JP5492665B2 - Car shape detection device and car wash machine equipped with the same - Google Patents

Car shape detection device and car wash machine equipped with the same Download PDF

Info

Publication number
JP5492665B2
JP5492665B2 JP2010126395A JP2010126395A JP5492665B2 JP 5492665 B2 JP5492665 B2 JP 5492665B2 JP 2010126395 A JP2010126395 A JP 2010126395A JP 2010126395 A JP2010126395 A JP 2010126395A JP 5492665 B2 JP5492665 B2 JP 5492665B2
Authority
JP
Japan
Prior art keywords
light
light emitting
car wash
optical axis
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010126395A
Other languages
Japanese (ja)
Other versions
JP2011252777A (en
Inventor
利明 宮沢
良平 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MK Seiko Co Ltd
Original Assignee
MK Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MK Seiko Co Ltd filed Critical MK Seiko Co Ltd
Priority to JP2010126395A priority Critical patent/JP5492665B2/en
Publication of JP2011252777A publication Critical patent/JP2011252777A/en
Application granted granted Critical
Publication of JP5492665B2 publication Critical patent/JP5492665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Description

本発明は、自動車の形状を検出する車形検出装置、及び同装置を備え、洗浄する自動車車体の形状に応じて、洗浄ブラシ,乾燥ノズル等の洗車処理装置を作用させて自動車車体の洗浄,乾燥等の処理を施す洗車機に関する。   The present invention includes a vehicle shape detection device for detecting the shape of an automobile, and the same device, and cleaning the automobile body by operating a car wash processing device such as a cleaning brush and a drying nozzle according to the shape of the automobile body to be cleaned. The present invention relates to a car wash machine that performs processing such as drying.

この種の装置として、特許文献1に記載された車形検出装置を提案している。この装置は、自動車を幅方向に挟んで発光部と受光部を配置した車体検出器と、この車体検出器を自動車の長さ方向に移動させる走行手段と、走行手段による移動距離を検出する移動距離検出手段とを備え、車体検出器が単位距離走行する毎に車体を検出し、車形データを作成するものである。   As this type of device, a vehicle shape detection device described in Patent Document 1 is proposed. This device includes a vehicle body detector in which a light emitting unit and a light receiving unit are arranged with a vehicle sandwiched in a width direction, traveling means for moving the vehicle body detector in the length direction of the vehicle, and movement for detecting a moving distance by the traveling unit. A distance detection means for detecting the vehicle body each time the vehicle body detector travels a unit distance and creating vehicle shape data.

車体検出器は、上下に複数の発光素子を配列した発光部と、発光素子と対をなす受光素子を配列した受光部とからなり、各発光素子と受光素子との間に形成される光軸の透光/遮光によって車体の有無を検出する。光軸の透光/遮光は、受光素子での受光レベルが所定のしきい値に達するか否かで判定され、透光した光軸を「0」、遮光した光軸を「1」として2値画像データが作成される。   The vehicle body detector is composed of a light emitting section in which a plurality of light emitting elements are arranged above and below, and a light receiving section in which light receiving elements that are paired with the light emitting elements are arranged, and an optical axis formed between each light emitting element and the light receiving element. The presence / absence of the vehicle body is detected by the light transmission / light shielding. The light transmission / light-blocking of the optical axis is determined by whether or not the light-receiving level at the light-receiving element reaches a predetermined threshold value. The light-transmitting optical axis is “0” and the light-blocking optical axis is “1”. Value image data is created.

ところで、特許文献1では、車体検出動作と洗車動作とが並行して実行される洗車コースの場合、洗浄による飛散水や湯気等が発生し車体検出器の間に入り込むため、発光素子からの光信号が減衰して十分な発光量が得られず、受光素子で受光することができなかった。これは、発光素子や受光素子が汚れている場合も同じであり、いずれも正確な車形データを検出することが困難であった。   By the way, in Patent Document 1, in the case of a car wash course in which the vehicle body detection operation and the car wash operation are performed in parallel, splashed water, steam, etc. are generated by the washing and enter between the vehicle body detectors. The signal was attenuated and a sufficient amount of light emission could not be obtained, and the light receiving element could not receive the light. This is the same even when the light emitting element and the light receiving element are dirty, and it is difficult to detect accurate vehicle shape data in both cases.

特許第4047672号公報Japanese Patent No. 4047672

本発明の課題は、洗浄による飛散水や湯気の発生あるいは素子の汚れ等によって光量が不足した場合であっても、車形データを作成することができる車形検出装置及びこの装置を備えた洗車機を提供するものである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a vehicle shape detection device capable of creating vehicle shape data even when the amount of light is insufficient due to generation of splashed water or steam due to washing, contamination of elements, or the like, and a car wash equipped with this device The machine is provided.

このような課題を解決するために本発明は、上下に複数の発光素子を配置した発光部と、該発光部の発光素子と対向する複数の受光素子を上下に配置した受光部とを自動車の幅方向に挟んで対向させた車体検出装置と、該車体検出装置の発光部と受光部の各素子間に形成される光軸の透光/遮光により車体の有無を検出する車形制御部とを備えた車形検出装置において、該車形制御部は、前記発光部における1つの発光素子を点灯させて水平に対向した受光素子で光信号を授受する光軸と、下に隣接した受光素子で光信号を授受する光軸と、上に隣接した受光素子で光信号を授受する光軸とを形成し、各光軸の透光/遮光を検出して車体有無を判定する通常検出モードと、前記発光部における隣接した2つ以上の発光素子を1組とし、この発光組の2つの発光素子を同時に点灯させて一方の発光素子と水平に対向する受光素子で光信号を授受する光軸と、他方の発光素子と水平に対向する受光素子で光信号を授受する光軸と、一方の発光素子と水平に対向する受光素子と上または下に隣接する受光素子で光信号を授受する光軸とを形成し、各光軸の透光/遮光を検出して車体有無を判定する強光検出モードとを実行可能にし、各検出モードにおける各光軸の透光/遮光を判断するための判別しきい値を設定するしきい値設定部を備え、該しきい値設定部は、光軸を構成する発光素子と受光素子との間で、発光素子の発光前と発光後の差分受光レベルに対して所定割合を乗じてしきい値を設定し、該所定割合を通常検出モードより強光検出モードを小さくしたものである。 In order to solve such a problem, the present invention provides a light emitting unit in which a plurality of light emitting elements are arranged above and below, and a light receiving unit in which a plurality of light receiving elements opposed to the light emitting elements of the light emitting unit are arranged up and down. A vehicle body detection device opposed to each other across the width direction, and a vehicle shape control unit that detects the presence or absence of the vehicle body by translucency / light shielding of an optical axis formed between each element of the light emitting unit and the light receiving unit of the vehicle body detection device; In the vehicle shape detection apparatus, the vehicle shape control unit lights up one light emitting element in the light emitting unit and transmits and receives an optical signal with a horizontally opposed light receiving element, and a light receiving element adjacent below A normal detection mode in which an optical axis for transmitting / receiving an optical signal and an optical axis for transmitting / receiving an optical signal by an adjacent light receiving element are formed, and the presence / absence of a vehicle body is determined by detecting light transmission / shading of each optical axis Two or more adjacent light emitting elements in the light emitting section are set as one set. Light that transmits and receives an optical signal by a light receiving element that is horizontally opposed to the other light emitting element, and an optical axis that transmits and receives an optical signal by a light receiving element that is horizontally opposed to one of the light emitting elements. Forming a shaft, a light receiving element horizontally facing one of the light emitting elements, and an optical axis for transmitting and receiving an optical signal by a light receiving element adjacent to the upper or lower side, and detecting the translucency / shading of each optical axis to detect the presence or absence of the vehicle body And a threshold value setting unit for setting a determination threshold value for determining light transmission / light shielding of each optical axis in each detection mode. The unit sets a threshold value between the light-emitting element and the light-receiving element constituting the optical axis by multiplying a predetermined light-reception level before and after the light emission of the light-emitting element by a predetermined ratio, The strong light detection mode is made smaller than the detection mode.

また、門型状に形成した洗車機本体内に、洗浄ブラシ,乾燥ノズル等の洗車処理装置を備え、洗車機本体と洗浄する自動車とを相対移動させて自動車の洗浄を行う洗車機において、上記車形検出装置と、該車形検出装置で検出した車体に対して前記洗車処理装置を制御する洗車制御部とを備えた。   Further, in the car wash machine formed in a portal shape, the car wash processing apparatus including a washing brush, a drying nozzle, and the like, and washing the car by moving the car wash machine body and the car to be washed relative to each other, A car shape detection device and a car wash control unit for controlling the car wash processing device with respect to a vehicle body detected by the car shape detection device.

この洗車機において、車形検出動作と洗浄動作を同時に実行する洗車コースを備え、該洗車コースを実行するときに強光検出モードを実行して車体検出を行うようにした。車形制御部は、しきい値設定部で差分受光レベルが所定値未満となる受光素子が複数個連続したら発光量不足と判断して、強光検出モードを実行して車体検出を行うようにしてもよい。また、車形制御部は、通常検出モードと強光検出モードを交互に実行して車体検出を行うようにしてもよい。 The car wash machine includes a car wash course that simultaneously executes the car shape detection operation and the washing operation, and when executing the car wash course, the strong light detection mode is executed to detect the vehicle body. The vehicle shape control unit determines that the light emission amount is insufficient when a plurality of light receiving elements whose differential light reception level is less than the predetermined value are consecutive in the threshold setting unit, and executes the strong light detection mode to perform vehicle body detection. May be. Further, the vehicle shape control unit may perform the vehicle body detection by alternately executing the normal detection mode and the strong light detection mode .

本発明によれば、発光素子を2つ以上同時に発光させることで発光側の光量を上げることができるので、洗浄による飛沫や湯気の発生あるいは素子の汚れ等によって光量が不足した場合であっても、車体検出が可能になる。   According to the present invention, since the amount of light on the light emitting side can be increased by causing two or more light emitting elements to emit light simultaneously, even if the amount of light is insufficient due to generation of splashes or steam due to cleaning or contamination of the element. Car body detection becomes possible.

本発明を門型洗車機に使用した例を示す説明図である。It is explanatory drawing which shows the example which used this invention for the gate type car wash machine. 車体検出装置5の構成及び制御系を示すブロック図である。2 is a block diagram showing a configuration and a control system of a vehicle body detection device 5. FIG. 各車体検出モードの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of each vehicle body detection mode. 通常モードによるしきい値設定処理を示すフローチャートである。It is a flowchart which shows the threshold value setting process by normal mode. 通常モードのしきい値設定処理によるしきい値データである。This is threshold data obtained by normal mode threshold setting processing. 強光モードによるしきい値設定動作を示すフローチャートである。It is a flowchart which shows the threshold value setting operation | movement by a strong light mode. 強光モードのしきい値設定処理によるしきい値データである。This is threshold data obtained by threshold setting processing in the strong light mode. 車形検出処理を示すフローチャートである。It is a flowchart which shows a vehicle shape detection process. 通常モードの車形検出処理動作による2値データである。It is binary data by the vehicle shape detection processing operation in the normal mode. 強光モードの車形検出処理動作による2値データである。It is binary data by the vehicle shape detection processing operation in the strong light mode. 洗車処理動作を示すフローチャートである。It is a flowchart which shows a car wash processing operation.

以下、図面を基に本発明の実施態様について説明する。
図1は本発明を門型洗車機に使用した例を示す説明図である。
1は門型洗車機で、レール2,2間に停車させた自動車Aを跨いで往復走行する。洗車機1には、主に自動車の上面を処理する上面ブラシ・上面乾燥ノズル・上面ジェットノズル等の上面処理装置3と、主に自動車の側面を処理する側面処理装置4を備え、これらの処理装置を自動車Aの形状に沿って作用させて車体を自動洗浄する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing an example in which the present invention is used in a gate type car wash machine.
Reference numeral 1 denotes a gate-type car wash machine that travels back and forth across the automobile A stopped between the rails 2 and 2. The car wash machine 1 includes an upper surface processing device 3 such as an upper surface brush, an upper surface drying nozzle, and an upper surface jet nozzle that mainly process the upper surface of the automobile, and a side surface processing device 4 that mainly processes the side surface of the automobile. The apparatus is operated along the shape of the automobile A to automatically clean the vehicle body.

5は車体検出装置で、洗車機1の前方に備えられ自動車Aを幅方向に挟んでそれぞれ上下に複数の発光素子と受光素子とを対向させてなり、発光・受光素子間で授受される光信号が自動車Aの車体によって遮られるか否かにより車体を検出する。6は洗車機1の走行輪7の回転を検出する走行エンコーダであり、洗車機1が単位距離走行するごとにパルス信号を出力し、このパルス信号をカウントすることにより洗車機1の移動距離を検出することができる。   Reference numeral 5 denotes a vehicle body detection device, which is provided in front of the car wash machine 1 and has a plurality of light emitting elements and light receiving elements facing each other up and down across the vehicle A in the width direction, and light transmitted and received between the light emitting and light receiving elements. The vehicle body is detected based on whether the signal is blocked by the vehicle body of the automobile A or not. Reference numeral 6 denotes a travel encoder that detects the rotation of the traveling wheel 7 of the car wash machine 1. The car encoder 1 outputs a pulse signal every time the car wash machine 1 travels a unit distance, and counts the pulse signal to determine the travel distance of the car wash machine 1. Can be detected.

図2は車体検出装置5の構成及び制御系を示すブロック図である。
車体検出装置5は、発光素子L1〜Lnを上下に複数配列させた発光部5aと、発光素子L1〜Lnと対をなす受光素子R1〜Rnを複数配列させた受光部5bとで構成され、発光部5aと受光部5bとの間で光信号(赤外線)を授受している。この車体検出装置5は、発光部5aの発光素子と受光部5bの受光素子とが1対1で対応するよう配列させてあり、水平に対向する素子同士で光軸を構成するのが基本であるが、1つの発光素子からの光信号はある程度の角度で拡散されるため、対応する受光素子と隣接した別の受光素子でも光軸を構成することが可能になる。8は発光部5aの走査駆動部で、車体検出時に発光素子を上から下(もしくは下から上)に順次点灯する。9は受光部5bの走査駆動部で、発光素子の走査に対応する受光素子を順次受光状態とする。
FIG. 2 is a block diagram showing the configuration and control system of the vehicle body detection device 5.
The vehicle body detection device 5 includes a light emitting unit 5a in which a plurality of light emitting elements L1 to Ln are arranged vertically, and a light receiving unit 5b in which a plurality of light receiving elements R1 to Rn paired with the light emitting elements L1 to Ln are arranged. Optical signals (infrared rays) are exchanged between the light emitting unit 5a and the light receiving unit 5b. In this vehicle body detection device 5, the light emitting elements of the light emitting section 5a and the light receiving elements of the light receiving section 5b are arranged so as to correspond one-to-one, and the optical axis is basically constituted by horizontally facing elements. However, since an optical signal from one light emitting element is diffused at a certain angle, an optical axis can be formed by another light receiving element adjacent to the corresponding light receiving element. A scanning drive unit 8 of the light emitting unit 5a sequentially turns on the light emitting elements from the top to the bottom (or from the bottom to the top) when detecting the vehicle body. Reference numeral 9 denotes a scanning drive unit of the light receiving unit 5b, which sequentially sets the light receiving elements corresponding to the scanning of the light emitting elements to a light receiving state.

10はマイクロコンピュータを含む車形制御部で、各走査駆動部8・9を周期的に動作させて自動車の上面形状を検出するものである。車形制御部10において、11は走行位置検出部で、走行エンコーダ6からのパルス信号により洗車機1の走行位置を検出する。12は受光検出部で、各受光素子での受光レベルを検出する。13はしきい値設定部で、発光部5aと受光部5bとの間に自動車が存在しない状態で各受光素子が受信する受光レベルに基づいて光軸の透光/遮光を判断する判別しきい値を設定する。14は車体検出部で、所定周期毎に走査駆動部8,9を動作させ、受光検出部12で検出される各受光素子の受光レベルをしきい値設定部13で設定した判別しきい値と比較して各光軸の透光/遮光を判定する。15は車形データ検出部で、走行位置検出部11から与えられる洗車機1の走行位置と車体検出部14から与えられる各光軸の透光/遮光から2値画像データを作成する。16は画像処理部で、車形データ検出部15で作成した車形データを解析処理し、洗車用データを作成する。17はデータ記憶部で、走行位置検出部11で検出される洗車機の走行位置データ・しきい値設定部13で設定されるしきい値・車形データ検出部15で作成される2値画像データ・画像処理部16で抽出される洗車用車形データが記憶される。   A vehicle shape control unit 10 including a microcomputer detects the upper surface shape of the automobile by periodically operating the scanning drive units 8 and 9. In the vehicle shape control unit 10, reference numeral 11 denotes a travel position detection unit that detects the travel position of the car wash machine 1 based on a pulse signal from the travel encoder 6. Reference numeral 12 denotes a light receiving detector that detects the light receiving level of each light receiving element. Reference numeral 13 denotes a threshold value setting unit for determining whether the optical axis is translucent / shielded based on the received light level received by each light receiving element in the absence of an automobile between the light emitting unit 5a and the light receiving unit 5b. Set the value. Reference numeral 14 denotes a vehicle body detection unit that operates the scanning driving units 8 and 9 at predetermined intervals, and the threshold value setting unit 13 sets the light reception level of each light receiving element detected by the light reception detection unit 12. The light transmission / light shielding of each optical axis is determined by comparison. Reference numeral 15 denotes a vehicle shape data detection unit, which creates binary image data from the travel position of the car wash machine 1 provided from the travel position detection unit 11 and the translucency / light shielding of each optical axis provided from the vehicle body detection unit 14. An image processing unit 16 analyzes the vehicle shape data created by the vehicle shape data detection unit 15 and creates car wash data. Reference numeral 17 denotes a data storage unit, which is a binary image created by the vehicle position data / detection unit 15 set by the vehicle position data / threshold setting unit 13 detected by the vehicle position detection unit 11. The car shape data for car washing extracted by the data / image processing unit 16 is stored.

18は洗車機1の洗車制御部で、洗車動作のプログラムに従って洗車駆動部19を介して上面洗浄装置3、側面洗浄装置4、洗車機1の走行モータ等を駆動し、洗車機1を走行させつつ車体の洗浄・乾燥といった洗車処理をさせるもので、特に作成される洗車用車形データに基づいて上面洗浄装置3を昇降制御し、これらの洗車処理装置が車体面を忠実にトレースするよう操作する。20は操作パネルで、洗車機1前面に設けられ洗車内容の選択入力や洗車開始入力を行うものである。   A car wash control unit 18 of the car wash machine 1 drives the upper surface washing device 3, the side surface washing device 4, the travel motor of the car wash machine 1 and the like through the car wash drive unit 19 in accordance with a car wash operation program, thereby causing the car wash machine 1 to run. Car wash processing such as washing and drying of the car body, while the upper surface cleaning device 3 is controlled to move up and down based on the car wash car shape data that is created, and these car wash treatment devices are operated to faithfully trace the car body surface. To do. Reference numeral 20 denotes an operation panel which is provided on the front surface of the car wash machine 1 and performs selection input of car wash contents and car wash start input.

操作パネル20は、洗車コースとして洗車機1の1往復走行に伴い洗浄と乾燥を実行する1往復洗車コースと、洗車機1の2往復走行に伴い洗浄と乾燥を実行する2往復洗車コースとが選択できる。1往復洗車コースは、洗車機1の1往行で車形検出と洗浄を同時に行い、1復行で乾燥を行う。2往復洗車コースは、洗車機1の1往行で車形検出を行い、1復行と2往行で洗浄、2復行で乾燥を行う。尚、ジェット洗浄、撥水処理等のトッピングメニューキーや装備品を指定する装備品キーを備えてもよい。   The operation panel 20 includes, as a car wash course, a one-way car wash course that performs cleaning and drying with one round trip of the car wash machine 1 and a two-way car wash course that performs cleaning and drying with two round trips of the car wash machine 1. You can choose. In the one-way car washing course, the car shape detection and washing are performed simultaneously in one go of the car wash machine 1, and drying is carried out in one go. In the two-way car wash course, the car shape is detected in one way of the car wash machine 1, the washing is performed in the first and second trips, and the drying is performed in the second trip. Note that a topping menu key for jet cleaning, water repellent treatment, etc., and an equipment key for designating equipment may be provided.

続いて、車形制御部10の動作について説明する。
本装置では、1往復洗車と2往復洗車が選択できる。このうち、2往復洗車コースが選択された場合、車形検出工程が単独で実行されるため、飛沫や湯気等の影響が小さいとして通常モードによる車形検出が行われる。一方、1往復洗車コースが選択された場合、車形検出工程と洗車工程が同時に実行されるため、飛沫や湯気等の影響が大きいとして強光モードによる車形検出が行われる。
Next, the operation of the vehicle shape control unit 10 will be described.
In this apparatus, one-way car wash and two-way car wash can be selected. Among these, when the two-way car wash course is selected, the vehicle shape detection process is executed alone, and therefore the vehicle shape detection in the normal mode is performed on the assumption that the influence of splashes and steam is small. On the other hand, when one round-trip car wash course is selected, the car shape detection process and the car wash process are executed at the same time, so that the car shape detection in the strong light mode is performed on the assumption that the influence of splashes, steam, etc. is great.

図3は各モードによる車形検出の概要を示す説明図である。
通常モードは、特許第4047672号で提案した車形検出であり、図3(a)に示すように、1つの発光素子Laを点灯させて水平に対向した受光素子Raで光信号を授受する光軸Baと、受光素子Raの下に隣接した受光素子Ra+1で光信号を授受する光軸Bbと、受光素子Raの上に隣接した受光素子Ra-1で光信号を授受する光軸Bcとを形成し、各光軸の透光/遮光を検出して発・受光素子の高さの車体有無と発・受光素子の中間高さの車体有無を判定するものである。1つの発光素子に対して3つの光軸が形成され、素子数の約2倍の分解能で車体検出が可能となる。
FIG. 3 is an explanatory diagram showing an outline of vehicle shape detection in each mode.
The normal mode is vehicle shape detection proposed in Japanese Patent No. 4047672. As shown in FIG. 3A, one light emitting element La is turned on and light is transmitted and received by a horizontally opposed light receiving element Ra. An optical axis Bb that transmits and receives an optical signal with the axis Ba, a light receiving element Ra + 1 adjacent to the lower side of the light receiving element Ra, and an optical axis Bc that transmits and receives an optical signal with the light receiving element Ra-1 adjacent to the upper side of the light receiving element Ra , And the presence / absence of the vehicle body at the height of the light emitting / receiving element and the vehicle body at the intermediate height of the light emitting / receiving element are determined by detecting light transmission / light shielding of each optical axis. Three optical axes are formed for one light emitting element, and the vehicle body can be detected with a resolution approximately twice the number of elements.

強光モードは、本発明で提案する車形検出であり、図3(b)に示すように、2つの発光素子La・La+1を同時に点灯させて発光素子Laと水平に対向した受光素子Raで光信号を授受する光軸Bdと、発光素子La+1と水平に対向した受光素子Ra+1で光信号を授受する光軸Beと、受光素子Raの上に隣接した受光素子Ra-1で光信号を授受する光軸Bfとを形成し、各光軸の透光/遮光を検出して発・受光素子の高さの車体有無と発・受光素子の中間高さの車体有無を判定するものである。2つの発光素子に対して3つの光軸が形成され、素子数の約1.5倍の分解能で車体検出が可能になる。また、2つの発光素子を同時に発光させることから光量を倍増させた車体検出が可能になる。   The strong light mode is vehicle shape detection proposed in the present invention. As shown in FIG. 3B, the two light emitting elements La and La + 1 are simultaneously turned on, and the light receiving element facing the light emitting element La horizontally. An optical axis Bd for transmitting / receiving an optical signal by Ra, an optical axis Be for transmitting / receiving an optical signal by a light receiving element Ra + 1 horizontally facing the light emitting element La + 1, and a light receiving element Ra− adjacent to the light receiving element Ra−. 1 is used to form an optical axis Bf for transmitting and receiving an optical signal, and light transmission / shading of each optical axis is detected to determine whether the light emitting / receiving element is at the height of the vehicle body and whether the light emitting / receiving element is at an intermediate height. Judgment. Three optical axes are formed for the two light emitting elements, and the vehicle body can be detected with a resolution about 1.5 times the number of elements. In addition, since the two light emitting elements emit light at the same time, it is possible to detect the vehicle body with the light quantity doubled.

以下、各モード別に車形検出の具体的な動作を説明する。
車形検出を行うにあたり、各光軸の判別しきい値を設定する。このしきい値設定は、各発光素子や受光素子の性能や精度に応じて透光/遮光を判別する基準値となるので、汚れの付着等による受光レベル低下も許容できるように車体検出前に必ず各光軸毎に設定される。
Hereinafter, specific operation of vehicle shape detection will be described for each mode.
In performing vehicle shape detection, a discrimination threshold value for each optical axis is set. This threshold value setting is a reference value for discriminating light transmission / light shielding according to the performance and accuracy of each light emitting element and light receiving element. It must be set for each optical axis.

<通常モードのしきい値設定処理>
図4は通常モードのしきい値設定処理を示すフローチャート図である。
まず、車体検出装置5の発光部5aと受光部5bの間に自動車が入り込んでない状態で、受光部5bの走査駆動部9を駆動し、発光素子L1を発光させる前の受光素子R1の受光レベルLvaを取り込む(1)。次に、発光部5aの走査駆動部8と受光装置5bの走査駆動部9を駆動し、発光素子L1を発光させた時の受光素子R1の受光レベルLvbを取り込む(2)。その後、処理(1)で取り込んだ受光レベルLvaと処理(2)で取り込んだ受光レベルLvbとの差分受光レベルLvcを算出し(3)、この差分受光レベルLvcに対して所定割合p1(=30%)をしきい値に設定し(4)、光軸Ba1の判別しきい値Sa1としてデータ記憶部17に記憶する(5)。こうした処理(1)〜(5)までの基本動作を素子数分繰り返し、光軸Baの判別しきい値Saを設定する(6)。
<Threshold setting processing in normal mode>
FIG. 4 is a flowchart showing threshold setting processing in the normal mode.
First, the light receiving level of the light receiving element R1 before the light emitting element L1 emits light by driving the scanning drive unit 9 of the light receiving part 5b in a state where the automobile is not inserted between the light emitting part 5a and the light receiving part 5b of the vehicle body detection device 5. Lva is captured (1). Next, the scan drive unit 8 of the light emitting unit 5a and the scan drive unit 9 of the light receiving device 5b are driven to capture the light reception level Lvb of the light receiving element R1 when the light emitting element L1 emits light (2). Thereafter, a difference light reception level Lvc between the light reception level Lva captured in the process (1) and the light reception level Lvb captured in the process (2) is calculated (3), and a predetermined ratio p1 (= 30) with respect to the difference light reception level Lvc. %) Is set as a threshold value (4), and stored in the data storage unit 17 as the discrimination threshold value Sa1 of the optical axis Ba1 (5). Such basic operations (1) to (5) are repeated for the number of elements, and a discrimination threshold value Sa for the optical axis Ba is set (6).

また同様に、処理(1)〜(5)までの基本動作を繰り返し、光軸Bbの判別しきい値Sbと光軸Bcの判別しきい値Scを設定していく。このとき、発光部5aの走査駆動部8と受光装置5bの走査駆動部9のタイミングをずらして受光レベルを取り込むため、発光素子L1の光軸Bc1と発光素子Lnの光軸Bbnは形成されない。よって、処理(1)〜(5)までの基本動作を素子数n−1分繰り返すことで各しきい値を得ることになり、結果的にデータ記憶部17には、図5に示すしきい値データが作成される。   Similarly, the basic operations of the processes (1) to (5) are repeated to set the discrimination threshold value Sb for the optical axis Bb and the discrimination threshold value Sc for the optical axis Bc. At this time, since the light receiving level is captured by shifting the timing of the scanning drive unit 8 of the light emitting unit 5a and the scanning drive unit 9 of the light receiving device 5b, the optical axis Bc1 of the light emitting element L1 and the optical axis Bbn of the light emitting element Ln are not formed. Therefore, the threshold values are obtained by repeating the basic operations from the processes (1) to (5) for the number of elements n−1. As a result, the threshold shown in FIG. Value data is created.

<強光モードのしきい値設定処理>
図6は強光モードのしきい値設定処理を示すフローチャート図である。
まず、車体検出装置5の発光部5aと受光部5bの間に自動車が入り込んでない状態で、受光部5bの走査駆動部9を駆動し、発光素子を発光させる前の受光素子R1の受光レベルLvaを取り込む(7)。次に、発光部5aの走査駆動部8と受光装置5bの走査駆動部9を駆動し、発光素子L1・L2を発光させた時の受光素子R1の受光レベルLvbを取り込む(8)。その後、処理(7)で取り込んだ受光レベルLvaと処理(8)で取り込んだ受光レベルLvbとの差分受光レベルLvcを算出し(9)、この差分受光レベルLvcに対して所定割合p2(=5%)をしきい値に設定し(10)、光軸Bd1の判別しきい値Sd1としてデータ記憶部18に記憶する(11)。こうした処理(7)〜(11)までの基本動作を繰り返し、光軸Bdの判別しきい値Sdを設定する(12)。
<Threshold setting processing in strong light mode>
FIG. 6 is a flowchart showing threshold setting processing in the strong light mode.
First, the light receiving level Lva of the light receiving element R1 before driving the scanning drive unit 9 of the light receiving unit 5b and causing the light emitting element to emit light without a vehicle entering between the light emitting unit 5a and the light receiving unit 5b of the vehicle body detection device 5. (7). Next, the scanning driving unit 8 of the light emitting unit 5a and the scanning driving unit 9 of the light receiving device 5b are driven to capture the light reception level Lvb of the light receiving element R1 when the light emitting elements L1 and L2 are caused to emit light (8). Thereafter, a difference light reception level Lvc between the light reception level Lva captured in the process (7) and the light reception level Lvb captured in the process (8) is calculated (9), and a predetermined ratio p2 (= 5) with respect to the difference light reception level Lvc. %) Is set as a threshold value (10), and is stored in the data storage unit 18 as the discrimination threshold value Sd1 of the optical axis Bd1 (11). Such basic operations (7) to (11) are repeated to set the discrimination threshold value Sd of the optical axis Bd (12).

また同様に、処理(7)〜(11)までの基本動作を繰り返し、光軸Beの判別しきい値Seと光軸Bfの判別しきい値Sfを設定していく。このとき、発光部5aの走査駆動部8と受光装置5bの走査駆動部9のタイミングをずらして受光レベルを取り込むため、発光素子L1の光軸Bf1は形成されない。また、強光モードでは発光素子を2つ同時に点灯させ1つの対応する受光素子で受光しているので、形成される光軸はBd1,Bd3のように発光素子の奇数番に相当する数となる。よって、処理(7)〜(11)までの基本動作を素子数n/2−1分繰り返すことで各しきい値を得ることになり、結果的にデータ記憶部17には、図7に示すしきい値データが作成される。   Similarly, the basic operations of the processes (7) to (11) are repeated to set the determination threshold value Se for the optical axis Be and the determination threshold value Sf for the optical axis Bf. At this time, since the light receiving level is captured by shifting the timing of the scanning drive unit 8 of the light emitting unit 5a and the scanning drive unit 9 of the light receiving device 5b, the optical axis Bf1 of the light emitting element L1 is not formed. In the strong light mode, since two light emitting elements are turned on simultaneously and received by one corresponding light receiving element, the number of optical axes formed is a number corresponding to an odd number of the light emitting elements such as Bd1 and Bd3. . Therefore, the threshold values are obtained by repeating the basic operations from the processes (7) to (11) for the number of elements n / 2-1, and as a result, the data storage unit 17 has the configuration shown in FIG. Threshold data is created.

こうして各光軸の判別しきい値が設定され、設定される各しきい値の総数は、通常モードで素子数の約3倍(100対の素子があれば298個)、強光モードで素子数の約1.5倍(100対の素子であれば146個)となる。このように、検出を行う各素子間のしきい値を一つ一つ設定するのは、各素子の器差という問題もあるが、各素子やそのカバー等の汚れ等で素子間の通光条件が異なるからで、正確な車体検出ために必要となる。   Thus, the discrimination threshold value for each optical axis is set, and the total number of threshold values set is about three times the number of elements in the normal mode (298 elements if there are 100 pairs of elements). About 1.5 times the number (146 for 100 pairs of elements). In this way, setting the threshold value between each element to be detected individually has the problem of instrumental error of each element, but the light transmission between elements due to dirt on each element and its cover etc. Because the conditions are different, it is necessary for accurate car body detection.

尚、通常モードにおける受光達成率を所定割合p1として30%に設定し、強光モードにおける同所定割合p2を5%に設定しているが、これは車形検出を単独で実行する洗車コースでは散水や湯気等の影響が少なく光信号の減衰が小さい一方、洗浄と並行して車形検出を実行する洗車コースでは散水や湯気等の影響が懸念され光信号の減衰が大きいためである。   In addition, the light reception achievement rate in the normal mode is set to 30% as a predetermined ratio p1, and the predetermined ratio p2 in the strong light mode is set to 5%. This is because the influence of watering or steaming is small and the attenuation of the optical signal is small, while the car washing course in which the car shape detection is executed in parallel with the washing is concerned about the influence of watering or steaming and the optical signal is greatly attenuated.

次に車形検出処理について、図8のフローチャート図を用いて説明する。
車形検出処理は、通常モードと強光モードのどちらも共通で、まず前記しきい値設定処理の処理(1)〜(3)と同様の手順で、各光軸Bの差分受光レベルLvcを算出し(13)、データ記憶部18に記憶された判別しきい値Sと比較する(14)。ここで、差分受光レベルLvcが記憶された判別しきい値Sよりも高ければ透光と判断してその光軸Bに「0」の2値データを与え(15)、判別しきい値Sよりも低ければ遮光と判断して光軸Bに「1」の2値データを与えて(16)、データ記憶部17に記憶する(17)。そして、このような処理(13)〜(17)を光軸Ba・光軸Bb・光軸Bc、もしくは光軸Bd・光軸Be・光軸Bfについて実行し(18)、2値データを作成していく。
Next, the vehicle shape detection process will be described with reference to the flowchart of FIG.
The vehicle shape detection process is common to both the normal mode and the strong light mode. First, the difference light reception level Lvc of each optical axis B is determined in the same procedure as the threshold value setting processes (1) to (3). Calculate (13) and compare with the discrimination threshold S stored in the data storage unit 18 (14). Here, if the difference light reception level Lvc is higher than the stored determination threshold value S, it is determined that the light is transmitted, and binary data of “0” is given to the optical axis B (15). If it is lower, it is determined that the light is blocked, and binary data “1” is given to the optical axis B (16) and stored in the data storage unit 17 (17). Then, such processes (13) to (17) are executed for the optical axis Ba, the optical axis Bb, the optical axis Bc, or the optical axis Bd, the optical axis Be, and the optical axis Bf (18) to create binary data. I will do it.

ここで、通常モードにおける光軸Baは、発・受光素子間に車体が存在するか否かの判定基準となり、光軸Bb・光軸Bcは、発・受光素子間の中間高さに車体が存在するか否かの判定基準となる。すなわち、光軸Bbの検出結果は、その上の発・受光素子間の中間高さの2値データとしてコピーされ、光軸Bcの検出結果は、その下の発・受光素子間の中間高さの2値データとしてコピーされる。例えば、光軸Bb2の検出結果が「0」であったとき、発光素子L1−受光素子R1(光軸Ba1)と発光素子L2−受光素子R2(光軸Ba2)の中間高さに「0」の2値データがコピーされ、光軸Bc3の検出結果が「1」であったとき、発光素子L2−受光素子R2(光軸Ba2)と発光素子L3−受光素子R3(光軸Ba3)の中間高さに「1」の2値データがコピーされる。図9はこの車体検出で得られた通常モードでの2値データの例である。これにより、実際に設けられた発・受光素子の中間高さでの車体の有無を判定するので、素子の高さ位置とその中間位置とで素子数の約2倍の分解能で車体検出できる。   Here, the optical axis Ba in the normal mode is a criterion for determining whether or not a vehicle body exists between the light emitting and light receiving elements, and the optical axis Bb and the optical axis Bc are set at an intermediate height between the light emitting and light receiving elements. This is a criterion for determining whether or not it exists. That is, the detection result of the optical axis Bb is copied as binary data of the intermediate height between the light emitting / receiving elements above it, and the detection result of the optical axis Bc is the intermediate height between the light emitting / receiving elements below it. Are copied as binary data. For example, when the detection result of the optical axis Bb2 is “0”, the intermediate height between the light emitting element L1—the light receiving element R1 (optical axis Ba1) and the light emitting element L2—the light receiving element R2 (optical axis Ba2) is “0”. Is copied and the detection result of the optical axis Bc3 is “1”, the intermediate between the light emitting element L2—the light receiving element R2 (optical axis Ba2) and the light emitting element L3—the light receiving element R3 (optical axis Ba3). The binary data “1” is copied to the height. FIG. 9 is an example of binary data in the normal mode obtained by the vehicle body detection. As a result, the presence / absence of the vehicle body at the intermediate height of the light emitting / receiving elements actually provided is determined, so that the vehicle body can be detected at a resolution of about twice the number of elements at the height position of the element and its intermediate position.

また、強光モードにおける光軸Bd・Beは、発・受光素子間及び発・受光素子間の中間高さに車体が存在するか否かの判定基準となり、光軸Bfは、発・受光素子間の中間高さに車体が存在するか否かの判定基準となる。すなわち、光軸Bdの検出結果は、その下の発・受光素子間の中間高さの2値データとしてコピーされ、光軸Beの検出結果は、その上の発・受光素子間の中間高さの2値データとしてコピーされ、光軸Bfの検出結果は、その下の発・受光素子間の中間高さの2値データとしてコピーされる。例えば、光軸Bd1の検出結果が「0」であったとき、発光素子L1−受光素子R1と発光素子L2−受光素子R2の中間高さに「0」の2値データがコピーされ、光軸Be4の検出結果が「0」であったとき、発光素子L3−受光素子R3と発光素子L4−受光素子R4の中間高さに「0」の2値データがコピーされ、光軸Bf5の検出結果が「1」であったとき、発光素子L4−受光素子R4と発光素子L5−受光素子R5の中間高さに「1」の2値データがコピーされる。図10はこの車体検出で得られた強光モードでの2値データの例である。これにより、実際に設けられた発・受光素子の中間高さでの車体の有無を判定するので、素子の高さ位置とその中間位置とで素子数の約1.5倍の分解能で車体検出できる。   The optical axes Bd and Be in the strong light mode serve as a criterion for determining whether or not the vehicle body exists at an intermediate height between the light emitting / receiving elements and between the light emitting / receiving elements, and the optical axis Bf is the light emitting / receiving element. This is a criterion for determining whether or not the vehicle body exists at an intermediate height between them. That is, the detection result of the optical axis Bd is copied as binary data of the intermediate height between the light emitting and receiving elements below it, and the detection result of the optical axis Be is the intermediate height between the light emitting and receiving elements above it. The detection result of the optical axis Bf is copied as binary data of the intermediate height between the light emitting and receiving elements below. For example, when the detection result of the optical axis Bd1 is “0”, binary data of “0” is copied to the intermediate height between the light emitting element L1 and the light receiving element R1 and the light emitting element L2 and the light receiving element R2, and the optical axis When the detection result of Be4 is "0", binary data of "0" is copied to the intermediate height between the light emitting element L3-light receiving element R3 and the light emitting element L4-light receiving element R4, and the detection result of the optical axis Bf5 When “1” is “1”, binary data “1” is copied to an intermediate height between the light emitting element L4 and the light receiving element R4 and the light emitting element L5 and the light receiving element R5. FIG. 10 is an example of binary data in the strong light mode obtained by the vehicle body detection. As a result, the presence / absence of the vehicle body at the intermediate height of the light emitting / receiving element actually installed is determined, so the vehicle body detection is performed with a resolution of about 1.5 times the number of elements at the element height position and the intermediate position. it can.

こうした車形検出処理は、洗車機1が往行を終了するまで連続的に実行されることで、透光「0」、遮光「1」とする2値化された2値画像データが作成される。作成された車形データは、画像処理部17において、論理フィルターをかけられて輪郭線が抽出される。この処理は、車形データにおいて「1」が隣どうし連続して存在している連結成分の、最も下でかつ最も左に位置するセルを追跡開始点とし、この点を中心にその周りに隣接する8セルを右まわりに調べ、「0」から「1」に変わるセルを検出していき、検出したセルを輪郭線とするものである。実際には、洗車機1の走行とともに自動車の車体画像データが順次送られてきて展開されつつ輪郭線を追跡するので、自動車全体の画像データ取り込みを完了した時点で全体の輪郭線が抽出される。こうして得られた自動車の輪郭から、洗車機本体の走行x軸方向に対する自動車高さy軸方向のデータを決定した洗車用データが作成される。   Such a vehicle shape detection process is continuously executed until the car wash machine 1 finishes traveling, thereby creating binary image data that has been binarized with light transmission “0” and light shielding “1”. The The created vehicle shape data is subjected to a logical filter in the image processing unit 17 to extract a contour line. This process uses the cell located at the bottom and leftmost of the connected components in which “1” is continuously present in the car shape data as the tracking start point, and is adjacent to and around this point. The eight cells are checked clockwise, and the cell that changes from “0” to “1” is detected, and the detected cell is used as the outline. Actually, the car body image data is sequentially sent and developed as the car wash machine 1 is tracked, and the contour line is tracked. Therefore, the entire contour line is extracted when the image data capturing of the entire car is completed. . From the outline of the automobile thus obtained, car wash data in which data of the car height y-axis direction with respect to the traveling x-axis direction of the car wash machine body is determined is created.

以上のように構成する車形検出装置を採用した洗車機の動作について説明する。
自動車Aを車体検出装置5で検出されない所定の停車位置に停止させ、操作パネル20で洗車コースを選択し(20)、洗車スタートを入力すると洗車動作が開始する。洗車がスタートすると、選択した洗車コースに応じたしきい値設定処理を行う(21),(22)。このしきい値設定動作が終了すると、洗車機本体1を走行させ(23)、走行エンコーダ6がパルス信号を発信すると(24)、走行位置検出部11で洗車機1の走行距離を検知し(25)、車形検出処理を行い1走査分の2値画像データを作成する(26)。尚、車形検出処理を実行するタイミングは、走行エンコーダのパルス信号をトリガにするだけでなく、一定周期で実行するようにしても良い。
The operation of the car wash machine adopting the vehicle shape detection device configured as described above will be described.
When the vehicle A is stopped at a predetermined stop position that is not detected by the vehicle body detection device 5, a car wash course is selected on the operation panel 20 (20), and a car wash start is input, the car wash operation is started. When the car wash starts, a threshold setting process corresponding to the selected car wash course is performed (21), (22). When this threshold value setting operation is completed, the car wash machine body 1 is made to travel (23), and when the travel encoder 6 transmits a pulse signal (24), the travel position detector 11 detects the travel distance of the car wash machine 1 ( 25) Car shape detection processing is performed to create binary image data for one scan (26). Note that the timing of executing the vehicle shape detection process may be executed not only with the pulse signal of the traveling encoder as a trigger but also with a constant cycle.

洗車機1の走行に伴い、ある程度(ここでは5走査分)の2値画像データがたまったら(27)、車形データを画像処理して洗車用データを作成する(28)。この洗車用データの作成は、洗車機1が往路を走行する間継続して実行され(29)、連続した自動車の上面輪郭が得られる。   When a certain amount of binary image data (here, 5 scans) is accumulated as the car wash machine 1 travels (27), the car shape data is image-processed to create car wash data (28). The creation of the car wash data is continuously executed while the car wash machine 1 travels on the forward path (29), and a continuous top surface contour of the automobile is obtained.

自動車の形状が検出されると、検出された自動車の輪郭に基づいて洗車動作が行われる(30)。洗車動作は、洗車機1の走行に伴い、シャンプー噴射を伴う車体のブラッシングと、ワックス噴射に伴うコーティングと、高速風の噴射によるブロー等が実行される。このうち、上面ブラシ及び上面ノズルは、検出された自動車の輪郭に沿って上下制御される。こうして、洗車動作が終了すると、自動車Aの退出を促して洗車を終了する。   When the shape of the automobile is detected, a car washing operation is performed based on the detected outline of the automobile (30). As the car washing operation is performed, as the car wash machine 1 travels, brushing of the vehicle body with shampoo injection, coating with wax injection, blow by high-speed wind injection, and the like are executed. Among these, the upper surface brush and the upper surface nozzle are vertically controlled along the detected outline of the automobile. Thus, when the car wash operation is completed, the car A is prompted to leave and the car wash is finished.

以上説明したように本発明は、車形検出として通常モードと強光モードを備え、飛沫や湯気の多い悪環境での車形検出を強光モードで行うようにしたものである。この強光モードは、通常モードより分解能は低いが、発光素子を2つ同時発光させることで光量アップを図ったモードであり、主に洗浄と並行して車形検出を実行する洗車コースが選択された場合に自動設定されるように構成している。これにより、受光側のしきい値を変更することでしか対応できなかった飛沫や汚れに対する対応が可能になり、従来まで車形検出が困難で洗車不可となっていた環境であっても洗車が行えるようになる。   As described above, the present invention is provided with the normal mode and the strong light mode as the vehicle shape detection, and performs the vehicle shape detection in the strong light mode in a bad environment with a lot of splashes and steam. This high-light mode has a lower resolution than the normal mode, but is a mode in which the amount of light is increased by simultaneously emitting two light emitting elements, and a car wash course that mainly performs car shape detection in parallel with washing is selected. It is configured to be automatically set when it is done. This makes it possible to deal with splashes and dirt that could only be dealt with by changing the threshold value on the light receiving side. You can do it.

なお、上記以外の実施態様として、発光・受光素子の汚れが原因で十分な受光レベルが得られないと判断した場合に強光モードによる車形検出を行うことも可能である。この場合、図4における通常モードのしきい値設定処理で、差分受光レベルが所定値未満となる受光素子が複数個連続して存在していると、汚れ等により発光素子からの光量が不足していると判断して、強光モードに切り替えて車体検出を行うようにする。また、外気温センサ等を備え、外気温が湯気の発生しやすい温度の時には洗車コースにかかわらず強光モードで車体検出を行うようにしても良い。   As an embodiment other than the above, it is also possible to perform vehicle shape detection in the strong light mode when it is determined that a sufficient light reception level cannot be obtained due to contamination of the light emitting / receiving elements. In this case, in the normal mode threshold setting process in FIG. 4, if there are a plurality of light receiving elements whose differential light receiving level is less than the predetermined value continuously, the amount of light from the light emitting elements is insufficient due to dirt or the like. The vehicle is detected by switching to the strong light mode. Further, an outside air temperature sensor or the like may be provided, and when the outside air temperature is a temperature at which steam is likely to be generated, the vehicle body may be detected in the strong light mode regardless of the car wash course.

更に、分解能の高い通常モードと、光量が高い強光モードとを1走査ずつ交互に実行ようにしても良い。この場合、通常モードによる車形データと強光モードによる車形データが交互に検出されるため、通常モードでは湯気などで遮光と判断された部分が強光モードでは透光と判断される等、前後方向(すなわち車体の長さ方向)の車形データが補間できるようになる。   Further, the normal mode with high resolution and the strong light mode with high light intensity may be alternately executed for each scan. In this case, since the vehicle shape data in the normal mode and the vehicle shape data in the strong light mode are alternately detected, the portion determined to be blocked by steam or the like in the normal mode is determined to be transparent in the strong light mode, etc. The vehicle shape data in the front-rear direction (that is, the length direction of the vehicle body) can be interpolated.

1 洗車機本体
5 車体検出装置
5a 発光装置
5b 受光装置
8,9 走査駆動部
10 車形制御部
11 走行位置検出部
12 受光検出部
13 しきい値設定部
14 車体検出部
15 車形データ検出部
16 画像処理部
17 データ記憶部
DESCRIPTION OF SYMBOLS 1 Car wash machine main body 5 Car body detection apparatus 5a Light-emitting device 5b Light-receiving device 8, 9 Scanning drive part
DESCRIPTION OF SYMBOLS 10 Vehicle shape control part 11 Traveling position detection part 12 Light reception detection part 13 Threshold value setting part 14 Vehicle body detection part 15 Vehicle shape data detection part 16 Image processing part 17 Data storage part

Claims (5)

上下に複数の発光素子を配置した発光部と、該発光部の発光素子と対向する複数の受光素子を上下に配置した受光部とを自動車の幅方向に挟んで対向させた車体検出装置と、該車体検出装置の発光部と受光部の各素子間に形成される光軸の透光/遮光により車体の有無を検出する車形制御部とを備えた車形検出装置において、
該車形制御部は、前記発光部における1つの発光素子を点灯させて水平に対向した受光素子で光信号を授受する光軸と、下に隣接した受光素子で光信号を授受する光軸と、上に隣接した受光素子で光信号を授受する光軸とを形成し、各光軸の透光/遮光を検出して車体有無を判定する通常検出モードと、前記発光部における隣接した2つ以上の発光素子を1組とし、この発光組の2つの発光素子を同時に点灯させて一方の発光素子と水平に対向する受光素子で光信号を授受する光軸と、他方の発光素子と水平に対向する受光素子で光信号を授受する光軸と、一方の発光素子と水平に対向する受光素子と上または下に隣接する受光素子で光信号を授受する光軸とを形成し、各光軸の透光/遮光を検出して車体有無を判定する強光検出モードとを実行可能にし、
各検出モードにおける各光軸の透光/遮光を判断するための判別しきい値を設定するしきい値設定部を備え、該しきい値設定部は、光軸を構成する発光素子と受光素子との間で、発光素子の発光前と発光後の差分受光レベルに対して所定割合を乗じてしきい値を設定し、該所定割合を通常検出モードより強光検出モードを小さくしたことを特徴とする車形検出装置。
A vehicle body detection device in which a light emitting unit in which a plurality of light emitting elements are arranged above and below, and a light receiving unit in which a plurality of light receiving elements opposed to the light emitting elements of the light emitting unit are arranged vertically are opposed to each other in the width direction of the automobile; In a vehicle shape detection device comprising: a vehicle shape control unit that detects the presence or absence of a vehicle body by translucency / light shielding of an optical axis formed between the light emitting unit and the light receiving unit of the vehicle body detection device;
The vehicle shape control unit turns on one light emitting element in the light emitting unit, and transmits and receives an optical signal with a horizontally opposed light receiving element; and an optical axis that transmits and receives an optical signal with a light receiving element adjacent to the lower side A normal detection mode for determining the presence or absence of the vehicle body by detecting light transmission / shading of each optical axis, and two adjacent ones in the light emitting unit. The above light emitting element is made into one set, and the two light emitting elements of this light emitting set are turned on at the same time, and an optical axis for transmitting and receiving an optical signal by a light receiving element horizontally facing one light emitting element, and the other light emitting element horizontally Each optical axis forms an optical axis that transmits and receives an optical signal with an opposing light receiving element, a light receiving element that is horizontally opposed to one light emitting element, and an optical axis that transmits and receives an optical signal with an adjacent light receiving element above or below. A strong light detection mode that detects the presence / absence of the vehicle body by detecting the light transmission / shielding of To enable line,
A threshold setting unit configured to set a discrimination threshold for determining light transmission / shading of each optical axis in each detection mode, and the threshold setting unit includes a light emitting element and a light receiving element constituting the optical axis The threshold value is set by multiplying the difference light reception level before and after the light emission of the light emitting element by a predetermined ratio, and the strong light detection mode is made smaller than the normal detection mode. A vehicle shape detection device.
門型状に形成した洗車機本体内に、洗浄ブラシ,乾燥ノズル等の洗車処理装置を備え、洗車機本体と洗浄する自動車とを相対移動させて自動車の洗浄を行う洗車機において、
上記請求項1記載の車形検出装置と、該車形検出装置で検出した車体に対して前記洗車処理装置を制御する洗車制御部とを備えたことを特徴する洗車機。
In the car wash machine which is equipped with a car wash processing device such as a washing brush and a drying nozzle in the car wash machine body formed in a gate shape, and moves the car wash machine and the car to be washed relative to each other,
A car wash machine comprising: the car shape detection apparatus according to claim 1; and a car wash control unit for controlling the car wash processing apparatus with respect to a vehicle body detected by the car shape detection apparatus.
車形検出動作と洗浄動作を同時に実行する洗車コースを備え、該洗車コースを実行するときに前記強光検出モードを実行して車体検出を行うことを特徴とする上記請求項2記載の洗車機。 3. The car wash machine according to claim 2, further comprising a car wash course that simultaneously executes a vehicle shape detection operation and a washing operation, and performing the strong light detection mode when the car wash course is executed. . 前記車形制御部は、前記しきい値設定部で差分受光レベルが所定値未満となる受光素子が複数個連続したら発光量不足と判断して、前記強光検出モードを実行して車体検出を行うことを特徴とする上記請求2乃至3記載の洗車機。 The vehicle shape control unit determines that the light emission amount is insufficient when a plurality of light receiving elements whose differential light reception level is less than a predetermined value are consecutive in the threshold setting unit, and executes the strong light detection mode to detect the vehicle body. The car wash according to any one of claims 2 to 3, wherein the car wash is performed. 前記車形制御部は、通常検出モードと強光検出モードを交互に実行して車体検出を行うことを特徴とする上記請求2記載の洗車機。 3. The car wash machine according to claim 2, wherein the vehicle shape controller performs vehicle body detection by alternately executing a normal detection mode and a strong light detection mode.
JP2010126395A 2010-06-02 2010-06-02 Car shape detection device and car wash machine equipped with the same Active JP5492665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126395A JP5492665B2 (en) 2010-06-02 2010-06-02 Car shape detection device and car wash machine equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126395A JP5492665B2 (en) 2010-06-02 2010-06-02 Car shape detection device and car wash machine equipped with the same

Publications (2)

Publication Number Publication Date
JP2011252777A JP2011252777A (en) 2011-12-15
JP5492665B2 true JP5492665B2 (en) 2014-05-14

Family

ID=45416828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126395A Active JP5492665B2 (en) 2010-06-02 2010-06-02 Car shape detection device and car wash machine equipped with the same

Country Status (1)

Country Link
JP (1) JP5492665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112197788B (en) * 2020-12-07 2021-03-12 天津美腾科技股份有限公司 Vehicle traveling state detection method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902026B2 (en) * 2002-02-28 2007-04-04 エムケー精工株式会社 Car shape detection device and car wash machine equipped with the same
JP4047672B2 (en) * 2002-09-04 2008-02-13 エムケー精工株式会社 Car shape detection device and car wash machine having the same
JP2008096179A (en) * 2006-10-10 2008-04-24 Rohm Co Ltd Optical position detection device
JP5148399B2 (en) * 2008-07-24 2013-02-20 エムケー精工株式会社 Vehicle shape detection method and vehicle shape detection device in car wash machine

Also Published As

Publication number Publication date
JP2011252777A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
US8867045B2 (en) Triggering light grid and method for determining the position of containers
JP6771984B2 (en) Car shape detection device and car wash machine equipped with this device
JP5492665B2 (en) Car shape detection device and car wash machine equipped with the same
JP5148399B2 (en) Vehicle shape detection method and vehicle shape detection device in car wash machine
JP5492598B2 (en) Car shape detection device and car wash machine equipped with the same
JP4047672B2 (en) Car shape detection device and car wash machine having the same
JP3902026B2 (en) Car shape detection device and car wash machine equipped with the same
JP7041554B2 (en) Car shape detection device and car wash machine equipped with the same device
JP6002516B2 (en) Car shape detection device and car wash machine equipped with the same
JP7328737B2 (en) vehicle processing equipment
JP7062414B2 (en) Car shape detection device and car wash machine equipped with the same device
JP7412837B2 (en) Vehicle processing device and object detection method
JP7316896B2 (en) vehicle processing equipment
JP2017190004A (en) Car shape detection device and car washing machine equipped with the same
JP6085449B2 (en) Car body detection device and car wash machine equipped with the same
JP4035379B2 (en) Vehicle shape detection method and apparatus in car wash machine
JP6779077B2 (en) Vehicle shape detection method and device in car wash machine
JP2021070387A (en) Vehicle processing device
JP4401920B2 (en) Vehicle shape recognition device, car wash machine and sensor controller
JP3984580B2 (en) Car wash machine
JP4418461B2 (en) Car wash machine
JP3916187B2 (en) Car shape detection device and car wash machine equipped with the same
JP3718982B2 (en) Gate-type car wash machine
JP3902034B2 (en) Vehicle detection device and car wash machine equipped with the same
KR200444466Y1 (en) Car shape Washing appar sensing apparatus for washing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250