JP2013215634A - Fine air bubble generator - Google Patents

Fine air bubble generator Download PDF

Info

Publication number
JP2013215634A
JP2013215634A JP2012085656A JP2012085656A JP2013215634A JP 2013215634 A JP2013215634 A JP 2013215634A JP 2012085656 A JP2012085656 A JP 2012085656A JP 2012085656 A JP2012085656 A JP 2012085656A JP 2013215634 A JP2013215634 A JP 2013215634A
Authority
JP
Japan
Prior art keywords
passage
flow
fine bubble
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012085656A
Other languages
Japanese (ja)
Other versions
JP5573879B2 (en
Inventor
Shiro Takeuchi
史朗 竹内
Susumu Fujiwara
奨 藤原
Junichiro Hoshizaki
潤一郎 星崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012085656A priority Critical patent/JP5573879B2/en
Publication of JP2013215634A publication Critical patent/JP2013215634A/en
Application granted granted Critical
Publication of JP5573879B2 publication Critical patent/JP5573879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To stably generate a large amount of fine air bubbles while suppressing pressure loss of a flow path.SOLUTION: A fine air bubble generator 1 includes a fine air bubble generation path 2, gas-liquid supply piping 5, a pump 6, an air introducing port 7, a swirl flow maintaining path 8, and a refinement acceleration member 11, etc. The fine air bubble generation path 2 generates refined air bubbles in a liquid by making gas-liquid flowing in from an inlet 3 flow out from an outlet 4 in a swirl flow state. The gas-liquid that flows out from the outlet 4 flows inside the cylindrical swirl flow maintaining path 8 while maintaining the swirl flow. At the time, large air bubbles that cannot be completely refined in the fine air bubble generation path 2 pass through vent holes 11a of the refinement acceleration member 11 formed in a cylindrical shape from an outer peripheral side to an inner peripheral side, and are thus re-refined. Thus, a large amount of fine air bubbles can be stably generated without increasing the pressure loss of the flow path.

Description

本発明は、水中に微細気泡を発生することが可能な微細気泡発生装置に関する。   The present invention relates to a fine bubble generator capable of generating fine bubbles in water.

一般に、水中に微細気泡を発生する手段としては、ベンチュリー式、キャビテーション式、加圧溶解式、旋回流式などが知られている。ベンチュリー式は、水の流路にくびれ部分(絞り)を設けるもので、このくびれ部分で流速が上昇することにより外部から空気が吸い込まれ、吸い込まれた空気は、くびれが広がる部分で圧力が上昇することにより微細化される。キャビテーション式は、ポンプ内に気液混合体を送り、例えば超音波振動を与えることによりキャビテーションを利用して気泡を発生させる。また、加圧溶解式は、水が流れる配管内に導入した外気を、ポンプ等により加圧して水中に溶解するもので、装置が大型化するものの、大量の外気を溶解させることが可能である。   In general, as a means for generating fine bubbles in water, a venturi type, a cavitation type, a pressure dissolution type, a swirl type, and the like are known. The Venturi type has a constricted part (throttle) in the flow path of water, and when the flow velocity increases at this constricted part, air is sucked in from the outside, and the sucked air rises in the part where the constriction spreads By making it finer. In the cavitation type, bubbles are generated using cavitation by feeding a gas-liquid mixture into a pump and applying ultrasonic vibration, for example. In addition, the pressure dissolution type is a method in which outside air introduced into a pipe through which water flows is pressurized by a pump or the like and dissolved in water, and although the apparatus is enlarged, a large amount of outside air can be dissolved. .

また、旋回流式は、特許文献1に記載されているように、水の旋回流を形成し、この旋回流を空気と合流させるもので、旋回流により空気がせん断破砕されて微細化される。旋回流式は、流路内を流通する水の流量が小さくても、より微細な気泡を生成することができるので、上記各方式の中でも優れた方式である。旋回流式による微細気泡の生成量を増大させるためには、空気の導入量を増加すること、旋回流を高速化して空気のせん断力を増加すること、及び旋回流と空気との接触面積を増加させることが重要となる。   In addition, as described in Patent Document 1, the swirling flow type forms a swirling flow of water and merges the swirling flow with air, and the air is sheared and pulverized by the swirling flow. . The swirling flow method is an excellent method among the above methods because fine bubbles can be generated even if the flow rate of water flowing in the flow path is small. In order to increase the amount of fine bubbles generated by the swirling flow method, increase the amount of air introduced, increase the shear force of the air by increasing the speed of the swirling flow, and the contact area between the swirling flow and air. It is important to increase it.

特許4525890号公報Japanese Patent No. 4525890

しかしながら、上記旋回流式の装置においては、水流を形成するポンプの仕様が制限されると、流路内を流通する水の流量、揚程、水圧等が限定されてしまう。水の旋回力は、流量及び水圧に大きく依存するので、上記制限の存在下で空気の導入量を増加させると、導入された空気の全てがせん断されずに下流に流れることになり、小さな気泡だけでなく、大きな気泡も生成されるという問題がある。   However, in the above-described swirling flow type device, when the specifications of the pump that forms the water flow are limited, the flow rate, head, water pressure, and the like of the water flowing through the flow path are limited. Since the swirl force of water greatly depends on the flow rate and water pressure, if the amount of air introduced is increased in the presence of the above restrictions, all of the introduced air will flow downstream without being sheared, resulting in small bubbles. In addition, there is a problem that large bubbles are also generated.

本発明は、上述のような問題点を解消するためになされたもので、流路の圧力損失を抑制しつつ、微細気泡の生成量を増加させることが可能な微細気泡発生装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a fine bubble generator capable of increasing the amount of fine bubbles generated while suppressing pressure loss in a flow path. With the goal.

本発明に係る微細気泡発生装置は、気液の流入口と流出口とを有し、流入口から流入した気液を旋回流状態で流出口から流出させることにより、液体中に微細化した気泡を生成する微細気泡生成通路と、微細気泡生成通路の流入口に液体を供給する液体供給手段と、微細気泡生成通路の流入口に気体を供給する気体供給手段と、微細気泡生成通路の流出口に接続され、流出口から流出した気液の旋回流を維持する旋回流維持通路と、旋回流維持通路に設けられ、旋回流状態の気泡と接触して当該気泡を更に微細化する微細化促進部材と、を備えている。   The fine bubble generating apparatus according to the present invention has a gas-liquid inlet and an outlet, and the gas-liquid flowing from the inlet flows out of the outlet in a swirling state, thereby making the bubbles finer in the liquid , A liquid supply means for supplying liquid to the inlet of the fine bubble generation passage, a gas supply means for supplying gas to the inlet of the fine bubble generation path, and an outlet of the fine bubble generation passage And a swirl flow maintaining passage for maintaining a swirling flow of gas and liquid flowing out from the outlet, and a swirl flow maintaining passage, which is provided in the swirl flow maintaining passage and promotes miniaturization to further refine the bubbles by contacting the bubbles in the swirling flow state And a member.

本発明によれば、微細気泡生成通路により液体中に微細な気泡を生成することができ、更に微細気泡生成通路で微細化し切れなかった大きな気泡を微細化促進部材により再微細化することができる。これにより、流路の圧力損失を増加させなくても、多量の微細気泡を安定的に生成することができ、微細気泡発生装置の性能を向上させることができる。   According to the present invention, fine bubbles can be generated in the liquid by the fine bubble generation passage, and further, the large bubbles that have not been completely refined by the fine bubble generation passage can be re-refined by the miniaturization promoting member. . Thereby, even if it does not increase the pressure loss of a flow path, a lot of fine bubbles can be generated stably and the performance of a fine bubble generating device can be improved.

本発明の実施の形態1による微細気泡発生装置を模式的に示す断面図である。It is sectional drawing which shows typically the fine bubble generator by Embodiment 1 of this invention. 図1中の旋回流維持通路及び微細化促進部材の一部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows a part of swirl flow maintenance channel | path and the miniaturization promotion member in FIG. 本発明の実施の形態2による微細気泡発生装置を模式的に示す断面図である。It is sectional drawing which shows typically the fine bubble generator by Embodiment 2 of this invention. 図3中の旋回流維持通路及び微細化促進部材を軸方向の端部からみた端面図である。It is the end elevation which looked at the swirl | vortex flow maintenance channel | path and the refinement | miniaturization promotion member in FIG. 3 from the edge part of an axial direction.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、本発明は、以下に説明する実施の形態1及び2に限定されるものではない。また、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to Embodiments 1 and 2 described below. Moreover, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted.

実施の形態1.
まず、図1及び図2を参照して、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1による微細気泡発生装置を模式的に示す構成図である。微細気泡発生装置1は、微細気泡生成通路2、気液供給配管5、ポンプ6、空気導入口7、旋回流維持通路8、微細化促進部材11等を備えている。微細気泡生成通路2は、基端部(底部)から先端部に向けて徐々に縮径する円錐状に形成されている。また、微細気泡生成通路2は、円形状をなす基端部の外周に設けられた流入口3と、先端部に設けられた円形状の流出口4とを備えている。そして、微細気泡生成通路2は、流入口3から流入した液体及び気体(気液)を旋回流状態で流出口4から流出させることにより、液体中に微細化した気泡を生成する。このため、微細気泡生成通路2の内壁は、高密度で円滑な壁面として形成され、旋回流の圧力損失を抑制しつつ、流速を高めるように構成されている。
Embodiment 1 FIG.
First, Embodiment 1 of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a configuration diagram schematically showing a microbubble generator according to Embodiment 1 of the present invention. The fine bubble generating device 1 includes a fine bubble generation passage 2, a gas / liquid supply pipe 5, a pump 6, an air introduction port 7, a swirl flow maintenance passage 8, a miniaturization promoting member 11, and the like. The fine bubble generation passage 2 is formed in a conical shape that gradually decreases in diameter from the proximal end (bottom) to the distal end. The fine bubble generating passage 2 includes an inflow port 3 provided on the outer periphery of the base end portion having a circular shape, and a circular outflow port 4 provided at the distal end portion. And the fine bubble production | generation channel | path 2 produces | generates the bubble which refined | miniaturized in the liquid by making the liquid and gas (gas-liquid) which flowed in from the inflow port 3 flow out of the outflow port 4 in a swirl flow state. For this reason, the inner wall of the fine bubble generation passage 2 is formed as a high-density and smooth wall surface, and is configured to increase the flow velocity while suppressing the pressure loss of the swirling flow.

気液供給配管5は、微細気泡生成通路2に気液を供給するもので、微細気泡生成通路2の基端部の外周に対して接線方向に傾斜した状態で流入口3に接続されている。また、流入口3は、気液供給配管5よりも縮径した絞り部として形成されている。このため、気液供給配管5から微細気泡生成通路2に流入する気液は、流入口3により流速を高められた状態で微細気泡生成通路2の内壁に沿って旋回し、旋回流を容易に生じさせる。また、気液供給配管5には、微細気泡生成通路2の流入口3に液体(例えば、水)を供給する液体供給手段としてのポンプ6と、流入口3に気体(例えば、空気)を供給する気体供給手段としての空気導入口7とが設けられている。   The gas / liquid supply pipe 5 supplies gas / liquid to the fine bubble generation passage 2 and is connected to the inlet 3 in a state of being inclined in a tangential direction with respect to the outer periphery of the base end portion of the fine bubble generation passage 2. . Further, the inflow port 3 is formed as a throttle portion having a diameter smaller than that of the gas-liquid supply pipe 5. For this reason, the gas-liquid flowing from the gas-liquid supply pipe 5 into the fine bubble generation passage 2 swirls along the inner wall of the fine bubble generation passage 2 in a state where the flow velocity is increased by the inflow port 3, and the swirl flow is facilitated. Cause it to occur. Further, a gas 6 (for example, air) is supplied to the gas / liquid supply pipe 5 as a liquid supply means for supplying a liquid (for example, water) to the inlet 3 of the fine bubble generating passage 2 and a gas inlet (for example, air) to the inlet 3. An air introduction port 7 is provided as a gas supply means.

ポンプ6は、気液が混在した状態でも正常に作動する必要があるので、気体及び液体の吐出が可能な渦流式ポンプ等により構成するのが好ましい。また、ポンプ6は、ポンプの回転翼に異物が絡まるのを防止する異物トラップ機構を備えている。一方、空気導入口7は、ポンプ6の吐出側で気液供給配管5に接続されると共に、例えば気液供給配管5の一部を縮径させて形成した絞り部(図示せず)の近傍に配置されている。これにより、空気導入口7は、絞り部で液体の流速が増加することにより生じる負圧を利用して、気液供給配管5内に空気を吸込むように構成されている。なお、空気導入口7の下流側に生じる圧損が大きい場合には、空気の吸込動作が阻害されるので、気体供給手段として送気ポンプ等を採用し、空気導入口7から気液供給配管5に空気を強制的に供給してもよい。この場合には、送気ポンプと空気導入口7との間に逆止弁が接続される。   Since the pump 6 needs to operate normally even in a state where gas and liquid are mixed, it is preferable to configure the pump 6 with a vortex pump or the like capable of discharging gas and liquid. The pump 6 includes a foreign matter trapping mechanism that prevents foreign matter from getting tangled in the pump rotor blades. On the other hand, the air introduction port 7 is connected to the gas-liquid supply pipe 5 on the discharge side of the pump 6 and, for example, in the vicinity of a throttle portion (not shown) formed by reducing the diameter of a part of the gas-liquid supply pipe 5. Is arranged. Thereby, the air introduction port 7 is configured to suck air into the gas-liquid supply pipe 5 by using a negative pressure generated by increasing the flow velocity of the liquid at the throttle portion. When the pressure loss generated downstream of the air introduction port 7 is large, the air suction operation is hindered. Therefore, an air feed pump or the like is employed as the gas supply means, and the gas / liquid supply pipe 5 is connected to the air introduction port 7. Air may be forcibly supplied. In this case, a check valve is connected between the air supply pump and the air inlet 7.

次に、本実施の形態の特徴事項である旋回流維持通路8及び微細化促進部材11について説明する。旋回流維持通路8は、微細気泡生成通路2の流出口4から流出した気液の旋回流を維持しつつ、気液を旋回流の軸線方向に進行させるものである。なお、以下の説明では、円筒状をなす旋回流維持通路8の周方向及び軸方向を、それぞれ旋回流の旋回方向及び軸線方向と称するものとする。旋回流維持通路8は、流出口4よりも大径な略円筒状に形成され、微細気泡生成通路2と同軸に配置されている。また、旋回流維持通路8は、一端側が流出口4に接続され、一端側から他端側に向けて徐々に拡径した略円錐状の拡径部9と、拡径部9の他端側に接続された円筒状の等径部10とを備えている。旋回流維持通路8の内壁は、微細気泡生成通路2と同様に、高密度で円滑な壁面として形成され、旋回流の圧力損失を抑制しつつ、流速を高めるように構成されている。   Next, the swirl flow maintaining passage 8 and the miniaturization promoting member 11 which are characteristic items of the present embodiment will be described. The swirl flow maintaining passage 8 is for moving the gas and liquid in the axial direction of the swirl flow while maintaining the swirl flow of the gas and liquid flowing out from the outlet 4 of the fine bubble generating passage 2. In the following description, the circumferential direction and the axial direction of the swirl flow maintaining passage 8 having a cylindrical shape are referred to as a swirl direction and an axial direction of the swirl flow, respectively. The swirl flow maintaining passage 8 is formed in a substantially cylindrical shape having a diameter larger than that of the outlet 4, and is arranged coaxially with the fine bubble generating passage 2. Further, the swirl flow maintaining passage 8 is connected to the outlet 4 at one end side, and has a substantially conical diameter-expanded portion 9 that gradually increases in diameter from one end side toward the other end side, and the other end side of the diameter-expanded portion 9. And a cylindrical equal-diameter portion 10 connected to the. The inner wall of the swirl flow maintaining passage 8 is formed as a high-density and smooth wall surface like the fine bubble generation passage 2 and is configured to increase the flow velocity while suppressing the pressure loss of the swirl flow.

微細化促進部材11は、旋回流維持通路8内で旋回する気泡と接触して当該気泡を更に微細化するものである。微細化促進部材11は、図1及び図2に示すように、多孔質材料またはメッシュ材料により円筒状に形成され、例えば1μm以下の微細な孔径を有する多数の通気孔11aを有している。なお、図2は、図1中の旋回流維持通路及び微細化促進部材の一部を拡大して示す拡大断面図である。また、微細化促進部材11は、旋回流維持通路8の内部に同軸(同心円状)に配置されている。これにより、旋回流維持通路8内の空間は、微細化促進部材11の内周側に位置する円柱状の内周空間12と、微細化促進部材11の外周側に位置する環状の外周空間13とに分離され、これらの空間12,13は多数の通気孔11aを介して互いに連通している。   The miniaturization promoting member 11 comes into contact with the bubbles swirling in the swirling flow maintaining passage 8 and further refines the bubbles. As shown in FIGS. 1 and 2, the miniaturization promoting member 11 is formed in a cylindrical shape by a porous material or a mesh material, and has a large number of air holes 11a having a fine pore diameter of, for example, 1 μm or less. FIG. 2 is an enlarged cross-sectional view showing a part of the swirl flow maintaining passage and the miniaturization promoting member in FIG. Further, the miniaturization promoting member 11 is disposed coaxially (concentrically) inside the swirl flow maintaining passage 8. Thereby, the space in the swirl flow maintaining passage 8 includes a cylindrical inner peripheral space 12 located on the inner peripheral side of the miniaturization promoting member 11 and an annular outer peripheral space 13 located on the outer peripheral side of the miniaturization promoting member 11. These spaces 12 and 13 communicate with each other through a large number of air holes 11a.

本実施の形態による微細気泡発生装置1は上述の如き構成を有するもので、次に、その作動について説明する。まず、ポンプ6が作動すると、気液供給配管5から微細気泡生成通路2に液体が供給されると共に、液体の流れで生じる負圧により空気導入口7から気液供給配管5に気体が吸い込まれる。これらの気液は、微細気泡生成通路2の流入口3から基端部の外周に導入され、図1に示すように、微細気泡生成通路2の内壁に沿って旋回することにより、旋回流を生じさせる。   The fine bubble generating apparatus 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next. First, when the pump 6 is operated, liquid is supplied from the gas / liquid supply pipe 5 to the fine bubble generation passage 2 and gas is sucked into the gas / liquid supply pipe 5 from the air inlet 7 due to the negative pressure generated by the flow of the liquid. . These gas and liquid are introduced into the outer periphery of the base end portion from the inlet 3 of the fine bubble generation passage 2 and swirl along the inner wall of the fine bubble generation passage 2 as shown in FIG. Cause it to occur.

また、微細気泡生成通路2は円錐状に形成されているので、基端部で発生した気液の旋回流は、流出口4に向けて軸方向(旋回流の軸線方向)に進行しつつ、旋回半径が徐々に縮径して流速(旋回速度)及び圧力が増加する。これにより、円錐形の頂上部に位置する流出口4では、高速の旋回流により気液が分離され、気泡は旋回中心の近傍に集まった状態となる。この結果、気液が旋回流を維持しつつ流出口4から流出すると、圧力開放された液体中の気泡が旋回流の内周側で膨張する。この気泡は、旋回流の内周と接触することにより細かくせん断され、微細化した気泡が生成される。このように、微細気泡生成通路2によれば、基端部から先端部に向けて縮径する円錐状の通路を利用して、気液の旋回流を高速・高圧化し、この気液を先端部の流出口4から放出して圧力開放することにより、液体中に微細な気泡を生成することができる。   Further, since the fine bubble generating passage 2 is formed in a conical shape, the swirling flow of the gas and liquid generated at the base end portion proceeds in the axial direction (axial direction of the swirling flow) toward the outlet 4, The turning radius is gradually reduced, and the flow velocity (swivel speed) and pressure increase. As a result, at the outlet 4 located at the top of the conical shape, the gas and liquid are separated by the high-speed swirling flow, and the bubbles are gathered near the swirling center. As a result, when the gas and liquid flow out of the outlet 4 while maintaining the swirling flow, the bubbles in the pressure-released liquid expand on the inner peripheral side of the swirling flow. The bubbles are finely sheared by coming into contact with the inner periphery of the swirling flow, and fine bubbles are generated. As described above, according to the fine bubble generation passage 2, the swirling flow of gas and liquid is increased in speed and pressure by using the conical passage whose diameter is reduced from the base end portion toward the tip portion, By releasing the pressure from the outlet 4 and releasing the pressure, fine bubbles can be generated in the liquid.

ここで、流出口4から気液が流出するときには、液体中に混在する気体の量が多いほど、旋回流によりせん断される気体の量が増加し、多量の気泡が生成される。しかし、気体の導入量が多くした場合には、微細気泡生成通路2内に生じる旋回流が弱くなるので、旋回流によりせん断し切れなかった気体が大きな気泡となって残留し易い。このため、本実施の形態では、微細気泡生成通路2の流出口4に旋回流維持通路8及び微細化促進部材11を配置している。   Here, when the gas-liquid flows out from the outlet 4, the larger the amount of gas mixed in the liquid, the larger the amount of gas that is sheared by the swirling flow, and the more bubbles are generated. However, when the amount of introduced gas is increased, the swirl flow generated in the fine bubble generation passage 2 becomes weak, so that the gas that cannot be sheared by the swirl flow tends to remain as large bubbles. For this reason, in this Embodiment, the swirl | vortex flow maintenance channel | path 8 and the refinement | miniaturization promotion member 11 are arrange | positioned in the outflow port 4 of the microbubble production | generation channel | path 2. FIG.

この構成によれば、流出口4から旋回流維持通路8に流出した気液の旋回流は、小径な流出口4から大径な旋回流維持通路8に開放されることにより、一定の旋回中心を保持した状態で、旋回流維持通路8の拡径部9に沿って徐々に拡径し、最終的には等径部10の内壁に沿って旋回するようになる。このとき、拡径部9は、気液の旋回流を乱すことなく、旋回半径を等径部10の内径位置まで徐々に拡径させることができる。微細気泡生成通路2から流出した気液が旋回流維持通路8内で旋回すると、図2に示すように、微細気泡生成通路2により微細化された気泡B1と、微細化されなかった大きな気泡B2とは、微細化促進部材11により個別の流路に分離される。   According to this configuration, the swirling flow of gas and liquid flowing out from the outlet 4 to the swirling flow maintaining passage 8 is opened from the small diameter outlet 4 to the large diameter swirling flow maintaining passage 8, thereby providing a constant swirling center. In this state, the diameter gradually increases along the enlarged diameter portion 9 of the swirling flow maintaining passage 8 and finally turns along the inner wall of the equal diameter portion 10. At this time, the enlarged diameter portion 9 can gradually increase the turning radius to the inner diameter position of the equal diameter portion 10 without disturbing the swirling flow of gas and liquid. When the gas-liquid flowing out from the fine bubble generation passage 2 turns in the swirl flow maintaining passage 8, as shown in FIG. 2, the bubbles B1 refined by the fine bubble production passage 2 and the large bubbles B2 that have not been refined are obtained. Is separated into individual flow paths by the miniaturization promoting member 11.

詳しく述べると、一般に200μm以下の外径を有する微細な気泡は旋回流の外周側に集まり、200μm以上の外径を有する大きな気泡は旋回流の中心(内周側)に集まる傾向がある。このため、気液の旋回流が維持されている状態では、微細な気泡B1が微細化促進部材11の外周空間13に滞留する。一方、大きな気泡B2は、旋回流の作用により微細化促進部材11の通気孔11aを通って内周空間12に移動するので、通気孔11aを通るときに微細化され、微細な気泡B1となる。   Specifically, fine bubbles having an outer diameter of 200 μm or less generally collect on the outer peripheral side of the swirling flow, and large bubbles having an outer diameter of 200 μm or more tend to collect on the center (inner peripheral side) of the swirling flow. For this reason, in the state where the swirling flow of the gas and liquid is maintained, the fine bubbles B <b> 1 stay in the outer peripheral space 13 of the miniaturization promoting member 11. On the other hand, since the large bubbles B2 move to the inner peripheral space 12 through the vent holes 11a of the miniaturization promoting member 11 by the action of the swirling flow, they are refined when passing through the vent holes 11a and become the fine bubbles B1. .

このように、本実施の形態によれば、微細気泡生成通路2により液体中に微細な気泡を生成することができ、更に微細気泡生成通路2で微細化し切れなかった大きな気泡が微細化促進部材11を通過することにより、大きな気泡を再微細化することができる。従って、流路の圧力損失を増加させなくても、多量の微細気泡を安定的に生成することができ、微細気泡発生装置1の性能を向上させることができる。また、微細化促進部材11を多孔質材料またはメッシュ材料により構成したので、その通気孔11aを用いて大きな気泡を容易に微細化することでき、簡単な構成で微細な気泡を効率よく生成することができる。   As described above, according to the present embodiment, fine bubbles can be generated in the liquid by the fine bubble generation passage 2, and further, the large bubbles that have not been completely refined by the fine bubble generation passage 2 are generated by the miniaturization promoting member. By passing through 11, it is possible to re-fine large bubbles. Therefore, a large amount of fine bubbles can be stably generated without increasing the pressure loss of the flow path, and the performance of the fine bubble generating device 1 can be improved. Further, since the miniaturization promoting member 11 is made of a porous material or a mesh material, large bubbles can be easily made fine by using the vent holes 11a, and fine bubbles can be efficiently generated with a simple structure. Can do.

また、微細化促進部材11を円筒状に形成したので、微細化促進部材11の壁面を旋回流の旋回方向及び軸線方向(気液の流れ方向)に延在させることができる。これにより、旋回流が微細化促進部材11と接触することで生じる圧力損失を抑制し、ポンプ6の運転効率を高めることができ、また、微細気泡の生成量を向上させることができる。また、円筒状の微細化促進部材11を用いることにより、大きな気泡と微細な気泡を微細化促進部材11の内周空間12と外周空間13に分離することができ、微細な気泡が大きな気泡と合体して消失するのを抑制することができる。さらに、微細気泡生成通路2、旋回流維持通路8及び微細化促進部材11を同軸に配置したので、これらの中心軸線に沿って流路を直線的に構成することができ、流路の圧力損失をより低減させることができる。   Further, since the miniaturization promoting member 11 is formed in a cylindrical shape, the wall surface of the miniaturization promoting member 11 can be extended in the swirling direction and the axial direction (gas-liquid flow direction) of the swirling flow. Thereby, the pressure loss which arises when a swirling flow contacts with the refinement | miniaturization promotion member 11 can be suppressed, the operating efficiency of the pump 6 can be improved, and the production amount of fine bubbles can be improved. Further, by using the cylindrical miniaturization promoting member 11, large bubbles and fine bubbles can be separated into the inner peripheral space 12 and the outer peripheral space 13 of the miniaturization promoting member 11, and the fine bubbles are separated from the large bubbles. Combining and disappearing can be suppressed. Furthermore, since the fine bubble generating passage 2, the swirl flow maintaining passage 8, and the miniaturization promoting member 11 are arranged coaxially, the flow path can be configured linearly along these central axes, and the pressure loss of the flow path Can be further reduced.

実施の形態2.
次に、図3及び図4を参照して、本発明の実施の形態2について説明する。図3は、本発明の実施の形態2による微細気泡発生装置を模式的に示す断面図であり、図4は、図3中の旋回流維持通路及び微細化促進部材を軸方向の端部からみた端面図である。本実施の形態の微細気泡発生装置1は、実施の形態1とほぼ同様に構成されているものの、旋回流維持通路8の内部には、放射状の微細化促進部材20が配置されている。微細化促進部材20は、例えば多孔質材料またはメッシュ材料により形成された複数の板材21を組立てることにより形成され、1μm以下の微細な孔径を有する多数の通気孔20aが全体にわたって開口している。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a cross-sectional view schematically showing a microbubble generator according to Embodiment 2 of the present invention, and FIG. 4 shows the swirl flow maintaining passage and the miniaturization promoting member in FIG. 3 from the end in the axial direction. FIG. Although the microbubble generator 1 of the present embodiment is configured in substantially the same manner as that of the first embodiment, a radial micronization promoting member 20 is disposed inside the swirl flow maintaining passage 8. The miniaturization promoting member 20 is formed by assembling a plurality of plate materials 21 made of, for example, a porous material or a mesh material, and a large number of air holes 20a having fine pore diameters of 1 μm or less are opened over the whole.

また、微細化促進部材20は、図3及び図4に示すように、旋回流の軸線方向からみた形状(旋回流の軸線方向と垂直な平面で破断した横断面形状)が放射状に形成され、かつ、軸線方向に延在するように構成されている。これにより、微細化促進部材20を構成する個々の板材21は、旋回流の軸線方向及び径方向に延在し、旋回流と衝突するように配置されている。また、旋回流維持通路8内の空間は、旋回流の軸線方向に沿って並列に延在する複数の並列通路22に分割され、これらの並列通路22は、微細化促進部材20の通気孔20aを介して互いに連通している。   Further, as shown in FIGS. 3 and 4, the miniaturization promoting member 20 is radially formed in a shape seen from the axial direction of the swirling flow (a cross-sectional shape broken in a plane perpendicular to the axial direction of the swirling flow), And it is comprised so that it may extend in an axial direction. Thereby, each board | plate material 21 which comprises the refinement | miniaturization promotion member 20 is arrange | positioned so that it may extend in the axial direction and radial direction of a swirl flow, and may collide with a swirl flow. Further, the space in the swirl flow maintaining passage 8 is divided into a plurality of parallel passages 22 extending in parallel along the axial direction of the swirl flow, and these parallel passages 22 are vent holes 20 a of the miniaturization promoting member 20. Are communicated with each other.

本実施の形態による微細気泡発生装置1は上述の如き構成を有するもので、次に、その基本的作動は実施の形態1の場合と同様である。しかし、本実施の形態では、図4に示すように、旋回流維持通路8を流れる旋回流が微細化促進部材20の各板材21を通過しながら旋回する。この結果、微細気泡生成通路2で微細化し切れなかった大きな気泡B2は、旋回流と共に板材21(通気孔20a)を通過するときに微細化され、微細な気泡B1となる。また、微細気泡生成通路2で既に微細化されていた気泡B1は、1μm以下の外径をもつので、微細化促進部材20に影響されることなく、並列通路22に沿って下流側に流通する。   The fine bubble generating apparatus 1 according to the present embodiment has the above-described configuration, and the basic operation thereof is the same as that of the first embodiment. However, in the present embodiment, as shown in FIG. 4, the swirling flow flowing in the swirling flow maintaining passage 8 swirls while passing through the plate members 21 of the miniaturization promoting member 20. As a result, the large bubble B2 that has not been completely refined in the microbubble generation passage 2 is refined when passing through the plate material 21 (vent hole 20a) together with the swirling flow to become a fine bubble B1. In addition, since the bubble B1 that has already been refined in the microbubble generation passage 2 has an outer diameter of 1 μm or less, the bubble B1 flows downstream along the parallel passage 22 without being affected by the miniaturization promoting member 20. .

このように構成される本実施の形態でも、前記実施の形態1とほぼ同様の作用効果を得ることができる。特に、本実施の形態では、微細化促進部材20を、横断面形状が放射状となるように形成し、旋回流の軸線方向(気液の流れ方向)に延在させる構成としたので、圧力損失を増加させることなく、大きな気泡を再微細化することができ、微細気泡の生成量を向上することができる。また、微細化促進部材20を旋回流維持通路8(旋回流)の径方向に延在させることにより、旋回流維持通路8の空間を旋回方向に対して複数の並列通路22に分割することができる。これにより、旋回流と共に流れる大きな気泡を板材21に正面から衝突させて微細化を促進することができる。また、旋回流を複数の板材21により分断することができるので、旋回流による気泡同士の合体を抑制し、一旦微細化した気泡を安定的に保持することができる。   In the present embodiment configured as described above, it is possible to obtain substantially the same operational effects as in the first embodiment. In particular, in the present embodiment, the miniaturization promoting member 20 is formed such that the cross-sectional shape is radial and extends in the axial direction of the swirl flow (the gas-liquid flow direction). Without increasing the size, large bubbles can be refined again, and the amount of generated fine bubbles can be improved. Further, by extending the miniaturization promoting member 20 in the radial direction of the swirling flow maintaining passage 8 (swirling flow), the space of the swirling flow maintaining passage 8 can be divided into a plurality of parallel passages 22 with respect to the swirling direction. it can. Thereby, the big bubble which flows with a swirl flow can be collided with the board | plate material 21 from the front, and refinement | miniaturization can be accelerated | stimulated. In addition, since the swirl flow can be divided by the plurality of plate members 21, the coalescence of the bubbles due to the swirl flow can be suppressed, and the once-miniaturized bubbles can be stably held.

なお、前記実施の形態1,2では、円錐状に縮径する微細気泡生成通路2を用いる場合を例示した。しかし、本発明はこれに限らず、例えば微細気泡生成通路2の底部に対して接線方向から気液を流入する構成に代えて、翼形状の旋回流形成部等を備える構成としてもよい。また、実施の形態では、液体と気体の混合物(気液)を1つの流入口3から微細気泡生成通路2に供給する構成とした。しかし、本発明はこれに限らず、微細気泡生成通路2の底部には、液体の流入口と気体の流入口とを個別に設ける構成としてもよい。   In the first and second embodiments, the case of using the fine bubble generating passage 2 that is conically reduced in diameter is illustrated. However, the present invention is not limited to this. For example, instead of the configuration in which gas and liquid flow in from the tangential direction with respect to the bottom of the fine bubble generation passage 2, a configuration having a blade-shaped swirl flow forming portion or the like may be employed. In the embodiment, the liquid and gas mixture (gas-liquid) is supplied from the single inlet 3 to the fine bubble generation passage 2. However, the present invention is not limited to this, and a liquid inlet and a gas inlet may be separately provided at the bottom of the fine bubble generation passage 2.

また、実施の形態1,2では、円筒状の微細化促進部材11や放射状の微細化促進部材20を用いる構成とした。しかし、本発明はこれに限らず、微細化促進部材としては、旋回流維持通路8内で旋回流の旋回方向及び軸線方向に延在し、旋回流の少なくとも一部を内周側と外周側とに分離する任意の部材を採用することができる。即ち、本発明では、例えば微細化促進部材11の一部に相当する円弧状の微細化促進部材や、平板状の微細化促進部材を用いてもよい。また、本発明の微細化促進部材としては、旋回流維持通路8内で旋回流の軸線方向及び径方向に延在し、旋回流と衝突するように構成された任意の部材を採用することができる。即ち、例えば微細化促進部材20の一部(1枚の板材21や板材21の一部)のみを用いて、微細化促進部材を構成してもよい。   In the first and second embodiments, the cylindrical refinement promoting member 11 and the radial refinement promoting member 20 are used. However, the present invention is not limited to this, and the miniaturization promoting member extends in the swirling direction and the axial direction of the swirling flow in the swirling flow maintaining passage 8, and at least a part of the swirling flow is disposed on the inner peripheral side and the outer peripheral side. Any member that separates into two can be adopted. That is, in the present invention, for example, an arc-shaped refinement promoting member corresponding to a part of the refinement promoting member 11 or a planar refinement promoting member may be used. In addition, as the miniaturization promoting member of the present invention, any member configured to extend in the axial direction and the radial direction of the swirling flow in the swirling flow maintaining passage 8 and to collide with the swirling flow may be adopted. it can. That is, for example, the miniaturization promoting member may be configured by using only a part of the miniaturization promoting member 20 (one plate member 21 or a part of the plate member 21).

また、実施の形態1,2では、円筒状の微細化促進部材11や放射状の微細化促進部材20について個別に例示した。しかし、本発明はこれに限らず、例えば微細化促進部材11の一部または全体と、微細化促進部材20の一部または全体とを組合わせた形状をもつ微細化促進部材を採用してもよい。   In the first and second embodiments, the cylindrical refinement promoting member 11 and the radial refinement promoting member 20 are individually illustrated. However, the present invention is not limited to this. For example, even if a miniaturization promoting member having a shape obtained by combining a part or the whole of the miniaturization promoting member 11 and a part or the whole of the miniaturization promoting member 20 is employed. Good.

また、実施の形態1,2では、液体供給手段としてポンプ6を採用したが、本発明はこれに限らず、例えば液体を加圧状態で貯留したタンク等の容器や、市水等の給水源を液体供給手段として使用してもよい。また、実施の形態では、水に空気の気泡を混入させる場合を例示したが、本発明はこれに限らず、水と空気以外の任意の液体及び気体にも広く適用することができる。さらに、本発明の微細気泡発生装置1は、温浴効果が得られる風呂装置、工場の製造工程における部品洗浄装置、生体活性化を目的とした溶存酸素富化装置などに用いることができる。   In the first and second embodiments, the pump 6 is used as the liquid supply means. However, the present invention is not limited to this. For example, a container such as a tank that stores liquid in a pressurized state, or a water supply source such as city water. May be used as the liquid supply means. Moreover, although the case where air bubbles were mixed in water was illustrated in the embodiment, the present invention is not limited to this and can be widely applied to any liquid and gas other than water and air. Furthermore, the fine bubble generating apparatus 1 of the present invention can be used for a bath apparatus that provides a warm bath effect, a parts washing apparatus in a manufacturing process of a factory, a dissolved oxygen enrichment apparatus for the purpose of bioactivation, and the like.

1 微細気泡発生装置
2 微細気泡生成通路
3 流入口
4 流出口
5 気液供給配管
6 ポンプ(液体供給手段)
7 空気導入口(気体供給手段)
8 旋回流維持通路
9 拡径部
10 等径部
11,20 微細化促進部材
11a,20a 通気孔
12 内周空間
13 外周空間
21 板材
22 並列通路
DESCRIPTION OF SYMBOLS 1 Fine bubble generating apparatus 2 Fine bubble production | generation passage 3 Inlet 4 Outlet 5 Gas-liquid supply piping 6 Pump (liquid supply means)
7 Air inlet (gas supply means)
8 Swirling flow maintaining passage 9 Expanded diameter portion 10 Equal diameter portion 11, 20 Refinement promoting member 11a, 20a Vent 12 Inner space 13 Outer space 21 Plate material 22 Parallel passage

Claims (9)

気液の流入口と流出口とを有し、前記流入口から流入した気液を旋回流状態で前記流出口から流出させることにより、液体中に微細化した気泡を生成する微細気泡生成通路と、
前記微細気泡生成通路の流入口に液体を供給する液体供給手段と、
前記微細気泡生成通路の流入口に気体を供給する気体供給手段と、
前記微細気泡生成通路の流出口に接続され、前記流出口から流出した気液の旋回流を維持する旋回流維持通路と、
前記旋回流維持通路に設けられ、旋回流状態の気泡と接触して当該気泡を更に微細化する微細化促進部材と、
を備えた微細気泡発生装置。
A fine bubble generating passage having a gas-liquid inlet and an outlet, and generating gas bubbles refined in the liquid by allowing the gas-liquid flowing from the inlet to flow out of the outlet in a swirling state. ,
Liquid supply means for supplying a liquid to the inlet of the fine bubble generating passage;
Gas supply means for supplying gas to the inlet of the fine bubble generating passage;
A swirl flow maintaining passage connected to the outlet of the fine bubble generating passage and maintaining a swirling flow of gas and liquid flowing out from the outlet;
A miniaturization promoting member that is provided in the swirl flow maintaining passage and that further contacts the bubbles in the swirl flow state to further refine the bubbles;
A fine bubble generating apparatus.
前記微細化促進部材は、多孔質材料またはメッシュ材料により形成してなる請求項1に記載の微細気泡発生装置。   The fine bubble generating device according to claim 1, wherein the miniaturization promoting member is formed of a porous material or a mesh material. 前記微細化促進部材は、前記旋回流維持通路内で旋回流の旋回方向及び軸線方向に延在し、旋回流の少なくとも一部を内周側と外周側とに分離する構成としてなる請求項2に記載の微細気泡発生装置。   The said refinement | miniaturization acceleration | stimulation member becomes a structure which extends in the turning direction and axial direction of a swirl flow in the said swirl flow maintenance channel | path, and becomes a structure which isolate | separates at least one part of a swirl flow into an inner peripheral side and an outer peripheral side. The fine bubble generator described in 1. 前記微細化促進部材は、前記旋回流維持通路内の旋回流を内周側と外周側とに分離する筒状体により構成してなる請求項2または3に記載の微細気泡発生装置。   The fine bubble generating device according to claim 2 or 3, wherein the miniaturization promoting member is configured by a cylindrical body that separates a swirling flow in the swirling flow maintaining passage into an inner peripheral side and an outer peripheral side. 前記微細化促進部材は、前記旋回流維持通路内で旋回流の軸線方向及び径方向に延在し、旋回流と衝突する構成としてなる請求項2乃至4のうち何れか1項に記載の微細気泡発生装置。   5. The fine structure according to claim 2, wherein the miniaturization promoting member is configured to extend in an axial direction and a radial direction of the swirling flow in the swirling flow maintaining passage and to collide with the swirling flow. Bubble generator. 前記微細化促進部材は、前記旋回流維持通路内の空間を旋回流の軸線方向に沿って並列に延在する複数の通路に分割する構成としてなる請求項2乃至5のうち何れか1項に記載の微細気泡発生装置。   The said refinement | miniaturization acceleration | stimulation member becomes a structure which divides | segments the space in the said swirl | vortex flow maintenance channel | path into the some path | route extended in parallel along the axial direction of a swirl flow. The microbubble generator described. 前記微細化促進部材は、旋回流の軸線方向からみて放射状に形成され、かつ、当該軸線方向に延在する構成としてなる請求項2乃至6のうち何れか1項に記載の微細気泡発生装置。   The microbubble generator according to any one of claims 2 to 6, wherein the miniaturization promoting member is configured to be radially formed when viewed from the axial direction of the swirling flow and extend in the axial direction. 前記微細気泡生成通路は、前記流入口から前記流出口に向けて縮径する円錐状に形成し、前記旋回流維持通路は、前記微細気泡生成通路の流出口よりも大径な円筒状に形成して前記微細気泡生成通路と同軸に配置する構成としてなる請求項1乃至7のうち何れか1項に記載の微細気泡発生装置。   The fine bubble generation passage is formed in a conical shape whose diameter is reduced from the inflow port toward the outflow port, and the swirl flow maintaining passage is formed in a cylindrical shape having a larger diameter than the outflow port of the fine bubble generation passage. The microbubble generator according to any one of claims 1 to 7, wherein the microbubble generator is configured to be arranged coaxially with the microbubble generation passage. 旋回流維持通路は、一端側が前記微細気泡生成通路の流出口に接続され、一端側から他端側に向けて拡径した略円錐状の拡径部と、前記拡径部の他端側に接続された円筒状の等径部とを備えてなる請求項1乃至8のうち何れか1項に記載の微細気泡発生装置。   The swirl flow maintaining passage has one end side connected to the outlet of the fine bubble generation passage, and has a substantially conical diameter-expanded portion whose diameter increases from one end side toward the other end side, and on the other end side of the diameter-expanded portion. The fine bubble generating device according to any one of claims 1 to 8, further comprising a connected cylindrical equal-diameter portion.
JP2012085656A 2012-04-04 2012-04-04 Microbubble generator Active JP5573879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085656A JP5573879B2 (en) 2012-04-04 2012-04-04 Microbubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085656A JP5573879B2 (en) 2012-04-04 2012-04-04 Microbubble generator

Publications (2)

Publication Number Publication Date
JP2013215634A true JP2013215634A (en) 2013-10-24
JP5573879B2 JP5573879B2 (en) 2014-08-20

Family

ID=49588446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085656A Active JP5573879B2 (en) 2012-04-04 2012-04-04 Microbubble generator

Country Status (1)

Country Link
JP (1) JP5573879B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223526A (en) * 2014-05-26 2015-12-14 日本ニューマチック工業株式会社 Method for manufacturing composition having disperse phase finely dispersed in continuous phase, and apparatus therefor
KR101633234B1 (en) * 2015-11-27 2016-06-23 동명대학교산학협력단 Microbuble generator
JP2016112511A (en) * 2014-12-15 2016-06-23 株式会社ノリタケカンパニーリミテド Method of and device for producing gas dissolved liquid
JP2019195782A (en) * 2018-05-10 2019-11-14 株式会社プリンシプル Fine bubble generation device
CN111760533A (en) * 2020-07-08 2020-10-13 刘帆 Ultrasonic micro-airflow biomass production line system
WO2020209042A1 (en) * 2019-04-12 2020-10-15 Kyb株式会社 Air-bubble-containing liquid manufacturing device
JP2022022321A (en) * 2020-03-27 2022-02-03 シンバイオシス株式会社 Rotary mixer, ultra fine bubble generator, and production method of ultra fine bubble fluid
JP7235364B1 (en) 2022-07-22 2023-03-08 株式会社クリーンテックサービス東京 gas dissolver
CN116078197A (en) * 2023-03-02 2023-05-09 清华大学 Micro-nano bubble generating device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101834183B1 (en) * 2016-04-15 2018-03-05 오우라코리아 주식회사 Low energy & vast water flow type micro bubble generator

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04998U (en) * 1990-04-16 1992-01-07
JPH0650639U (en) * 1992-12-25 1994-07-12 株式会社ノーリツ Whirlpool bath
JPH07178330A (en) * 1993-11-09 1995-07-18 Kansai Kagaku Kikai Seisaku Kk Baffle plate and agitation tank
JP2001107845A (en) * 1999-10-04 2001-04-17 Takeshi Yoshioka In-pipe aeration device
JP2004130207A (en) * 2002-10-10 2004-04-30 Toa Harbor Works Co Ltd Bubble producing method and apparatus therefor
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus
JP2008023435A (en) * 2006-07-19 2008-02-07 Kansai Automation Kiki Kk Microbubble generator
JP2008279351A (en) * 2007-05-10 2008-11-20 Daiko:Kk Fine bubble generator and apparatus for generating finn bubble
WO2009046466A1 (en) * 2007-10-10 2009-04-16 Johann Staudinger Device for introducing gas into a fluid
JP2011011178A (en) * 2009-07-06 2011-01-20 Spg Technology Co Ltd Method and apparatus for gas-liquid mixing dissolution

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04998U (en) * 1990-04-16 1992-01-07
JPH0650639U (en) * 1992-12-25 1994-07-12 株式会社ノーリツ Whirlpool bath
JPH07178330A (en) * 1993-11-09 1995-07-18 Kansai Kagaku Kikai Seisaku Kk Baffle plate and agitation tank
JP2001107845A (en) * 1999-10-04 2001-04-17 Takeshi Yoshioka In-pipe aeration device
JP2004130207A (en) * 2002-10-10 2004-04-30 Toa Harbor Works Co Ltd Bubble producing method and apparatus therefor
JP2005262200A (en) * 2004-02-19 2005-09-29 Mitsubishi Heavy Ind Ltd Water cleaning apparatus
JP2008023435A (en) * 2006-07-19 2008-02-07 Kansai Automation Kiki Kk Microbubble generator
JP2008279351A (en) * 2007-05-10 2008-11-20 Daiko:Kk Fine bubble generator and apparatus for generating finn bubble
WO2009046466A1 (en) * 2007-10-10 2009-04-16 Johann Staudinger Device for introducing gas into a fluid
JP2011011178A (en) * 2009-07-06 2011-01-20 Spg Technology Co Ltd Method and apparatus for gas-liquid mixing dissolution

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223526A (en) * 2014-05-26 2015-12-14 日本ニューマチック工業株式会社 Method for manufacturing composition having disperse phase finely dispersed in continuous phase, and apparatus therefor
JP2016112511A (en) * 2014-12-15 2016-06-23 株式会社ノリタケカンパニーリミテド Method of and device for producing gas dissolved liquid
KR101633234B1 (en) * 2015-11-27 2016-06-23 동명대학교산학협력단 Microbuble generator
JP2019195782A (en) * 2018-05-10 2019-11-14 株式会社プリンシプル Fine bubble generation device
CN113613766B (en) * 2019-04-12 2023-09-29 Kyb株式会社 Apparatus for producing bubble-containing liquid
WO2020209042A1 (en) * 2019-04-12 2020-10-15 Kyb株式会社 Air-bubble-containing liquid manufacturing device
JP2020171899A (en) * 2019-04-12 2020-10-22 Kyb株式会社 Air bubble containing liquid production device
CN113613766A (en) * 2019-04-12 2021-11-05 Kyb株式会社 Bubble-containing liquid production device
JP7213126B2 (en) 2019-04-12 2023-01-26 Kyb株式会社 Bubble-containing liquid production equipment
US11951448B2 (en) 2020-03-27 2024-04-09 Shinbiosis Corporation Rotary mixer, bubble shear filter, ultrafine bubble generation device and ultrafine bubble fluid manufacturing method
JP2022022321A (en) * 2020-03-27 2022-02-03 シンバイオシス株式会社 Rotary mixer, ultra fine bubble generator, and production method of ultra fine bubble fluid
JP7071773B2 (en) 2020-03-27 2022-05-19 シンバイオシス株式会社 Manufacturing method of rotary mixer, ultra fine bubble generator and ultra fine bubble fluid
CN111760533A (en) * 2020-07-08 2020-10-13 刘帆 Ultrasonic micro-airflow biomass production line system
CN111760533B (en) * 2020-07-08 2021-10-29 刘帆 Ultrasonic micro-airflow biomass production line system
JP7235364B1 (en) 2022-07-22 2023-03-08 株式会社クリーンテックサービス東京 gas dissolver
JP2024014395A (en) * 2022-07-22 2024-02-01 株式会社クリーンテックサービス東京 Gas dissolution device
CN116078197A (en) * 2023-03-02 2023-05-09 清华大学 Micro-nano bubble generating device

Also Published As

Publication number Publication date
JP5573879B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5573879B2 (en) Microbubble generator
JP6048841B2 (en) Fine bubble generator
JP5669031B2 (en) Ultrafine bubble generator
JP2008086868A (en) Microbubble generator
JP4426612B2 (en) Fine bubble generation nozzle
JP4142728B1 (en) Bubble refiner
JP2007069071A (en) Minute bubble generator and minute bubble circulation system incorporated with it
TWI694860B (en) Micro-bubble acquisition device
JP2010158680A (en) Additional device for whirling type fine bubble generation apparatus
TWI690364B (en) Progressive-perforation-type crushing and refining structure
TWM581942U (en) Micro-bubble obtaining device
KR20150019299A (en) Module for generating micro bubbles
JP2007111616A (en) Fine air-bubble generating device
CN112177107A (en) Water outlet device
JP2007000848A (en) Method for generating fine bubble
JP6646300B2 (en) Bubble generator for sewage purification and sewage purification method
JP2020015018A (en) Gas-liquid mixer
JP2010115586A (en) Microbubble generator
CN211395013U (en) Microbubble shower nozzle and have washing equipment of this microbubble shower nozzle
US20210213400A1 (en) Gas-liquid mixing device
JP2019166493A (en) Fine bubble generation nozzle
KR102355532B1 (en) Shear nozzle and fine bubble conversion module including the same
JP2018130653A5 (en)
JP2007216149A (en) Micro-foam production apparatus
JP2015223585A (en) Micro-bubble generator

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250