JP7232713B2 - Fine bubble generation nozzle - Google Patents

Fine bubble generation nozzle Download PDF

Info

Publication number
JP7232713B2
JP7232713B2 JP2019101637A JP2019101637A JP7232713B2 JP 7232713 B2 JP7232713 B2 JP 7232713B2 JP 2019101637 A JP2019101637 A JP 2019101637A JP 2019101637 A JP2019101637 A JP 2019101637A JP 7232713 B2 JP7232713 B2 JP 7232713B2
Authority
JP
Japan
Prior art keywords
pressurized water
gas
dissolved pressurized
side opening
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019101637A
Other languages
Japanese (ja)
Other versions
JP2020195930A (en
Inventor
邦夫 片岡
和輝 松枝
拓也 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2019101637A priority Critical patent/JP7232713B2/en
Publication of JP2020195930A publication Critical patent/JP2020195930A/en
Application granted granted Critical
Publication of JP7232713B2 publication Critical patent/JP7232713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本明細書で開示する技術は、微細気泡発生ノズルに関する。 The technology disclosed in this specification relates to a microbubble generating nozzle.

特許文献1には、微細気泡発生ノズルが開示されている。この微細気泡発生ノズルは、微細な噴出孔を有する筒状部材であるノズル本体と、ノズル本体の先端に取り付けられるノズルカバーとを備える。ノズルカバーは、噴出孔に対向する壁と、噴出孔よりも微細な流出孔とを有する。 Patent Literature 1 discloses a microbubble generating nozzle. This fine bubble generating nozzle includes a nozzle body, which is a cylindrical member having fine ejection holes, and a nozzle cover attached to the tip of the nozzle body. The nozzle cover has a wall facing the ejection hole and an outflow hole that is finer than the ejection hole.

特許文献1の微細気泡発生ノズルでは、気体(例えば空気、炭酸ガス、水素等)が水に溶解している気体溶解加圧水がノズル本体に供給されると、気体溶解加圧水は、ノズル本体を通って噴出孔から壁に向けて噴出される。噴出孔から噴出された気体溶解加圧水は、壁に衝突してノズルカバー内で迂回した後、流出孔から流出箇所(具体的には浴槽)に流出される。気体溶解加圧水は、微細な噴出孔、及び、さらに微細な流出孔を通過することにより、大気圧まで徐々に減圧される。気体溶解加圧水が減圧される過程において、気体溶解加圧水に溶解されていた気体が析出し、微細気泡が発生する。即ち、特許文献1の微細気泡発生ノズルでは、気体溶解加圧水の流通過程で気体溶解加圧水を減圧することにより、流出箇所(具体的には浴槽)に流出される気体溶解加圧水に微細気泡を含ませることができる。 In the fine bubble generating nozzle of Patent Document 1, when gas-dissolved pressurized water in which gas (for example, air, carbon dioxide, hydrogen, etc.) is dissolved in water is supplied to the nozzle body, the gas-dissolved pressurized water passes through the nozzle body. It is ejected from the ejection port toward the wall. The gas-dissolved pressurized water ejected from the ejection hole collides with the wall, detours within the nozzle cover, and then flows out from the outflow hole to an outflow location (specifically, a bathtub). The gas-dissolved pressurized water is gradually decompressed to atmospheric pressure by passing through fine jet holes and finer outflow holes. In the process of depressurizing the gas-dissolved pressurized water, the gas dissolved in the gas-dissolved pressurized water is precipitated to generate fine bubbles. That is, in the microbubble generating nozzle of Patent Document 1, the pressure of the gas-dissolved pressurized water is reduced in the process of circulation of the gas-dissolved pressurized water, so that the gas-dissolved pressurized water flowing out to the outflow location (specifically, the bathtub) contains fine bubbles. be able to.

特開2007-167557号公報JP 2007-167557 A

しかしながら、特許文献1の微細気泡発生ノズルでは、流出箇所に流出される気体溶解加圧水に含まれる微細気泡の量が不十分であるという状況が発生する。 However, in the microbubble generating nozzle of Patent Document 1, a situation occurs in which the amount of microbubbles contained in the gas-dissolved pressurized water flowing out to the outflow location is insufficient.

本明細書では、流出箇所に流出される気体溶解加圧水に微細気泡を大量に含ませることができる技術を提供する。 The present specification provides a technique that allows a large amount of microbubbles to be included in the gas-dissolved pressurized water that flows out to the outflow location.

本明細書によって開示される微細気泡発生ノズルは、気体が水に溶解している気体溶解加圧水の圧力を減圧する減圧流通部であって、減圧管と、前記減圧管の上流側端部に設けられ、前記気体溶解加圧水を前記減圧管内に導入する入口側開口部と、前記減圧管の下流側端部に設けられ、前記減圧管を通過した前記気体溶解加圧水を排出する出口側開口部と、を備える前記減圧流通部と、前記減圧流通部の下流側に設けられる第1衝突室であって、前記出口側開口部の開口面積よりも大きい流路面積を備え、前記出口側開口部から排出された前記気体溶解加圧水を通過させる第1流路空間と、前記出口側開口部に対向する範囲に設けられ、前記出口側開口部から排出される前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる第1衝突壁と、前記第1衝突壁に設けられ、前記第1衝突壁から前記出口側開口部に向かって突出する突出部と、を有する、前記第1衝突室と、前記第1衝突室を通過した後の前記気体溶解加圧水を流出箇所に流出させる流出部と、を備え、前記突出部の先端部は、前記出口側開口部を通過して前記減圧管内に配置されるThe fine bubble generating nozzle disclosed in the present specification is a reduced pressure flow part for reducing the pressure of gas-dissolved pressurized water in which gas is dissolved in water, and is provided at a pressure reducing pipe and an upstream end of the pressure reducing pipe. an inlet-side opening for introducing the gas-dissolved pressurized water into the pressure-reducing pipe; an outlet-side opening provided at the downstream end of the pressure-reducing pipe for discharging the gas-dissolved pressurized water that has passed through the pressure-reducing pipe; and a first collision chamber provided on the downstream side of the reduced pressure flow section, the first collision chamber having a flow passage area larger than the opening area of the outlet side opening, and discharging from the outlet side opening The gas-dissolving pressurized water collides with the gas-dissolving pressurized water provided in a range facing the outlet-side opening and discharged from the outlet-side opening. The first collision chamber having a first collision wall for changing the direction of flow of pressurized water, and a projecting portion provided on the first collision wall and projecting from the first collision wall toward the outlet side opening. and an outflow portion that causes the gas-dissolved pressurized water that has passed through the first collision chamber to flow out to an outflow location , and the tip portion of the projecting portion passes through the outlet side opening into the pressure reducing pipe. placed in

この構成によると、気体溶解加圧水は、外部から減圧管内に導入される際に入口側開口部を通過することによって流速が上昇し、その結果減圧される(ベンチュリー効果)。気体溶解加圧水が減圧されることにより、気体溶解加圧水に溶解していた気体が析出し、気泡が発生する。そして、減圧管の出口側開口部から排出された気体溶解加圧水は、第1衝突室に導入される。上記の通り、第1流路空間の流路面積は、出口側開口部の開口面積よりも大きい。そのため、出口側開口部から排出された気体溶解加圧水は、第1衝突室に導入されることによって、その流速が低下する。流速が低下することにより、気体溶解加圧水は増圧される。また、上記の構成では、突出部は、第1衝突壁から出口側開口部に向かって突出している。そのため、減圧管を流れる気体溶解加圧水は、突出部に衝突することによってさらに流速が低下し、さらに増圧される。さらに、突出部に衝突した後の気体溶解加圧水は、第1衝突壁にも衝突することによって、流れる向きが変更されるとともに、さらに流速が低下する。その結果、気体溶解加圧水はさらに増圧される。減圧によって気泡が析出させられた後の気体溶解加圧水が増圧されると、気体溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。上記の構成によると、減圧管の出口側開口部から排出された気体溶解加圧水の流速は、第1衝突室に導入されること、突出部に衝突すること、第1衝突壁に衝突すること、のそれぞれの事象が発生する毎に低下し、気体溶解加圧水はその度毎に増圧される。そして、増圧される毎に、気体溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。すなわち、上記の構成によると、入口側開口部を通過することによって減圧された気体溶解加圧水は、流出部から流出箇所に流出されるまでの間に、少なくとも3段階で増圧され得る。そのため、上記の構成によると、気体溶解加圧水に含まれる気泡が分裂されて微細気泡が形成される機会が十分に確保され得る。そのため、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡を大量に含ませることができる。
また、この構成によると、減圧管を流れる気体溶解加圧水が、突出部に衝突した後、さらに、減圧管のうちの下流側端部近傍の内面にさらに衝突した後で、出口側開口部から第1衝突室内に排出され得る。即ち、この構成によると、気体溶解加圧水の衝突回数が多くなる。その結果、気体溶解加圧水の流速が十分に低下し、気体溶解加圧水を十分に増圧させ得る。即ち、気体溶解加圧水に含まれる気泡が分裂されて微細気泡が形成される機会が十分に確保され得る。そのため、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡をより大量に含ませることができる。
According to this configuration, when the gas-dissolved pressurized water is introduced into the decompression tube from the outside, the flow rate increases by passing through the inlet side opening, resulting in decompression (Venturi effect). By reducing the pressure of the gas-dissolved pressurized water, the gas dissolved in the gas-dissolved pressurized water is precipitated to generate bubbles. Then, the gas-dissolved pressurized water discharged from the outlet-side opening of the decompression tube is introduced into the first collision chamber. As described above, the channel area of the first channel space is larger than the opening area of the outlet side opening. Therefore, the flow velocity of the gas-dissolved pressurized water discharged from the outlet side opening is reduced by being introduced into the first collision chamber. The pressure of the gas-dissolved pressurized water is increased by decreasing the flow velocity. Further, in the above configuration, the protruding portion protrudes from the first collision wall toward the exit side opening. Therefore, the gas-dissolved pressurized water flowing through the decompression tube collides with the projecting portion, thereby further reducing the flow velocity and further increasing the pressure. Furthermore, the gas-dissolved pressurized water that has collided with the projecting portion also collides with the first collision wall, thereby changing the flow direction and further reducing the flow velocity. As a result, the gas-dissolved pressurized water is further pressurized. When the pressure of the gas-dissolved pressurized water after bubbles are precipitated by depressurization is increased, some of the bubbles contained in the gas-dissolved pressurized water split to become fine bubbles. According to the above configuration, the flow velocity of the gas-dissolved pressurized water discharged from the outlet-side opening of the decompression tube is introduced into the first collision chamber, collides with the protrusion, collides with the first collision wall, , and the pressure of the gas-dissolved pressurized water is increased each time. Then, every time the pressure is increased, part of the bubbles contained in the gas-dissolved pressurized water splits into fine bubbles. That is, according to the above configuration, the pressure of the gas-dissolved pressurized water decompressed by passing through the inlet side opening can be increased in at least three steps until it flows out from the outflow part to the outflow location. Therefore, according to the above configuration, it is possible to sufficiently ensure the chances that the bubbles contained in the gas-dissolved pressurized water are split to form fine bubbles. Therefore, according to the above configuration, a large amount of microbubbles can be included in the gas-dissolved pressurized water that flows out to the outflow location.
In addition, according to this configuration, after the gas-dissolved pressurized water flowing through the decompression tube collides with the protrusion and further collides with the inner surface of the decompression tube in the vicinity of the downstream end, the gas-dissolved pressurized water flows from the outlet side opening to the first 1 can be discharged into a collision chamber. That is, according to this configuration, the number of collisions of the gas-dissolved pressurized water increases. As a result, the flow velocity of the gas-dissolved pressurized water is sufficiently reduced, and the pressure of the gas-dissolved pressurized water can be sufficiently increased. That is, it is possible to secure a sufficient chance of forming microbubbles by breaking the bubbles contained in the gas-dissolved pressurized water. Therefore, according to the above configuration, the gas-dissolved pressurized water flowing out to the outflow portion can contain a larger amount of microbubbles.

ここで言う「気体」は、空気、炭酸ガス、水素等、水に溶解可能な任意の気体を含む。また、「第1流路空間の流路面積」とは、出口側開口部から排出された気体溶解加圧水が第1衝突壁に衝突するまでの間の経路を含む空間における気体溶解加圧水の流れ方向と直交する平面の面積と、第1衝突壁に衝突した後の気体溶解加圧水が流出箇所に供給されるまでの間の経路を含む空間における気体溶解加圧水の流れ方向と直交する平面の面積と、のうちの少なくとも一方を含む。 The term "gas" as used herein includes any gas that can be dissolved in water, such as air, carbon dioxide, and hydrogen. In addition, the "flow path area of the first flow path space" means the flow direction of the gas-dissolved pressurized water in the space including the path until the gas-dissolved pressurized water discharged from the outlet side opening collides with the first collision wall. and an area of a plane perpendicular to the flow direction of the gas-dissolved pressurized water in the space including the path until the gas-dissolved pressurized water after colliding with the first collision wall is supplied to the outflow point; including at least one of

本明細書によって開示される別の微細気泡発生ノズルは、気体が水に溶解している気体溶解加圧水の圧力を減圧する減圧流通部であって、減圧管と、前記減圧管の上流側端部に設けられ、前記気体溶解加圧水を前記減圧管内に導入する入口側開口部と、前記減圧管の下流側端部に設けられ、前記減圧管を通過した前記気体溶解加圧水を排出する出口側開口部と、を備える前記減圧流通部と、前記減圧流通部の下流側に設けられる第1衝突室であって、前記出口側開口部の開口面積よりも大きい流路面積を備え、前記出口側開口部から排出された前記気体溶解加圧水を通過させる第1流路空間と、前記出口側開口部に対向する範囲に設けられ、前記出口側開口部から排出される前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる第1衝突壁と、前記第1衝突壁に設けられ、前記第1衝突壁から前記出口側開口部に向かって突出する突出部と、を有する、前記第1衝突室と、前記第1衝突室を通過した後の前記気体溶解加圧水を流出箇所に流出させる流出部と、前記第1衝突室よりも下流側かつ前記流出部よりも上流側に設けられる第2衝突室と、を備え、前記第2衝突室は、前記第1流路空間の前記流路面積よりも大きい流路面積を備え、前記第1衝突室を通過した後の前記気体溶解加圧水を通過させる第2流路空間と、前記第1衝突室を通過した後の前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる第2衝突壁と、を有する。Another microbubble generating nozzle disclosed in this specification is a pressure reduction flow part for reducing the pressure of gas-dissolved pressurized water in which gas is dissolved in water, comprising a pressure reduction tube and an upstream end of the pressure reduction tube An inlet-side opening provided in the decompression pipe for introducing the gas-dissolved pressurized water into the decompression pipe, and an outlet-side opening provided at the downstream end of the decompression pipe for discharging the gas-dissolved pressurized water that has passed through the decompression pipe and a first collision chamber provided on the downstream side of the reduced pressure circulation part, the first collision chamber having a flow area larger than the opening area of the outlet side opening, and the outlet side opening The gas-dissolved pressurized water discharged from the exit-side opening collides with a first flow path space through which the gas-dissolved pressurized water discharged from the The first collision wall that changes the flow direction of the gas-dissolved pressurized water, and a projecting portion that is provided on the first collision wall and projects from the first collision wall toward the outlet side opening. a collision chamber, an outflow portion for flowing out the gas-dissolved pressurized water after passing through the first collision chamber to an outflow location, and a second collision chamber provided downstream of the first collision chamber and upstream of the outflow portion. and a collision chamber, wherein the second collision chamber has a passage area larger than the passage area of the first passage space, and passes the gas-dissolved pressurized water after passing through the first collision chamber. and a second collision wall for changing the flow direction of the gas-dissolved pressurized water by colliding with the gas-dissolved pressurized water after passing through the first collision chamber.

この構成によると、気体溶解加圧水は、外部から減圧管内に導入される際に入口側開口部を通過することによって流速が上昇し、その結果減圧される(ベンチュリー効果)。気体溶解加圧水が減圧されることにより、気体溶解加圧水に溶解していた気体が析出し、気泡が発生する。そして、減圧管の出口側開口部から排出された気体溶解加圧水は、第1衝突室に導入される。上記の通り、第1流路空間の流路面積は、出口側開口部の開口面積よりも大きい。そのため、出口側開口部から排出された気体溶解加圧水は、第1衝突室に導入されることによって、その流速が低下する。流速が低下することにより、気体溶解加圧水は増圧される。また、上記の構成では、突出部は、第1衝突壁から出口側開口部に向かって突出している。そのため、減圧管を流れる気体溶解加圧水は、突出部に衝突することによってさらに流速が低下し、さらに増圧される。さらに、突出部に衝突した後の気体溶解加圧水は、第1衝突壁にも衝突することによって、流れる向きが変更されるとともに、さらに流速が低下する。その結果、気体溶解加圧水はさらに増圧される。減圧によって気泡が析出させられた後の気体溶解加圧水が増圧されると、気体溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。上記の構成によると、減圧管の出口側開口部から排出された気体溶解加圧水の流速は、第1衝突室に導入されること、突出部に衝突すること、第1衝突壁に衝突すること、のそれぞれの事象が発生する毎に低下し、気体溶解加圧水はその度毎に増圧される。そして、増圧される毎に、気体溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。すなわち、上記の構成によると、入口側開口部を通過することによって減圧された気体溶解加圧水は、流出部から流出箇所に流出されるまでの間に、少なくとも3段階で増圧され得る。そのため、上記の構成によると、気体溶解加圧水に含まれる気泡が分裂されて微細気泡が形成される機会が十分に確保され得る。そのため、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡を大量に含ませることができる。According to this configuration, when the gas-dissolved pressurized water is introduced into the decompression tube from the outside, the flow rate increases by passing through the inlet side opening, resulting in decompression (Venturi effect). By reducing the pressure of the gas-dissolved pressurized water, the gas dissolved in the gas-dissolved pressurized water is precipitated to generate bubbles. Then, the gas-dissolved pressurized water discharged from the outlet-side opening of the decompression tube is introduced into the first collision chamber. As described above, the channel area of the first channel space is larger than the opening area of the outlet side opening. Therefore, the flow velocity of the gas-dissolved pressurized water discharged from the outlet side opening is reduced by being introduced into the first collision chamber. The pressure of the gas-dissolved pressurized water is increased by decreasing the flow velocity. Further, in the above configuration, the protruding portion protrudes from the first collision wall toward the exit side opening. Therefore, the gas-dissolved pressurized water flowing through the decompression tube collides with the projecting portion, thereby further reducing the flow velocity and further increasing the pressure. Furthermore, the gas-dissolved pressurized water that has collided with the projecting portion also collides with the first collision wall, thereby changing the flow direction and further reducing the flow velocity. As a result, the gas-dissolved pressurized water is further pressurized. When the pressure of the gas-dissolved pressurized water after bubbles are precipitated by depressurization is increased, some of the bubbles contained in the gas-dissolved pressurized water split to become fine bubbles. According to the above configuration, the flow velocity of the gas-dissolved pressurized water discharged from the outlet-side opening of the decompression tube is introduced into the first collision chamber, collides with the protrusion, collides with the first collision wall, , and the pressure of the gas-dissolved pressurized water is increased each time. Then, every time the pressure is increased, part of the bubbles contained in the gas-dissolved pressurized water splits into fine bubbles. That is, according to the above configuration, the pressure of the gas-dissolved pressurized water decompressed by passing through the inlet side opening can be increased in at least three steps until it flows out from the outflow part to the outflow location. Therefore, according to the above configuration, it is possible to sufficiently ensure the chances that the bubbles contained in the gas-dissolved pressurized water are split to form fine bubbles. Therefore, according to the above configuration, a large amount of microbubbles can be included in the gas-dissolved pressurized water that flows out to the outflow location.
また、第2流路空間の流路面積は、第1流路空間の流路面積よりも大きい。そのため、上記の構成によると、第1衝突室を通過した後の気体溶解加圧水は、第2衝突室に導入されることによってその流速が低下する。その結果、第2衝突室に導入された気体溶解加圧水は増圧される。また、第2衝突室に導入された気体溶解加圧水は、第2衝突壁にさらに衝突することによって、流れる向きが変更されるとともに、さらに流速が低下する。その結果、気体溶解加圧水はさらに増圧される。即ち、気体溶解加圧水に含まれる気泡が分裂されて微細気泡が形成される機会を増やすことができる。そのため、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡をより大量に含ませることができる。In addition, the channel area of the second channel space is larger than the channel area of the first channel space. Therefore, according to the above configuration, the flow velocity of the gas-dissolved pressurized water after passing through the first collision chamber is reduced by being introduced into the second collision chamber. As a result, the pressure of the gas-dissolved pressurized water introduced into the second collision chamber is increased. Further, the gas-dissolved pressurized water introduced into the second collision chamber further collides with the second collision wall, thereby changing the flow direction and further reducing the flow velocity. As a result, the gas-dissolved pressurized water is further pressurized. That is, it is possible to increase the chances of forming fine bubbles by breaking the bubbles contained in the gas-dissolved pressurized water. Therefore, according to the above configuration, the gas-dissolved pressurized water flowing out to the outflow portion can contain a larger amount of microbubbles.

ここで言う「第2流路空間の流路面積」とは、第1衝突室から導入された気体溶解加圧水が第2衝突壁に衝突するまでの間の経路を含む空間における気体溶解加圧水の流れ方向と直交する平面の面積と、第2衝突壁に衝突した後の気体溶解加圧水が流出箇所に供給されるまでの間の経路を含む空間における気体溶解加圧水の流れ方向と直交する平面の面積と、のうちの少なくとも一方を含む。Here, the "flow area of the second flow path space" means the flow of the gas-dissolved pressurized water in the space including the path until the gas-dissolved pressurized water introduced from the first collision chamber collides with the second collision wall. and an area of a plane perpendicular to the flow direction of the gas-dissolved pressurized water in the space including the path until the gas-dissolved pressurized water is supplied to the outflow point after colliding with the second collision wall. , including at least one of

前記突出部の先端部は、前記出口側開口部を通過して前記減圧管内に配置されていてもよい。A tip portion of the protrusion may pass through the outlet-side opening and be disposed within the decompression tube.

この構成によると、減圧管を流れる気体溶解加圧水が、突出部に衝突した後、さらに、減圧管のうちの下流側端部近傍の内面にさらに衝突した後で、出口側開口部から第1衝突室内に排出され得る。即ち、この構成によると、気体溶解加圧水の衝突回数が多くなる。その結果、気体溶解加圧水の流速が十分に低下し、気体溶解加圧水を十分に増圧させ得る。即ち、気体溶解加圧水に含まれる気泡が分裂されて微細気泡が形成される機会が十分に確保され得る。そのため、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡をより大量に含ませることができる。According to this configuration, after the gas-dissolved pressurized water flowing through the decompression tube collides with the protrusion and further collides with the inner surface of the decompression tube in the vicinity of the downstream end, the first collision occurs from the outlet-side opening. It can be discharged indoors. That is, according to this configuration, the number of collisions of the gas-dissolved pressurized water increases. As a result, the flow velocity of the gas-dissolved pressurized water is sufficiently reduced, and the pressure of the gas-dissolved pressurized water can be sufficiently increased. That is, it is possible to secure a sufficient chance of forming microbubbles by breaking the bubbles contained in the gas-dissolved pressurized water. Therefore, according to the above configuration, the gas-dissolved pressurized water flowing out to the outflow portion can contain a larger amount of microbubbles.

前記出口側開口部の前記開口面積は、前記入口側開口部の開口面積以上であってもよい。The opening area of the outlet side opening may be greater than or equal to the opening area of the inlet side opening.

この構成によると、減圧管を、入口側開口部から出口側開口部に向けて流路面積が徐々に増加する態様(又は入口側開口部から出口側開口部に向けて流路面積が変化しない態様)で形成することができる。即ち、入口側開口部を通過したことで減圧された減圧管内の気体溶解加圧水が入口側開口部から出口側開口部に向かって減圧管内を流れる間に、気体溶解加圧水の流速を低下させ、気体溶解加圧水を増圧させることができる。即ち、気体溶解加圧水に含まれる気泡が分裂されて微細気泡が形成される機会を増やすことができる。そのため、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡をより大量に含ませることができる。According to this configuration, the flow area of the decompression tube gradually increases from the inlet side opening toward the outlet side opening (or the flow area does not change from the inlet side opening toward the outlet side opening). mode). That is, while the gas-dissolved pressurized water in the decompression tube, which has been decompressed by passing through the inlet-side opening, flows through the decompression tube from the inlet-side opening toward the outlet-side opening, the flow velocity of the gas-dissolved pressurized water is reduced, and the gas is The dissolution pressurized water can be pressurized. That is, it is possible to increase the chances of forming fine bubbles by breaking the bubbles contained in the gas-dissolved pressurized water. Therefore, according to the above configuration, the gas-dissolved pressurized water flowing out to the outflow portion can contain a larger amount of microbubbles.

前記突出部は、前記気体溶解加圧水の流れ方向に沿って見た場合に前記流れ方向に対して傾斜する傾斜部を有していてもよい。The projecting portion may have an inclined portion that is inclined with respect to the flow direction when viewed along the flow direction of the gas-dissolved pressurized water.

この構成によると、突出部に衝突する気体溶解加圧水を、傾斜部に沿って流すことができる。そのため、突出部に衝突した気体溶解加圧水によって乱流が形成されることが抑制される。乱流の形成が抑制されることで、気体溶解加圧水に含まれる微細気泡の大きさのバラツキを抑えることができる。According to this configuration, the gas-dissolved pressurized water that collides with the projecting portion can flow along the inclined portion. Therefore, formation of turbulent flow by the gas-dissolved pressurized water colliding with the projecting portion is suppressed. By suppressing the formation of turbulence, it is possible to suppress variations in the size of fine bubbles contained in the gas-dissolved pressurized water.

第1実施例の微細気泡発生ノズル10の斜視図。1 is a perspective view of a microbubble generating nozzle 10 of a first embodiment; FIG. 図1のII-II線に沿った微細気泡発生ノズル10の断面図。FIG. 2 is a cross-sectional view of the microbubble generating nozzle 10 taken along line II-II in FIG. 1; 第1実施例のノズル本体20の斜視図。The perspective view of the nozzle main body 20 of 1st Example. 第1実施例のホルダ部40の斜視図。The perspective view of the holder part 40 of 1st Example. 第2実施例の微細気泡発生ノズル100の断面図。Sectional drawing of the fine bubble generation nozzle 100 of 2nd Example. 第2実施例のホルダ部140の斜視図。The perspective view of the holder part 140 of 2nd Example. 第3実施例の微細気泡発生ノズル200の断面図。Sectional drawing of the fine bubble generation nozzle 200 of 3rd Example. 第3実施例のホルダ部240の斜視図。The perspective view of the holder part 240 of 3rd Example. 第4実施例のホルダ部340の斜視図。The perspective view of the holder part 340 of 4th Example. 第5実施例のホルダ部440の斜視図。The perspective view of the holder part 440 of 5th Example.

(第1実施例)
(微細気泡発生ノズル10の構成)
図1~図4を参照して、第1実施例の微細気泡発生ノズル10について説明する。微細気泡発生ノズル10は、浴槽(図示省略)等の流出箇所に微細気泡を含む水を供給するためのノズルである。図1に示すように、微細気泡発生ノズル10は、ノズル本体20と、ホルダ部40と、を備える。図1、図2において、ノズル本体20は、ホルダ部40に支持されている。
(First embodiment)
(Structure of fine bubble generating nozzle 10)
A microbubble generating nozzle 10 of a first embodiment will be described with reference to FIGS. 1 to 4. FIG. The microbubble generating nozzle 10 is a nozzle for supplying water containing microbubbles to an outflow location such as a bathtub (not shown). As shown in FIG. 1 , the microbubble generating nozzle 10 includes a nozzle body 20 and a holder portion 40 . 1 and 2, the nozzle body 20 is supported by the holder portion 40. As shown in FIG.

(ノズル本体20の構成)
図1~図3を参照して、ノズル本体20の構成について説明する。なお、以下の説明では、図2中のX軸方向を左右方向、Y軸方向を上下方向、Z軸方向を前後方向と呼ぶ場合がある。図3に示すように、ノズル本体20は、減圧管22と鍔部28とを備える。
(Structure of Nozzle Body 20)
The configuration of the nozzle body 20 will be described with reference to FIGS. 1 to 3. FIG. In the following description, the X-axis direction in FIG. 2 may be referred to as the left-right direction, the Y-axis direction as the up-down direction, and the Z-axis direction as the front-rear direction. As shown in FIG. 3 , the nozzle body 20 includes a decompression tube 22 and a collar portion 28 .

図1~図3に示すように、減圧管22は、空気が水に溶解している空気溶解加圧水の圧力を減圧することができる管状部材である。図2に示すように、減圧管22の内部には、減圧管22内を2本の管部に区画する区画壁25が設けられている。減圧管22の後方側の上流側端部22a(図中Z軸の正方向側の端部)には、2個の流入口23が開口されている。流入口23には、空気が水に溶解している空気溶解加圧水を供給するための給水手段(図示しない)が接続される。空気溶解加圧水は、流出箇所に供給される微細気泡を含む水の原料となる液体である。 As shown in FIGS. 1 to 3, the decompression pipe 22 is a tubular member capable of decompressing the air-dissolved pressurized water in which air is dissolved in water. As shown in FIG. 2, inside the decompression tube 22, a partition wall 25 is provided to partition the interior of the decompression tube 22 into two tube portions. Two inlets 23 are opened at the upstream end portion 22a (the end portion on the positive side of the Z axis in the figure) on the rear side of the decompression tube 22 . A water supply means (not shown) for supplying air-dissolved pressurized water in which air is dissolved in water is connected to the inlet 23 . The air-dissolved pressurized water is a liquid that serves as a raw material for water containing microbubbles that is supplied to the outflow point.

減圧管22のうち、上流側端部22aの近傍であって、2個の流入口23よりもやや前方寄り(Z軸の負方向寄り)の位置には、2個の入口側開口部24が開口されている。入口側開口部24の開口面積は、流入口23の開口面積よりも小さい。言い換えると、減圧管22は、入口側開口部24において縮径されている。区画壁25は、減圧管22の後方側の上流側端部22a(図中Z軸の正方向側の端部)から、減圧管22の途中までの区間を2本の管部に区画している。そのため、減圧管22の前方側の下流側端部22b(図中Z軸の負方向側の端部)は、区画壁25によって2本の管部に区画されていない。下流側端部22bには、1個の出口側開口部26のみが開口されている。本実施例では、出口側開口部26の開口面積(即ちXY平面上の面積)は、2個の入口側開口部24の開口面積(即ちXY平面上の面積)の合計面積よりも大きい。言い換えると、減圧管22は、入口側開口部24から出口側開口部26に向かって拡径されている。 Two inlet-side openings 24 are located in the vicinity of the upstream end 22a of the decompression pipe 22 and slightly forward (closer to the negative direction of the Z axis) than the two inlets 23. is open. The opening area of the inlet side opening 24 is smaller than the opening area of the inflow port 23 . In other words, the decompression tube 22 has a reduced diameter at the inlet-side opening 24 . The partition wall 25 divides the section from the rear upstream end 22a of the decompression tube 22 (the end on the positive side of the Z-axis in the drawing) to the middle of the decompression tube 22 into two pipe sections. there is Therefore, the front downstream end portion 22b of the decompression tube 22 (the end portion on the negative direction side of the Z axis in the drawing) is not divided into two pipe portions by the dividing wall 25 . Only one outlet side opening 26 is opened in the downstream end 22b. In this embodiment, the opening area of the outlet side opening 26 (that is, the area on the XY plane) is larger than the total area of the opening areas of the two inlet side openings 24 (that is, the area on the XY plane). In other words, the decompression tube 22 expands in diameter from the inlet side opening 24 toward the outlet side opening 26 .

図1~図3に示すように、鍔部28は、減圧管22の前後方向中間部付近の外面に設けられている円板状部材である。図2に示すように、鍔部28の外径は、減圧管22の外径よりも大きい。 As shown in FIGS. 1 to 3, the collar portion 28 is a disc-shaped member provided on the outer surface of the decompression tube 22 near the middle portion in the front-rear direction. As shown in FIG. 2 , the outer diameter of the collar portion 28 is larger than the outer diameter of the pressure reducing tube 22 .

(ホルダ部40の構成)
続いて、図1、図2、図4を参照して、ホルダ部40の構成について説明する。図4に顕著に示されるように、ホルダ部40は、外側円筒部42と、内側円筒部44と、2個の連結部52と、を備える。外側円筒部42と2個の連結部52とは連続して一体に成形されている。内側円筒部44は、外側円筒部42の内側に収容されて形成されている。
(Configuration of holder portion 40)
Next, the configuration of the holder portion 40 will be described with reference to FIGS. 1, 2, and 4. FIG. As clearly shown in FIG. 4 , the holder portion 40 includes an outer cylindrical portion 42 , an inner cylindrical portion 44 and two connecting portions 52 . The outer cylindrical portion 42 and the two connecting portions 52 are continuously and integrally formed. The inner cylindrical portion 44 is formed inside the outer cylindrical portion 42 .

外側円筒部42は、円筒状の部材である。図2、図4に示すように、後方側の開口部には、上述のノズル本体20の鍔部28を収容するための段差43が形成されている。 The outer cylindrical portion 42 is a cylindrical member. As shown in FIGS. 2 and 4, a step 43 is formed in the opening on the rear side to accommodate the flange 28 of the nozzle body 20 described above.

2個の連結部52は、それぞれ、外側円筒部42の外周面から外側に突出して形成されている。連結部52には、ネジ穴Bが設けられている。連結部52のネジ穴Bは、ホルダ部40を浴槽接続具(図示省略)に取付けるためのネジ穴である。なお、浴槽接続具は、微細気泡発生ノズル10を浴槽に取付けるための機具である。ホルダ部40内に、ノズル本体20を挿入した後に、浴槽接続具の取付穴(図示省略)と連結部52のネジ穴Bを位置合わせし、ネジ部材(図示省略)をネジ穴Bに螺合させることで、微細気泡発生ノズル10と浴槽接続具が連結される。 The two connecting portions 52 are formed to protrude outward from the outer peripheral surface of the outer cylindrical portion 42 . A screw hole B is provided in the connecting portion 52 . A screw hole B of the connecting portion 52 is a screw hole for attaching the holder portion 40 to a bathtub connector (not shown). The bathtub connector is a device for attaching the microbubble generating nozzle 10 to the bathtub. After inserting the nozzle body 20 into the holder part 40, the mounting hole (not shown) of the bathtub connector and the screw hole B of the connecting part 52 are aligned, and the screw member (not shown) is screwed into the screw hole B. By doing so, the fine bubble generating nozzle 10 and the bathtub connector are connected.

内側円筒部44は、外側円筒部42の内側に収容されて形成されている筒状部材である。内側円筒部44は、4個の接続部48を介して外側円筒部42の内面と接続されている。内側円筒部44と外側円筒部42との間の隙間により、4個の流出口50が形成されている。 The inner cylindrical portion 44 is a cylindrical member that is accommodated inside the outer cylindrical portion 42 . The inner cylindrical portion 44 is connected to the inner surface of the outer cylindrical portion 42 via four connecting portions 48 . A gap between the inner cylindrical portion 44 and the outer cylindrical portion 42 forms four outlets 50 .

内側円筒部44の前方側端部には、円板部46が形成されている。円板部46は、内側円筒部44の前方側端部を閉塞している。円板部46のXY平面における中心部には、突出部49が形成されている。突出部49は、円板部46の後側の面から後方に向けて突出する略円柱状の突起部材である。図2に示すように、突出部49の先端付近には、後方から前方に向かう方向(即ち、空気溶解加圧水の流れ方向(図2中矢印参照))に沿って見た場合に、当該方向に対して傾斜する傾斜部49aが形成されている。言い換えると、突出部49の先端付近は、後方に向かって尖った形状に形成されている。 A disc portion 46 is formed at the front end portion of the inner cylindrical portion 44 . The disk portion 46 closes the front end of the inner cylindrical portion 44 . A projecting portion 49 is formed in the central portion of the disk portion 46 in the XY plane. The protruding portion 49 is a substantially columnar protruding member that protrudes rearward from the rear surface of the disk portion 46 . As shown in FIG. 2, when viewed along the direction from the rear to the front (that is, the flow direction of the air-dissolved pressurized water (see the arrow in FIG. 2)), there is a A sloped portion 49a is formed that slopes against it. In other words, the vicinity of the tip of the projecting portion 49 is formed in a shape that is pointed rearward.

(ノズル本体20がホルダ部40に支持される状態)
続いて、ノズル本体20がホルダ部40に支持される状態における各構成要素の位置関係について説明する。図1、図2に示すように、ノズル本体20がホルダ部40に支持されることにより、本実施例の微細気泡発生ノズル10が形成される。この状態では、ノズル本体20のうち、減圧管22の下流側端部22b及び鍔部28がホルダ部40内に差し込まれている。具体的には、減圧管22の下流側端部22bは、ホルダ部40の内側円筒部44(後述)内に差し込まれている。また、鍔部28は、外側円筒部42の開口部に形成されている段差43内に収容されている。この際、鍔部28の前面28aは、段差43と当接する。ノズル本体20がホルダ部40に支持されている状態では、減圧管22の上流側端部22aは、ホルダ部40の後方側に突出している。
(State in which the nozzle body 20 is supported by the holder portion 40)
Next, the positional relationship of each component when the nozzle body 20 is supported by the holder portion 40 will be described. As shown in FIGS. 1 and 2, the nozzle body 20 is supported by the holder portion 40 to form the microbubble generating nozzle 10 of this embodiment. In this state, the downstream end portion 22b of the decompression tube 22 and the flange portion 28 of the nozzle body 20 are inserted into the holder portion 40 . Specifically, the downstream end portion 22b of the decompression tube 22 is inserted into an inner cylindrical portion 44 (described later) of the holder portion 40 . Also, the collar portion 28 is accommodated within a step 43 formed in the opening of the outer cylindrical portion 42 . At this time, the front surface 28 a of the collar portion 28 abuts on the step 43 . When the nozzle body 20 is supported by the holder portion 40 , the upstream end portion 22 a of the decompression tube 22 protrudes rearward from the holder portion 40 .

図2に示すように、ノズル本体20がホルダ部40に支持される状態では、突出部49のうち、傾斜部49aを含む先端部分は、出口側開口部26を通過して減圧管22内に配置される。図2の例では、突出部49の先端部分は、区画壁25の前端部と対向している。減圧管22の下流側端部22bは、内側円筒部44の内側であって、突出部49の先端部分よりも前方(即ちZ軸の負方向寄り)に配置される。また、この状態では、減圧管22の下流側端部22bと円板部46とが対向するように配置される。 As shown in FIG. 2, when the nozzle body 20 is supported by the holder portion 40, the tip portion including the inclined portion 49a of the projecting portion 49 passes through the outlet side opening portion 26 and enters the pressure reducing tube 22. placed. In the example of FIG. 2 , the tip portion of the projecting portion 49 faces the front end portion of the partition wall 25 . The downstream end portion 22b of the decompression tube 22 is arranged inside the inner cylindrical portion 44 and forward of the tip portion of the projecting portion 49 (that is, closer to the negative direction of the Z axis). Also, in this state, the downstream end 22b of the decompression tube 22 and the disc portion 46 are arranged to face each other.

ノズル本体20がホルダ部40に支持されることにより、ノズル本体20とホルダ部40とによって、流路空間60、流路空間62、通路64、流路空間66、通路68とが形成される。流路空間60、流路空間62、通路64、流路空間66、通路68は、いずれも、空気溶解加圧水をこの順で流通させるための空間及び通路である。 By supporting the nozzle body 20 on the holder portion 40 , the nozzle body 20 and the holder portion 40 form a channel space 60 , a channel space 62 , a passage 64 , a channel space 66 , and a passage 68 . The channel space 60, the channel space 62, the passage 64, the channel space 66, and the passage 68 are all spaces and passages for circulating the air-dissolved pressurized water in this order.

流路空間60は、突出部49の外側と下流側端部22bとの間に形成される空間である。ここで、流路空間60の流路面積(即ちXY平面上の面積)は、2個の入口側開口部24の開口面積の合計面積よりも大きい。 The channel space 60 is a space formed between the outside of the projecting portion 49 and the downstream end portion 22b. Here, the channel area of the channel space 60 (that is, the area on the XY plane) is larger than the total area of the opening areas of the two inlet-side openings 24 .

流路空間62は、流路空間60の下流側に形成される。流路空間62は、減圧管22の下流側端部22bと円板部46との間に形成される。流路空間62の流路面積は、どの部分においても、上述の流路空間60の流路面積の合計面積よりも大きい。詳しく言うと、減圧管22の下流側端部22bの前方における、下流側端部22bの延長線と突出部49との間の空間のXY平面上の面積、および、下流側端部22bと円板部46との間の空間の面積(より詳しくは、円板部46のXY平面上の中心から鉛直に伸びる軸線を中心軸とし、かつ、XY平面上における上記中心軸と下流側端部22bの外側とを結ぶ線を半径とする仮想的な円柱のうち、下流側端部22bと円板部46との間の範囲の外側面部分の面積)のいずれもが、上述の流路空間60の流路面積の合計面積よりも大きい。 The channel space 62 is formed downstream of the channel space 60 . A channel space 62 is formed between the downstream end 22b of the decompression tube 22 and the disc portion 46 . The channel area of the channel space 62 is larger than the total area of the channel areas of the channel space 60 described above at any portion. Specifically, in front of the downstream end 22b of the pressure reducing tube 22, the area on the XY plane of the space between the extension line of the downstream end 22b and the projecting portion 49, and the downstream end 22b and the circle The area of the space between the plate portion 46 (more specifically, the axis extending vertically from the center of the XY plane of the disk portion 46 is the central axis, and the central axis on the XY plane and the downstream end 22b of the virtual cylinder whose radius is the line connecting the outside of the flow path space 60 larger than the total area of the flow passage area.

通路64は、流路空間62の下流側に形成される。通路64は、内側円筒部44の内面と、内側円筒部44内に配置された減圧管22の外面との間に形成される。ここで、通路64の流路面積(即ちXY平面上の面積)は、上述の流路空間62のどの部分の流路面積よりも大きい。 A passageway 64 is formed downstream of the channel space 62 . Passage 64 is formed between the inner surface of inner cylindrical portion 44 and the outer surface of vacuum tube 22 disposed within inner cylindrical portion 44 . Here, the channel area of the passage 64 (that is, the area on the XY plane) is larger than the channel area of any portion of the channel space 62 described above.

流路空間66は、通路64の下流側に形成される。流路空間66は、内側円筒部44の後端と鍔部28の前面28aとの間に形成される。流路空間66は、内側円筒部44の後端、外側円筒部42の内面、減圧管22の外面、及び、鍔部28の前面28aによって画定される空間である。流路空間66の流路面積は、どの部分においても、上述の通路64の流路面積よりも大きい。詳しく言うと、内側円筒部44の後端と減圧管22の外面の間の空間のXY平面上の面積、内側円筒部44の後端と鍔部28の前面28aとの間の空間の面積(より詳しくは、円板部46のXY平面上の中心から鉛直に伸びる軸線を中心軸とし、かつ、XY平面上における上記中心軸と内側円筒部44の外側とを結ぶ線を半径とする仮想的な円柱のうち、内側円筒部44の後端と前面28aとの間の範囲の外側面部分の面積)、および、内側円筒部44の後端と外側円筒部42の内面との間の空間のXY平面上の面積、のいずれもが、上述の通路64の流路面積よりも大きい。 A channel space 66 is formed downstream of the passage 64 . A flow passage space 66 is formed between the rear end of the inner cylindrical portion 44 and the front surface 28 a of the collar portion 28 . The flow passage space 66 is a space defined by the rear end of the inner cylindrical portion 44 , the inner surface of the outer cylindrical portion 42 , the outer surface of the decompression tube 22 , and the front surface 28 a of the collar portion 28 . The flow area of the flow space 66 is larger than the flow area of the passage 64 described above at any portion. Specifically, the area on the XY plane of the space between the rear end of the inner cylindrical portion 44 and the outer surface of the decompression tube 22, the area of the space between the rear end of the inner cylindrical portion 44 and the front surface 28a of the collar portion 28 ( More specifically, the center axis is an axis extending vertically from the center of the disk portion 46 on the XY plane, and the radius is a line connecting the center axis on the XY plane and the outside of the inner cylindrical portion 44 area of the outer surface portion of the range between the rear end of the inner cylindrical portion 44 and the front surface 28a), and the space between the rear end of the inner cylindrical portion 44 and the inner surface of the outer cylindrical portion 42 area on the XY plane is larger than the passage area of the passage 64 described above.

通路68は、流路空間66の下流側に形成される。通路68は、流路空間66と流出口50とを接続する通路である。通路68は、外側円筒部42の内面と内側円筒部44の外面との間の隙間によって形成される。ここで、通路68の流路面積(即ちXY平面上の面積)は、上述の流路空間66のどの部分の流路面積よりも大きい。 A passageway 68 is formed downstream of the channel space 66 . A passage 68 is a passage that connects the flow passage space 66 and the outlet 50 . Passage 68 is formed by a gap between the inner surface of outer cylindrical portion 42 and the outer surface of inner cylindrical portion 44 . Here, the channel area of the passage 68 (that is, the area on the XY plane) is larger than the channel area of any portion of the channel space 66 described above.

(空気溶解加圧水の流れ)
図2を参照して、微細気泡発生ノズル10内における空気溶解加圧水の流れ、及び、それに伴って微細気泡が形成される過程について説明する。図2において、実線矢印が空気溶解加圧水の流路を示している。
(Flow of air-dissolved pressurized water)
The flow of the air-dissolved pressurized water in the fine bubble generating nozzle 10 and the accompanying process of forming fine bubbles will be described with reference to FIG. In FIG. 2, the solid arrow indicates the flow path of the air-dissolved pressurized water.

まず、ノズル本体20の流入口23を介して、外部から空気溶解加圧水が減圧管22内に導入される。この時点における空気溶解加圧水の圧力は、大気圧よりも大きい。 First, air-dissolved pressurized water is introduced into the decompression tube 22 from the outside through the inlet 23 of the nozzle body 20 . The pressure of the air-dissolved pressurized water at this point is greater than the atmospheric pressure.

流入口23から導入された空気溶解加圧水は、流入口23よりも開口面積が小さい入口側開口部24を通過する。これにより、空気溶解加圧水の流速が上昇し、空気溶解加圧水が大気圧よりも低い圧力まで減圧される(即ちベンチュリー効果による減圧)。空気溶解加圧水が減圧されることにより、空気溶解加圧水に溶解していた空気が析出し、気泡が発生する。 The air-dissolved pressurized water introduced from the inlet 23 passes through an inlet-side opening 24 having an opening area smaller than that of the inlet 23 . As a result, the flow velocity of the air-dissolved pressurized water increases, and the pressure of the air-dissolved pressurized water is reduced to a pressure lower than the atmospheric pressure (that is, decompression due to the Venturi effect). By reducing the pressure of the air-dissolved pressurized water, the air dissolved in the air-dissolved pressurized water is precipitated to generate air bubbles.

上記の通り、本実施例では、減圧管22は、入口側開口部24から出口側開口部26に向けて流路面積が増加するように形成されている。そのため、入口側開口部24を通過したことで減圧された減圧管22内の空気溶解加圧水が入口側開口部24から出口側開口部26に向かって減圧管22内を流れる間に、空気溶解加圧水の流速が低下する。流速が低下する結果、空気溶解加圧水が増圧される。空気溶解加圧水が増圧されることにより、空気溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。 As described above, in this embodiment, the decompression tube 22 is formed so that the passage area increases from the inlet-side opening 24 toward the outlet-side opening 26 . Therefore, while the air-dissolved pressurized water in the decompression pipe 22 decompressed by passing through the entrance-side opening 24 flows through the decompression pipe 22 from the entrance-side opening 24 toward the exit-side opening 26, the air-dissolved pressurized water flow velocity decreases. As a result of the decrease in flow velocity, the pressure of the air-dissolved pressurized water is increased. By increasing the pressure of the air-dissolved pressurized water, some of the air bubbles contained in the air-dissolved pressurized water split into fine air bubbles.

上記の通り、本実施例では、突出部49の先端部が、出口側開口部26を通過して減圧管22内に配置されている。そのため、出口側開口部26に向かって減圧管22内を流れてきた空気溶解加圧水は、突出部49に衝突した後、さらに、減圧管22のうちの下流側端部22b近傍の内面にさらに衝突した後で、流路空間60を通って、出口側開口部26から流路空間62内へと排出される。減圧管22を流れてきた空気溶解加圧水が、突出部49、及び、下流側端部22b近傍の内面に続けて衝突する毎に、空気溶解加圧水の流速が低下する。そして、空気溶解加圧水の流速が低下する毎に、空気溶解加圧水は増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 As described above, in this embodiment, the tip of the projecting portion 49 passes through the outlet-side opening 26 and is arranged inside the decompression tube 22 . Therefore, the air-dissolved pressurized water flowing through the decompression tube 22 toward the outlet-side opening 26 collides with the projecting portion 49, and then further collides with the inner surface of the decompression tube 22 near the downstream end 22b. After that, it is discharged from the outlet side opening 26 into the channel space 62 through the channel space 60 . Each time the air-dissolved pressurized water flowing through the decompression pipe 22 continuously collides with the protrusion 49 and the inner surface near the downstream end 22b, the flow velocity of the air-dissolved pressurized water decreases. The pressure of the air-dissolved pressurized water is increased every time the flow velocity of the air-dissolved pressurized water decreases. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

なお、空気溶解加圧水が突出部49に衝突する際には、空気溶解加圧水は、流れ方向に対して傾斜する傾斜部49aに衝突する。即ち、突出部49に衝突する空気溶解加圧水は、傾斜部49aに沿って流される。そのため、突出部49に衝突した空気溶解加圧水によって乱流が形成されることが抑制される。乱流の形成が抑制されることで、空気溶解加圧水に含まれる微細気泡の大きさのバラツキが抑えられる。 When the air-dissolved pressurized water collides with the projecting portion 49, the air-dissolved pressurized water collides with the inclined portion 49a inclined with respect to the flow direction. That is, the air-dissolved pressurized water that collides with the projecting portion 49 flows along the inclined portion 49a. Therefore, formation of turbulence by the air-dissolved pressurized water colliding with the projecting portion 49 is suppressed. By suppressing the formation of turbulent flow, variation in the size of fine bubbles contained in the air-dissolved pressurized water can be suppressed.

上記の通り、流路空間62の流路面積は、流路空間60の流路面積より大きい。そのため、流路空間60を通って、出口側開口部26から流路空間62内へと排出された空気溶解加圧水の流速はさらに低下する。これにより、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 As described above, the channel area of channel space 62 is larger than the channel area of channel space 60 . Therefore, the flow velocity of the air-dissolved pressurized water discharged into the flow path space 62 from the outlet side opening 26 through the flow path space 60 further decreases. This further increases the pressure of the air-dissolved pressurized water. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

また、流路空間62内へと排出された空気溶解加圧水は、円板部46に衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Also, the air-dissolved pressurized water discharged into the channel space 62 collides with the disk portion 46 . As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow velocity of the air-dissolved pressurized water further decreases. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

円板部46に衝突した後の空気溶解加圧水は、通路64を通過して流路空間66内へと排出される。上記の通り、通路64の流路面積は、流路空間62のどの部分の流路面積よりも大きい。そして、流路空間66の流路面積は、通路64の流路面積よりも大きい。そのため、通路64を通過して流路空間66内へと排出された空気溶解加圧水の流速はさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 After colliding with the disk portion 46 , the air-dissolved pressurized water passes through the passage 64 and is discharged into the flow passage space 66 . As described above, the flow area of passage 64 is greater than the flow area of any portion of flow space 62 . The channel area of the channel space 66 is larger than the channel area of the passage 64 . Therefore, the flow velocity of the air-dissolved pressurized water discharged into the channel space 66 through the passage 64 further decreases. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

そして、流路空間66内へと排出された空気溶解加圧水は、鍔部28の前面28aに衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水もさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Then, the air-dissolved pressurized water discharged into the channel space 66 collides with the front surface 28 a of the flange 28 . As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow velocity of the air-dissolved pressurized water further decreases. The air-dissolved pressurized water is also further pressurized. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

鍔部28の前面28aに衝突した後の空気溶解加圧水は、通路68を通過し、流出口50から流出箇所(浴槽等)に向けて流出する。上記の通り、通路68の流路面積は、流路空間66のどの部分の流路面積よりも大きい。通路68を通過する空気溶解加圧水の流速はさらに低下する。そして、流出箇所に空気溶解加圧水が流出されることにより、空気溶解加圧水の流速がさらに低下し、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 After colliding with the front surface 28a of the flange 28, the air-dissolved pressurized water passes through the passage 68 and flows out from the outflow port 50 toward the outflow location (such as a bathtub). As described above, the flow area of passage 68 is greater than the flow area of any portion of flow space 66 . The flow rate of air-dissolved pressurized water through passageway 68 is further reduced. As the air-dissolved pressurized water flows out to the outflow location, the flow velocity of the air-dissolved pressurized water further decreases, and the pressure of the air-dissolved pressurized water is further increased. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

このような流路で微細気泡発生ノズル10内を空気溶解加圧水が流れることにより、流出箇所に流出される空気溶解加圧水には、微細気泡を大量に含ませることができる。 By flowing the air-dissolved pressurized water through the microbubble generating nozzle 10 in such a flow path, the air-dissolved pressurized water flowing out to the outflow portion can contain a large amount of microbubbles.

以上、本実施例の微細気泡発生ノズル10の構成及び作用について説明した。本実施例と請求項の記載の対応関係を説明しておく。空気溶解加圧水が「気体溶解加圧水」の一例である。減圧管22、流入口23、入口側開口部24、及び、出口側開口部26の組み合わせが「減圧流通部」の一例である。流路空間62、突出部49、及び、円板部46の組み合わせが「第1衝突室」の一例である。そして、流路空間62が「第1流路空間」の一例であり、円板部46が「第1衝突壁」の一例である。流出口50が「流出部」の一例である。流路空間66及び鍔部28の前面28aの組み合わせが「第2衝突室」の一例である。そして、流路空間66が「第2流路空間」の一例であり、鍔部28の前面28aが「第2衝突壁」の一例である。 The configuration and operation of the microbubble generating nozzle 10 of this embodiment have been described above. The correspondence relationship between this embodiment and the descriptions in the claims will be described. Air-dissolved pressurized water is an example of "gas-dissolved pressurized water." A combination of the pressure reducing tube 22, the inlet 23, the inlet side opening 24, and the outlet side opening 26 is an example of the "low pressure flow part". A combination of the flow path space 62, the projecting portion 49, and the disk portion 46 is an example of the "first collision chamber." The flow path space 62 is an example of the "first flow path space", and the disk portion 46 is an example of the "first collision wall". The outflow port 50 is an example of the "outflow part". The combination of the flow path space 66 and the front surface 28a of the flange 28 is an example of a "second collision chamber." The flow path space 66 is an example of the "second flow path space", and the front surface 28a of the flange 28 is an example of the "second collision wall".

(第2実施例)
図5、図6を参照して、第2実施例の微細気泡発生ノズル100について、第1実施例と異なる点を中心に説明する。本実施例は、第1実施例の変形例の一つである。図5、図6では、第1実施例と同じ構成を有する要素を、図1~図4で用いられる符号と同じ符号を用いて表している。図5、図6に示すように、本実施例では、ホルダ部140の円板部46に形成される突出部149の形状が第1実施例とは異なっている。本実施例では、突出部149は、円板部46の後側の面から後方に向けて突出する円柱状の突起部材である。突出部149の先端部は円板部46と平行な平らな面である。本実施例では、突出部149は、傾斜部を有していない。
(Second embodiment)
With reference to FIGS. 5 and 6, the microbubble generating nozzle 100 of the second embodiment will be described, focusing on the differences from the first embodiment. This embodiment is one of the modifications of the first embodiment. In FIGS. 5 and 6, the same reference numerals as those used in FIGS. 1 to 4 denote elements having the same configuration as in the first embodiment. As shown in FIGS. 5 and 6, in this embodiment, the shape of the projecting portion 149 formed on the disk portion 46 of the holder portion 140 is different from that in the first embodiment. In this embodiment, the protruding portion 149 is a columnar protruding member that protrudes rearward from the rear surface of the disc portion 46 . A tip portion of the projecting portion 149 is a flat surface parallel to the disk portion 46 . In this embodiment, the protruding portion 149 does not have an inclined portion.

本実施例の微細気泡発生ノズル100も、突出部149の形状以外の構成は第1実施例の微細気泡発生ノズル10と共通しているため、第1実施例の微細気泡発生ノズル10と基本的には同様の作用効果を発揮することができる。即ち、図5に示すように、出口側開口部26に向かって減圧管22内を流れてきた空気溶解加圧水は、突出部149に衝突した後、さらに、減圧管22のうちの下流側端部22b近傍の内面にさらに衝突した後で、流路空間60を通って、出口側開口部26から流路空間62内へと排出される。減圧管22を流れてきた空気溶解加圧水が、突出部149、及び、下流側端部22b近傍の内面に続けて衝突する毎に、空気溶解加圧水の流速が低下する。そして、空気溶解加圧水の流速が低下する毎に、空気溶解加圧水は増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Since the microbubble generating nozzle 100 of this embodiment also has the same configuration as the microbubble generating nozzle 10 of the first embodiment except for the shape of the projecting portion 149, it is basically the same as the microbubble generating nozzle 10 of the first embodiment. can exhibit the same effect. That is, as shown in FIG. 5, the air-dissolved pressurized water flowing through the decompression tube 22 toward the outlet side opening 26 collides with the projecting portion 149, and then further reaches the downstream end of the decompression tube 22. After colliding further with the inner surface in the vicinity of 22 b , it passes through the channel space 60 and is discharged into the channel space 62 from the outlet side opening 26 . Each time the air-dissolved pressurized water flowing through the decompression tube 22 continuously collides with the projection 149 and the inner surface near the downstream end 22b, the flow velocity of the air-dissolved pressurized water decreases. The pressure of the air-dissolved pressurized water is increased every time the flow velocity of the air-dissolved pressurized water decreases. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

(第3実施例)
図7、図8を参照して、第3実施例の微細気泡発生ノズル200について、第1実施例と異なる点を中心に説明する。本実施例も、第1実施例の変形例の一つである。図7、図8でも、第1実施例と同じ構成を有する要素を、図1~図4で用いられる符号と同じ符号を用いて表している。図7、図8に示すように、本実施例でも、ホルダ部240の円板部46に形成される突出部249の形状が第1実施例とは異なっている。本実施例では、突出部249は、円板部46の後側の面から後方に向けて突出する円柱部250と、円柱部250の側方に設けられる2本の傾斜付き円柱部252とを有している。円柱部250は、円板部46の後側の面から後方に向けて突出する円柱状の突起部材である。円柱部250の先端部は円板部46と平行な平らな面である。2本の傾斜付き円柱部252は、それぞれ、円柱部250の側方に配置されるとともに、円板部46の後側の面から後方に向けて突出する略円柱状の突起部材である。ただし、傾斜付き円柱部252は、円柱部250よりも小径に形成されている。傾斜付き円柱部252の先端付近には、後方から前方に向かう方向(即ち、空気溶解加圧水の流れ方向(図7中矢印参照))に沿って見た場合に、当該方向に対して傾斜する傾斜部252aが形成されている。言い換えると、傾斜付き円柱部252の先端付近は、後方に向かって尖った形状に形成されている。
(Third embodiment)
With reference to FIGS. 7 and 8, the microbubble generating nozzle 200 of the third embodiment will be described, focusing on the differences from the first embodiment. This embodiment is also one of the modifications of the first embodiment. In FIGS. 7 and 8 as well, elements having the same configuration as in the first embodiment are indicated using the same reference numerals as those used in FIGS. 1 to 4. FIG. As shown in FIGS. 7 and 8, also in this embodiment, the shape of the projecting portion 249 formed on the disk portion 46 of the holder portion 240 is different from that in the first embodiment. In this embodiment, the projecting portion 249 includes a cylindrical portion 250 that projects rearward from the rear surface of the disk portion 46 and two inclined cylindrical portions 252 that are provided on the sides of the cylindrical portion 250 . have. The columnar portion 250 is a columnar protruding member that protrudes rearward from the rear surface of the disc portion 46 . A tip portion of the cylindrical portion 250 is a flat surface parallel to the disc portion 46 . The two slanted columnar portions 252 are substantially columnar projecting members that are arranged on the sides of the columnar portion 250 and protrude rearward from the rear surface of the disc portion 46 . However, the inclined cylindrical portion 252 is formed to have a smaller diameter than the cylindrical portion 250 . Near the tip of the inclined cylindrical portion 252, when viewed along the direction from the rear to the front (that is, the flow direction of the air-dissolved pressurized water (see the arrow in FIG. 7)), there is an inclination that is inclined with respect to the direction. A portion 252a is formed. In other words, the vicinity of the tip of the inclined columnar portion 252 is formed in a shape that is pointed rearward.

本実施例の微細気泡発生ノズル100も、突出部249の形状以外の構成は第1実施例の微細気泡発生ノズル10と共通しているため、第1実施例の微細気泡発生ノズル10と基本的には同様の作用効果を発揮することができる。即ち、図7に示すように、出口側開口部26に向かって減圧管22内を流れてきた空気溶解加圧水は、突出部249に衝突した後、さらに、減圧管22のうちの下流側端部22b近傍の内面にさらに衝突した後で、流路空間60を通って、出口側開口部26から流路空間62内へと排出される。減圧管22を流れてきた空気溶解加圧水が、突出部249、及び、下流側端部22b近傍の内面に続けて衝突する毎に、空気溶解加圧水の流速が低下する。そして、空気溶解加圧水の流速が低下する毎に、空気溶解加圧水は増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Since the microbubble generating nozzle 100 of this embodiment also has the same structure as the microbubble generating nozzle 10 of the first embodiment except for the shape of the projecting portion 249, it is basically the same as the microbubble generating nozzle 10 of the first embodiment. can exhibit the same effect. That is, as shown in FIG. 7, the air-dissolved pressurized water flowing through the decompression tube 22 toward the outlet side opening 26 collides with the projecting portion 249, and then further reaches the downstream end of the decompression tube 22. After colliding further with the inner surface in the vicinity of 22 b , it passes through the channel space 60 and is discharged into the channel space 62 from the outlet side opening 26 . Each time the air-dissolved pressurized water flowing through the decompression tube 22 continuously collides with the projection 249 and the inner surface near the downstream end 22b, the flow velocity of the air-dissolved pressurized water decreases. The pressure of the air-dissolved pressurized water is increased every time the flow velocity of the air-dissolved pressurized water decreases. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

空気溶解加圧水が突出部249に衝突する際には、空気溶解加圧水は、流れ方向に対して傾斜する傾斜部252aに衝突する。即ち、突出部249に衝突する空気溶解加圧水は、傾斜部252aに沿って流される。そのため、本実施例でも、突出部249に衝突した空気溶解加圧水によって乱流が形成されることが抑制される。従って、本実施例でも、乱流の形成が抑制されることで、空気溶解加圧水に含まれる微細気泡の大きさのバラツキを抑えることができる。 When the air-dissolved pressurized water collides with the projecting portion 249, the air-dissolved pressurized water collides with the inclined portion 252a that is inclined with respect to the flow direction. That is, the air-dissolved pressurized water that collides with the projecting portion 249 flows along the inclined portion 252a. Therefore, in this embodiment as well, formation of turbulence by the air-dissolved pressurized water colliding with the projecting portion 249 is suppressed. Therefore, in the present embodiment as well, by suppressing the formation of turbulence, it is possible to suppress the variation in the size of the fine bubbles contained in the air-dissolved pressurized water.

(第4実施例)
第4実施例も、第1実施例の変形例の一つである。第4実施例では、図9に示すように、ホルダ部340の円板部46に形成される突出部349は、多角柱状の形状に形成されている。本実施例のホルダ部340を備える場合も、微細気泡発生ノズルは、第1実施例と基本的には同様の作用効果を発揮することができる。
(Fourth embodiment)
The fourth embodiment is also one of the modifications of the first embodiment. In the fourth embodiment, as shown in FIG. 9, the projecting portion 349 formed on the disc portion 46 of the holder portion 340 is formed in a polygonal prism shape. Even when the holder part 340 of the present embodiment is provided, the microbubble generating nozzle can exhibit basically the same effects as those of the first embodiment.

(第5実施例)
第5実施例も、第1実施例の変形例の一つである。第5実施例では、図10に示すように、ホルダ部440の円板部46に形成される突出部449は、円柱部450と、その周囲に形成される6本のリブ部452と、を備える。なお、円柱部250の先端付近は後方に向けて傾斜している。本実施例のホルダ部440を備える場合も、微細気泡発生ノズルは、第1実施例と基本的には同様の作用効果を発揮することができる。
(Fifth embodiment)
The fifth embodiment is also one of the modifications of the first embodiment. In the fifth embodiment, as shown in FIG. 10, the projecting portion 449 formed on the disk portion 46 of the holder portion 440 includes a cylindrical portion 450 and six rib portions 452 formed around it. Prepare. The vicinity of the tip of the cylindrical portion 250 is inclined rearward. Even when the holder part 440 of the present embodiment is provided, the microbubble generating nozzle can exhibit basically the same effects as those of the first embodiment.

以上、実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the embodiments have been described in detail above, these are only examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

(変形例1)減圧管22の出口側開口部26の開口面積は、2個の入口側開口部24の開口面積の合計と同じであってもよい。この場合も、減圧管22内の空気溶解加圧水の流速が、入口側開口部24から出口側開口部26に向かう間に低下すればよい。 (Modification 1) The opening area of the outlet side opening 26 of the decompression tube 22 may be the same as the total opening area of the two inlet side openings 24 . In this case as well, the flow velocity of the air-dissolved pressurized water in the decompression tube 22 should be reduced from the inlet side opening 24 toward the outlet side opening 26 .

(変形例2)減圧管22の区画壁25が省略されていてもよい。即ち、減圧管22は、2本の管部に区画されていなくてもよい。 (Modification 2) The partition wall 25 of the decompression tube 22 may be omitted. That is, the decompression tube 22 does not have to be divided into two tube portions.

(変形例3)上記の各実施例では、微細気泡発生ノズルは、空気が水に溶解した空気溶解加圧水の供給を受け、空気溶解加圧水内の空気を析出させて微細気泡に変え、空気の微細気泡を含む水を流出箇所に供給する。これに限られず、微細気泡発生ノズルは、空気以外の他の気体(例えば、炭酸ガスや水素等)が水に溶解した気体溶解加圧水の供給を受け、当該気体溶解加圧水内の気体を析出させて微細気泡に変え、その期待の微細気泡を含む水を流出箇所に供給するようにしてもよい。即ち、「気体」は空気に限られず、炭酸ガスや水素等の任意の気体であってもよい。 (Modification 3) In each of the above embodiments, the fine-bubble generating nozzle receives supply of air-dissolved pressurized water in which air is dissolved in water, and precipitates the air in the air-dissolved pressurized water to convert it into fine bubbles. Water containing air bubbles is supplied to the outflow point. Not limited to this, the fine bubble generating nozzle is supplied with gas-dissolved pressurized water in which gas other than air (for example, carbon dioxide gas, hydrogen, etc.) is dissolved in water, and precipitates the gas in the gas-dissolved pressurized water. Instead of microbubbles, water containing the expected microbubbles may be supplied to the outflow point. That is, the "gas" is not limited to air, and may be any gas such as carbon dioxide or hydrogen.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in this specification or in the drawings exhibit technical utility either singly or in various combinations, and are not limited to the combinations described in the claims as filed. In addition, the techniques exemplified in this specification or drawings can simultaneously achieve a plurality of purposes, and achieving one of them has technical utility in itself.

10:微細気泡発生ノズル
20:ノズル本体
22:減圧管
22a:上流側端部
22b:下流側端部
23:流入口
24:入口側開口部
25:区画壁
26:出口側開口部
28:鍔部
28a:前面
40:ホルダ部
42:外側円筒部
43:段差
44:内側円筒部
46:円板部
48:接続部
49:突出部
49a:傾斜部
50:流出口
52:連結部
60:流路空間
62:流路空間
64:通路
66:流路空間
68:通路
100:微細気泡発生ノズル
140:ホルダ部
149:突出部
200:微細気泡発生ノズル
240:ホルダ部
249:突出部
250:円柱部
252:傾斜付き円柱部
252a:傾斜部
340:ホルダ部
349:突出部
440:ホルダ部
449:突出部
450:円柱部
452:リブ部
B:ネジ穴
10: Microbubble generating nozzle 20: Nozzle body 22: Decompression pipe 22a: Upstream end 22b: Downstream end 23: Inlet 24: Inlet side opening 25: Partition wall 26: Outlet side opening 28: Collar 28a: front surface 40: holder portion 42: outer cylindrical portion 43: step 44: inner cylindrical portion 46: disk portion 48: connecting portion 49: projecting portion 49a: inclined portion 50: outflow port 52: connecting portion 60: channel space 62: Flow path space 64: Passage 66: Flow path space 68: Passage 100: Microbubble generating nozzle 140: Holder part 149: Protruding part 200: Microbubble generating nozzle 240: Holder part 249: Protruding part 250: Cylindrical part 252: Inclined cylindrical portion 252a: inclined portion 340: holder portion 349: projecting portion 440: holder portion 449: projecting portion 450: cylindrical portion 452: rib portion B: screw hole

Claims (5)

気体が水に溶解している気体溶解加圧水の圧力を減圧する減圧流通部であって、減圧管と、前記減圧管の上流側端部に設けられ、前記気体溶解加圧水を前記減圧管内に導入する入口側開口部と、前記減圧管の下流側端部に設けられ、前記減圧管を通過した前記気体溶解加圧水を排出する出口側開口部と、を備える前記減圧流通部と、
前記減圧流通部の下流側に設けられる第1衝突室であって、
前記出口側開口部の開口面積よりも大きい流路面積を備え、前記出口側開口部から排出された前記気体溶解加圧水を通過させる第1流路空間と、
前記出口側開口部に対向する範囲に設けられ、前記出口側開口部から排出される前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる第1衝突壁と、
前記第1衝突壁に設けられ、前記第1衝突壁から前記出口側開口部に向かって突出する突出部と、
を有する、前記第1衝突室と、
前記第1衝突室を通過した後の前記気体溶解加圧水を流出箇所に流出させる流出部と、
を備え、
前記突出部の先端部は、前記出口側開口部を通過して前記減圧管内に配置される、
微細気泡発生ノズル。
A decompression flow part for decompressing gas-dissolved pressurized water in which gas is dissolved in water, comprising a decompression pipe and a decompression pipe provided at an upstream end of the decompression pipe for introducing the gas-dissolved pressurized water into the decompression pipe. the reduced-pressure flow section including an inlet-side opening and an outlet-side opening provided at a downstream end of the reduced-pressure tube for discharging the gas-dissolved pressurized water that has passed through the reduced-pressure tube;
A first collision chamber provided on the downstream side of the reduced pressure flow section,
a first flow channel space having a flow channel area larger than the opening area of the outlet-side opening and allowing the gas-dissolved pressurized water discharged from the outlet-side opening to pass therethrough;
a first collision wall provided in a range facing the outlet-side opening for changing the flow direction of the gas-dissolved pressurized water discharged from the outlet-side opening by colliding with the gas-dissolved pressurized water;
a protruding portion provided on the first collision wall and protruding from the first collision wall toward the outlet side opening;
the first collision chamber having
an outflow part that causes the gas-dissolved pressurized water that has passed through the first collision chamber to flow out to an outflow location;
with
the tip of the protrusion is arranged in the decompression tube through the outlet-side opening;
Fine bubble generation nozzle.
気体が水に溶解している気体溶解加圧水の圧力を減圧する減圧流通部であって、減圧管と、前記減圧管の上流側端部に設けられ、前記気体溶解加圧水を前記減圧管内に導入する入口側開口部と、前記減圧管の下流側端部に設けられ、前記減圧管を通過した前記気体溶解加圧水を排出する出口側開口部と、を備える前記減圧流通部と、
前記減圧流通部の下流側に設けられる第1衝突室であって、
前記出口側開口部の開口面積よりも大きい流路面積を備え、前記出口側開口部から排出された前記気体溶解加圧水を通過させる第1流路空間と、
前記出口側開口部に対向する範囲に設けられ、前記出口側開口部から排出される前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる第1衝突壁と、
前記第1衝突壁に設けられ、前記第1衝突壁から前記出口側開口部に向かって突出する突出部と、
を有する、前記第1衝突室と、
前記第1衝突室を通過した後の前記気体溶解加圧水を流出箇所に流出させる流出部と、
前記第1衝突室よりも下流側かつ前記流出部よりも上流側に設けられる第2衝突室と、
を備え、
前記第2衝突室は、
前記第1流路空間の前記流路面積よりも大きい流路面積を備え、前記第1衝突室を通過した後の前記気体溶解加圧水を通過させる第2流路空間と、
前記第1衝突室を通過した後の前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる第2衝突壁と、
を有する、微細気泡発生ノズル。
A decompression flow part for decompressing gas-dissolved pressurized water in which gas is dissolved in water, comprising a decompression pipe and a decompression pipe provided at an upstream end of the decompression pipe for introducing the gas-dissolved pressurized water into the decompression pipe. the reduced-pressure flow section including an inlet-side opening and an outlet-side opening provided at a downstream end of the reduced-pressure tube for discharging the gas-dissolved pressurized water that has passed through the reduced-pressure tube;
A first collision chamber provided on the downstream side of the reduced pressure flow section,
a first flow channel space having a flow channel area larger than the opening area of the outlet-side opening and allowing the gas-dissolved pressurized water discharged from the outlet-side opening to pass therethrough;
a first collision wall provided in a range facing the outlet-side opening for changing the flow direction of the gas-dissolved pressurized water discharged from the outlet-side opening by colliding with the gas-dissolved pressurized water;
a protruding portion provided on the first collision wall and protruding from the first collision wall toward the outlet side opening;
the first collision chamber having
an outflow part that causes the gas-dissolved pressurized water that has passed through the first collision chamber to flow out to an outflow location;
a second collision chamber provided downstream of the first collision chamber and upstream of the outflow portion;
with
The second collision chamber is
a second flow passage space having a flow passage area larger than that of the first flow passage space and allowing the gas-dissolved pressurized water to pass therethrough after passing through the first collision chamber;
a second collision wall for changing the direction of flow of the gas-dissolved pressurized water by collision of the gas-dissolved pressurized water after passing through the first collision chamber;
A fine bubble generation nozzle.
前記突出部の先端部は、前記出口側開口部を通過して前記減圧管内に配置される、請求項に記載の微細気泡発生ノズル。 3. The nozzle for generating microbubbles according to claim 2 , wherein the tip of said projecting portion passes through said outlet side opening and is arranged in said decompression tube. 前記出口側開口部の前記開口面積は、前記入口側開口部の開口面積以上である、請求項1から3のいずれか一項に記載の微細気泡発生ノズル。 The fine bubble generating nozzle according to any one of claims 1 to 3 , wherein the opening area of the outlet side opening is equal to or larger than the opening area of the inlet side opening. 前記突出部は、前記気体溶解加圧水の流れ方向に沿って見た場合に前記流れ方向に対して傾斜する傾斜部を有する、請求項1からのいずれか一項に記載の微細気泡発生ノズル。 The fine bubble generating nozzle according to any one of claims 1 to 4 , wherein the projecting portion has an inclined portion that is inclined with respect to the flow direction of the gas-dissolved pressurized water when viewed along the flow direction.
JP2019101637A 2019-05-30 2019-05-30 Fine bubble generation nozzle Active JP7232713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101637A JP7232713B2 (en) 2019-05-30 2019-05-30 Fine bubble generation nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101637A JP7232713B2 (en) 2019-05-30 2019-05-30 Fine bubble generation nozzle

Publications (2)

Publication Number Publication Date
JP2020195930A JP2020195930A (en) 2020-12-10
JP7232713B2 true JP7232713B2 (en) 2023-03-03

Family

ID=73648033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101637A Active JP7232713B2 (en) 2019-05-30 2019-05-30 Fine bubble generation nozzle

Country Status (1)

Country Link
JP (1) JP7232713B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149209A (en) 2006-12-14 2008-07-03 Marcom:Kk Fine air bubble producer and fine air bubble supply system
JP2008161832A (en) 2006-12-28 2008-07-17 Daikin Ind Ltd Bubble generator
JP2009082841A (en) 2007-09-30 2009-04-23 Sanso Electric Co Ltd Microbubble generation nozzle
JP2012217878A (en) 2011-04-05 2012-11-12 Doki Sangyo Kk Fine bubble generating apparatus, and fine bubble generating method
JP2018015715A (en) 2016-07-28 2018-02-01 株式会社カクイチ製作所 Nano-bubble generation nozzle and nano-bubble generation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06226145A (en) * 1993-02-05 1994-08-16 Matsushita Electric Ind Co Ltd Gas-liquid mixing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008149209A (en) 2006-12-14 2008-07-03 Marcom:Kk Fine air bubble producer and fine air bubble supply system
JP2008161832A (en) 2006-12-28 2008-07-17 Daikin Ind Ltd Bubble generator
JP2009082841A (en) 2007-09-30 2009-04-23 Sanso Electric Co Ltd Microbubble generation nozzle
JP2012217878A (en) 2011-04-05 2012-11-12 Doki Sangyo Kk Fine bubble generating apparatus, and fine bubble generating method
JP2018015715A (en) 2016-07-28 2018-02-01 株式会社カクイチ製作所 Nano-bubble generation nozzle and nano-bubble generation device

Also Published As

Publication number Publication date
JP2020195930A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
KR100555747B1 (en) Liquid Sprayers
JP2007160175A (en) Cleaning device
JP2010120609A (en) Hull frictional resistance reduction device
JP2017225961A (en) Fine bubble generation nozzle
JP2008161832A (en) Bubble generator
KR101494080B1 (en) Micro bubble forming device to use ceramic ball
JP5825852B2 (en) Fine bubble generating nozzle and fine bubble generating device
JP7232713B2 (en) Fine bubble generation nozzle
JP7265934B2 (en) Fine bubble generation nozzle
JP7281307B2 (en) Fine bubble generation nozzle
JP7285176B2 (en) Fine bubble generation nozzle
JP2019166493A (en) Fine bubble generation nozzle
JP7329397B2 (en) Fine bubble generating nozzle body
TW201914686A (en) Bubble generating device and bubble generating method
JP2008161829A (en) Bubble generator
JP7395152B2 (en) Fine bubble generating nozzle body
KR101633235B1 (en) Microbuble generator
KR20150079190A (en) Nozzle for Dissolved Air Floatation System
US20230390713A1 (en) Fine bubble generating nozzle
JP7213143B2 (en) Fine bubble generation nozzle
JP6319861B1 (en) Microbubble generator
JP5870302B2 (en) shower head
JP2003111810A (en) Nozzle of microbubble generator
JP2007152169A (en) Liquid discharge nozzle
CN110947535A (en) Micro-bubble generating nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7232713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150