JP2021123512A - 変形坩堝の再生方法 - Google Patents

変形坩堝の再生方法 Download PDF

Info

Publication number
JP2021123512A
JP2021123512A JP2020016892A JP2020016892A JP2021123512A JP 2021123512 A JP2021123512 A JP 2021123512A JP 2020016892 A JP2020016892 A JP 2020016892A JP 2020016892 A JP2020016892 A JP 2020016892A JP 2021123512 A JP2021123512 A JP 2021123512A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
deformed
growing
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020016892A
Other languages
English (en)
Inventor
利行 小見
Toshiyuki Omi
利行 小見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2020016892A priority Critical patent/JP2021123512A/ja
Publication of JP2021123512A publication Critical patent/JP2021123512A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】タンタル酸リチウム単結晶を生産性良く育成することができる、変形坩堝の再生方法を提供する。【解決手段】チョクラルスキー法によるタンタル酸リチウム単結晶育成用イリジウム製坩堝の再生方法であって、変形坩堝30中のタンタル酸リチウムの融解および凝固を、単結晶育成装置を用いて繰り返す、繰り返し工程を含み、繰り返し工程において、タンタル酸リチウムの融液の表面位置は、内壁の円周が最も小さい位置Aと、当該最も小さい位置よりも内壁の高さの20%高い位置Bとの間であり、かつ、鉛直方向において、単結晶育成装置が備えるワークコイル7の下端の位置7aは、底部の底面33bの位置と、底面よりも40mm低い位置Dとの間である、変形坩堝の再生方法。【選択図】図2

Description

本発明は、高周波誘導加熱式育成炉等を用いたチョクラルスキー法(以下、「Cz法」とする場合がある)によるタンタル酸リチウム(LiTaO3:以下、「LT」とする場合がある)単結晶の育成に使用して変形したイリジウム製坩堝の再生方法に関するものである。
強誘電体であるLT単結晶から加工される酸化物単結晶基板は、主に移動体通信機器において電気信号ノイズを除去する表面弾性波フィルター(SAWフィルター)の材料として用いられている。
SAWフィルターの材料となるLT単結晶は、産業的には、主にCz法により育成され、例えば、特許文献1に記載の高周波誘電加熱式育成炉が使用される。Cz法とは、坩堝内の原料融液表面に種結晶となる単結晶片を接触させ、該種結晶を回転させながら上方に引き上げることにより、種結晶と同一方位の円筒状単結晶を育成する方法である。LT単結晶を育成する場合、LTの融点が1650℃と高温であることから、LTの融液を入れる坩堝としてはLTの融点よりも十分に融点の高い金属であるイリジウム(以下、「Ir」とする場合がある)製坩堝を用いる。
Cz法でLT単結晶を育成する場合には、まず、所定のLT原料をIr製坩堝に充填し、高周波誘導加熱式の電気炉(育成炉)を用いて育成する。育成時のLT単結晶の引上速度は、一般的には数mm/時間程度であり、種結晶の回転速度は数〜数十rpm程度で行われる。また、育成時の育成炉内は、酸素濃度が数%程度の窒素と酸素の混合ガス雰囲気とするのが一般的である。このような条件下で、所望の大きさまでLT単結晶を育成した後は、引上速度の変更やLT原料融液の温度を徐々に高くする等の操作を行うことで、育成したLT単結晶をLT原料融液から切り離し、その後、育成炉のパワーを所定の速度で低下させることで徐冷し、育成炉内の温度が室温近傍となった後に育成炉内からLT単結晶を取り出す。
LT単結晶育成後のIr製坩堝内には、育成開始時のおよそ半分程度の量のLT原料が残る。Ir製坩堝内に残ったLT原料は、取り出されずにそのまま次の育成に使用され、育成して引き上げたLT単結晶の質量に相当するLT原料をIr製坩堝に充填して原料を融解し、結晶育成が行われる。このように、Cz法でLT単結晶を育成する場合には、Ir坩堝内では固化したLT原料が常に同じ位置に残った状態でLT原料が融解され、また、LT原料融液の液面が常に同じ位置にある状態で冷却され、これらの融解と冷却が繰り返し行われる。
特開2019−6612号公報 特開2019−52067号公報
LT単結晶を育成する際の温度領域では、Ir製坩堝は熱膨張により室温の状態よりも1〜2mm程度膨張する。そのため、LT単結晶の育成終了後の冷却過程では、Ir製坩堝が膨張した状態で液面の中央付近のLT原料融液が固化し始める。その後、育成炉内の温度が下がるにつれてIr製坩堝の底付近からIr製坩堝の側壁に向かって固化していき、最後にIr製坩堝内のLT原料融液の中心部が固化する。LTの液体と固体における密度差により、LT原料融液において最後に固化した部分には空洞が見られることが多い。
Ir製坩堝は、育成炉内の温度が下がるにつれて収縮してくるが、Irに対してLTの熱膨張係数が小さいために、固化したLT原料の表面付近のIr製坩堝の側壁には、外向きの応力が発生する。その一方で、固化したLT原料の表面より上方のIr製坩堝の側壁には、固化したLT原料が無いためにIr製坩堝の収縮による内向きの応力が発生する。
Cz法によるLT単結晶の育成1回あたりにおける、加熱と冷却による熱サイクルでのIr製坩堝の変形量は僅かである。ただし、LT原料融液が固化する表面位置が常に同じ位置であり、また、LT原料が融解する表面位置が常に同じ位置である条件にて、LT原料の融解および固化を繰り返し行っていくと、塑性変形の応力が働き、Ir製坩堝の変形は徐々に増大してくる(特許文献2参照)。
Cz法によるLT単結晶の育成では、引上軸の上部に配置されたロードセルによりLT単結晶の重量を測定し、制御周期当たりの重量増加量からLT単結晶の直径を算出し、目標直径との差分から高周波出力を変化させて直径を制御する直径自動制御(ADC)が用いられている。LT単結晶の直径の算出は、Ir製坩堝の直径、LT単結晶の結晶密度、LT原料融液の密度、LT単結晶の引上距離および重量変化量から求められるが、Ir製坩堝が変形すると液面降下距離が変化するために、ADCによって算出されるLT単結晶の直径は実際のLT単結晶の直径と異なった計算結果となる。Ir製坩堝の直径が大きい場合は、液面降下距離が小さくなるためにLT単結晶の直径が目標直径よりも小さいとADCは判断し、LT単結晶の直径を太くする制御を行う。一方で、Ir製坩堝の直径が小さい場合は、液面降下距離が大きくなるためにLT単結晶の直径が目標直径よりも大きいとADCは判断し、LT単結晶の直径を細くする制御を行う。
このため、変形したIr製坩堝でLT単結晶の育成を行うと、目標とする直径から外れた直径のLT単結晶が育成されてしまう。育成したLT単結晶の直径が目標とする直径よりも大きい場合は、徐冷する際におけるLT単結晶の中心部と外周部の温度差が大きくなることでクラックが発生するおそれがあり、これが不良の原因となる場合がある。また、育成したLT単結晶の直径が目標とする直径よりも大きいことは、育成後のLT単結晶を加工する際の研削ロスが多くなることにつながるため、製造コストが増える要因となるおそれがある。一方で、育成したLT単結晶の直径が目標とする直径よりも小さい場合は、径不良となることで得られる良品長が短くなるおそれがある。
このため、Ir製坩堝が変形した場合は、ADCの目標直径の設定値を変更してLT単結晶の直径の調整を行い、直径の変動の少ないLT単結晶が得られるように制御することとなる。しかしながら、Ir製坩堝の変形が更に進んだ場合、この変形に伴う育成炉内の温度環境の変化により、育成中のLTの多結晶化やクラックの発生による育成不良が増加するおそれがあり、これがLT単結晶の生産性の低下やコストアップの要因となる。特に、Ir製坩堝の側面が内側にくびれる様な変形を起こした場合は、成長したLT単結晶のインゴットとIr製坩堝の内壁が接近するために、ADCの目標直径を大きくしても実際のLT単結晶の直径は大きくならず、LT単結晶の直径が製品直径以下となるばかりかインゴットの曲がり等の形状不良も起き易くなる。
Ir製坩堝の変形に起因するLT単結晶の不良が多発し生産性が低下した場合は、Ir製坩堝の形状修正或いは改鋳を坩堝メーカーに依頼するのが一般的である。坩堝メーカーでは、例えば熱間で叩き上げてIr製坩堝の直径を均一な状態に修正するが、熱処理を行うための設備およびIr製坩堝の形状修正を行うための熟練の技術が必要となる。そのため、Ir製坩堝の形状修正には多大なコストと時間を要する。また、元の形状に戻すのが困難となる状態まで、Ir製坩堝の内壁が内側に大きくくびれた場合は、形状の修正はやめて改鋳することとなるが、改鋳にも多大なコストと時間を要する。
本発明はこのような問題点に着目してなされたもので、その課題とするところは、変形によりCz法によるLT単結晶の育成が困難となったIr製坩堝の形状修正の内製化を図り、コストと時間を削減することでLT単結晶を生産性良く育成することができる、変形坩堝の再生方法を提供することにある。
上記課題を解決するため、本発明の変形坩堝の再生方法は、チョクラルスキー法によるタンタル酸リチウム単結晶の育成への使用によって、円形の底部と、前記底部の外縁部から立設した円筒形の側壁部と、上部が開口した開口部を有する単結晶育成用イリジウム製坩堝の前記側壁部がくびれて、当該側壁部の内壁の円周が小さくなる変形をした変形坩堝の再生方法であって、前記変形坩堝中のタンタル酸リチウムの融解および凝固を、単結晶育成装置を用いて繰り返す、繰り返し工程を含み、前記繰り返し工程において、前記タンタル酸リチウムの融液の表面位置は、前記内壁の円周が最も小さい位置と、当該最も小さい位置よりも前記内壁の高さの20%高い位置との間であり、かつ、鉛直方向において、前記単結晶育成装置が備えるワークコイルの下端の位置は、前記底部の底面の位置と、当該底面よりも40mm低い位置との間である。
前記繰り返し工程は、前記内壁の円周が最も小さい位置の内径が、当初の坩堝の内径よりも10mm以上小さい前記変形坩堝を、当該内壁の円周が最も小さい位置の内径が前記当初の坩堝の内径の10mm未満となるまで前記融解および前記凝固を繰り返す工程であってもよい。
本発明の変形坩堝の再生方法によれば、変形によりCz法によるLT単結晶の育成が困難となったIr製坩堝の形状修正の内製化を図り、コストと時間を削減することでLT単結晶を生産性良く育成することができる。そのため、Ir製坩堝の内壁が内側にくびれて、坩堝メーカーにおいて形状修正が困難であり改鋳が必要となった状態のIr製坩堝であっても、これの改鋳を依頼することなく、単結晶育成装置を用いて容易にIr製坩堝の形状修正を行うことが可能となり、LT単結晶を育成するにあたり、生産性の安定化およびコストダウンが図れる。
Cz法による単結晶育成装置の概略構成を模式的に示す側面断面図。 融液表面位置およびワークコイルと坩堝の相対位置を示す模式図。 LT融液が固化する際に発生する空洞1aを説明する模式側面図。 実施例1、比較例1、2における坩堝の直径の変化量を示すグラフ。
以下、本発明の実施形態について図面を用いて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。
[Cz法によるLT単結晶の育成について]
はじめに、図1を参照して、Cz法による単結晶育成装置の構成例、および、LT単結晶の育成方法の概要について説明する。
〈単結晶育成装置100〉
図1は、高周波誘導加熱式の単結晶育成装置100の概略構成を模式的に示す側面断面図である。図1には、LT原料融液1、種結晶2、Ir製坩堝3、Ir製ホルダ4、Ir製シード棒5、ロードセル6、ワークコイル7、耐火物8、坩堝台9およびチャンバー10が示されている。
単結晶育成装置100は、チャンバー10内において、ジルコニアやアルミナ等の耐熱性のセラミックスを用いて形成された坩堝台9の上にIr製坩堝3を載置する。チャンバー10内には、単結晶育成装置100の外部への熱の放出を抑制するべく、Ir製坩堝3を囲むように、ジルコニアやアルミナ等の耐熱性のセラミックスを用いて形成された耐火材8が配置されている。また、チャンバー10と耐火物8との間において、Ir製坩堝3を囲むように、銅製のワークコイル7が配置される。ワークコイル7が形成する高周波磁場によって、ワークコイル7に囲まれたIr製坩堝3の側壁に渦電流が発生し、その渦電流によってIr製坩堝3自体が発熱体となり、これによってIr製坩堝3内にあるLT原料を融解してLT原料融液1とし、また、LT単結晶の育成に必要な温度環境の形成を行うことができる。
また、Ir製シード棒5は、Ir製坩堝3に入れられたLT原料融液1の表面に種結晶2を接触させ、LT単結晶を回転させながら引き上げるために用いられる。Ir製シード棒5は、回転可能かつ上下方向に移動可能に設けられており、上端の先端部には、LT単結晶の重量を計測するためのロードセル6が取り付けられている。また、Ir製シード棒5の下端の先端部には、種結晶2を保持するためのIr製ホルダ4が取り付けられている。
Ir製シード棒5の上下移動および回転を行うため、例えば、不図示のモータを備えたシード棒駆動手段が設けられている。また、Ir製シード棒5の回転速度および引き上げ速度は、例えばADCを用いて形成するLT単結晶の径の大きさおよび直胴部の長さ等により適宜設定することができる。
また図1には図示していない制御手段は、結晶育成プロセスを含めた単結晶育成装置100全体の制御を行うことができる。制御手段は、例えば、CPU(Central Processing Unit、中央処理装置)、及び、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリを備えている。また、制御手段は、プログラムにより動作するマイクロコンピュータから構成されてもよいし、特定の用途のために開発されたASIC(Application Specified Integra Circuit)等の電子回路から構成されてもよい。
〈LT単結晶の育成方法〉
次に、LT単結晶の育成方法の一例として、単結晶育成装置100を使用した、LT単結晶の育成方法を説明する。
Cz法では、Ir製坩堝3内のLT原料融液1の融液表面に種結晶2となるLT単結晶の結晶片を接触させ、種結晶2をIr製シード棒5により回転させながら上方に引上げることにより、種結晶2と同一方位の円筒状のLT単結晶を育成する。
まず、Ir製坩堝3に、LT単結晶の原料を充填して、ワークコイル7によりIr製坩堝3を加熱して、Ir製坩堝3内の原料を融点以上に加熱して融解することにより、LT原料融液1を得る。次に、Ir製シード棒5の下端のIr製ホルダ4に取り付けられた、種結晶2を、Ir製坩堝3内のLT原料融液1の融液上面に接触させる。これを、シーディングという。その後、Ir製シード棒5をシード棒駆動手段により、種結晶2を回転させながら徐々に耐火物8の上方へIr製シード棒5を引き上げる。LT単結晶の育成中は、ワークコイル7による加熱温度や、Ir製シード棒5の回転数および引き上げ速度等を制御手段等により制御することにより、LT単結晶に肩部および直胴部を育成する。直胴部が所定の長さになったところで、Ir製シード棒5の引き上げ速度等の制御や融液温度を徐々に高くする等の操作を行うことで、LT原料融液1の融液上面と育成したLT単結晶の下端とを切り離し、その後、ワークコイル7のパワーを所定の速度で低下させることで徐冷してLT単結晶を冷却し、チャンバー10内の温度が室温近傍となった後に育成炉内からLT単結晶を取り出す。
LT単結晶の育成時の引上げ速度は、一般的には数mm/時間程度、回転速度は数〜数十rpm程度で行われる。また、育成時のチャンバー内は、酸素濃度数%程度の窒素と酸素の混合ガス雰囲気とするのが一般的である。LT単結晶育成後のIr製坩堝3内には、育成開始時のおよそ半分程度のLT原料が残る。Ir製坩堝3内に残ったLT原料は、次の育成に使用され、引き上げたLT単結晶の重量に相当するLT原料をIr製坩堝3に充填して、LT原料融液とし、LT単結晶の育成が繰り返し行われる。
このように、Ir製坩堝3内には固化したLT原料が常に同じ位置に残った状態でLT原料が融解され、また、LT原料融液1の液面が常に同じ位置にある状態で冷却され、これらの融解と冷却が繰り返し行われる。そのために、当初は図1に示すIr製坩堝3のように、円形の底部と、底部の外縁部から立設したゆがみのない真っ直ぐな円筒形の側壁部と、上部が開口した開口部を有する坩堝であっても、図2に側面図で示す変形坩堝30のように、変形坩堝30内に残ったLT原料表面付近の坩堝側壁31は外側に膨らみ、LT原料表面より上方の坩堝側壁32は内側にくびれる変形が生じ、LT単結晶の育成を繰り返す度にこれらの変形による変形坩堝30の変形量が徐々に増大してくる。側壁部において坩堝側壁32のように内側にくびれる領域は、LT単結晶の育成が行われる領域である。Ir製坩堝3の側壁部がくびれて側壁部の内径が小さくなることにより、育成中のLTの多結晶化やクラックの発生による育成不良等の発生、直胴部の径が大きくならない不良や直胴部が曲がる等の形状不良の発生の原因となる。
[Ir製坩堝の再生方法]
Ir製坩堝3が変形した変形坩堝30の側壁部のくびれた形状を内製化により修正することが出来れば、LT単結晶の生産性の安定化およびコストダウンを図ることが出来る。変形坩堝30の形状を修正することのできる方法の一例として、本発明の変形坩堝の再生方法について、その一実施形態を説明する。
本発明の変形坩堝の再生方法は、以下に説明する繰り返し工程によって、変形坩堝の形状を修正することのできる方法である。
〈変形坩堝〉
再生対象となる変形坩堝は、図2に側面図で示す変形坩堝30のように変形した坩堝である。具体的には、Cz法によるLT単結晶の育成への使用によって、円形の底部33と、底部33の外縁部33aから立設した円筒形の側壁部34と、上部が開口した開口部35を有する単結晶育成用Ir製坩堝の側壁部34がくびれて、側壁部34の内壁の円周が小さくなる変形をした変形坩堝30である。
〈繰り返し工程〉
繰り返し工程は、変形坩堝30中のLTの融解および凝固を、単結晶育成装置100を用いて繰り返す工程である。例えば、Ir製シード棒5を用いたシーディングやLT単結晶の育成は実施せず、ワークコイル7によって変形坩堝30を発熱させてLTを融解させ、LTが融解したら、ワークコイル7のパワーを低下させることで徐冷してLTの融液を凝固させることを繰り返すことで、本工程を実施することができる。
(タンタル酸リチウムの融液の表面位置)
Ir製の変形坩堝30は、LTの融液を凝固させるためにチャンバー10内の温度を下げていくと収縮しようとするが、Irに対してLTの熱膨張係数が小さいために、固化したLTの表面付近の側壁部34には、外向きの応力が発生する。
この外向きの応力を利用し、変形坩堝30内のLTの融液の液面の位置が、側壁部34において坩堝側壁32のように内側にくびれた部分となるようにLTの量を調整し、繰り返し工程を行うことにより、変形坩堝30のくびれた部分には塑性変形の応力が働き、くびれた部分を外側に膨らませることで、LT単結晶の育成が可能となるよう形状に変形坩堝30を変形させることができる。
すなわち、繰り返し工程において、LTの融液の表面位置が、図2において点線A、Bで示すように、側壁部34の内壁においての円周が最も小さい位置(すなわち、もっとも内側にくびれた部分)となる点線Aと、点線Aよりも内壁の高さHの20%分だけ高い位置となる点線Bとの間となるように設定する。このようにすることで、変形坩堝30のくびれた部分をより効果的に外側に膨らませることができ、LT単結晶の育成が可能となるよう形状に変形坩堝30を変形させることができる。
特に、LTの融液の表面位置が、内壁の円周が最も小さい位置(点線A)よりも内壁の高さHの10%高い位置、すなわち、点線Aおよび点線Bから等距離の位置であると、繰り返し工程における変形坩堝30中のLTの融解および凝固の繰り返し数を最も少なくすることができ、再生方法の時間を短縮することができる。
(ワークコイルの下端の位置)
単結晶育成装置100が備えるワークコイル7の下端7aの位置は、鉛直方向において、変形坩堝30の底部33の底面33bの位置(点線C)と、底面33bよりも40mm低い位置(点線D)との間となるように、チャンバー10内において、変形坩堝30とワークコイル7との位置を設定する。
図3に示すように、単結晶育成装置100を用いて通常のLT単結晶の育成を行う温度勾配条件下でLT融液を冷却すると、変形坩堝30内において固化したLT原料の表面において外周端部付近には空洞1aが発生していることがしばしば見られる。空洞1aの発生原因は、LT融液の固化の進行状況にあると考えられる。すなわち、LT融液表面の中央付近が最初に固化し、次いで変形坩堝30の底付近から変形坩堝30の側壁部34にかけてLTが固化していき、最後にLT融液の中心部分が固化する際にLT融液の表面中央付近の固化部分と変形坩堝30の側壁部34側の固化部分との境界に残った融液が最後に固化するため、LTの固化による体積の収縮により外周端部付近にて空洞1aが発生すると考えられる。
このように、外周端部付近にて空洞1aが発生すると、変形坩堝30の側壁部34を外側に膨らませる応力(矢印E)が弱まると考えられる。このため、変形坩堝30の側壁部34を外側に膨らませる応力を十分に働かせるためには、LT原料の表面において外周端部付近に空洞1aが発生しないようにLTを固化させることが重要となる。このような空洞1aの発生は、ワークコイル7の下端7aの位置が点線Cと点線Dとの間となるように、ワークコイル7と変形坩堝30の相対位置を、ワークコイル7の発熱中心が変形坩堝30の底部33から離れるように設定することで防止することができる。
具体的には、LT単結晶を育成する時は、鉛直方向において、ワークコイル7の下端7aと坩堝の底部の底面との距離は、60〜70mmに設定しており、LT単結晶の育成時は坩堝の底部の位置がワークコイル7の発熱中心に近い設定としている。一方で、本発明における繰り返し工程では、ワークコイル7の下端7aの位置は、鉛直方向において、変形坩堝30の底部33の底面33bの位置(点線C)と、底面33bよりも40mm低い位置(点線D)との間となるように、例えば点線Cよりも30mm低い位置に設定する。そのため、本発明では、LT単結晶を育成する場合と比べて、ワークコイル7の発熱中心が変形坩堝30の底部33から離れるように設定することができる。
このように設定すれば、変形坩堝30内のLT融液の固化が変形坩堝30の底から始まり、最後にLT融液の液面が固化するようにLT融液の固化を制御することができるため、応力が弱まる要因となる空洞1aの発生が抑えられる。さらに、このような設定であれば、変形坩堝30の変形によりくびれた部分における変形坩堝30の発熱が促進されるために、熱膨張による変形坩堝30の形状を修正する効果がより高まることとなる。
〈タンタル酸リチウムの融解および凝固を繰り返す目安〉
本発明の再生方法を行う目安は、当初はゆがみのない真っ直ぐな円筒形の側壁部を有するIr製坩堝3が、LT単結晶の育成に繰り返し使用されて変形し、最も内側にくびれた側壁部の内径が当初の内径より10mm以上小さくなるまで変形した状態である。Ir製坩堝の側壁部が当初の内径より10mm以上小さくなるまで変形すると、LT単結晶の育成に不具合が生じるおそれがあるため、これが10mm未満となるように形状を修正すれば、LT単結晶の育成に再度使用することができる。
すなわち、本発明の再生方法における繰り返し工程は、変形坩堝30の内壁の円周が最も小さい位置の内径が、当初の坩堝の内径よりも10mm以上小さい変形坩堝30を、当該内壁の円周が最も小さい位置の内径が当初の坩堝の内径の10mm未満となるまで、融解および凝固を繰り返す工程であることが好ましい。
なお、再生方法により形状を修正した変形坩堝30を、LT単結晶の育成に繰り返し使用できるよう長寿命化させるためには、内壁の円周が最も小さい位置の内径が当初の坩堝の内径の5mm未満となるまで、繰り返し工程により融解および凝固を繰り返すことが好ましい。内径が当初の坩堝の内径の5mm未満となれば、育成した結晶の形状不良がなくなり、また、ADCによる直胴部の目標径の設定を変更しなくて済む。
以下、本発明の変形坩堝の再生方法について、好ましい手順の一例について具体的に説明する。
LTの融液の表面位置が、図2において点線A、Bで示すように、側壁部34の内壁においての円周が最も小さい位置となる点線Aと、点線Aよりも内壁の高さHの20%分だけ高い位置となる点線Bとの間となるように、変形坩堝30内のLTの量を調整する。次に、ワークコイル7の下端7aの位置を、鉛直方向において、変形坩堝30の底部33の底面33bの位置(点線C)よりも30mm低い位置に設定できるよう、変形坩堝30を単結晶育成装置100に設置する。
そして、ワークコイル7によって高周波磁場を形成し、昇温開始から6時間かけて、変形坩堝30内のLTを融解させる。LTが融解後、直ちにワークコイル7の出力がLT単結晶育成時の出力となるまで下がるように、出力を調整し、そのまま出力を保持する。この出力の保持により、LT融液の温度が徐々に下がり、変形坩堝30の底からLT融液の固化が発生する。このLT融液の固化の発生は、変形坩堝30の底に設置している熱電対により固化熱を確認することで、確認可能である。LTの融解から変形坩堝30の底でのLT融液の固化の開始までの所要時間は、2時間程度である。
変形坩堝30の底でのLT融液の固化の発生を確認したら、ワークコイル7の出力を徐々に弱めて8時間かけてゼロにして、単結晶育成装置100の炉内を一定温度勾配で降温させる。ワークコイル7の出力がゼロとなった後も、そのまま8時間自然冷却させるため、冷却時間は合計で16時間である。昇温開始から自然冷却が終了するまでを昇温降温の1サイクルとし、1サイクルあたりの所要時間は24時間である。なお、昇温降温を繰り返し行うことによる繰り返し工程では、イリジウムの昇華を出来るだけ少なくさせる目的で、窒素のみの雰囲気で行うことが好ましい。
また、昇温時間として、昇温開始からLTの融解までの所要時間は5時間以上とすることが好ましい。5時間未満の時間でLTを融解させようとすると、過昇温となりLiの飛散量が多くなって組成ずれを起こす原因となり得る。そこで、昇温にかける所要時間としては、5〜7時間程度を目安とすればよい。
また、LTの融解から変形坩堝30の底でのLT融液の固化が発生するまでの所要時間は、1時間以上とすることが好ましい。この所要時間が1時間未満の場合には、変形坩堝30の底以外の場所からも固化が発生してしまうおそれがある。そこで、この所要時間としては、1〜3時間程度を目安とすればよい。
なお、ワークコイル7の出力がゼロとなった後の自然冷却を省略して昇温降温の1サイクルとすることも可能である。この場合、1サイクルあたりの所要時間は16時間となる。ただし、変形坩堝30を単結晶育成装置100から取り出す場合には、装置が痛まないよう、8時間の自然冷却後に取り出すことが好ましい。
また、昇温降温を繰り返してLTの融解を繰り返すと、融液のLiが揮発して、組成ずれを起こす場合があり、これをそのままLT単結晶の育成に用いることのできない場合がある。そこで、変形坩堝の再生方法を終了し、再生後の変形坩堝30を用いてLT単結晶の育成を行う場合には、変形坩堝30内のLTを全て掻き出して、新たにLT原料を充填することが好ましい。
なお、Liの揮発量が特定できる場合には、組成ずれしたLTを変形坩堝30から取り出さずに、揮発量相当のLiが補充できるよう、炭酸リチウムを変形坩堝30へ追加することにより、変形坩堝の再生方法に用いたLTをLT単結晶の育成に用いることができる。炭酸リチウムを追加できる場合には、本発明の再生方法を終えた後に、当該再生方法に使用したLTは変形坩堝30から取り出すことなく、LT単結晶を育成するための原料として、そのまま使用可能である。また、LT単結晶の育成に十分な量のLTが変形坩堝30内にある場合には、炭酸リチウムを追加することで、同一の単結晶育成装置100を使用し、LT原料の入った変形坩堝30をチャンバー10から取り出すことなく、当該再生方法からLT単結晶の育成へ連続した一連の工程として移行することができる。
次に、本発明について実施例により具体的に説明する。ただし、本発明はこの実施例により限定されない。
〈変形坩堝30の形状〉
新品の状態のIr製坩堝3の形状は、円形の底部と、底部の外縁部から立設したゆがみがなくテーパー状でもない真っ直ぐな円筒形の側壁部と、上部が開口した開口部を有する形状であり、側壁部の外径が215mm、内径が210mmであり、円形の底部の外径が215mm、内径が210mmであり、高さは210mmであり、底部および側壁部の厚みが共に2.5mmであった。このようなIr製坩堝3を複数用いて、単結晶育成装置100にてLT単結晶の育成を繰り返し、坩堝側壁32は内側にくびれる変形が生じて最もくびれた坩堝側壁32の内径が196mmまで細くなった複数の変形坩堝30を再生対象として、以下の試験を行った。
[実施例1]
変形坩堝30内のLTの融液の表面位置が、側壁部34の内壁における円周が最も小さい位置(すなわち、もっとも内側にくびれた部分)となる点線Aよりも内壁の高さHの15%分だけ高い位置となるように、LTの量を設定した。そして、ワークコイル7の下端7aの位置が、鉛直方向において、変形坩堝30の底面33bよりも30mm低い位置となるように、チャンバー10内において、変形坩堝30とワークコイル7との位置を設定した。
LTの融液の液面とワークコイル7の配置を上記のように設定後、単結晶育成装置100を使用して繰り返し工程を行い、LTの融解および凝固を15サイクル繰り返した。
具体的には、まず、ワークコイル7によって高周波磁場を形成し、昇温開始から6時間かけて、変形坩堝30内のLTを融解させ、LTが融解後、直ちにワークコイル7の出力がLT単結晶育成時の出力となるまで下がるように、出力を調整し、そのまま出力を保持した。この出力の保持により、LT融液の温度を徐々に下げ、変形坩堝30の底からLT融液の固化を発生させた。LTの融解から変形坩堝30の底でのLT融液の固化の開始までの所要時間は、2時間とした。
変形坩堝30の底でのLT融液の固化の発生を確認したら、ワークコイル7の出力を徐々に弱めて8時間かけてゼロにして、単結晶育成装置100の炉内を一定温度勾配で降温させた。そして、ワークコイル7の出力がゼロとなった後、そのまま8時間自然冷却させた。昇温開始から自然冷却が終了するまでを昇温降温の1サイクルとし、1サイクルあたりの所要時間は24時間とした。なお、繰り返し工程は、窒素のみの雰囲気で行った。
結果として、図4に実施例1、比較例1、2における坩堝の直径の変化量を示すグラフ示す。縦軸は、変形坩堝30の側壁部34の内壁における円周が最も小さい位置の内径の変化量を示し、横軸は繰り返し工程によるLTの融解、冷却の繰り返しのサイクル数を示す。実施例1の結果としては、LTの融解と冷却を繰り返すことで側壁部34の内壁が外側へ膨らんでくびれが回復し、繰り返し工程を15サイクル実施後には、側壁部34の内壁における円周が最も小さい位置の内径が7mm膨らみ、当初は210mmであった内径が203mmまで修正され、LT単結晶の安定した育成が可能な坩堝に再生することができた。
[比較例1]
変形坩堝30内のLTの融液の表面位置が、側壁部34の内壁における円周が最も小さい位置(すなわち、もっとも内側にくびれた部分)となる点線Aよりも内壁の高さHの35%分だけ高い位置となるように、LTの量を設定した。そして、ワークコイル7の下端7aの位置が、鉛直方向において、変形坩堝30の底面33bよりも30mm低い位置となるように、チャンバー10内において、変形坩堝30とワークコイル7との位置を設定した。その他の条件は、実施例1と同じ条件で繰り返し工程を行い、LTの融解および凝固を15サイクル繰り返した。
比較例1の結果としては、LTの融解と冷却を繰り返すことで側壁部34の内壁が外側へ膨らんでくびれが回復し、繰り返し工程を15サイクル実施後には、側壁部34の内壁における円周が最も小さい位置の内径が約2mm膨らんだ。ただし、当初は210mmであった内径が約198mmまで修正されるに留まり、LT単結晶の安定した育成が可能な坩堝の再生には至らなかった。
[比較例2]
変形坩堝30内のLTの融液の表面位置が、側壁部34の内壁における円周が最も小さい位置(すなわち、もっとも内側にくびれた部分)となる点線Aよりも内壁の高さHの5%分だけ低い位置となるように、LTの量を設定した。そして、ワークコイル7の下端7aの位置が、鉛直方向において、変形坩堝30の底面33bよりも30mm低い位置となるように、チャンバー10内において、変形坩堝30とワークコイル7との位置を設定した。その他の条件は、実施例1と同じ条件で繰り返し工程を行い、LTの融解および凝固を15サイクル繰り返した。
比較例2の結果としては、LTの融解と冷却を繰り返しても、側壁部34の内壁が外側へ膨らまず、更にくびれていく結果となった。繰り返し工程を15サイクル実施後には、側壁部34の内壁における円周が最も小さい位置の内径が約1mm細くなり、坩堝の再生をすることができず、比較例2の条件では坩堝の形状修正の効果は無かった。
[比較例3]
ワークコイル7の下端7aの位置が、鉛直方向において、変形坩堝30の底面33bよりも70mm低い位置となるように、チャンバー10内において、変形坩堝30とワークコイル7との位置を設定した。その他の条件は、実施例1と同じ条件で繰り返し工程を行い、LTの融解および凝固を10サイクル繰り返した。
比較例3の結果としては、LTの融解と冷却を繰り返すことで側壁部34の内壁が外側へ膨らんでくびれが回復し、繰り返し工程を15サイクル実施後には、側壁部34の内壁における円周が最も小さい位置の内径が約2mm膨らんだ。ただし、当初は210mmであった内径が約198mmまで修正されるに留まり、LT単結晶の安定した育成が可能な坩堝の再生には至らなかった。比較例3は、LTの融解および凝固を10サイクル繰り返したところで、坩堝の再生効果は小さいと判断し、15サイクルまでの実施は行わなかった。
本発明の変形坩堝の再生方法は、Cz法を用いてLT単結晶を生産する場合に、その生産コストを低減できるため、産業上有用である。具体的には、LT単結晶の育成に用いる育成装置を用いて容易にIr製坩堝の形状修正を行うことが出来、Ir製坩堝の形状に起因する多結晶化やクラックなどの不良や、直胴部の径不良や曲がり等の形状不良を抑制することが可能となり、LT単結晶の生産性向上およびコストダウンが図れる。
1 LT原料融液
1a 空洞
2 種結晶
3 Ir製坩堝
4 Ir製ホルダ
5 Ir製シード棒
6 ロードセル
7 ワークコイル
8 耐火物
9 坩堝台
10 チャンバー
30 変形坩堝
31 坩堝側壁
32 坩堝側壁
33 底部
33a 外縁部
33b 底面
34 側壁部
35 開口部
100 単結晶育成装置

Claims (2)

  1. チョクラルスキー法によるタンタル酸リチウム単結晶の育成への使用によって、円形の底部と、前記底部の外縁部から立設した円筒形の側壁部と、上部が開口した開口部を有する単結晶育成用イリジウム製坩堝の前記側壁部がくびれて、当該側壁部の内壁の円周が小さくなる変形をした変形坩堝の再生方法であって、
    前記変形坩堝中のタンタル酸リチウムの融解および凝固を、単結晶育成装置を用いて繰り返す、繰り返し工程を含み、
    前記繰り返し工程において、前記タンタル酸リチウムの融液の表面位置は、前記内壁の円周が最も小さい位置と、当該最も小さい位置よりも前記内壁の高さの20%高い位置との間であり、かつ、
    鉛直方向において、前記単結晶育成装置が備えるワークコイルの下端の位置は、前記底部の底面の位置と、当該底面よりも40mm低い位置との間である、変形坩堝の再生方法。
  2. 前記繰り返し工程は、前記内壁の円周が最も小さい位置の内径が、当初の坩堝の内径よりも10mm以上小さい前記変形坩堝を、当該内壁の円周が最も小さい位置の内径が前記当初の坩堝の内径の10mm未満となるまで前記融解および前記凝固を繰り返す工程である、請求項1に記載の変形坩堝の再生方法。
JP2020016892A 2020-02-04 2020-02-04 変形坩堝の再生方法 Pending JP2021123512A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020016892A JP2021123512A (ja) 2020-02-04 2020-02-04 変形坩堝の再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020016892A JP2021123512A (ja) 2020-02-04 2020-02-04 変形坩堝の再生方法

Publications (1)

Publication Number Publication Date
JP2021123512A true JP2021123512A (ja) 2021-08-30

Family

ID=77459912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020016892A Pending JP2021123512A (ja) 2020-02-04 2020-02-04 変形坩堝の再生方法

Country Status (1)

Country Link
JP (1) JP2021123512A (ja)

Similar Documents

Publication Publication Date Title
US20200291541A1 (en) Method, device, system, and computer storage medium for crystal growing control
US20200255972A1 (en) Method, device, system, and computer storage medium for crystal growing control
JP3892496B2 (ja) 半導体単結晶製造方法
JP3388664B2 (ja) 多結晶半導体の製造方法および製造装置
JP2005350347A (ja) 軸方向長さの関数としてメルト−固体界面形状を制御することによってシリコン結晶を成長させる装置及び方法
EP1199387B1 (en) Method for growing single crystal of semiconductor
KR100654511B1 (ko) 실리콘 단결정 웨이퍼 및 그 제조방법
JP6790698B2 (ja) 結晶育成装置及び結晶育成方法
JP2020066555A (ja) 単結晶育成装置及び単結晶育成方法
JP3698080B2 (ja) 単結晶引上げ方法
JP2021123512A (ja) 変形坩堝の再生方法
JP7115252B2 (ja) 酸化物単結晶の製造方法及び結晶育成装置
TW202113167A (zh) ScAlMgO4單晶及其製作方法和自支撐基板
JP2019094251A (ja) 単結晶製造方法
JP2009091237A (ja) 極低欠陥半導体単結晶製造方法及びその製造装置
JP5229017B2 (ja) 単結晶の製造方法
JP2010248003A (ja) SiC単結晶の製造方法
JP2020152628A (ja) ニオブ酸リチウム単結晶の育成方法
JP4407192B2 (ja) 単結晶の製造方法
JP4735594B2 (ja) 酸化物単結晶の育成方法
JP7456182B2 (ja) 単結晶の製造方法
JP3690680B2 (ja) シリコン単結晶の製造方法
JP3823717B2 (ja) シリコン単結晶の製造方法
JP2021187690A (ja) 坩堝形状修正方法
TWI840911B (zh) 一種用於製造單晶矽棒的拉晶爐、方法及單晶矽棒