JP2021122524A - Fine bubble generation nozzle body - Google Patents

Fine bubble generation nozzle body Download PDF

Info

Publication number
JP2021122524A
JP2021122524A JP2020018290A JP2020018290A JP2021122524A JP 2021122524 A JP2021122524 A JP 2021122524A JP 2020018290 A JP2020018290 A JP 2020018290A JP 2020018290 A JP2020018290 A JP 2020018290A JP 2021122524 A JP2021122524 A JP 2021122524A
Authority
JP
Japan
Prior art keywords
side opening
pressurized water
air
gas
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020018290A
Other languages
Japanese (ja)
Other versions
JP7395152B2 (en
Inventor
拓也 岩▲崎▼
Takuya Iwasaki
拓也 岩▲崎▼
隆志 秦
Takashi Hata
隆志 秦
悠祐 西内
Yusuke Nishiuchi
悠祐 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Rinnai Corp
Original Assignee
Institute of National Colleges of Technologies Japan
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Rinnai Corp filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2020018290A priority Critical patent/JP7395152B2/en
Publication of JP2021122524A publication Critical patent/JP2021122524A/en
Application granted granted Critical
Publication of JP7395152B2 publication Critical patent/JP7395152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)

Abstract

To provide a technology in which fine air bubbles can be contained in a large quantity into gas dissolution pressurized water being made to flow out into a flow-out place.SOLUTION: A fine bubble generation nozzle body includes: a decompression tube for making gas dissolution pressurized water pass from an upstream end toward a downstream end; an inlet port opened at the upstream end of the decompression tube; an inlet side opening provided at the downstream side from the inlet port; and an outlet side opening opened at the downstream end of the decompression tube. An opening area of the inlet side opening is smaller than the opening area of the inlet port, and the opening area of the outlet side opening is larger than the opening area of the inlet side opening. A speed reduction part for reducing a flow rate of the gas dissolution pressurized water passing through the inside of the decompression tube is formed at least in a portion of an inner circumferential wall of a first portion between the inlet port and the inlet side opening and an inner circumferential wall of a second portion at the downstream side from the inlet side opening and in the vicinity of the inlet side opening of the decompression tube.SELECTED DRAWING: Figure 2

Description

本明細書で開示する技術は、微細気泡発生ノズル本体に関する。 The technique disclosed herein relates to a fine bubble generating nozzle body.

特許文献1には、微細気泡発生ノズルが開示されている。この微細気泡発生ノズルは、微細な噴出孔を有する筒状部材であるノズル本体と、ノズル本体の先端に取り付けられるノズルカバーとを備える。ノズルカバーは、噴出孔に対向する壁と、噴出孔よりも微細な流出孔とを有する。 Patent Document 1 discloses a fine bubble generating nozzle. The fine bubble generating nozzle includes a nozzle body which is a tubular member having fine ejection holes, and a nozzle cover attached to the tip of the nozzle body. The nozzle cover has a wall facing the ejection hole and an outflow hole finer than the ejection hole.

特許文献1の微細気泡発生ノズルでは、気体(例えば空気、炭酸ガス、水素等)が水に溶解している気体溶解加圧水がノズル本体に供給されると、気体溶解加圧水は、ノズル本体を通って噴出孔から壁に向けて噴出される。噴出孔から噴出された気体溶解加圧水は、壁に衝突してノズルカバー内で迂回した後、流出孔から流出箇所(具体的には浴槽)に流出される。気体溶解加圧水は、微細な噴出孔、及び、さらに微細な流出孔を通過することにより、大気圧まで徐々に減圧される。気体溶解加圧水が減圧される過程において、気体溶解加圧水に溶解されていた気体が析出し、微細気泡が発生する。即ち、特許文献1の微細気泡発生ノズルでは、気体溶解加圧水の流通過程で気体溶解加圧水を減圧することにより、流出箇所(具体的には浴槽)に流出される気体溶解加圧水に微細気泡を含ませることができる。 In the fine bubble generating nozzle of Patent Document 1, when gas-dissolved pressurized water in which a gas (for example, air, carbon dioxide, hydrogen, etc.) is dissolved in water is supplied to the nozzle body, the gas-dissolved pressurized water passes through the nozzle body. It is ejected from the ejection hole toward the wall. The gas-dissolved pressurized water ejected from the ejection hole collides with the wall and circumvents in the nozzle cover, and then flows out from the outflow hole to the outflow point (specifically, the bathtub). The gas-dissolved pressurized water is gradually depressurized to atmospheric pressure by passing through a fine ejection hole and a finer outflow hole. In the process of depressurizing the gas-dissolved pressurized water, the gas dissolved in the gas-dissolved pressurized water is precipitated and fine bubbles are generated. That is, in the fine bubble generation nozzle of Patent Document 1, the gas dissolution pressurized water is depressurized in the flow process of the gas dissolution pressurized water, so that the gas dissolution pressurized water flowing out to the outflow point (specifically, the bathtub) contains the fine bubbles. be able to.

特開2007−167557号公報JP-A-2007-167557

しかしながら、特許文献1の微細気泡発生ノズルでは、流出箇所に流出される気体溶解加圧水に含まれる微細気泡の量が不十分であるという状況が発生する。 However, in the fine bubble generation nozzle of Patent Document 1, a situation occurs in which the amount of fine bubbles contained in the gas-dissolved pressurized water flowing out to the outflow portion is insufficient.

本明細書では、流出箇所に流出される気体溶解加圧水に微細気泡を大量に含ませることができる技術を提供する。 The present specification provides a technique capable of containing a large amount of fine bubbles in the gas-dissolved pressurized water flowing out to the outflow point.

本明細書によって開示される微細気泡発生ノズル本体は、上流側端部から下流側端部に向けて、気体が水に溶解している気体溶解加圧水を通過させる減圧管と、前記上流側端部に開口され、外部から前記減圧管内に前記気体溶解加圧水を導入する導入口と、前記減圧管のうち前記導入口よりも下流側に設けられ、前記減圧管内に導入された前記気体溶解加圧水を通過させる入口側開口部と、前記入口側開口部よりも下流側である前記下流側端部に開口された出口側開口部と、を備えている。前記入口側開口部の開口面積は前記導入口の開口面積よりも小さく、前記出口側開口部の開口面積は前記入口側開口部の開口面積よりも大きく、前記減圧管のうち、前記導入口と前記入口側開口部の間の第1の部分の内周壁と、前記入口側開口部よりも下流側であって前記入口側開口部近傍の第2の部分の内周壁と、のうちの少なくとも一部に、前記減圧管内を通過する前記気体溶解加圧水の流速を減速させる減速部が形成されている。 The microbubble generating nozzle main body disclosed by the present specification includes a pressure reducing pipe for passing gas-dissolved pressurized water in which a gas is dissolved in water from an upstream end to a downstream end, and the upstream end. And an introduction port for introducing the gas-dissolving pressurized water into the decompression pipe from the outside, and the gas-dissolving pressurized water provided in the decompression pipe on the downstream side of the introduction port and introduced into the decompression pipe. It is provided with an inlet-side opening to be allowed to be used, and an outlet-side opening opened at the downstream-side end portion on the downstream side of the inlet-side opening. The opening area of the inlet side opening is smaller than the opening area of the introduction port, the opening area of the outlet side opening is larger than the opening area of the inlet side opening, and the pressure reducing pipe is the same as the introduction port. At least one of the inner peripheral wall of the first portion between the inlet-side openings and the inner peripheral wall of the second portion on the downstream side of the inlet-side opening and near the inlet-side opening. A deceleration portion for reducing the flow velocity of the gas-dissolved pressurized water passing through the decompression pipe is formed in the portion.

上記の構成によると、気体溶解加圧水は、外部から減圧管内に導入される際に入口側開口部を通過することによって流速が上昇し、その結果減圧される(ベンチュリー効果)。気体溶解加圧水が減圧されることにより、気体溶解加圧水に溶解していた気体が析出し、微細気泡の元になる気泡(気泡核とも言う)が発生する。その後、減圧管の出口側開口部から排出された気体溶解加圧水は、流出箇所に流出されるまでの間、所定の流通経路を流通されながら増圧される。減圧によって気泡が析出させられた後の気体溶解加圧水が増圧されると、気体溶解加圧水に含まれる気泡が分裂して微細気泡になる。 According to the above configuration, when the gas-dissolved pressurized water is introduced into the pressure reducing pipe from the outside, the flow velocity is increased by passing through the inlet side opening, and as a result, the pressure is reduced (Venturi effect). When the gas-dissolved pressurized water is depressurized, the gas dissolved in the gas-dissolved pressurized water is precipitated, and bubbles (also called bubble nuclei) that are the sources of fine bubbles are generated. After that, the gas-dissolved pressurized water discharged from the outlet-side opening of the pressure reducing pipe is increased in pressure while being circulated through a predetermined distribution route until it is discharged to the outflow point. When the pressure of the gas-dissolving pressurized water after the bubbles are precipitated by the reduced pressure is increased, the bubbles contained in the gas-dissolving pressurized water are split into fine bubbles.

そして、上記の構成によると、減速部が形成されていることで、減速部付近の気体溶解加圧水の流れる向きが不規則になる。この際に流れの剥離が生じる。その結果、減圧管内のうち、減圧管の内周壁付近の流速が、減圧管の径方向中心付近の流速よりも遅くなる。内周壁付近の流速と中心付近の流速との差が大きくなることで、入口側開口部の通過時に、より多くの気泡核が発生する。その結果、上記の微細気泡発生ノズル本体を用いることで、気泡核を元にする微細気泡を大量に発生させることができる。 Then, according to the above configuration, since the deceleration portion is formed, the flow direction of the gas-dissolved pressurized water in the vicinity of the deceleration portion becomes irregular. At this time, the flow is separated. As a result, the flow velocity in the pressure reducing pipe near the inner peripheral wall of the pressure reducing pipe becomes slower than the flow velocity near the radial center of the pressure reducing pipe. As the difference between the flow velocity near the inner peripheral wall and the flow velocity near the center becomes large, more bubble nuclei are generated when passing through the inlet side opening. As a result, by using the above-mentioned fine bubble generation nozzle main body, a large amount of fine bubbles based on the bubble nuclei can be generated.

ここで言う「気体」は、空気、炭酸ガス、水素等、水に溶解可能な任意の気体を含む。また、「減速部」は、付近を通過する気体溶解加圧水の流速を遅くすることで流れの剥離を生じさせることができる任意の構成を含む。例えば、段差構造、返し構造、凹凸構造、トゲ(突起)構造、ディンプル構造等のいずれか、もしくはこれらの組合せであってもよい。 The term "gas" as used herein includes any gas that is soluble in water, such as air, carbon dioxide, and hydrogen. Further, the "deceleration unit" includes an arbitrary configuration capable of causing flow separation by slowing the flow velocity of the gas-dissolved pressurized water passing in the vicinity. For example, any one of a step structure, a return structure, an uneven structure, a thorn (projection) structure, a dimple structure, and the like, or a combination thereof may be used.

前記減速部は、少なくとも前記第1の部分の内周壁に形成されてもよい。 The deceleration portion may be formed on the inner peripheral wall of at least the first portion.

第1の部分(即ち、減圧管のうち、導入口と入口側開口部の間の部分)の内周壁は、他の部分の内周壁に比べて加工を施しやすい。従って、この構成によると、減速部を有する微細気泡発生ノズル本体を比較的容易に製造できるという利点がある。 The inner peripheral wall of the first portion (that is, the portion of the pressure reducing pipe between the inlet and the inlet side opening) is easier to process than the inner peripheral wall of the other portion. Therefore, according to this configuration, there is an advantage that the fine bubble generating nozzle main body having the deceleration portion can be manufactured relatively easily.

第1実施例の微細気泡発生ノズル10の斜視図。The perspective view of the fine bubble generation nozzle 10 of 1st Example. 図1のII−II線に沿った微細気泡発生ノズル10の断面図。FIG. 2 is a cross-sectional view of the fine bubble generating nozzle 10 along the line II-II of FIG. 第1実施例のノズル本体20の斜視図。The perspective view of the nozzle body 20 of 1st Example. 第1実施例のノズル本体20の入口側開口部24近傍の拡大断面図。An enlarged cross-sectional view of the vicinity of the inlet side opening 24 of the nozzle body 20 of the first embodiment. 第1実施例のホルダ部40の斜視図。The perspective view of the holder part 40 of 1st Example. 第2実施例のノズル本体20の入口側開口部24近傍の拡大断面図。An enlarged cross-sectional view of the vicinity of the inlet side opening 24 of the nozzle body 20 of the second embodiment.

(第1実施例)
(微細気泡発生ノズル10の構成)
図1〜図5を参照して、第1実施例の微細気泡発生ノズル10について説明する。微細気泡発生ノズル10は、浴槽(図示省略)等の流出箇所に微細気泡を含む水を供給するためのノズルである。図1に示すように、微細気泡発生ノズル10は、ノズル本体20と、ホルダ部40と、を備える。図1、図2において、ノズル本体20は、ホルダ部40に支持されている。
(First Example)
(Structure of Fine Bubble Generation Nozzle 10)
The fine bubble generation nozzle 10 of the first embodiment will be described with reference to FIGS. 1 to 5. The fine bubble generation nozzle 10 is a nozzle for supplying water containing fine bubbles to an outflow point such as a bathtub (not shown). As shown in FIG. 1, the fine bubble generating nozzle 10 includes a nozzle body 20 and a holder portion 40. In FIGS. 1 and 2, the nozzle body 20 is supported by the holder portion 40.

(ノズル本体20の構成)
図1〜図4を参照して、ノズル本体20の構成について説明する。なお、以下の説明では、図2中のX軸方向を左右方向、Y軸方向を上下方向、Z軸方向を前後方向と呼ぶ場合がある。図3に示すように、ノズル本体20は、減圧管22と鍔部28とを備える。
(Structure of nozzle body 20)
The configuration of the nozzle body 20 will be described with reference to FIGS. 1 to 4. In the following description, the X-axis direction in FIG. 2 may be referred to as a left-right direction, the Y-axis direction may be referred to as a vertical direction, and the Z-axis direction may be referred to as a front-back direction. As shown in FIG. 3, the nozzle body 20 includes a pressure reducing tube 22 and a flange portion 28.

図1〜図4に示すように、減圧管22は、空気が水に溶解している空気溶解加圧水の圧力を減圧することができる管状部材である。図2に示すように、減圧管22の内部には、減圧管22内を2本の管部に区画する区画壁25が設けられている。減圧管22の後方側の上流側端部22a(図中Z軸の負方向側の端部)には、2個の導入口23が開口されている。導入口23には、空気が水に溶解している空気溶解加圧水を供給するための給水手段(図示しない)から、空気溶解加圧水が供給される。導入口23には上記給水手段が接続されていてもよい。ここで、空気溶解加圧水は、流出箇所に供給される微細気泡を含む水の原料となる液体である。 As shown in FIGS. 1 to 4, the pressure reducing pipe 22 is a tubular member capable of reducing the pressure of air-dissolved pressurized water in which air is dissolved in water. As shown in FIG. 2, inside the pressure reducing pipe 22, a partition wall 25 for partitioning the inside of the pressure reducing pipe 22 into two pipe portions is provided. Two introduction ports 23 are opened at the upstream end 22a (the end on the negative direction side of the Z axis in the drawing) on the rear side of the pressure reducing pipe 22. Air-dissolved pressurized water is supplied to the introduction port 23 from a water supply means (not shown) for supplying air-dissolved pressurized water in which air is dissolved in water. The water supply means may be connected to the introduction port 23. Here, the air-dissolved pressurized water is a liquid that is a raw material of water containing fine bubbles supplied to the outflow point.

減圧管22のうち、上流側端部22aの近傍であって、2個の導入口23よりもやや前方寄り(即ち、下流側寄り。Z軸の正方向寄りとも言う)の位置には、2個の入口側開口部24が開口されている。入口側開口部24の開口面積は、導入口23の開口面積よりも小さい。言い換えると、減圧管22は、入口側開口部24において縮径されている。区画壁25は、減圧管22の後方側の上流側端部22a(図中Z軸の負方向側の端部)から、減圧管22の途中までの区間を2本の管部に区画している。そのため、減圧管22の前方側の下流側端部22b(図中Z軸の正方向側の端部)は、区画壁25によって2本の管部に区画されていない。下流側端部22bには、1個の出口側開口部26のみが開口されている。本実施例では、出口側開口部26の開口面積(即ちXY平面上の面積)は、2個の入口側開口部24の開口面積(即ちXY平面上の面積)の合計面積よりも大きい。言い換えると、減圧管22は、入口側開口部24から出口側開口部26に向かって拡径されている。 Of the pressure reducing pipe 22, 2 is located near the upstream end 22a and slightly forward of the two inlets 23 (that is, toward the downstream side, also referred to as the Z-axis in the positive direction). The entrance side openings 24 are opened. The opening area of the entrance side opening 24 is smaller than the opening area of the introduction port 23. In other words, the pressure reducing pipe 22 is reduced in diameter at the inlet side opening 24. The partition wall 25 divides the section from the upstream end 22a on the rear side of the pressure reducing pipe 22 (the end on the negative direction of the Z axis in the drawing) to the middle of the pressure reducing pipe 22 into two pipes. There is. Therefore, the downstream end 22b on the front side of the pressure reducing pipe 22 (the end on the positive direction side of the Z axis in the drawing) is not divided into two pipes by the partition wall 25. Only one outlet side opening 26 is opened in the downstream side end portion 22b. In this embodiment, the opening area of the outlet side opening 26 (that is, the area on the XY plane) is larger than the total area of the opening areas (that is, the area on the XY plane) of the two inlet side openings 24. In other words, the pressure reducing pipe 22 is expanded in diameter from the inlet side opening 24 toward the outlet side opening 26.

図2、図4に示すように、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁には、減速部30が形成されている。本実施例の減速部30は、導入口23と入口側開口部24の間の内周壁に段差を形成した段差構造である。後で詳しく説明するが、減速部30が備えられることで、減速部30付近の気体溶解加圧水の流れる向きが不規則になり、その結果、減圧管22内のうち、内周壁付近の流速が径方向中心付近の流速よりも遅くなる。内周壁付近と中心付近の流速差が大きくなることで、微細気泡の元になる気泡(気泡核とも言う)がより多く生じる。 As shown in FIGS. 2 and 4, a speed reducing portion 30 is formed on the inner peripheral wall of the portion of the pressure reducing pipe 22 between the introduction port 23 and the inlet side opening 24. The speed reducing portion 30 of this embodiment has a stepped structure in which a step is formed on the inner peripheral wall between the introduction port 23 and the inlet side opening 24. As will be described in detail later, since the deceleration unit 30 is provided, the flow direction of the gas-dissolved pressurized water in the vicinity of the deceleration unit 30 becomes irregular, and as a result, the flow velocity in the pressure reducing pipe 22 near the inner peripheral wall has a diameter. It is slower than the flow velocity near the center of direction. As the difference in flow velocity between the vicinity of the inner peripheral wall and the vicinity of the center increases, more bubbles (also called bubble nuclei) that are the source of fine bubbles are generated.

図1〜図3に示すように、鍔部28は、減圧管22の前後方向中間部付近の外面に設けられている円板状部材である。図2に示すように、鍔部28の外径は、減圧管22の外径よりも大きい。 As shown in FIGS. 1 to 3, the flange portion 28 is a disk-shaped member provided on the outer surface of the pressure reducing pipe 22 near the intermediate portion in the front-rear direction. As shown in FIG. 2, the outer diameter of the flange portion 28 is larger than the outer diameter of the pressure reducing pipe 22.

(ホルダ部40の構成)
続いて、図1、図2、図5を参照して、ホルダ部40の構成について説明する。図5に顕著に示されるように、ホルダ部40は、外側円筒部42と、内側円筒部44と、2個の連結部52と、を備える。外側円筒部42と2個の連結部52とは連続して一体に成形されている。内側円筒部44は、外側円筒部42の内側に収容されて形成されている。
(Structure of holder portion 40)
Subsequently, the configuration of the holder portion 40 will be described with reference to FIGS. 1, 2, and 5. As is notably shown in FIG. 5, the holder portion 40 includes an outer cylindrical portion 42, an inner cylindrical portion 44, and two connecting portions 52. The outer cylindrical portion 42 and the two connecting portions 52 are continuously and integrally molded. The inner cylindrical portion 44 is formed so as to be housed inside the outer cylindrical portion 42.

外側円筒部42は、円筒状の部材である。図2、図5に示すように、後方側の開口部には、上述のノズル本体20の鍔部28を収容するための段差43が形成されている。 The outer cylindrical portion 42 is a cylindrical member. As shown in FIGS. 2 and 5, a step 43 for accommodating the flange portion 28 of the nozzle body 20 described above is formed in the opening on the rear side.

2個の連結部52は、それぞれ、外側円筒部42の外周面から外側に突出して形成されている。連結部52には、ネジ穴Bが設けられている。連結部52のネジ穴Bは、ホルダ部40を浴槽接続具(図示省略)に取付けるためのネジ穴である。なお、浴槽接続具は、微細気泡発生ノズル10を浴槽に取付けるための機具である。ホルダ部40内に、ノズル本体20を挿入した後に、浴槽接続具の取付穴(図示省略)と連結部52のネジ穴Bを位置合わせし、ネジ部材(図示省略)をネジ穴Bに螺合させることで、微細気泡発生ノズル10と浴槽接続具が連結される。 Each of the two connecting portions 52 is formed so as to project outward from the outer peripheral surface of the outer cylindrical portion 42. The connecting portion 52 is provided with a screw hole B. The screw hole B of the connecting portion 52 is a screw hole for attaching the holder portion 40 to the bathtub connector (not shown). The bathtub connector is a device for attaching the fine bubble generating nozzle 10 to the bathtub. After inserting the nozzle body 20 into the holder portion 40, the mounting hole of the bathtub connector (not shown) and the screw hole B of the connecting portion 52 are aligned, and the screw member (not shown) is screwed into the screw hole B. By doing so, the fine bubble generating nozzle 10 and the bathtub connector are connected.

内側円筒部44は、外側円筒部42の内側に収容されて形成されている筒状部材である。内側円筒部44は、4個の接続部48を介して外側円筒部42の内面と接続されている。内側円筒部44と外側円筒部42との間の隙間により、4個の流出口50が形成されている。 The inner cylindrical portion 44 is a tubular member formed inside the outer cylindrical portion 42. The inner cylindrical portion 44 is connected to the inner surface of the outer cylindrical portion 42 via four connecting portions 48. Four outlets 50 are formed by the gap between the inner cylindrical portion 44 and the outer cylindrical portion 42.

内側円筒部44の前方側端部には、円板部46が形成されている。円板部46は、内側円筒部44の前方側端部を閉塞している。円板部46のXY平面における中心部には、Y軸に沿って突出部49が形成されている。突出部49は、円板部46の後側の面から後方に向けて突出する略壁状の突起部材である。図5に顕著に示されるように、突出部49によって、円板部46の後側の面が左右に分断される。図2に示すように、突出部49の先端付近は、後方から前方に向かう方向(即ち、空気溶解加圧水の流れ方向(図2中矢印参照))に沿って見た場合に、当該方向に対してやや傾斜している。言い換えると、突出部49の先端付近は、後方に向かって丸く尖るように形成されている。 A disk portion 46 is formed at the front end portion of the inner cylindrical portion 44. The disk portion 46 closes the front end portion of the inner cylindrical portion 44. A protrusion 49 is formed along the Y axis at the center of the disk portion 46 in the XY plane. The protrusion 49 is a substantially wall-shaped protrusion member that protrudes rearward from the rear surface of the disk portion 46. As is notably shown in FIG. 5, the protruding portion 49 divides the rear surface of the disc portion 46 into left and right. As shown in FIG. 2, the vicinity of the tip of the protrusion 49 is relative to the direction from the rear to the front (that is, the flow direction of the air-dissolved pressurized water (see the arrow in FIG. 2)). It is slightly inclined. In other words, the vicinity of the tip of the protrusion 49 is formed so as to be rounded and pointed toward the rear.

(ノズル本体20がホルダ部40に支持される状態)
続いて、ノズル本体20がホルダ部40に支持される状態における各構成要素の位置関係について説明する。図1、図2に示すように、ノズル本体20がホルダ部40に支持されることにより、本実施例の微細気泡発生ノズル10が形成される。この状態では、ノズル本体20のうち、減圧管22の下流側端部22b及び鍔部28がホルダ部40内に差し込まれている。具体的には、減圧管22の下流側端部22bは、ホルダ部40の内側円筒部44(後述)内に差し込まれている。また、鍔部28は、外側円筒部42の開口部に形成されている段差43内に収容されている。この際、鍔部28の前面28aは、段差43と当接する。ノズル本体20がホルダ部40に支持されている状態では、減圧管22の上流側端部22aは、ホルダ部40の後方側に突出している。
(A state in which the nozzle body 20 is supported by the holder portion 40)
Subsequently, the positional relationship of each component in a state where the nozzle body 20 is supported by the holder portion 40 will be described. As shown in FIGS. 1 and 2, the nozzle body 20 is supported by the holder portion 40, so that the fine bubble generating nozzle 10 of this embodiment is formed. In this state, the downstream end portion 22b and the flange portion 28 of the pressure reducing pipe 22 of the nozzle body 20 are inserted into the holder portion 40. Specifically, the downstream end 22b of the pressure reducing pipe 22 is inserted into the inner cylindrical portion 44 (described later) of the holder portion 40. Further, the flange portion 28 is housed in a step 43 formed in the opening of the outer cylindrical portion 42. At this time, the front surface 28a of the flange portion 28 comes into contact with the step 43. In a state where the nozzle body 20 is supported by the holder portion 40, the upstream end portion 22a of the pressure reducing pipe 22 projects to the rear side of the holder portion 40.

図2に示すように、ノズル本体20がホルダ部40に支持される状態では、突出部49の先端部分は、減圧管22の下流側端部22bに対向して配置される。さらに言うと、突出部49の先端部分は、区画壁25の前端部と対向している。そして、この状態では、減圧管22の下流側端部22bと円板部46とが対向するように配置される。 As shown in FIG. 2, in a state where the nozzle body 20 is supported by the holder portion 40, the tip portion of the protruding portion 49 is arranged so as to face the downstream end portion 22b of the pressure reducing pipe 22. Furthermore, the tip portion of the protrusion 49 faces the front end portion of the partition wall 25. Then, in this state, the downstream end portion 22b of the pressure reducing pipe 22 and the disk portion 46 are arranged so as to face each other.

ノズル本体20がホルダ部40に支持されることにより、ノズル本体20とホルダ部40とによって、流路空間62、通路64、流路空間66、及び、通路68が形成される。流路空間62、通路64、流路空間66、通路68は、いずれも、空気溶解加圧水をこの順で流通させるための空間及び通路である。 When the nozzle body 20 is supported by the holder portion 40, the nozzle body 20 and the holder portion 40 form a flow path space 62, a passage 64, a flow path space 66, and a passage 68. The flow path space 62, the passage 64, the flow path space 66, and the passage 68 are all spaces and passages for flowing the air-dissolved pressurized water in this order.

流路空間62は、減圧管22の下流側端部22bと円板部46との間に形成される。流路空間62の流路面積は、どの部分においても、上述の出口側開口部26の流路面積の合計面積よりも大きい。詳しく言うと、減圧管22の下流側端部22bの前方における、下流側端部22bの延長線と突出部49との間の空間のXY平面上の面積、および、下流側端部22bと円板部46との間の空間の面積(より詳しくは、円板部46のXY平面上の中心から垂直に伸びる軸線を中心軸とし、かつ、XY平面上における上記中心軸と下流側端部22bの外側とを結ぶ線を半径とする仮想的な円柱のうち、下流側端部22bと円板部46との間の範囲の外側面部分の面積)のいずれもが、上述の出口側開口部26の流路面積の合計面積よりも大きい。 The flow path space 62 is formed between the downstream end portion 22b of the pressure reducing pipe 22 and the disk portion 46. The flow path area of the flow path space 62 is larger than the total area of the flow path areas of the outlet side opening 26 described above in any portion. More specifically, the area of the space between the extension line of the downstream end 22b and the protrusion 49 in front of the downstream end 22b of the pressure reducing pipe 22 on the XY plane, and the downstream end 22b and the circle. The area of the space between the plate portion 46 (more specifically, the axis extending vertically from the center of the disk portion 46 on the XY plane is the central axis, and the central axis and the downstream end portion 22b on the XY plane are the central axes. Of the virtual cylinders whose radius is the line connecting the outside of the cylinder, all of the outer surface portions in the range between the downstream end portion 22b and the disk portion 46) are the above-mentioned outlet side openings. It is larger than the total area of the flow path areas of 26.

通路64は、流路空間62の下流側に形成される。通路64は、内側円筒部44の内面と、内側円筒部44内に配置された減圧管22の外面との間に形成される。ここで、通路64の流路面積(即ちXY平面上の面積)は、上述の流路空間62のどの部分の流路面積よりも大きい。 The passage 64 is formed on the downstream side of the flow path space 62. The passage 64 is formed between the inner surface of the inner cylindrical portion 44 and the outer surface of the pressure reducing pipe 22 arranged in the inner cylindrical portion 44. Here, the flow path area of the passage 64 (that is, the area on the XY plane) is larger than the flow path area of any part of the above-mentioned flow path space 62.

流路空間66は、通路64の下流側に形成される。流路空間66は、内側円筒部44の後端と鍔部28の前面28aとの間に形成される。流路空間66は、内側円筒部44の後端、外側円筒部42の内面、減圧管22の外面、及び、鍔部28の前面28aによって画定される空間である。流路空間66の流路面積は、どの部分においても、上述の通路64の流路面積よりも大きい。詳しく言うと、内側円筒部44の後端と減圧管22の外面の間の空間のXY平面上の面積、内側円筒部44の後端と鍔部28の前面28aとの間の空間の面積(より詳しくは、円板部46のXY平面上の中心から垂直に伸びる軸線を中心軸とし、かつ、XY平面上における上記中心軸と内側円筒部44の外側とを結ぶ線を半径とする仮想的な円柱のうち、内側円筒部44の後端と前面28aとの間の範囲の外側面部分の面積)、および、内側円筒部44の後端と外側円筒部42の内面との間の空間のXY平面上の面積、のいずれもが、上述の通路64の流路面積よりも大きい。 The passage space 66 is formed on the downstream side of the passage 64. The flow path space 66 is formed between the rear end of the inner cylindrical portion 44 and the front surface 28a of the flange portion 28. The flow path space 66 is a space defined by the rear end of the inner cylindrical portion 44, the inner surface of the outer cylindrical portion 42, the outer surface of the pressure reducing pipe 22, and the front surface 28a of the flange portion 28. The flow path area of the flow path space 66 is larger than the flow path area of the above-mentioned passage 64 in any portion. More specifically, the area of the space between the rear end of the inner cylindrical portion 44 and the outer surface of the pressure reducing tube 22 on the XY plane, the area of the space between the rear end of the inner cylindrical portion 44 and the front surface 28a of the flange portion 28 ( More specifically, a virtual axis whose central axis is an axis extending vertically from the center of the disk portion 46 on the XY plane and whose radius is a line connecting the central axis on the XY plane and the outside of the inner cylindrical portion 44. Area of the outer surface portion of the range between the rear end of the inner cylindrical portion 44 and the front surface 28a) and the space between the rear end of the inner cylindrical portion 44 and the inner surface of the outer cylindrical portion 42. Both of the areas on the XY plane are larger than the flow path area of the passage 64 described above.

通路68は、流路空間66の下流側に形成される。通路68は、流路空間66と流出口50とを接続する通路である。通路68は、外側円筒部42の内面と内側円筒部44の外面との間の隙間によって形成される。ここで、通路68の流路面積(即ちXY平面上の面積)は、上述の流路空間66のどの部分の流路面積よりも大きい。 The passage 68 is formed on the downstream side of the flow path space 66. The passage 68 is a passage connecting the flow path space 66 and the outflow port 50. The passage 68 is formed by a gap between the inner surface of the outer cylindrical portion 42 and the outer surface of the inner cylindrical portion 44. Here, the flow path area of the passage 68 (that is, the area on the XY plane) is larger than the flow path area of any part of the above-mentioned flow path space 66.

(空気溶解加圧水の流れ)
図2、図4を参照して、微細気泡発生ノズル10内における空気溶解加圧水の流れ、及び、それに伴って微細気泡が形成される過程について説明する。図2、図4において、実線矢印が空気溶解加圧水の流路を示している。
(Flow of air-dissolved pressurized water)
With reference to FIGS. 2 and 4, the flow of air-dissolved pressurized water in the fine bubble generation nozzle 10 and the process of forming fine bubbles accordingly will be described. In FIGS. 2 and 4, the solid arrow indicates the flow path of the air-dissolved pressurized water.

図2、図4に示すように、まず、ノズル本体20の導入口23を介して、外部から空気溶解加圧水が減圧管22内に導入される。この時点における空気溶解加圧水の圧力は、大気圧よりも大きい。 As shown in FIGS. 2 and 4, first, air-dissolved pressurized water is introduced into the pressure reducing pipe 22 from the outside through the introduction port 23 of the nozzle body 20. The pressure of the air-dissolved pressurized water at this point is higher than the atmospheric pressure.

導入口23から導入された空気溶解加圧水は、導入口23よりも開口面積が小さい入口側開口部24を通過する。これにより、空気溶解加圧水の流速が上昇し、空気溶解加圧水が大気圧よりも低い圧力まで減圧される(即ちベンチュリー効果による減圧)。空気溶解加圧水が減圧されることにより、空気溶解加圧水に溶解していた空気が析出し、気泡が発生する。 The air-dissolved pressurized water introduced from the introduction port 23 passes through the inlet side opening 24 having an opening area smaller than that of the introduction port 23. As a result, the flow velocity of the air-dissolved pressurized water increases, and the air-dissolved pressurized water is depressurized to a pressure lower than the atmospheric pressure (that is, decompression due to the Venturi effect). When the air-dissolved pressurized water is depressurized, the air dissolved in the air-dissolved pressurized water is precipitated and bubbles are generated.

ただし、本実施例では、上述の通り、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁には、段差構造の減速部30が形成されている。そのため、図4の波型矢印に示すように、減速部30付近を流れる空気溶解加圧水は、減速部30に当たって流れる向きが不規則になる。この際に流れの剥離が生じる。その結果、減圧管22内のうち、内周壁付近の流速(図4の波型矢印参照)が径方向中心付近の流速(図4の直線矢印参照)よりも遅くなる。その結果、空気溶解加圧水が入口側開口部24を通過する際における内周壁付近と中心付近の流速差が大きくなり、微細気泡の元になる気泡(気泡核とも言う)がより多く生じる。 However, in this embodiment, as described above, the reduction portion 30 having a stepped structure is formed on the inner peripheral wall of the portion of the pressure reducing pipe 22 between the introduction port 23 and the inlet side opening 24. Therefore, as shown by the corrugated arrow in FIG. 4, the air-dissolved pressurized water flowing in the vicinity of the deceleration unit 30 hits the deceleration unit 30 and flows in an irregular direction. At this time, the flow is separated. As a result, the flow velocity in the pressure reducing pipe 22 near the inner peripheral wall (see the wavy arrow in FIG. 4) is slower than the flow velocity near the center in the radial direction (see the straight arrow in FIG. 4). As a result, when the air-dissolved pressurized water passes through the inlet side opening 24, the difference in flow velocity between the vicinity of the inner peripheral wall and the vicinity of the center becomes large, and more bubbles (also referred to as bubble nuclei) that are the sources of fine bubbles are generated.

上記の通り、本実施例では、減圧管22は、入口側開口部24から出口側開口部26に向けて流路面積が増加するように形成されている。そのため、入口側開口部24を通過したことで減圧された減圧管22内の空気溶解加圧水が入口側開口部24から出口側開口部26に向かって減圧管22内を流れる間に、空気溶解加圧水の流速が低下する。流速が低下する結果、空気溶解加圧水が増圧される。空気溶解加圧水が増圧されることにより、空気溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。 As described above, in the present embodiment, the pressure reducing pipe 22 is formed so that the flow path area increases from the inlet side opening 24 toward the outlet side opening 26. Therefore, the air-dissolved pressurized water in the pressure reducing pipe 22 that has been decompressed by passing through the inlet side opening 24 flows through the pressure reducing pipe 22 from the inlet side opening 24 toward the outlet side opening 26. Flow velocity decreases. As a result of the decrease in flow velocity, the pressure of the air-dissolved pressurized water is increased. When the pressure of the air-dissolved pressurized water is increased, some of the bubbles contained in the air-dissolved pressurized water are split into fine bubbles.

出口側開口部26に向かって減圧管22内を流れてきた空気溶解加圧水は、出口側開口部26から流路空間62内へと排出される。上記の通り、流路空間62の流路面積は、出口側開口部26の流路面積より大きい。そのため、出口側開口部26を通って流路空間62内へと排出された空気溶解加圧水の流速はさらに低下する。これにより、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water that has flowed through the pressure reducing pipe 22 toward the outlet-side opening 26 is discharged from the outlet-side opening 26 into the flow path space 62. As described above, the flow path area of the flow path space 62 is larger than the flow path area of the outlet side opening 26. Therefore, the flow velocity of the air-dissolved pressurized water discharged into the flow path space 62 through the outlet side opening 26 is further reduced. As a result, the pressure of the air-dissolved pressurized water is further increased. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

また、流路空間62内へと排出された空気溶解加圧水は、円板部46に衝突する。この際、流路空間62内へと排出された空気溶解加圧水の一部は、突出部49に衝突した後で円板部46に衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Further, the air-dissolved pressurized water discharged into the flow path space 62 collides with the disk portion 46. At this time, a part of the air-dissolved pressurized water discharged into the flow path space 62 collides with the protruding portion 49 and then collides with the disc portion 46. As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow velocity of the air-dissolved pressurized water is further reduced. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

円板部46に衝突した後の空気溶解加圧水は、通路64を通過して流路空間66内へと排出される。上記の通り、通路64の流路面積は、流路空間62のどの部分の流路面積よりも大きい。そして、流路空間66の流路面積は、通路64の流路面積よりも大きい。そのため、通路64を通過して流路空間66内へと排出された空気溶解加圧水の流速はさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water after colliding with the disk portion 46 passes through the passage 64 and is discharged into the flow path space 66. As described above, the flow path area of the passage 64 is larger than the flow path area of any part of the flow path space 62. The flow path area of the flow path space 66 is larger than the flow path area of the passage 64. Therefore, the flow velocity of the air-dissolved pressurized water that has passed through the passage 64 and is discharged into the flow path space 66 is further reduced. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

そして、流路空間66内へと排出された空気溶解加圧水は、鍔部28の前面28aに衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水もさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Then, the air-dissolved pressurized water discharged into the flow path space 66 collides with the front surface 28a of the collar portion 28. As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow velocity of the air-dissolved pressurized water is further reduced. The pressure of air-dissolved pressurized water is further increased. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

鍔部28の前面28aに衝突した後の空気溶解加圧水は、通路68を通過し、流出口50から流出箇所(浴槽等)に向けて流出する。上記の通り、通路68の流路面積は、流路空間66のどの部分の流路面積よりも大きい。通路68を通過する空気溶解加圧水の流速はさらに低下する。そして、流出箇所に空気溶解加圧水が流出されることにより、空気溶解加圧水の流速がさらに低下し、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water after colliding with the front surface 28a of the flange portion 28 passes through the passage 68 and flows out from the outflow port 50 toward the outflow point (bathtub or the like). As described above, the flow path area of the passage 68 is larger than the flow path area of any part of the flow path space 66. The flow velocity of the air-dissolved pressurized water passing through the passage 68 is further reduced. Then, when the air-dissolved pressurized water flows out to the outflow location, the flow velocity of the air-dissolved pressurized water is further reduced, and the pressure of the air-dissolved pressurized water is further increased. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

以上、本実施例の微細気泡発生ノズル10の構成及び作用について説明した。上記の通り、本実施例では、ノズル本体20が減速部30を有することで、空気溶解加圧水が入口側開口部24を通過する際における内周壁付近と中心付近の流速差が大きくなり、微細気泡の元になる気泡(気泡核)がより多く生じる(図4参照)。その結果、本実施例の微細気泡発生ノズル10によると、流出箇所に流出される空気溶解加圧水には、微細気泡を大量に含ませることができる。 The configuration and operation of the fine bubble generating nozzle 10 of this embodiment have been described above. As described above, in the present embodiment, since the nozzle body 20 has the deceleration portion 30, the difference in flow velocity between the vicinity of the inner peripheral wall and the vicinity of the center when the air-dissolved pressurized water passes through the inlet side opening 24 becomes large, and fine bubbles More bubbles (cell nuclei) are generated (see FIG. 4). As a result, according to the fine bubble generation nozzle 10 of this embodiment, the air-dissolved pressurized water flowing out to the outflow portion can contain a large amount of fine bubbles.

また、本実施例では、減速部30は、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁に形成されている。この部分(即ち、導入口23と入口側開口部24の間の部分)の内周壁は、他の部分の内周壁に比べて加工を施しやすい。従って、この構成によると、減速部30を有するノズル本体20を比較的容易に製造できるという利点がある。 Further, in the present embodiment, the speed reduction portion 30 is formed on the inner peripheral wall of the portion of the pressure reducing pipe 22 between the introduction port 23 and the inlet side opening 24. The inner peripheral wall of this portion (that is, the portion between the introduction port 23 and the entrance side opening 24) is easier to process than the inner peripheral wall of the other portion. Therefore, according to this configuration, there is an advantage that the nozzle body 20 having the deceleration unit 30 can be manufactured relatively easily.

本実施例のノズル本体20が「微細気泡発生ノズル本体」の一例である。減圧管22のうち、導入口23と入口側開口部24の間の部分が「第1の部分」の一例である。 The nozzle body 20 of this embodiment is an example of a “fine bubble generating nozzle body”. Of the pressure reducing pipe 22, the portion between the introduction port 23 and the inlet side opening 24 is an example of the “first portion”.

(第2実施例)
図6を参照して、第2実施例の微細気泡発生ノズルについて、第1実施例と異なる点を中心に説明する。本実施例は、第1実施例の変形例の一つである。図6では、第1実施例と同じ構成を有する要素を、図1〜図5で用いられる符号と同じ符号を用いて表している。図6に示すように、本実施例では、ノズル本体20の減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁に形成される減速部130の形状が、第1実施例とは異なっている。
(Second Example)
With reference to FIG. 6, the fine bubble generating nozzle of the second embodiment will be described focusing on the points different from those of the first embodiment. This embodiment is one of the modifications of the first embodiment. In FIG. 6, elements having the same configuration as that of the first embodiment are represented by using the same reference numerals as those used in FIGS. 1 to 5. As shown in FIG. 6, in this embodiment, the shape of the deceleration portion 130 formed on the inner peripheral wall of the portion between the introduction port 23 and the inlet side opening 24 of the pressure reducing pipe 22 of the nozzle body 20 is the first. It is different from one embodiment.

本実施例の減速部130は、減圧管22の上流側端部22a側(図中Z軸の負方向側)に向けて内壁面が突出するいわゆる「返し構造」を有している。 The deceleration unit 130 of this embodiment has a so-called "return structure" in which the inner wall surface protrudes toward the upstream end 22a side (negative direction side of the Z axis in the drawing) of the pressure reducing pipe 22.

図6の波型矢印に示すように、本実施例でも、減速部130付近を流れる空気溶解加圧水は、減速部130に当たって流れる向きが不規則になる。その結果、減圧管22内のうち、内周壁付近の流速(図6の波型矢印参照)が径方向中心付近の流速(図6の直線矢印参照)よりも遅くなる。その結果、空気溶解加圧水が入口側開口部24を通過する際における内周壁付近と中心付近の流速差が大きくなり、微細気泡の元になる気泡(気泡核とも言う)がより多く生じる。そのため、本実施例のノズル本体20を使用する場合も、第1実施例と同様に、流出箇所に流出される空気溶解加圧水には、微細気泡を大量に含ませることができる。 As shown by the wavy arrow in FIG. 6, in this embodiment as well, the air-dissolved pressurized water flowing in the vicinity of the deceleration unit 130 hits the deceleration unit 130 and flows in an irregular direction. As a result, the flow velocity in the pressure reducing pipe 22 near the inner peripheral wall (see the wavy arrow in FIG. 6) is slower than the flow velocity near the center in the radial direction (see the straight arrow in FIG. 6). As a result, when the air-dissolved pressurized water passes through the inlet side opening 24, the difference in flow velocity between the vicinity of the inner peripheral wall and the vicinity of the center becomes large, and more bubbles (also referred to as bubble nuclei) that are the sources of fine bubbles are generated. Therefore, even when the nozzle body 20 of the present embodiment is used, the air-dissolved pressurized water flowing out to the outflow portion can contain a large amount of fine bubbles as in the first embodiment.

以上、実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the examples have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above.

(変形例1)上記の各実施例では、減速部30、130は、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁に形成されている(図4、図6参照)。これに限られず、減速部は、減圧管22のうち、入口側開口部24よりも下流側であって入口側開口部24近傍の部分の内周壁に形成されてもよい。また、さらに他の例では、減速部は、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁と、入口側開口部24よりも下流側であって入口側開口部24近傍の部分の内周壁と、の双方に形成されてもよい。 (Modification 1) In each of the above embodiments, the speed reduction portions 30 and 130 are formed on the inner peripheral wall of the portion of the pressure reducing pipe 22 between the introduction port 23 and the inlet side opening 24 (FIG. 4, FIG. (See FIG. 6). Not limited to this, the speed reducing portion may be formed on the inner peripheral wall of the pressure reducing pipe 22 on the downstream side of the inlet side opening 24 and in the vicinity of the inlet side opening 24. Further, in still another example, the deceleration portion includes the inner peripheral wall of the portion of the pressure reducing pipe 22 between the introduction port 23 and the inlet side opening 24, and the inlet side which is downstream of the inlet side opening 24. It may be formed on both the inner peripheral wall of the portion near the opening 24.

(変形例2)減速部は、第1、第2実施例で開示した段差構造、返し構造に限られず、付近を通過する気体溶解加圧水の流速を遅くすることで流れの剥離を生じさせることができる任意の構成で形成されていてもよい。例えば、段差構造、返し構造、凹凸構造、トゲ(突起)構造、ディンプル構造等のいずれか、もしくはこれらの組合せであってもよい。 (Modification 2) The deceleration unit is not limited to the step structure and the return structure disclosed in the first and second embodiments, and may cause flow separation by slowing the flow velocity of the gas-dissolved pressurized water passing in the vicinity. It may be formed in any configuration that can be used. For example, any one of a step structure, a return structure, an uneven structure, a thorn (projection) structure, a dimple structure, and the like, or a combination thereof may be used.

(変形例3)上記の各実施例では、微細気泡発生ノズルは、空気が水に溶解した空気溶解加圧水の供給を受け、空気溶解加圧水内の空気を析出させて微細気泡に変え、空気の微細気泡を含む水を流出箇所に供給する。これに限られず、微細気泡発生ノズルは、空気以外の他の気体(例えば、炭酸ガスや水素等)が水に溶解した気体溶解加圧水の供給を受け、当該気体溶解加圧水内の気体を析出させて微細気泡に変え、その期待の微細気泡を含む水を流出箇所に供給するようにしてもよい。即ち、「気体」は空気に限られず、炭酸ガスや水素等の任意の気体であってもよい。 (Modification 3) In each of the above embodiments, the fine bubble generating nozzle receives the supply of air-dissolved pressurized water in which air is dissolved in water, precipitates the air in the air-dissolved pressurized water and changes it into fine bubbles, and the air is fine. Supply water containing air bubbles to the outflow point. Not limited to this, the fine bubble generation nozzle receives the supply of gas-dissolved pressurized water in which a gas other than air (for example, carbon dioxide gas, hydrogen, etc.) is dissolved in water, and precipitates the gas in the gas-dissolved pressurized water. It may be changed to fine bubbles and water containing the expected fine bubbles may be supplied to the outflow point. That is, the "gas" is not limited to air, and may be any gas such as carbon dioxide or hydrogen.

(変形例4)減圧管22の区画壁25が省略されていてもよい。即ち、減圧管22は、2本の管部に区画されていなくてもよい。 (Modification 4) The partition wall 25 of the pressure reducing pipe 22 may be omitted. That is, the pressure reducing pipe 22 does not have to be divided into two pipe portions.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described herein or in the drawings exhibit their technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in the present specification or drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes itself has technical usefulness.

10:微細気泡発生ノズル
20:ノズル本体
22:減圧管
22a:上流側端部
22b:下流側端部
23:導入口
24:入口側開口部
25:区画壁
26:出口側開口部
28:鍔部
28a:前面
30:減速部
40:ホルダ部
42:外側円筒部
43:段差
44:内側円筒部
46:円板部
48:接続部
49:突出部
50:流出口
52:連結部
62:流路空間
64:通路
66:流路空間
68:通路
130:減速部
B:ネジ穴
10: Fine bubble generation nozzle 20: Nozzle body 22: Pressure reducing pipe 22a: Upstream side end 22b: Downstream side end 23: Introducing port 24: Inlet side opening 25: Partition wall 26: Outlet side opening 28: Flange 28a: Front surface 30: Deceleration part 40: Holder part 42: Outer cylindrical part 43: Step 44: Inner cylindrical part 46: Disk part 48: Connection part 49: Protruding part 50: Outlet 52: Connecting part 62: Flow path space 64: Passage 66: Flow path space 68: Passage 130: Deceleration part B: Screw hole

Claims (2)

上流側端部から下流側端部に向けて、気体が水に溶解している気体溶解加圧水を通過させる減圧管と、
前記上流側端部に開口され、外部から前記減圧管内に前記気体溶解加圧水を導入する導入口と、
前記減圧管のうち前記導入口よりも下流側に設けられ、前記減圧管内に導入された前記気体溶解加圧水を通過させる入口側開口部と、
前記入口側開口部よりも下流側である前記下流側端部に開口された出口側開口部と、
を備えており、
前記入口側開口部の開口面積は前記導入口の開口面積よりも小さく、
前記出口側開口部の開口面積は前記入口側開口部の開口面積よりも大きく、
前記減圧管のうち、前記導入口と前記入口側開口部の間の第1の部分の内周壁と、前記入口側開口部よりも下流側であって前記入口側開口部近傍の第2の部分の内周壁と、のうちの少なくとも一部に、前記減圧管内を通過する前記気体溶解加圧水の流速を減速させる減速部が形成されている、
微細気泡発生ノズル本体。
A decompression pipe that allows gas-dissolved pressurized water in which gas is dissolved in water to pass from the upstream end to the downstream end.
An introduction port that is opened at the upstream end and introduces the gas-dissolved pressurized water into the pressure reducing pipe from the outside.
An inlet-side opening provided on the downstream side of the decompression pipe and passing the gas-dissolved pressurized water introduced into the decompression pipe.
An outlet-side opening opened at the downstream end, which is downstream of the inlet-side opening,
Is equipped with
The opening area of the inlet side opening is smaller than the opening area of the introduction port.
The opening area of the outlet side opening is larger than the opening area of the entrance side opening.
Of the pressure reducing pipe, the inner peripheral wall of the first portion between the introduction port and the inlet side opening, and the second portion on the downstream side of the inlet side opening and near the inlet side opening. A deceleration portion for decelerating the flow velocity of the gas-dissolved pressurized water passing through the decompression pipe is formed on at least a part of the inner peripheral wall of the above.
Fine bubble generation nozzle body.
前記減速部は、少なくとも前記第1の部分の内周壁に形成される、請求項1に記載の微細気泡発生ノズル本体。
The fine bubble generating nozzle body according to claim 1, wherein the deceleration portion is formed on the inner peripheral wall of at least the first portion.
JP2020018290A 2020-02-05 2020-02-05 Fine bubble generating nozzle body Active JP7395152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018290A JP7395152B2 (en) 2020-02-05 2020-02-05 Fine bubble generating nozzle body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018290A JP7395152B2 (en) 2020-02-05 2020-02-05 Fine bubble generating nozzle body

Publications (2)

Publication Number Publication Date
JP2021122524A true JP2021122524A (en) 2021-08-30
JP7395152B2 JP7395152B2 (en) 2023-12-11

Family

ID=77457979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018290A Active JP7395152B2 (en) 2020-02-05 2020-02-05 Fine bubble generating nozzle body

Country Status (1)

Country Link
JP (1) JP7395152B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290051A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Fine bubble generator
KR20090010385U (en) * 2008-04-08 2009-10-13 오태준 A micro-bubble generator
JP2010000402A (en) * 2008-06-18 2010-01-07 Sato Kogyo Co Ltd Microbubble generator
JP2010075838A (en) * 2008-09-25 2010-04-08 Itaken:Kk Bubble generation nozzle
US20130168879A1 (en) * 2012-01-04 2013-07-04 Chun-Hsin Lee Venturi tube for shower head

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090010385A (en) 2007-07-23 2009-01-30 삼성전자주식회사 Method and apparatus for recording image communication in image communication terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290051A (en) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Fine bubble generator
KR20090010385U (en) * 2008-04-08 2009-10-13 오태준 A micro-bubble generator
JP2010000402A (en) * 2008-06-18 2010-01-07 Sato Kogyo Co Ltd Microbubble generator
JP2010075838A (en) * 2008-09-25 2010-04-08 Itaken:Kk Bubble generation nozzle
US20130168879A1 (en) * 2012-01-04 2013-07-04 Chun-Hsin Lee Venturi tube for shower head

Also Published As

Publication number Publication date
JP7395152B2 (en) 2023-12-11

Similar Documents

Publication Publication Date Title
JP6487041B2 (en) Atomizer nozzle
JP4959667B2 (en) Hull frictional resistance reduction device
JP5825852B2 (en) Fine bubble generating nozzle and fine bubble generating device
JP2017225961A (en) Fine bubble generation nozzle
JP2013215634A (en) Fine air bubble generator
JP2020054987A (en) Fine bubble generation nozzle
TW201914686A (en) Bubble generating device and bubble generating method
JP2001029847A (en) Jetting device for gas liquid mixture stream
JP2021122524A (en) Fine bubble generation nozzle body
JP7329397B2 (en) Fine bubble generating nozzle body
JP7265934B2 (en) Fine bubble generation nozzle
JP7285176B2 (en) Fine bubble generation nozzle
JP5024144B2 (en) Gas dissolver
JP7232713B2 (en) Fine bubble generation nozzle
JP2019166493A (en) Fine bubble generation nozzle
JP7213143B2 (en) Fine bubble generation nozzle
CN212129336U (en) Bubble generating device and water treatment equipment with same
US20230390713A1 (en) Fine bubble generating nozzle
JP4016628B2 (en) Nozzle for fine bubble generator
JPWO2019069350A1 (en) Bubble generation device, bubble generation method
JP2000051107A (en) Bubble generator
JP6319861B1 (en) Microbubble generator
JPS58139781A (en) Producing device of foam-containing liquid
JP2008161830A (en) Bubble generator
WO2019120242A1 (en) Bubble making mechanism, bubble making module and bubble making system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7395152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150