JP2020015018A - Gas-liquid mixer - Google Patents

Gas-liquid mixer Download PDF

Info

Publication number
JP2020015018A
JP2020015018A JP2018140761A JP2018140761A JP2020015018A JP 2020015018 A JP2020015018 A JP 2020015018A JP 2018140761 A JP2018140761 A JP 2018140761A JP 2018140761 A JP2018140761 A JP 2018140761A JP 2020015018 A JP2020015018 A JP 2020015018A
Authority
JP
Japan
Prior art keywords
gas
main passage
liquid
passage
mixing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018140761A
Other languages
Japanese (ja)
Other versions
JP6714651B2 (en
Inventor
文夫 浅野
Fumio Asano
文夫 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M TEC CO Ltd
M Tec Co Ltd
Original Assignee
M TEC CO Ltd
M Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M TEC CO Ltd, M Tec Co Ltd filed Critical M TEC CO Ltd
Priority to JP2018140761A priority Critical patent/JP6714651B2/en
Publication of JP2020015018A publication Critical patent/JP2020015018A/en
Application granted granted Critical
Publication of JP6714651B2 publication Critical patent/JP6714651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)

Abstract

To provide a gas-liquid mixer which can generate uniform fine air bubbles.SOLUTION: A gas-liquid mixer A having such a venturi structure that a diaphragm part 6 and a conical part 10 are provided on a main passage 5 through which a liquid passes includes a gas mixing path 9 for taking in gas from a tangential direction with respect to the main flow passage having a circular cross section, and a projection part 11 which is provided on the downstream side of the gas mixing path of an inner wall forming the main passage and extends in a central axis direction of the main passage. Preferably, the projection part is provided on the inner wall forming the conical part, and is formed so that the projection height from the inner wall is higher toward the downstream side.SELECTED DRAWING: Figure 1

Description

本発明は、気液混合装置に関し、更に詳しくは、微細気泡を発生させる気液混合装置に関するものである。   The present invention relates to a gas-liquid mixing device, and more particularly, to a gas-liquid mixing device that generates fine bubbles.

微細気泡は、気液界面が増加することでの高効率で溶存酸素量を上昇させることができ、化学物質を分解する圧壊現象、マイナスイオンの発生などの特性を持ち合わせ、養殖、浄化、洗浄などのさまざまな分野ですでに活用されており、均一で微細な気泡を発生させるベンチュリ構造の気液混合装置が多く利用されている。   Fine bubbles can increase the amount of dissolved oxygen with high efficiency by increasing the gas-liquid interface, and have characteristics such as crushing phenomenon that decomposes chemical substances and generation of negative ions, culture, purification, washing, etc. And a venturi-structured gas-liquid mixing apparatus that generates uniform and fine bubbles are often used.

微細気泡を発生させるベンチュリ構造の気液混合装置として、主通路内部が負圧状態となる主通路の絞り部を、複数の部材を連ねて形成し、その各接合面に細かな溝形状の気体導入箇所を設けて細かな気体を混入し、かつ、破砕用の溝を気体導入部の下流側に形成することで気体と流れる液体との接触面積を増やし、水流と衝突させることで気泡を破砕し微細な気泡を発生させる技術が提案されている(特許文献1)。   As a gas-liquid mixing device with a Venturi structure that generates fine bubbles, a narrow portion of the main passage where the inside of the main passage is in a negative pressure state is formed by connecting a plurality of members, and a gas having a fine groove shape is formed on each joint surface. Provide an introduction point to mix fine gas and form a crushing groove downstream of the gas introduction part to increase the contact area between the gas and the flowing liquid, and crush bubbles by colliding with the water flow A technique for generating fine bubbles has been proposed (Patent Document 1).

また、気液混合された液体主通路の絞り部下流に、主通路中心に螺旋形状のプロペラ型の翼列と、その外環に主通路中心の翼列と反対回りの螺旋形状の翼列を設け、液体主通路の液流を2層に分断してそれぞれ旋回させ、衝突させることで破砕し微細な気泡を発生させる技術が提案されている(特許文献2)。   Further, a helical propeller-type cascade at the center of the main passage and a helical cascade around the main passage center opposite to the cascade of the main passage are provided downstream of the throttle portion of the gas-liquid mixed main passage. There has been proposed a technique in which a liquid flow in a liquid main passage is divided into two layers, swirled, and crushed to generate fine bubbles (Patent Document 2).

特開2008−23513号公報JP 2008-23513 A 特開2007−21343号公報JP 2007-21343 A

ベンチュリ構造で気体を混合できる量は、流れる液体の主通路の圧力と絞り部の圧力の変化量により支配される。そのため、圧力差により混入できる気体量は決定される。また、混入しただけの気体では微細気泡とはならないため、微細気泡を発生させる様々な技術が提案されている。   The amount of gas that can be mixed by the venturi structure is governed by the amount of change in the pressure of the main passage of the flowing liquid and the pressure of the throttle. Therefore, the amount of gas that can be mixed is determined by the pressure difference. Further, since a gas which is merely mixed does not become fine bubbles, various techniques for generating fine bubbles have been proposed.

特許文献1には、ノズル部材に複数段に形成した空気導入ノズルを連ねて、流水通路を流れる液体に吸引させる気体を少量ずつ混入させている。空気吸引用の溝を浅く刻設し、さらには、空気吸引用の溝に接続された気泡破砕用の溝を流れ方向に設けることにより、気体と流れる液体との接触面積を増やし、水流と衝突させることで微細な気泡を発生させている。しかしながら、破砕用の溝でせん断される水流エネルギーは旋回流が加速される前であり、溝を浅く刻設した一つの接合面で微細な気泡として吸引できる量は限られるため、必要量の気体を混合させるには、複数の部材を備える必要があり、部品点数は多くなる。   In Patent Literature 1, a plurality of stages of air introduction nozzles are connected to a nozzle member, and a small amount of gas to be sucked into a liquid flowing through a flowing water passage is mixed. A shallow groove for air suction is provided, and a groove for crushing bubbles connected to the groove for air suction is provided in the flow direction to increase the contact area between the gas and the flowing liquid, thereby colliding with the water flow. By doing so, fine bubbles are generated. However, the energy of the water flow sheared by the crushing groove is before the swirling flow is accelerated, and the amount of fine gas that can be sucked as fine bubbles at one joining surface where the groove is shallowly cut is limited. , It is necessary to provide a plurality of members, and the number of parts increases.

また、特許文献2は、筒状のケーシング内に異なる回転方向の翼列を設けることで液体を翼列で抑制し旋回させている。そのため、加圧された液体が翼列を通過する圧力損失は大きくなり、混入できる空気量は少なくなる。少ない流量では微細な気泡を発生させることはできなく、また、プロペラ型の翼列の製作は複雑であり高価な装置となる。   Further, in Patent Document 2, by providing blade rows in different rotational directions in a cylindrical casing, liquid is suppressed and swirled by the blade rows. Therefore, the pressure loss of the pressurized liquid passing through the cascade increases, and the amount of air that can be mixed decreases. Fine air bubbles cannot be generated with a small flow rate, and the manufacture of a propeller-type cascade is complicated and expensive.

本発明は、上記の課題を解決するものであり、安価に製造でき、かつ、均一な微細気泡を発生させることができる気液混合装置を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a gas-liquid mixing device that can be manufactured at low cost and can generate uniform fine bubbles.

上記問題を解決するために、請求項1に記載の発明は、液体が通過する主通路に、絞り部と該絞り部の下流側に連なり下流側に向かって拡径する円錐部とを設けたベンチュリ構造の気液混合装置において、断面円形の前記主通路に対して接線方向から気体を取り入れるための気体混入路と、前記主通路をなす内壁の前記気体混入路よりも下流側に設けられて前記主通路の中心軸方向に延びる突状部と、を備えることを要旨とする。   In order to solve the above problem, the invention according to claim 1 is provided with a constricted portion and a conical portion connected to the downstream side of the constricted portion and having a diameter increasing toward the downstream side in the main passage through which the liquid passes. In the gas-liquid mixing device having a Venturi structure, a gas mixing path for taking in gas from the tangential direction to the main path having a circular cross section, and a gas mixing path provided on an inner wall forming the main path downstream of the gas mixing path. And a protruding portion extending in the central axis direction of the main passage.

請求項2に記載の発明は、請求項1に記載の発明において、前記突状部は、前記円錐部をなす内壁に設けられているとともに、該内壁からの突出高さが下流側に向かって高くなるように形成されていることを要旨とする。   According to a second aspect of the present invention, in the first aspect of the invention, the projecting portion is provided on an inner wall forming the conical portion, and a protruding height from the inner wall increases toward the downstream side. The gist is that it is formed to be higher.

請求項3に記載の発明は、請求項1又は2に記載の発明において、前記突状部は、前記主通路をなす内壁の前記円錐部よりも下流側に設けられていることを要旨とする。   According to a third aspect of the present invention, in the first or second aspect, the projecting portion is provided downstream of the conical portion of an inner wall forming the main passage. .

請求項4に記載の発明は、請求項1乃至3のいずれか一項に記載の発明において、前記主通路は、第1部材と該第1部材に接合される第2部材とにわたって形成されており、前記気体混入路は、前記第1部材の前記第2部材に対する接合面側に溝状に形成されており、前記第1部材と前記第2部材の接合面において、前記第2部材の前記主通路の内径は、上流側である前記第1部材の前記主通路の内径よりも大きいことを要旨とする。   According to a fourth aspect of the present invention, in the first aspect of the present invention, the main passage is formed over a first member and a second member joined to the first member. The gas mixing path is formed in a groove shape on the side of the joining surface of the first member to the second member, and at the joining surface of the first member and the second member, The gist is that the inner diameter of the main passage is larger than the inner diameter of the main passage of the first member on the upstream side.

請求項5に記載の発明は、請求項1乃至4のいずれか一項に記載の発明において、前記主通路の中心軸の円周上に沿う長孔形状の吐出口を備えることを要旨とする。   The gist of the invention described in claim 5 is that, in the invention described in any one of claims 1 to 4, a long hole-shaped discharge port is provided along the circumference of the central axis of the main passage. .

本発明の気液混合装置によると、断面円形の主通路に対して接線方向から気体を取り入れるための気体混入路と、主通路をなす内壁の気体混入路よりも下流側に設けられて主通路の中心軸方向に延びる突状部と、を備える。これにより、ベンチュリ構造をもとにした部品構成において、主通路に対して接線方向から気体を混入させることで、主通路を流れる液体を気液が混合された旋回流にすることができる。この気液が混合された主旋回流は、流れ方向に進むにつれて円錐部の内壁に沿って遠心力により加速される。この加速された主旋回流が突状部に衝突することで気泡破砕を起こし、かつ、主旋回流から副旋回流を発生させ、主旋回流と衝突させることでさらに激しく気泡破砕が行なわれる。その結果、均一な微細気泡を発生させることができる。   According to the gas-liquid mixing device of the present invention, a gas mixing passage for taking in gas from a tangential direction to a main passage having a circular cross section, and a main passage provided downstream of the gas mixing passage of an inner wall forming the main passage. And a protruding portion extending in the central axis direction. Thus, in a component configuration based on the venturi structure, by mixing gas from the tangential direction to the main passage, the liquid flowing in the main passage can be made into a swirling flow in which gas-liquid is mixed. The main swirling flow in which the gas-liquid is mixed is accelerated by centrifugal force along the inner wall of the conical portion as it proceeds in the flow direction. The accelerated main swirling flow collides with the protruding portion to cause bubble crushing, and further generates a sub-swirling flow from the main swirling flow and collides with the main swirling flow to further violently break bubbles. As a result, uniform fine bubbles can be generated.

また、前記突状部が、前記円錐部をなす内壁に設けられているとともに、該内壁からの突出高さが下流側に向かって高くなるように形成されている場合は、円錐部の上流側で突状部を低く設定することで主旋回流を抵抗なく下流に受け流して効果的に加速させることができる。さらに、円錐部の下流側で突状部を高く設定することで衝突による気泡破砕が効果的に行なわれる。   Further, when the protruding portion is provided on the inner wall forming the conical portion, and is formed so that the protruding height from the inner wall increases toward the downstream side, the upstream side of the conical portion is provided. By setting the protruding portion low, the main swirling flow can be received downstream without resistance and accelerated effectively. Further, by setting the protruding portion high on the downstream side of the conical portion, bubble crushing due to collision is effectively performed.

また、前記突状部が、前記主通路をなす内壁の前記円錐部よりも下流側に設けられている場合、円錐部で十分に加速された主旋回流が突状部に衝突することで気泡破砕が効果的に行なわれる。   Further, when the protruding portion is provided downstream of the conical portion of the inner wall forming the main passage, the main swirling flow sufficiently accelerated by the conical portion collides with the protruding portion to generate bubbles. The crushing is performed effectively.

また、前記主通路が、第1部材と第2部材とにわたって形成されており、前記気体混入路が、前記第1部材の接合面側に溝状に形成されており、前記第1部材と前記第2部材の接合面において、前記第2部材の前記主通路の内径が、上流側である前記第1部材の前記主通路の内径よりも大きい場合は、第1部材の端面の主通路より大きく形成した第2部材の端面の円形状の主通路の最大径の接線位置に接続する気体混入路を形成することができる。
このように、混入気体の位置が主通路を旋回する最大径の接線位置であれば旋回流のエネルギーは大きくなり、この旋回流のエネルギーを利用した細かな気泡を均一に発生させることができる。
さらに、主通路を流れる液体が絞り部から解放される時の流れ込みにくい流域に、かつ、最も旋回方向に適した方向から気体を混入させることができる。このため、主通路を流れる液体に吸引される際に、液体の進行方向と主通路に対する接線方向とを合わせた方向から気体を混入することが可能となり、流れる液体に混入される際に発生する液体エネルギーの損失を低減させることができる。
Further, the main passage is formed over a first member and a second member, the gas mixing passage is formed in a groove shape on a joint surface side of the first member, and the first member and the first member are formed in a groove shape. In the joining surface of the second member, when the inner diameter of the main passage of the second member is larger than the inner diameter of the main passage of the first member on the upstream side, the inner passage is larger than the main passage on the end surface of the first member. It is possible to form a gas mixing path connected to the tangent position of the maximum diameter of the circular main passage on the end face of the formed second member.
As described above, if the position of the mixed gas is the tangent position of the maximum diameter at which the gas swirls in the main passage, the energy of the swirl flow increases, and fine bubbles using the energy of the swirl flow can be uniformly generated.
Further, the gas can be mixed into a flow area where the liquid flowing through the main passage is difficult to flow when the liquid is released from the throttle section, and from the direction most suitable for the turning direction. For this reason, when being sucked into the liquid flowing through the main passage, it is possible to mix gas from a direction in which the liquid traveling direction and the tangential direction to the main passage are combined, and the gas is generated when mixed with the flowing liquid. Liquid energy loss can be reduced.

さらに、前記主通路の中心軸の円周上に沿う長孔形状の吐出口を備える場合は、旋回流とならない主通路の中心軸周辺の流れである中心流を、円錐部の内壁に沿って加速された旋回流に衝突させることで、より細かな均一な微細気泡の気液を吐出口から吐出することができる。   Furthermore, in the case of providing a long hole-shaped discharge port along the circumference of the central axis of the main passage, the central flow, which is the flow around the central axis of the main passage that does not become a swirling flow, flows along the inner wall of the conical portion. By colliding with the accelerated swirling flow, finer and uniform gas bubbles of fine bubbles can be discharged from the discharge port.

本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
実施例に係る気液混合装置の縦断面図である。 図1のII−II線断面拡大図である。 図1のIII−III線断面拡大図である。 図1の要部拡大図である。 上記気液混合装置を構成する第2部材の縦断面図である。 図1のVI−VI線断面拡大図である。 他の形態に係る突状部を説明するための説明図である。 更なる他の形態に係る突状部を説明するための説明図である。 図1のIX矢視拡大図である。 上記気液混合装置の下流端側の一部を破断した斜視図である。 他の形態の気液混合装置を説明するための説明図であり、(a)は気液混合装置の縦断面を示し、(b)はb−b線断面を示す。
The invention will be further described in the following detailed description, given by way of non-limiting example of an exemplary embodiment according to the invention and with reference to the referenced figures, wherein like reference numerals are used to refer to the figures. Similar parts are shown throughout the several figures.
It is a longitudinal section of the gas-liquid mixing device concerning an example. FIG. 2 is an enlarged cross-sectional view taken along line II-II of FIG. 1. FIG. 3 is an enlarged cross-sectional view taken along line III-III of FIG. 1. It is a principal part enlarged view of FIG. It is a longitudinal section of the 2nd member which constitutes the above-mentioned gas-liquid mixing device. FIG. 6 is an enlarged cross-sectional view taken along line VI-VI of FIG. 1. It is an explanatory view for explaining a projection part concerning other forms. It is explanatory drawing for demonstrating the protrusion part which concerns on another another form. FIG. 2 is an enlarged view taken along arrow IX in FIG. 1. It is the perspective view which fractured | ruptured a part of the downstream end side of the said gas-liquid mixing apparatus. It is explanatory drawing for demonstrating the gas-liquid mixing apparatus of another form, (a) shows the longitudinal section of a gas-liquid mixing apparatus, (b) shows the bb line cross section.

ここで示される事項は例示的なものおよび本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。   The matters shown here are for the purpose of exemplifying the exemplary embodiments and the embodiments of the present invention, and should be described so that the principles and conceptual features of the present invention can be most effectively and easily understood. It is intended to provide what seems to be possible. In this respect, it is not intended to show the structural details of the invention beyond that which is necessary for a fundamental understanding of the invention, and that some forms of the invention will be It will be clear to those skilled in the art how it is actually embodied.

本実施形態に係る気液混合装置は、液体が通過する主通路(5)に、絞り部(6)と該絞り部の下流側に連なり下流側に向かって拡径する円錐部(10)とを設けたベンチュリ構造の気液混合装置(A)において、断面円形の主通路(5)に対して接線方向から気体を取り入れるための気体混入路(9)と、主通路(5)をなす内壁の気体混入路(9)よりも下流側に設けられて主通路(5)の中心軸方向に延びる突状部(11)と、を備える(例えば、図1及び図11等参照)。これにより、気体混入路(9)から混入される混入気体(9a)により、主通路(5)を流れる液体に旋回流(6a)が発生する(例えば、図2等参照)。そして、旋回流(6a)は流れ方向に進むにつれて、円錐部(10)の内壁に沿って遠心力により加速された主旋回流(10a)と、突状部(11)を設けることで副旋回流(11a)を発生させる(例えば、図6等参照)。   In the gas-liquid mixing device according to the present embodiment, the main passage (5) through which the liquid passes includes a constricted portion (6) and a conical portion (10) connected to the downstream side of the constricted portion and increasing in diameter toward the downstream side. In a gas-liquid mixing device (A) having a venturi structure provided with a gas, a gas mixing passage (9) for taking in gas from a tangential direction to a main passage (5) having a circular cross section, and an inner wall forming the main passage (5) A protruding portion (11) provided downstream of the gas mixing passage (9) and extending in the direction of the central axis of the main passage (5) (see, for example, FIGS. 1 and 11). Thereby, the swirling flow (6a) is generated in the liquid flowing through the main passage (5) by the mixed gas (9a) mixed from the gas mixing path (9) (for example, see FIG. 2 and the like). As the swirling flow (6a) advances in the flow direction, a main swirling flow (10a) accelerated by centrifugal force along the inner wall of the conical portion (10) and a sub-swirl by providing a protruding portion (11). A flow (11a) is generated (see, for example, FIG. 6).

なお、上記気体混入路(9)の形状、大きさ、配置箇所、個数等は、液体の流量等に応じて適宜選択される。また、上記突状部(11)の形状、大きさ、配置箇所、個数等は、液体の流量等に応じて適宜選択される。   The shape, size, location, number and the like of the gas mixing path (9) are appropriately selected according to the flow rate of the liquid and the like. The shape, size, location, number, and the like of the protrusions (11) are appropriately selected according to the flow rate of the liquid and the like.

本実施形態に係る気液混合装置としては、上記突状部(11)は、円錐部(10)をなす内壁に設けられているとともに、該内壁からの突出高さが下流側に向かって高くなるように形成されている形態(例えば、図5及び図7等参照)が挙げられる。   In the gas-liquid mixing device according to the present embodiment, the protruding portion (11) is provided on the inner wall forming the conical portion (10), and the protruding height from the inner wall increases toward the downstream side. (See, for example, FIGS. 5 and 7).

上述の形態の場合、例えば、上記突状部(11)は、長手方向にわたって、円錐部(10)の内壁からの突出高さが下流側に向かうに連れて徐々に高くなるように形成されていることができる(例えば、図5等参照)。また、例えば、上記突状部(11)は、円錐部(10)の内壁からの突出高さが下流側に向かうに連れて徐々に高くなる徐変部(18a)と、徐変部(18a)の下流側に連なり突出高さが同じ一定高さ部(18b)と、を備えることができる(例えば、図7等参照)。   In the case of the above embodiment, for example, the protruding portion (11) is formed so that the protruding height from the inner wall of the conical portion (10) gradually increases toward the downstream side in the longitudinal direction. (See, for example, FIG. 5). Further, for example, the protruding portion (11) includes a gradually changing portion (18a) in which the protruding height of the conical portion (10) from the inner wall gradually increases toward the downstream side, and a gradually changing portion (18a). ) And a constant height portion (18b) having the same protruding height on the downstream side (see, for example, FIG. 7).

本実施形態に係る気液混合装置としては、例えば、上記突状部(11)は、主通路(5)をなす内壁の円錐部(10)よりも下流側に設けられている形態(例えば、図11等参照)が挙げられる。   In the gas-liquid mixing device according to the present embodiment, for example, the projection (11) is provided downstream of the conical portion (10) of the inner wall forming the main passage (5) (for example, 11 and the like).

本実施形態に係る気液混合装置としては、例えば、上記主通路(5)は、第1部材(1)と第1部材(1)に接合される第2部材(2)とにわたって形成されており、気体混入路(9)は、第1部材(1)の第2部材(2)に対する接合面側に溝状に形成されており、第1部材(1)と第2部材(2)の接合面において、第2部材(2)の主通路(5)の内径は、上流側である第1部材(1)の主通路(5)の内径よりも大きい形態(例えば、図4等参照)が挙げられる。これにより、気体混入路(9)からの気体を第2部材(2)の主通路(5)の接線位置に混入せることができ、液体の流れ方向にも進むことができる。   In the gas-liquid mixing device according to the present embodiment, for example, the main passage (5) is formed over a first member (1) and a second member (2) joined to the first member (1). In addition, the gas mixing path (9) is formed in a groove shape on the joint surface side of the first member (1) with the second member (2), and is formed by the first member (1) and the second member (2). In the joining surface, the inner diameter of the main passage (5) of the second member (2) is larger than the inner diameter of the main passage (5) of the first member (1) on the upstream side (for example, see FIG. 4 and the like). Is mentioned. Thereby, the gas from the gas mixing passage (9) can be mixed into the tangential position of the main passage (5) of the second member (2), and can also proceed in the liquid flow direction.

本実施形態に係る気液混合装置としては、例えば、上記主通路(5)の中心軸の円周上に沿う長孔形状の吐出口(14)を備える形態(例えば、図9及び図10等参照)が挙げられる。これにより、旋回流とならない主通路(5)の中心軸周辺の流れ(13a)を、加速された旋回流(10a)に衝突させることができる。なお、上記吐出口(14)の大きさ、個数、配置箇所等は、吐出量等に応じて適宜選択される。   As the gas-liquid mixing device according to the present embodiment, for example, a form including a long hole-shaped discharge port (14) along the circumference of the central axis of the main passage (5) (for example, FIGS. 9 and 10 and the like) Reference). Thus, the flow (13a) around the central axis of the main passage (5) that does not become a swirl flow can collide with the accelerated swirl flow (10a). The size, number, location, and the like of the discharge ports (14) are appropriately selected according to the discharge amount and the like.

なお、上記実施形態で記載した各構成の括弧内の符号は、後述する実施例に記載の具体的構成との対応関係を示すものである。   It should be noted that reference numerals in parentheses of each configuration described in the above-described embodiment indicate a correspondence relationship with a specific configuration described in Examples described later.

以下、図面を用いて実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically with reference to the drawings.

本実施例に係る気液混合装置Aは、図1に示すように、液体が通過する主通路5が形成された本体16を備えている。この本体16は、同一軸で接続される第1部材1と第2部材2と第3部材3とを備えている。これら各第1〜第3部材1〜3は、金属又は樹脂等の材料により筒状に形成されている。この第1部材1は、第2部材2の一方の軸端側に対してネジ止め等により接合されている。また、第3部材3は、第2部材2の他方の軸端側に対してネジ止め等により接合されている。さらに、主通路5には、絞り部6と、絞り部6の下流側に連なり下流側に向かって拡径する円錐部10と、が設けられている。よって、気液混合装置Aは、ベンチュリ構造を備えている。   As shown in FIG. 1, the gas-liquid mixing device A according to the present embodiment includes a main body 16 in which a main passage 5 through which a liquid passes is formed. The main body 16 includes a first member 1, a second member 2, and a third member 3 connected by the same shaft. Each of the first to third members 1 to 3 is formed in a cylindrical shape from a material such as metal or resin. The first member 1 is joined to one shaft end side of the second member 2 by screwing or the like. Further, the third member 3 is joined to the other shaft end side of the second member 2 by screwing or the like. Further, the main passage 5 is provided with a constricted portion 6 and a conical portion 10 which is connected to the downstream side of the constricted portion 6 and whose diameter increases toward the downstream side. Therefore, the gas-liquid mixing device A has a venturi structure.

第1部材1には、主通路入口4及び該主通路入口4の下流側に連なる絞り部6が形成されている。また、第1部材1には、主通路5(具体的に、絞り部6及び円錐部10の接続部分)に対して気体を混入するための気体入口7、気体吸入室8及び気体混入路9が形成されている。この気体混入路9は、主通路5に対して接線方向から気体を混入するように、主通路5の中心軸の円周上の接線方向に接続されている。   The first member 1 is provided with a main passage inlet 4 and a throttle portion 6 connected to the downstream side of the main passage inlet 4. Further, the first member 1 has a gas inlet 7, a gas suction chamber 8, and a gas mixing passage 9 for mixing gas into the main passage 5 (specifically, a connection portion between the throttle portion 6 and the conical portion 10). Are formed. The gas mixing passage 9 is connected in a tangential direction on the circumference of the central axis of the main passage 5 so as to mix gas from the main passage 5 in a tangential direction.

第1部材1において、主通路入口4の断面積より絞り部6の断面積は小さく形成されている。主通路入口4から流入された液体は、絞り部6を通過する。このとき、ベンチュリ構造により、絞り部6内部の液体は高速な流れとなり、負圧状態となる。この負圧状態の絞り部6の下流には、気体混入路9が形成されており、この負圧状態で気体混入路9を通過すると、外気と繋がれている気体吸入室8を通過した気体が気体混入路9から混入される。   In the first member 1, the cross-sectional area of the throttle portion 6 is formed smaller than the cross-sectional area of the main passage inlet 4. The liquid flowing from the main passage inlet 4 passes through the throttle unit 6. At this time, due to the venturi structure, the liquid inside the throttle unit 6 flows at a high speed and is in a negative pressure state. A gas mixing passage 9 is formed downstream of the throttle section 6 in the negative pressure state. When the gas mixing passage 9 passes through the gas mixing passage 9 in the negative pressure state, the gas passing through the gas suction chamber 8 connected to the outside air is formed. Is mixed from the gas mixing path 9.

ここで、図2に示すように、主通路5の中心軸に対し接線方向に形成されている気体混入路9により混入気体9aを混入させることで、主通路5の中心軸方向に整流の液体から、気液混合された主通路5の中心軸の旋回流6aにすることができる。なお、この旋回により気体がせん断されるのであるが、この段階では、粒径の大きな気泡が残っており均一ではない。   Here, as shown in FIG. 2, by mixing the mixed gas 9 a through a gas mixing passage 9 formed tangentially to the central axis of the main passage 5, the rectifying liquid is mixed in the central axis direction of the main passage 5. Accordingly, the swirling flow 6a of the central axis of the main passage 5 in which the gas and the liquid are mixed can be obtained. The gas is sheared by this swirling, but at this stage, bubbles having a large particle size remain and are not uniform.

また、気体吸入室8を主通路5の外環に形成することで、主通路5の中心軸に対し接線方向に形成する気体混入路9を主通路5に如何なる方向からでも接続することができ、気体吸入室8と外気を接続する気体入口7を1箇所で形成することができる。   Further, by forming the gas suction chamber 8 on the outer ring of the main passage 5, the gas mixing passage 9 formed tangentially to the central axis of the main passage 5 can be connected to the main passage 5 from any direction. The gas inlet 7 connecting the gas suction chamber 8 and the outside air can be formed at one place.

図3及び図4に示すように、気体混入路9を、第2部材2に対する第1部材1の接合面に溝形状とし、第2部材2の端面の主通路5を第1部材1の端面の主通路5より大きく形成することで、主通路5の中心軸に対し接線方向に設ける気体混入路9を、第2部材2の端面の円形状の主通路5の最大径の接線位置に接続することができる。また、気体混入路9の絞り部6に対する接続端側は、円錐部10に対して開口している。   As shown in FIG. 3 and FIG. 4, the gas mixing passage 9 is formed in a groove shape on the joining surface of the first member 1 to the second member 2, and the main passage 5 on the end surface of the second member 2 is formed on the end surface of the first member 1 Is formed to be larger than the main passage 5 so that the gas mixing passage 9 provided tangentially to the central axis of the main passage 5 is connected to the tangent position of the maximum diameter of the circular main passage 5 on the end face of the second member 2. can do. Further, the connection end side of the gas mixing path 9 with respect to the throttle section 6 is open to the conical section 10.

主通路5を流れる液体は、第1部材1と第2部材2の接合面を通過するときに、絞り部6の断面から絞り部6の断面より大きな円錐部10の上流の断面に変化する。このとき、主通路5の内部では、円錐部10の端面の円周部、すなわち、第2部材2の端面の気体混入路9を接続した接線部分付近に、液体が流れ込みにくい流域Rができる(図4参照)。その流域Rに気体を流入させることより、主通路5を流れる液体の流れに沿って、気体を液体に混入することができる。   When the liquid flowing through the main passage 5 passes through the joint surface between the first member 1 and the second member 2, the liquid changes from a cross section of the constricted portion 6 to a cross section upstream of the conical portion 10 that is larger than the cross section of the constricted portion 6. At this time, in the inside of the main passage 5, a basin R in which the liquid does not easily flow is formed around the circumference of the end surface of the conical portion 10, that is, in the vicinity of the tangential portion connecting the gas mixing passage 9 on the end surface of the second member 2 ( (See FIG. 4). By allowing the gas to flow into the basin R, the gas can be mixed with the liquid along the flow of the liquid flowing through the main passage 5.

このように、主通路5の中心軸に対し接線方向と、主通路5を流れる液体の流れに沿った方向と、を合わせた方向から、気体を混入することが可能となり、整流の液体を、効率よく気液混合された主通路5の中心軸の旋回流6aにすることができる。   In this way, gas can be mixed from the direction in which the tangential direction with respect to the central axis of the main passage 5 and the direction along the flow of the liquid flowing through the main passage 5 are mixed, and the rectifying liquid is The swirling flow 6a of the central axis of the main passage 5 in which gas-liquid mixing is efficiently performed can be obtained.

また、気体混入路9を第1部材1の接合面に溝形状とすることで、部材制作時に液体の流れ軸方向からの加工が可能となる。そのため、主通路5の外側に形成された環状の気体吸入室8と、気体混入路9を一体の部材で製作することができるために安価となる。   Further, by forming the gas mixing passage 9 in a groove shape on the joint surface of the first member 1, processing from the liquid flow axis direction at the time of manufacturing the member becomes possible. Therefore, the annular gas suction chamber 8 formed outside the main passage 5 and the gas mixing passage 9 can be manufactured by an integral member, so that the cost is reduced.

第2部材2には、図5及び図6に示すように、円錐部10及び該円錐部10をなす内壁に突設される複数(図6中で4つ)の突状部11が形成されている。第2部材2において、円錐部10は、流れ方向に進むにつれて主通路5の断面が大きくなるように、主通路5の中心軸に対し円錐角度101で形成されている。そのため、絞り部8からの気液混合された旋回流6aは、円錐部10の内壁に沿って流れ方向に進むほど遠心力により加速され旋回流10aとなる(図6参照)。なお、本実施例では、ワイヤー放電加工で形成される円錐部10及び突状部11を例示する。   As shown in FIGS. 5 and 6, the second member 2 is formed with a conical portion 10 and a plurality (four in FIG. 6) of protruding portions 11 protruding from the inner wall forming the conical portion 10. ing. In the second member 2, the conical portion 10 is formed at a conical angle 101 with respect to the central axis of the main passage 5 so that the cross section of the main passage 5 becomes larger as it proceeds in the flow direction. Therefore, the gas-liquid mixed swirling flow 6a from the constricted portion 8 is accelerated by centrifugal force as the flow proceeds along the inner wall of the conical portion 10 into the swirling flow 10a (see FIG. 6). In this embodiment, a conical portion 10 and a protruding portion 11 formed by wire electric discharge machining are exemplified.

複数の突状部11は、主通路5の中心軸方向に延びる板状に形成されている。これら各突状部11は、第2部材2の主通路5の中心軸に沿う縦断面において、円錐部10の長手方向の略全長にわたって延びている。また、各突状部11の突出端縁の主通路5の中心軸に対する傾斜角度は、円錐部10の内壁の主通路5の中心軸に対する傾斜角度よりも小さな値とされている。また、各突状部11は、長手方向にわたって、円錐部10の内壁からの突出高さが下流側に向かうに連れて徐々に高くなるように形成されている。   The plurality of protrusions 11 are formed in a plate shape extending in the central axis direction of the main passage 5. Each of the projecting portions 11 extends over substantially the entire length of the conical portion 10 in the longitudinal section along the central axis of the main passage 5 of the second member 2. Further, the inclination angle of the protruding end edge of each projection 11 with respect to the central axis of the main passage 5 is smaller than the inclination angle of the inner wall of the conical portion 10 with respect to the central axis of the main passage 5. In addition, each protruding portion 11 is formed such that the protruding height from the inner wall of the conical portion 10 gradually increases in the longitudinal direction toward the downstream side.

複数の突状部11は、円錐部10の中心軸回りに等ピッチの角度間隔で配置されている。複数の突状部11のうちで対向する一対の突状部11の突出端縁のなす角度102は、円錐部10のなす円錐角度101より小さな値とされている。加速前の円錐部10の上流部では突状部11が低いために主旋回流6aを抵抗なく下流に受け流して加速させ、より加速された旋回流10aの円錐部10の下流部では、突状部11が高いために激しい衝突による気泡破砕、かつ、副旋回流11aを発生させ、主旋回流10aと衝突することで気泡破砕がより激しく行なわれる。   The plurality of protrusions 11 are arranged at equal pitch angular intervals around the central axis of the conical part 10. The angle 102 formed by the protruding edges of the pair of opposing protrusions 11 among the plurality of protrusions 11 is smaller than the cone angle 101 formed by the cone 10. Since the protruding portion 11 is low at the upstream portion of the conical portion 10 before acceleration, the main swirling flow 6a is received downstream without resistance and accelerated, and the protruding portion is formed at the downstream portion of the conical portion 10 of the further accelerated swirling flow 10a. Since the portion 11 is high, the bubble crushing due to a violent collision and the secondary swirling flow 11a are generated, and the bubble crushing is performed more violently by colliding with the main swirling flow 10a.

ここで、本実施例では、円錐部10の内壁からの突出高さが下流側に向かうに連れて徐々に高くなる突状部11を例示したが、これに限定されず、例えば、図7に示すように、突状部11は、円錐部10の内壁からの突出高さが下流側に向かうに連れて徐々に高くなる徐変部18aと、徐変部18aの下流側に連なり突出高さが同じ一定高さ部18bと、を備えることができる。この場合、一定高さ部18bの始点(上流端)は、円錐部10の内壁の始点(上流端)と異なっている。なお、突状部11を形成するための角度と始点、突状部本数は、液体流量と空気量に応じて設定することができる。   Here, in the present embodiment, the protruding portion 11 in which the protruding height of the conical portion 10 from the inner wall gradually increases toward the downstream side is illustrated, but the present invention is not limited to this. For example, FIG. As shown, the protruding portion 11 has a gradually changing portion 18a in which the protruding height from the inner wall of the conical portion 10 gradually increases toward the downstream side, and a protruding height connected to the downstream side of the gradually changing portion 18a. And the same constant height portion 18b. In this case, the starting point (upstream end) of the constant height portion 18b is different from the starting point (upstream end) of the inner wall of the conical portion 10. Note that the angle and the starting point for forming the projecting portion 11 and the number of projecting portions can be set according to the liquid flow rate and the air amount.

また、本実施例では、突状部11の突出端側に角を有することで、角を通過する気液をキャビテーションにより微細気泡を発生させることができる。ただし、例えば、図8に示すように、突状部11の突出端側に角を有しない円弧形状としてもよい。この場合、突状部11と旋回流10aの衝突音が抑制される。   Further, in the present embodiment, since the projection 11 has a corner on the protruding end side, gas bubbles passing through the corner can generate fine bubbles by cavitation. However, for example, as shown in FIG. 8, the protruding portion 11 may have an arc shape having no corner on the protruding end side. In this case, the collision sound between the protruding portion 11 and the swirling flow 10a is suppressed.

第3部材3は、図9及び図10に示すように、有底筒状に形成されている。この第3部材3は、第2部材2との間で吐出室13を形成している。また、第3部材3の底面側には、主通路5の中心軸の円周上に沿う長孔形状の吐出口14が形成されている。この吐出口14は、主通路5の中心軸回りに等ピッチの角度間隔で複数(図9中で3つ)配置されている。このように、主通路5の中心側に吐出口を設けないで、主通路5の中心軸の円周上に沿う長孔形状の吐出口14を備えることで、旋回流10aとならない主通路5の中心軸周辺の流れである中心流13aを、吐出室13で円錐部10の内壁に沿って加速された主旋回流10aに衝突させることで、より均一な微細気泡の気液を吐出口14から吐出することができる。   The third member 3 is formed in a bottomed cylindrical shape as shown in FIGS. 9 and 10. The third member 3 forms a discharge chamber 13 with the second member 2. On the bottom surface side of the third member 3, a long hole-shaped discharge port 14 is formed along the circumference of the central axis of the main passage 5. The plurality of discharge ports 14 (three in FIG. 9) are arranged around the center axis of the main passage 5 at equal pitch angular intervals. In this way, by providing the discharge port 14 in the shape of a long hole along the circumference of the central axis of the main path 5 without providing the discharge port on the center side of the main path 5, the main path 5 that does not become the swirling flow 10a is provided. The central flow 13a, which is a flow around the central axis of the nozzle, collides with the main swirl flow 10a accelerated along the inner wall of the conical portion 10 in the discharge chamber 13, thereby discharging more uniform gas and liquid of fine bubbles. Can be discharged.

次に、実験例及び比較例に係る気液混合試験について説明する。
実験例の気液混合試験では、実施例に係る気液混合装置Aを採用し、吐出口14から吐出される吐出流を観察した。一方、比較例の気液混合試験では、実施例に係る気液混合装置Aにおいて突状部11を備えないものを採用し、吐出口14から吐出される吐出流を観察した。その結果、実験例の気液混合試験では、吐出流中には0.1mm以下の均一な微細気泡が含まれることを確認した。これに対して、比較例の気液混合試験では、吐出流中に0.1mm以下の微細気泡の他に1mm程度の気泡が含まれることを確認した。
Next, a gas-liquid mixing test according to an experimental example and a comparative example will be described.
In the gas-liquid mixing test of the experimental example, the gas-liquid mixing device A according to the example was adopted, and the discharge flow discharged from the discharge port 14 was observed. On the other hand, in the gas-liquid mixing test of the comparative example, the gas-liquid mixing device A according to the example without the projection 11 was employed, and the discharge flow discharged from the discharge port 14 was observed. As a result, in the gas-liquid mixing test of the experimental example, it was confirmed that the discharge flow contained uniform fine bubbles of 0.1 mm or less. On the other hand, in the gas-liquid mixing test of the comparative example, it was confirmed that in addition to fine bubbles of 0.1 mm or less, bubbles of about 1 mm were included in the discharge flow.

尚、本発明においては、上記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。すなわち、上記実施例では、円錐部10の内壁上に突状部11を立ち上げる形態を例示したが、これに限定されず、例えば、図11に示すように、主通路5をなす内壁において円錐部10よりも下流側(具体的に、吐出室13を形成する内壁)に突状部11を設けるようにしてもよい。この場合、例えば、突状部11は、主通路5の内壁において円錐部10と円錐部10よりも下流側とにわたって設けられていてもよい。   It should be noted that the present invention is not limited to the above-described embodiment, but may be variously modified within the scope of the present invention according to the purpose and application. That is, in the above-described embodiment, the form in which the protruding portion 11 is raised on the inner wall of the conical portion 10 is exemplified. However, the present invention is not limited to this. For example, as shown in FIG. The protruding portion 11 may be provided on the downstream side of the portion 10 (specifically, on the inner wall forming the discharge chamber 13). In this case, for example, the protrusion 11 may be provided on the inner wall of the main passage 5 over the conical portion 10 and the downstream side of the conical portion 10.

また、上記実施例では、円錐部10の内壁からの突出高さが下流側に向かって高くなる直線状の突出端縁を備える突状部11を例示したが、これに限定されず、例えば、円錐部10の内壁からの突出高さが下流側に向かって高くなる段差状又は湾曲状の突出端縁を備える突状部11としてもよい。さらに、例えば、円錐部10の内壁からの突出高さが一定である突状部11としてもよい。   Further, in the above-described embodiment, the protruding portion 11 having the linear protruding end edge in which the protruding height of the conical portion 10 from the inner wall increases toward the downstream side is exemplified, but is not limited thereto. The protruding portion 11 may have a stepped or curved protruding edge in which the protruding height of the conical portion 10 from the inner wall increases toward the downstream side. Further, for example, the protrusion 11 may have a constant height from the inner wall of the conical portion 10.

さらに、上記実施例では、主通路5の中心軸に沿う縦断面において円錐部10の内壁の全長にわたって延びる突状部11を例示したが、これに限定されず、例えば、主通路5の中心軸に沿う縦断面において円錐部10の内壁の全長の一部に沿って延びる突状部11としてもよい。   Further, in the above-described embodiment, the protruding portion 11 extending over the entire length of the inner wall of the conical portion 10 in the longitudinal section along the central axis of the main passage 5 is illustrated, but is not limited thereto. May be a protruding portion 11 extending along a part of the entire length of the inner wall of the conical portion 10 in a vertical cross section along the line.

本発明の気液混合装置は、上記記載の実施例の構成に限定されるものではなく、記載した請求項の発明の本質を逸脱しない範囲において、適時その構成を変更してもよい。   The gas-liquid mixing device of the present invention is not limited to the configuration of the above-described embodiment, and the configuration may be changed as appropriate without departing from the essence of the claimed invention.

本発明は、例えば、養殖、浄化、洗浄等の様々な分野で利用される気液混合に関する技術として広く利用される。   INDUSTRIAL APPLICABILITY The present invention is widely used as a technique relating to gas-liquid mixing used in various fields such as aquaculture, purification, and washing.

1;第1部材、2;第2部材、3;第3部材、4;主通路入口、5;主通路、6;絞り部、6a;旋回流、7;気体入口、8;気体吸入室、9;気体混入路、9a;混入気体、10;円錐部、10a;主旋回流、11;突状部、11a;副旋回流、13;吐出室、13a;中心流、14;吐出口、16;本体、101;円錐角度,102;角度、A;気液混合装置。   1; first member, 2; second member, 3; third member, 4; main passage inlet, 5; main passage, 6; throttle section, 6a; swirling flow, 7; gas inlet, 8; 9; gas mixing path, 9a; mixed gas, 10; conical portion, 10a; main swirling flow, 11; projecting portion, 11a; sub-swirl flow, 13; discharge chamber, 13a; center flow, 14; Body; 101; cone angle; 102; angle;

Claims (5)

液体が通過する主通路に、絞り部と該絞り部の下流側に連なり下流側に向かって拡径する円錐部とを設けたベンチュリ構造の気液混合装置において、
断面円形の前記主通路に対して接線方向から気体を取り入れるための気体混入路と、
前記主通路をなす内壁の前記気体混入路よりも下流側に設けられて前記主通路の中心軸方向に延びる突状部と、を備えることを特徴とする気液混合装置。
In a gas-liquid mixing device having a venturi structure, a main passage through which a liquid passes is provided with a constricted portion and a conical portion connected to the downstream side of the constricted portion and increasing in diameter toward the downstream side.
A gas mixing path for taking in gas from the tangential direction to the main passage having a circular cross section,
A gas-liquid mixing device, comprising: a protruding portion provided on an inner wall of the main passage downstream of the gas mixing passage and extending in a central axis direction of the main passage.
前記突状部は、前記円錐部をなす内壁に設けられているとともに、該内壁からの突出高さが下流側に向かって高くなるように形成されている請求項1記載の気液混合装置。   The gas-liquid mixing device according to claim 1, wherein the protruding portion is provided on an inner wall forming the conical portion, and is formed such that a protruding height from the inner wall increases toward a downstream side. 前記突状部は、前記主通路をなす内壁の前記円錐部よりも下流側に設けられている請求項1又は2に記載の気液混合装置。   3. The gas-liquid mixing device according to claim 1, wherein the protruding portion is provided downstream of the conical portion of an inner wall forming the main passage. 4. 前記主通路は、第1部材と該第1部材に接合される第2部材とにわたって形成されており、
前記気体混入路は、前記第1部材の前記第2部材に対する接合面側に溝状に形成されており、
前記第1部材と前記第2部材の接合面において、前記第2部材の前記主通路の内径は、上流側である前記第1部材の前記主通路の内径よりも大きい請求項1乃至3のいずれか一項に記載の気液混合装置。
The main passage is formed over a first member and a second member joined to the first member,
The gas mixing path is formed in a groove shape on the joining surface side of the first member to the second member,
4. The joint surface between the first member and the second member, wherein the inner diameter of the main passage of the second member is larger than the inner diameter of the main passage of the first member on the upstream side. The gas-liquid mixing device according to claim 1.
前記主通路の中心軸の円周上に沿う長孔形状の吐出口を備える請求項1乃至4のいずれか一項に記載の気液混合装置。   5. The gas-liquid mixing device according to claim 1, further comprising a discharge port having a long hole shape along a circumference of a center axis of the main passage. 6.
JP2018140761A 2018-07-26 2018-07-26 Gas-liquid mixing device Active JP6714651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018140761A JP6714651B2 (en) 2018-07-26 2018-07-26 Gas-liquid mixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018140761A JP6714651B2 (en) 2018-07-26 2018-07-26 Gas-liquid mixing device

Publications (2)

Publication Number Publication Date
JP2020015018A true JP2020015018A (en) 2020-01-30
JP6714651B2 JP6714651B2 (en) 2020-06-24

Family

ID=69581078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018140761A Active JP6714651B2 (en) 2018-07-26 2018-07-26 Gas-liquid mixing device

Country Status (1)

Country Link
JP (1) JP6714651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813805A (en) * 2021-09-17 2021-12-21 无锡小天鹅电器有限公司 Bubble generating device, runner assembly and washing device
WO2023188486A1 (en) * 2022-03-28 2023-10-05 リンナイ株式会社 Microscopic bubble generation device, water heater, and dishwasher
WO2024058036A1 (en) * 2022-09-14 2024-03-21 国立大学法人 鹿児島大学 Nozzle for bubble formation, bubble formation device, bubble formation method, and method for producing nozzle for bubble formation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290803A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Gas-liquid dissolving tank structure of fine air bubble generator
JP2008142592A (en) * 2006-12-07 2008-06-26 Yokota Seisakusho:Kk Micro bubble generator
WO2011105596A1 (en) * 2010-02-23 2011-09-01 旭有機材工業株式会社 In-line fluid mixing device
JP2013000604A (en) * 2011-06-10 2013-01-07 Saian Corp Device for removal of nitrogen oxide, and sterilization apparatus using the same
WO2013058245A1 (en) * 2011-10-17 2013-04-25 旭有機材工業株式会社 Ozonated water manufacturing method and manufacturing apparatus
JP2014024012A (en) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp Ejector
JP2015120100A (en) * 2013-12-20 2015-07-02 三菱電機株式会社 Gas-liquid mixer, and bath hot water supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004290803A (en) * 2003-03-26 2004-10-21 Matsushita Electric Works Ltd Gas-liquid dissolving tank structure of fine air bubble generator
JP2008142592A (en) * 2006-12-07 2008-06-26 Yokota Seisakusho:Kk Micro bubble generator
WO2011105596A1 (en) * 2010-02-23 2011-09-01 旭有機材工業株式会社 In-line fluid mixing device
JP2013000604A (en) * 2011-06-10 2013-01-07 Saian Corp Device for removal of nitrogen oxide, and sterilization apparatus using the same
WO2013058245A1 (en) * 2011-10-17 2013-04-25 旭有機材工業株式会社 Ozonated water manufacturing method and manufacturing apparatus
JP2014024012A (en) * 2012-07-27 2014-02-06 Mitsubishi Electric Corp Ejector
JP2015120100A (en) * 2013-12-20 2015-07-02 三菱電機株式会社 Gas-liquid mixer, and bath hot water supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113813805A (en) * 2021-09-17 2021-12-21 无锡小天鹅电器有限公司 Bubble generating device, runner assembly and washing device
WO2023188486A1 (en) * 2022-03-28 2023-10-05 リンナイ株式会社 Microscopic bubble generation device, water heater, and dishwasher
WO2024058036A1 (en) * 2022-09-14 2024-03-21 国立大学法人 鹿児島大学 Nozzle for bubble formation, bubble formation device, bubble formation method, and method for producing nozzle for bubble formation

Also Published As

Publication number Publication date
JP6714651B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
JP6842249B2 (en) Fine bubble generation nozzle
JP2020015018A (en) Gas-liquid mixer
JP5573879B2 (en) Microbubble generator
JP4142728B1 (en) Bubble refiner
KR20170104351A (en) Apparatus for generating micro bubbles
JP2012139646A (en) Micro nano-bubble generating apparatus, and micro nano-bubble water generating apparatus
TW201827121A (en) Device and system for generating gas-liquid containing microbubbles
US20210213400A1 (en) Gas-liquid mixing device
KR101667492B1 (en) Apparatus for generating micro bubbles
JP2010234242A (en) Fine bubble generator
JP4426612B2 (en) Fine bubble generation nozzle
JP2007111616A (en) Fine air-bubble generating device
GB2524820A (en) Jet pump
CN211800083U (en) Gas-liquid mixing device
KR20170096674A (en) micro-bubble generator
JP6887757B2 (en) Nozzle and fine bubble generator
JP2019166493A (en) Fine bubble generation nozzle
JP2011251202A (en) Stirring mixer
US6830370B1 (en) Cavitation generating device and fluid mixing device using the device
KR102305212B1 (en) Bubble generator
WO2020188143A1 (en) A mixing and dissolving tube
JP2018089610A (en) Fine bubble generation nozzle
KR101524403B1 (en) Apparatus for generating micro bubbles
JP5870302B2 (en) shower head
JP2013081880A (en) Gas dissolving apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190829

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191209

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200605

R150 Certificate of patent or registration of utility model

Ref document number: 6714651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250