ部の高さに応じた信号)に応じた昇降信号を昇降モータ31に与えて、トップブラシ6を車両Wのルーフ部の高さ(図9の位置B4)に移動させる。以下、車両Wの後端部についても同様にしてトップブラシ6が当該後端部の高さ(図9の位置B5)に移動する。   Similarly, when the light projector 32 and the light receiver 33 come to a position sandwiching the roof portion of the vehicle W, the optical axis below the height of the roof portion is determined to be in a light-shielding state, and the optical axis above that is the light incident state. The vehicle height signal T corresponding to the height of the roof portion based on the determination result is given to the control device 21. Then, when the car wash machine body 2 moves backward by a distance X from that time point, a lift signal corresponding to the vehicle height signal T (signal corresponding to the height of the roof portion) is given to the lift motor 31, and the top brush 6 is moved. The vehicle W is moved to the height of the roof portion (position B4 in FIG. 9). Thereafter, the top brush 6 is similarly moved to the height of the rear end (position B5 in FIG. 9) for the rear end of the vehicle W.

そして、洗車機本体2が更に後進して投光器32及び受光器33が車両Wの後方へと抜けると、全光軸M,Nが入光状態となる。そこで、例えば全光軸が所定時間入光状態になったことを条件として、その時点から洗車機本体2が距離X更に後進したときに洗車機本体2を一旦停止させる。そして、洗車機本体2が今度は前進して上述の一連の動作とは逆の動作を行う。洗車機本体2が初期位置に戻ると、洗車機本体2が停止してトップブラシ6及びサイドブラシ4等の洗車具も初期位置に戻る。   Then, when the car wash machine main body 2 further moves backward and the projector 32 and the light receiver 33 come out to the rear of the vehicle W, all the optical axes M and N enter the light incident state. Therefore, for example, on the condition that all the optical axes are in the light incident state for a predetermined time, the car wash machine main body 2 is temporarily stopped when the car wash machine main body 2 further moves backward by the distance X from that time point. And the car-washing machine main body 2 moves forward this time and performs the operation | movement contrary to the above-mentioned series of operation | movement. When the car wash machine main body 2 returns to the initial position, the car wash machine main body 2 stops and the car wash tools such as the top brush 6 and the side brush 4 also return to the initial position.

(6)本実施形態の効果
本実施形態によれば、1光軸(所定光軸数)おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせるから、2光軸(所定光軸数を超える数)だけ連続して入光又は遮光の行われない非連続領域については、検出感度の弱い光軸のみを遮光する車両Wの微小部分等(アンテナ等)であると判断することができる。
ここで、非連続領域内の物体としては、車両Wの一部として車両Wに接続された微小部分(アンテナ等)以外に、水滴、泥などからなるノイズとしての微小物体等も含まれるが、車両Wの一部分としてのアンテナ60(微小部分)は少なくとも1箇所で車両W(連続遮光領域)と接続されているはずである。したがって、非連続領域のうち、車両W(連続遮光領域)と隣接する領域については、受光側CPU19(第一認識手段)により、微小部分(車両W)であると判断することができる。
(6) Effects of the present embodiment According to the present embodiment, the detection sensitivity of the optical axis every other optical axis (predetermined number of optical axes) is different from the detection sensitivity of the other optical axes. A non-continuous area where light is not continuously incident or blocked by a number exceeding the predetermined number of optical axes) is determined to be a minute part or the like (antenna or the like) of the vehicle W that blocks only the optical axis with weak detection sensitivity. can do.
Here, the objects in the non-continuous region include, in addition to a minute part (antenna etc.) connected to the vehicle W as a part of the vehicle W, a minute object as noise consisting of water droplets, mud, etc. The antenna 60 (a minute portion) as a part of the vehicle W should be connected to the vehicle W (continuous light shielding region) at at least one location. Therefore, in the non-continuous region, the region adjacent to the vehicle W (continuous light shielding region) can be determined as a minute portion (vehicle W) by the light receiving side CPU 19 (first recognition means).

ところで、例えば、微小部分が傾斜するアンテナ60である場合には、投受光スキャン動作における非連続領域のうち、連続遮光領域と隣接しない部分(例えば、アンテナ60の中間部分から先端部分)については、微小部分(車両W)と判断されなくなってしまう。
そこで、受光側CPU19(第二認識手段)により、次の(投受光スキャン動作と連続する)投受光スキャン動作において、前の(連続する他の)投受光スキャン動作で車両Wと判断される領域に対して所定範囲内に位置する非連続領域を車両Wと判断するから、非連続領域のうち同一の投受光スキャン動作中にて連続遮光領域と隣接しないために第一認識手段では車両Wと判断されない部分についても車両Wと判断することができ、ノイズ等の影響を受けることなく車両形状を確実に認識できる。
By the way, for example, in the case where the minute portion is the inclined antenna 60, the portion that is not adjacent to the continuous light shielding region (for example, from the intermediate portion to the tip portion of the antenna 60) in the discontinuous region in the light projection / reception scan operation, The minute portion (vehicle W) is not determined.
Therefore, in the next (consecutive light projecting / receiving scan operation) by the light receiving side CPU 19 (second recognition means), the area determined as the vehicle W in the previous (other continuous light emitting / receiving scan operation). Since the non-continuous area located within the predetermined range is determined as the vehicle W, the first recognition means determines that the vehicle W is not adjacent to the continuous light-shielding area during the same light projection / reception scan operation. A portion that is not determined can also be determined as the vehicle W, and the vehicle shape can be reliably recognized without being affected by noise or the like.

<第2実施形態>
第2実施形態では、第1実施形態と異なる構成をなす遮光部材41について説明する。図10の例では、2光軸おきに検出感度が異なるように遮光部材41の形状が設定されている。ここでは、径大開口部42Aに隣接して2光軸分の径小開口部42Bが続く構成をなしている。なお、これに限らず、3光軸以上おきに検出感度を異ならせるようにしてもよい。また、所定光軸数おきに検出精度を高めるように構成してもよい(即ち、所定光軸数おきに(2光軸おき、あるいは3光軸以上おきに)径小開口部42Bを配置するように構成してもよい)。
Second Embodiment
In the second embodiment, a light shielding member 41 having a configuration different from that of the first embodiment will be described. In the example of FIG. 10, the shape of the light shielding member 41 is set so that the detection sensitivity differs every two optical axes. Here, the small-diameter opening 42B for two optical axes continues adjacent to the large-diameter opening 42A. The detection sensitivity is not limited to this, and the detection sensitivity may be varied every three optical axes or more. Further, the detection accuracy may be increased every predetermined number of optical axes (that is, small-diameter openings 42B are arranged every predetermined number of optical axes (every two optical axes or every three optical axes or more). May be configured as above).

また、図11では、円形状以外の開口形状のものを例示しており、矩形形状からなる径大開口部42A、径小開口部42Bが設けられている。また、図12(A)(B)に示すように、径大開口部42Aと径小開口部42Bが連続的に構成されていてもよい。このように開口部42が連続する構成の場合にも、開口部42の形状は、円形又は略円形(図12(A)参照)、矩形又は略矩形(図12(B)参照)等様々のものに構成できる。   Moreover, in FIG. 11, the thing of opening shapes other than circular shape is illustrated, and the large diameter opening part 42A and the small diameter opening part 42B which consist of rectangular shapes are provided. As shown in FIGS. 12A and 12B, the large-diameter opening 42A and the small-diameter opening 42B may be configured continuously. Even in the case where the openings 42 are continuous in this way, the shape of the openings 42 can be various, such as a circle or a substantially circle (see FIG. 12A), a rectangle or a substantially rectangle (see FIG. 12B). Can be configured.

<第3実施形態>
上記実施形態では、遮光部材41を用いて受光素子12への入射量を設定する構成を例示したが、投光量設定手段を設けるようにしてもよい。例えば、複数の投光素子11において、所定光軸数おきの投光素子11からの投光量を、それ以外の投光素子11からの投光量と異ならせるように設定することができる。この場合、図4に示す駆動回路15aないし駆動回路15dにおいて、所定光軸数おきの投光量が、他の光軸の投光量と異なるようにパワー調整することができる。
<Third Embodiment>
In the above embodiment, the configuration in which the amount of incident light on the light receiving element 12 is set using the light blocking member 41 is exemplified, but a light projection amount setting unit may be provided. For example, in the plurality of light projecting elements 11, it is possible to set the light projection amount from the light projecting elements 11 every predetermined number of optical axes to be different from the light projecting amounts from the other light projecting elements 11. In this case, in the drive circuit 15a to the drive circuit 15d shown in FIG. 4, it is possible to adjust the power so that the light projection amount every predetermined number of optical axes is different from the light projection amounts of other optical axes.

<第4実施形態>
上記第1実施形態ないし第3実施形態では入射量を異ならせるようにして検出感度を設定したが、受光素子の受光信号に対する信号処理条件を設定するようにして検出感度を異ならせてもよい。即ち、複数の受光素子12において、所定光軸数おきの受光素子12の受光信号に対する信号処理条件を、それ以外の受光素子12に対する信号処理条件と異ならせる信号処理条件設定手段を設けるようにしてもよい。
<Fourth embodiment>
In the first to third embodiments, the detection sensitivity is set so as to vary the incident amount. However, the detection sensitivity may be varied so as to set a signal processing condition for the light reception signal of the light receiving element. That is, in the plurality of light receiving elements 12, signal processing condition setting means is provided for making the signal processing conditions for the light receiving signals of the light receiving elements 12 every predetermined number of optical axes different from the signal processing conditions for the other light receiving elements 12. Also good.

たとえば、図13に示すように、所定光軸数おき(ここでは1光軸おき)の受光信号における遮光判定に用いる基準レベルを、それ以外の受光信号に用いる基準レベルと異ならせるように設定することができる。具体的には光軸おきの受光信号がコンパレータ28Aにおいて第1基準レベルに基づいて判定が行われ、それ以外の光軸の受光信号はコンパレータ28Bにおいて第2基準レベルに基づいて判定が行われるようになっている。ここではコンパレータ28A,28Bが基準レベル設定手段として機能しており、この場合、基準レベル設定手段が信号処理条件設定手段としての役割を果たすこととなる。   For example, as shown in FIG. 13, the reference level used for the light-shielding determination in the received light signal every predetermined number of optical axes (here, every other optical axis) is set to be different from the reference level used for the other received light signals. be able to. Specifically, the light reception signal for every optical axis is determined based on the first reference level in the comparator 28A, and the light reception signals for other optical axes are determined based on the second reference level in the comparator 28B. It has become. Here, the comparators 28A and 28B function as reference level setting means. In this case, the reference level setting means serves as signal processing condition setting means.

また、所定光軸数おきの受光信号の増幅率を、それ以外の受光信号の増幅率と異ならせるように設定する増幅率設定手段を備えた構成とすることもできる。具体的には受光回路27aないし27dにおいて、所定光軸数おきの増幅率(例えば1光軸おきの増幅率)をそれ以外の光軸の増幅率と異ならせるように構成できる。この場合、増幅率設定手段が、信号処理条件設定手段としての役割を果たすこととなる。   Further, it may be configured to include an amplification factor setting means for setting the amplification factors of the received light signals every predetermined number of optical axes to be different from the amplification factors of the other received light signals. Specifically, the light receiving circuits 27a to 27d can be configured such that the amplification factor for every predetermined number of optical axes (for example, the amplification factor for every other optical axis) is different from the amplification factors for the other optical axes. In this case, the amplification factor setting means serves as a signal processing condition setting means.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and further, within the scope not departing from the gist of the invention other than the following. Various modifications can be made.

(1)上記実施形態では、車両形状の認識しつつ洗車動作を行う構成としたが、これに限らず、洗車を行わずに一旦洗車機本体2を車両Wの前後に亘って移動させて車両形状を認識させた後、記憶された車両形状に基づき洗車動作を開始する構成としてもよい。   (1) In the above-described embodiment, the vehicle washing operation is performed while recognizing the vehicle shape. However, the present invention is not limited to this, and the vehicle washing machine body 2 is temporarily moved across the vehicle W without washing the vehicle. After the shape is recognized, the car wash operation may be started based on the stored vehicle shape.

(2)車両形状認識装置(多光軸光電センサ)にセンサコントローラ(図示しない)を接続し、このセンサコントローラが車両形状認識装置(多光軸光電センサ)に投受光スキャン動作を開始させる開始信号を送信する送信手段(図示しない)と、送信手段に同期して車両形状認識装置(多光軸光電センサ)から受光側CPU19(判定手段)の判定結果を受信する受信手段(図示しない)と、受信手段により受信した判定結果に基づいて、車両と投光器及び受光器とが当該車両の長手方向に沿って相対的に移動することにより車両の形状を認識する車両形状認識手段(例えば、CPU(図示しない))と、を備える構成としてもよい。このようにすれば、外部のセンサコントローラにより動作の開始および判定結果の受信を行うことができるとともに、センサコントローラにて車両の形状が認識される。   (2) A sensor controller (not shown) is connected to the vehicle shape recognition device (multi-optical axis photoelectric sensor), and this sensor controller causes the vehicle shape recognition device (multi-optical axis photoelectric sensor) to start a light projection / reception scan operation. Transmitting means (not shown) for transmitting the signal, receiving means (not shown) for receiving the determination result of the light receiving side CPU 19 (determination means) from the vehicle shape recognition device (multi-optical axis photoelectric sensor) in synchronization with the transmission means, Based on the determination result received by the receiving means, the vehicle shape recognizing means (e.g., CPU (illustrated)) recognizes the shape of the vehicle by relatively moving the vehicle, the projector and the light receiver along the longitudinal direction of the vehicle. No))). In this way, the external sensor controller can start the operation and receive the determination result, and the sensor controller can recognize the shape of the vehicle.

(3)上記実施形態では、8程度の光軸を構成する例を示したが、この光軸数はあくまで説明上のものであり、8以上、又は8未満の光軸数であっても勿論よい。   (3) In the above-described embodiment, an example in which about eight optical axes are configured has been described. However, the number of optical axes is merely an explanation, and of course, the number of optical axes may be eight or more or less than eight. Good.

(4)上記実施形態では、微少部分としてアンテナ60を例示したがこれ以外のものであってもよい。例えば、エンブレム、キャリア、その他の延出物であってもよい。   (4) In the above embodiment, the antenna 60 is exemplified as the minute portion, but other antennas may be used. For example, an emblem, a carrier, or another extension may be used.

(5)上記実施形態では、遮光部材41を受光素子12側に配置したが、投光素子11側に配置してもよい。   (5) In the above embodiment, the light shielding member 41 is disposed on the light receiving element 12 side, but may be disposed on the light projecting element 11 side.

洗車機の要部構成を正面より概念的に示す概念図Conceptual diagram conceptually showing the main configuration of a car wash machine from the front 洗車機の要部構成を側面より概念的に示す概念図Conceptual diagram conceptually showing the main part of a car wash machine from the side 洗車機の制御構成を説明するブロック図Block diagram explaining the control configuration of the car wash machine 多光軸光電センサの電気的構成を示すブロック図Block diagram showing electrical configuration of multi-optical axis photoelectric sensor 遮蔽部材について概念的に説明する概念図Conceptual diagram for conceptually explaining the shielding member 前面カバーの構成について例示する図Diagram illustrating the configuration of the front cover 車両検出の際の位置関係について例示する図The figure which illustrates about the positional relationship in the case of vehicle detection 車両の位置関係に応じて検出されるパターンについて例示する図The figure which illustrates about the pattern detected according to the positional relationship of a vehicle 洗車時の動作について説明する説明図Explanatory drawing explaining operation at the time of car wash 第2実施形態に係る遮光部材について例示する図The figure which illustrates about the light-shielding member which concerns on 2nd Embodiment 図10とは異なる遮光部材の構成について示す図The figure shown about the structure of the light-shielding member different from FIG. 開口部が連続した構成の遮光部材について例示する図The figure which illustrates about the light-shielding member of the structure where the opening part continued 第4実施形態に係る多光軸光電センサの電気的構成を示すブロック図The block diagram which shows the electrical constitution of the multi-optical axis photoelectric sensor which concerns on 4th Embodiment.

符号の説明Explanation of symbols

1…洗車機
11(11a〜11d)…投光素子
12(12a〜12d)…受光素子
13…車両形状認識装置
21…制御装置
22…記憶手段
30…多光軸光電センサ
32…投光器
33…受光器
41…遮光部材
41A…遮光部
42(42A,42B)…開口部
50…前面カバー
60…アンテナ
19…受光側CPU
P…連続遮光領域
Q(Q1〜Q3),S…非連続領域
R…連続入光領域
W…車両
DESCRIPTION OF SYMBOLS 1 ... Car wash machine 11 (11a-11d) ... Light projecting element 12 (12a-12d) ... Light receiving element 13 ... Vehicle shape recognition apparatus 21 ... Control apparatus 22 ... Memory | storage means 30 ... Multi-optical axis photoelectric sensor 32 ... Light projector 33 ... Light reception 41 ... Light-shielding member 41A ... Light-shielding part 42 (42A, 42B) ... Opening part 50 ... Front cover 60 ... Antenna 19 ... Light-receiving side CPU
P: Continuous light shielding area Q (Q1 to Q3), S: Non-continuous area R: Continuous light incident area W: Vehicle

Claims (9)

複数の投光素子が車両の上下方向に並んで配置される投光器と、
前記複数の投光素子と対向して配置され、当該投光素子と複数の光軸を構成する複数の受光素子を備える受光器と、
前記各投光素子に所定のタイミングで順次投光動作を行わせるとともに、当該各投光素子の投光動作に同期させて、当該各投光素子と対応する受光素子から出力される受光信号を有効化させる投受光スキャン動作を繰り返させる制御手段と、
前記制御手段によって有効化された受光素子の受光信号レベルに基づいて、この有効化された受光素子とこれに対応する投光素子との間で生じる光軸が遮光状態であるか否かの判定を行う判定手段と、
前記車両と前記投光器及び前記受光器とが当該車両の長手方向に沿って相対的に移動するときの前記判定手段の判定結果に基づいて前記車両の形状を認識する車両形状認識手段と、を備える車両形状認識装置において、
前記複数の光軸において所定光軸数おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせて設定する感度設定手段を備え、
前記車両形状認識手段は、
前記各投受光スキャン動作ごとに、
前記判定手段により遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続遮光領域については、それらの光軸内に前記車両が位置すると判断し、
前記判定手段により入光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続入光領域については、それらの光軸内に前記車両が位置しないと判断し、
さらに、前記判定手段により入光状態又は遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続しない非連続領域のうち、前記連続遮光領域に隣接する所定領域については、光軸内に前記車両が位置すると判断する第一認識手段と、
連続する投受光スキャン動作において、
連続する他の投受光スキャン動作で車両と判断される領域に対して所定範囲内に位置する非連続領域については光軸内に前記車両が位置すると判断する第二認識手段とを備え、
前記第一認識手段及び前記第二認識手段において前記車両が位置すると判断された領域に基づいて前記車両の形状を認識することを特徴とする車両形状認識装置。
A projector in which a plurality of light projecting elements are arranged in the vertical direction of the vehicle;
A light receiver including a plurality of light receiving elements arranged opposite to the plurality of light projecting elements and constituting the light projecting elements and a plurality of optical axes;
Each of the light projecting elements is caused to sequentially perform a light projecting operation at a predetermined timing, and a light receiving signal output from a light receiving element corresponding to each light projecting element is synchronized with the light projecting operation of each of the light projecting elements. Control means for repeating the projecting / receiving light scanning operation to be enabled;
Based on the light reception signal level of the light receiving element activated by the control means, it is determined whether or not the optical axis generated between the activated light receiving element and the corresponding light projecting element is in a light shielding state. Determination means for performing,
Vehicle shape recognition means for recognizing the shape of the vehicle based on a determination result of the determination means when the vehicle, the light projector and the light receiver move relatively along the longitudinal direction of the vehicle. In the vehicle shape recognition device,
Sensitivity setting means for setting the detection sensitivity of the optical axis every predetermined number of optical axes in the plurality of optical axes to be different from the detection sensitivity of the other optical axes,
The vehicle shape recognition means
For each light emitting / receiving scan operation,
For continuous light shielding regions in which the number of optical axes determined to be in a light shielding state by the determining means exceeds the predetermined number of optical axes, it is determined that the vehicle is positioned within those optical axes,
For continuous light incident areas where the optical axis determined to be in the light incident state by the determination means continues for a number exceeding the predetermined optical axis number, it is determined that the vehicle is not located within those optical axes,
Further, among the non-continuous areas in which the optical axes determined to be in the light incident state or the light shielding state by the determining means do not exceed the predetermined number of optical axes, the predetermined axis adjacent to the continuous light shielding area is the optical axis. First recognition means for determining that the vehicle is located within,
In continuous light emitting / receiving scan operation,
A second recognizing unit that determines that the vehicle is positioned within the optical axis for a non-continuous region positioned within a predetermined range with respect to a region determined to be a vehicle by another continuous light projecting and receiving scan operation;
An apparatus for recognizing a vehicle shape, wherein the shape of the vehicle is recognized based on an area where the vehicle is determined to be located by the first recognizing unit and the second recognizing unit.
前記各投受光スキャン動作ごとに、前記車両が位置すると判断された領域を記憶する記憶手段と、
前記各投受光スキャン動作ごとに、前記記憶手段に記憶された領域の上端部と下端部とを特定する特定手段を備え、
前記車両形状認識手段は、前記各投受光スキャン動作ごとに前記特定手段により特定された上端部及び下端部を、連続する投受光スキャン動作において前記上端部同士及び前記下端部同士でつなぎ合わせることで車両の形状を認識することを特徴とする請求項1記載の車両形状認識装置。
Storage means for storing an area where the vehicle is determined to be located for each light emitting / receiving scan operation;
For each of the light projecting / receiving light scanning operations, a specifying unit for specifying an upper end portion and a lower end portion of an area stored in the storage unit is provided.
The vehicle shape recognizing means connects the upper end portion and the lower end portion specified by the specifying means for each of the light projecting / receiving light scanning operations by connecting the upper end portions and the lower end portions in a continuous light projecting / receiving light scanning operation. 2. The vehicle shape recognition apparatus according to claim 1, wherein the shape of the vehicle is recognized.
前記車両と前記投光器及び前記受光器との相対移動開始時から終了時までの間に行われる所定回数のスキャン動作の全てで前記非連続領域が検出されたときに、異常状態であると判別する異常状態判別手段を備えることを特徴とする請求項1又は請求項2記載の車両形状認識装置。 When the discontinuous region is detected in all of the predetermined number of scanning operations performed between the start and end of relative movement between the vehicle, the projector, and the light receiver, it is determined that the state is abnormal. The vehicle shape recognition apparatus according to claim 1, further comprising an abnormal state determination unit. 前記感度設定手段は、前記投光器及び前記受光器の少なくともいずれか一方に配置されて前記複数の光軸の少なくとも一部光軸を部分的に遮る遮光部材を有してなり、
この遮光部材は、前記所定光軸数おきの光軸の遮光面積を、それ以外の光軸の遮光面積と異ならせるよう構成されることを特徴とする請求項1ないし請求項3のいずれかに記載の車両形状認識装置。
The sensitivity setting means includes a light blocking member that is disposed in at least one of the projector and the light receiver and partially blocks at least a part of the plurality of optical axes.
4. The light shielding member according to claim 1, wherein the light shielding area of the optical axis every predetermined number of optical axes is configured to be different from the light shielding area of the other optical axes. The vehicle shape recognition apparatus as described.
前記遮光部材の前面には表面がフラットな光透過性の前面カバーが設けられたことを特徴とする請求項4に記載の車両形状認識装置。 The vehicle shape recognition device according to claim 4, wherein a light-transmitting front cover having a flat surface is provided on a front surface of the light shielding member. 前記所定光軸が1光軸おきに設定されていることを特徴とする請求項1ないし請求項5のいずれかに記載の車両形状認識装置。 6. The vehicle shape recognition apparatus according to claim 1, wherein the predetermined optical axis is set every other optical axis. 車両に対してその前後方向に相対的に移動するとともに、洗浄ブラシを昇降移動可能に備えた洗車機であって、
請求項1ないし請求項6のいずれかに記載の車両形状認識装置を備え、その車両形状認識装置による車両形状認識結果に基づいて前記洗浄ブラシの昇降制御を行うことを特徴とする洗車機。
A car washing machine that moves relative to the vehicle in the front-rear direction and that has a washing brush that can be moved up and down.
A car wash machine comprising the vehicle shape recognition device according to any one of claims 1 to 6, wherein the raising and lowering control of the washing brush is performed based on a vehicle shape recognition result by the vehicle shape recognition device.
複数の投光素子が車両の上下方向に並んで配置される投光器と、前記複数の投光素子と対向して配置され、当該投光素子と複数の光軸を構成する複数の受光素子を備える受光器と、記各投光素子に所定のタイミングで順次投光動作を行わせるとともに、当該各投光素子の投光動作に同期させて、当該各投光素子と対応する受光素子から出力される受光信号を有効化させる投受光スキャン動作を繰り返させる制御手段と、前記制御手段によって有効化された受光素子の受光信号レベルに基づいて、この有効化された受光素子とこれに対応する投光素子との間で生じる光軸が遮光状態であるか否かの判定を行う判定手段とを備え、前記複数の光軸において所定光軸数おきの光軸の検出感度を、それ以外の光軸の検出感度と異ならせて設定可能とされた多光軸光電センサが接続され、前記多光軸光電センサから前記判定手段の判定結果を入力する入力手段と、
前記入力手段により入力した判定結果に基づいて、前記車両と前記投光器及び前記受光器とが当該車両の長手方向に沿って相対的に移動することにより車両の形状を認識する車両形状認識手段と、を備えるセンサコントローラであって、
前記車両形状認識手段は、
前記各投受光スキャン動作ごとに、
前記判定手段により遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続遮光領域については、それらの光軸内に前記車両が位置すると判断し、
前記判定手段により入光状態と判定される光軸が前記所定光軸数を超える数だけ連続する連続入光領域については、それらの光軸内に前記車両が位置しないと判断し、
さらに、前記判定手段により入光状態又は遮光状態と判定される光軸が前記所定光軸数を超える数だけ連続しない非連続領域のうち、前記連続遮光領域に隣接する所定領域については、光軸内に前記車両が位置すると判断する第一認識手段と、
連続する投受光スキャン動作において、
連続する他の投受光スキャン動作で車両と判断される領域に対して所定範囲内に位置する非連続領域については光軸内に前記車両が位置すると判断する第二認識手段とを備え、
前記第一認識手段及び前記第二認識手段において前記車両が位置すると判断された領域に基づいて前記車両の形状を認識することを特徴とするセンサコントローラ。
A light projector in which a plurality of light projecting elements are arranged side by side in the vertical direction of the vehicle, and a plurality of light receiving elements that are disposed to face the plurality of light projecting elements and constitute a plurality of optical axes with the light projecting elements. The light receiving device and each light projecting element sequentially perform a light projecting operation at a predetermined timing, and are output from the light receiving element corresponding to each light projecting element in synchronization with the light projecting operation of each light projecting element. Based on the light receiving signal level of the light receiving element validated by the control means for repeating the light projecting / receiving scan operation for validating the light receiving signal to be activated, and the corresponding light projecting light Determination means for determining whether or not the optical axis generated between the elements is in a light-shielding state, and the detection sensitivity of the optical axis for every predetermined number of optical axes in the plurality of optical axes is set to other optical axes. Can be set differently from the detection sensitivity of Multi-optical axis photoelectric sensor is connected, an input means for inputting a judgment result of said judging means from said multi-optical axis photoelectric sensor,
Vehicle shape recognition means for recognizing the shape of the vehicle by relatively moving the vehicle, the projector and the light receiver along the longitudinal direction of the vehicle based on the determination result input by the input means; A sensor controller comprising:
The vehicle shape recognition means
For each light emitting / receiving scan operation,
For continuous light shielding regions in which the number of optical axes determined to be in a light shielding state by the determining means exceeds the predetermined number of optical axes, it is determined that the vehicle is positioned within those optical axes,
For continuous light incident areas where the optical axis determined to be in the light incident state by the determination means continues for a number exceeding the predetermined optical axis number, it is determined that the vehicle is not located within those optical axes,
Further, among the non-continuous areas in which the optical axes determined to be in the light incident state or the light shielding state by the determining means do not exceed the predetermined number of optical axes, the predetermined axis adjacent to the continuous light shielding area is the optical axis. First recognition means for determining that the vehicle is located within,
In continuous light emitting / receiving scan operation,
A second recognizing unit that determines that the vehicle is positioned within the optical axis for a non-continuous region positioned within a predetermined range with respect to a region determined to be a vehicle by another continuous light projecting and receiving scan operation;
A sensor controller that recognizes the shape of the vehicle based on an area where the vehicle is determined to be located by the first recognition unit and the second recognition unit.
前記各投受光スキャン動作ごとに、前記車両が位置すると判断された領域を記憶する記憶手段と、
前記各投受光スキャン動作ごとに、前記記憶手段に記憶された領域の上端部と下端部とを特定する特定手段を備え、
前記車両形状認識手段は、前記各投受光スキャン動作ごとに前記特定手段により特定された上端部及び下端部を、連続する投受光スキャン動作において前記上端部同士及び前記下端部同士でつなぎ合わせることで車両の形状を認識することを特徴とする請求項8記載のセンサコントローラ。
Storage means for storing an area where the vehicle is determined to be located for each light emitting / receiving scan operation;
For each of the light projecting / receiving light scanning operations, a specifying unit for specifying an upper end portion and a lower end portion of an area stored in the storage unit is provided.
The vehicle shape recognizing means connects the upper end portion and the lower end portion specified by the specifying means for each of the light projecting / receiving light scanning operations by connecting the upper end portions and the lower end portions in a continuous light projecting / receiving light scanning operation. The sensor controller according to claim 8, wherein the shape of the vehicle is recognized.
JP2004284791A 2004-09-29 2004-09-29 Vehicle shape recognition device, car wash machine and sensor controller Active JP4401920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284791A JP4401920B2 (en) 2004-09-29 2004-09-29 Vehicle shape recognition device, car wash machine and sensor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284791A JP4401920B2 (en) 2004-09-29 2004-09-29 Vehicle shape recognition device, car wash machine and sensor controller

Publications (2)

Publication Number Publication Date
JP2006098218A true JP2006098218A (en) 2006-04-13
JP4401920B2 JP4401920B2 (en) 2010-01-20

Family

ID=36238183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284791A Active JP4401920B2 (en) 2004-09-29 2004-09-29 Vehicle shape recognition device, car wash machine and sensor controller

Country Status (1)

Country Link
JP (1) JP4401920B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013077A (en) * 2006-07-07 2008-01-24 Mk Seiko Co Ltd Car washing method in car washing machine
JP2008019573A (en) * 2006-07-11 2008-01-31 Tokyu Car Corp Method and device for discriminating projection of vehicle in mechanical parking apparatus
JP2021066384A (en) * 2019-10-25 2021-04-30 株式会社ダイフク Car washing machine
JP2021127048A (en) * 2020-02-14 2021-09-02 エムケー精工株式会社 Vehicle processing device and object detection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013077A (en) * 2006-07-07 2008-01-24 Mk Seiko Co Ltd Car washing method in car washing machine
JP4739135B2 (en) * 2006-07-07 2011-08-03 エムケー精工株式会社 Car wash method in car wash machine
JP2008019573A (en) * 2006-07-11 2008-01-31 Tokyu Car Corp Method and device for discriminating projection of vehicle in mechanical parking apparatus
JP2021066384A (en) * 2019-10-25 2021-04-30 株式会社ダイフク Car washing machine
JP7264010B2 (en) 2019-10-25 2023-04-25 株式会社ダイフク car wash machine
JP2021127048A (en) * 2020-02-14 2021-09-02 エムケー精工株式会社 Vehicle processing device and object detection method
JP7412837B2 (en) 2020-02-14 2024-01-15 エムケー精工株式会社 Vehicle processing device and object detection method

Also Published As

Publication number Publication date
JP4401920B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US8415609B2 (en) Safety photoelectric switch
JP4810763B2 (en) Distance measuring device
JP2006308482A (en) Detector
US20050154503A1 (en) Mobile vehicle sensor array
JP2002215238A (en) Obstruction detection sensor for unmanned carrier
JP4401920B2 (en) Vehicle shape recognition device, car wash machine and sensor controller
JP4339013B2 (en) Multi-optical axis photoelectric sensor, vehicle shape recognition device, and car wash machine
JP6771984B2 (en) Car shape detection device and car wash machine equipped with this device
JP2016060452A (en) Vehicle washer
JP5492598B2 (en) Car shape detection device and car wash machine equipped with the same
JP2003280737A (en) Movable device
KR20200014346A (en) Lidar distance measurement with scanner and flash light source
JP3902026B2 (en) Car shape detection device and car wash machine equipped with the same
SE1250316A1 (en) Optical sensor
JP5025274B2 (en) Vehicle length discrimination device
US8928894B2 (en) Optical sensor
JP7041554B2 (en) Car shape detection device and car wash machine equipped with the same device
JP6821427B2 (en) Car wash device
JP3718982B2 (en) Gate-type car wash machine
JP4170925B2 (en) Multi-optical axis photoelectric sensor and collision prevention sensor
JP5492665B2 (en) Car shape detection device and car wash machine equipped with the same
JP5400644B2 (en) Multi-optical axis photoelectric sensor, shape recognition device
JP2019095327A (en) Vehicle shape detecting device and car washer equipped with the same
JP7328737B2 (en) vehicle processing equipment
JPH10253769A (en) Object detector and vehicle detector

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250