JP7281307B2 - Fine bubble generation nozzle - Google Patents

Fine bubble generation nozzle Download PDF

Info

Publication number
JP7281307B2
JP7281307B2 JP2019041978A JP2019041978A JP7281307B2 JP 7281307 B2 JP7281307 B2 JP 7281307B2 JP 2019041978 A JP2019041978 A JP 2019041978A JP 2019041978 A JP2019041978 A JP 2019041978A JP 7281307 B2 JP7281307 B2 JP 7281307B2
Authority
JP
Japan
Prior art keywords
cylindrical portion
pressurized water
collision
pressure
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019041978A
Other languages
Japanese (ja)
Other versions
JP2020054987A (en
Inventor
昌生 野々山
智行 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to CN201910881695.1A priority Critical patent/CN110947535A/en
Publication of JP2020054987A publication Critical patent/JP2020054987A/en
Application granted granted Critical
Publication of JP7281307B2 publication Critical patent/JP7281307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本明細書で開示する技術は、微細気泡発生ノズルに関する。 The technology disclosed in this specification relates to a microbubble generating nozzle.

特許文献1には、空気が水に溶解している空気溶解加圧水が流入する流入口と、流入口から流入する空気溶解加圧水の圧力を減圧する減圧部と、減圧部を通過した空気溶解加圧水を流出箇所に流出する流出口と、を備える微細気泡発生ノズルが開示されている。 Patent Document 1 discloses an inlet into which air-dissolved pressurized water in which air is dissolved in water flows, a decompression section that reduces the pressure of the air-dissolved pressurized water flowing in from the inlet, and an air-dissolved pressurized water that has passed through the decompression section. A microbubble generating nozzle is disclosed that includes an outlet that flows to an outlet location.

特開2007-167557号公報JP 2007-167557 A

特許文献1の微細気泡発生ノズルにおいて、空気溶解加圧水は、減圧部を通過することによって、大気圧まで徐々に減圧される。空気溶解加圧水が大気圧まで減圧される過程において、水に溶解されている空気が析出し、微細気泡が発生する。しかしながら、上述の微細気泡発生ノズルでは、流出箇所における微細気泡の量が不十分であるという状況が発生する。 In the fine bubble generating nozzle of Patent Document 1, the air-dissolved pressurized water is gradually decompressed to atmospheric pressure by passing through the decompression section. In the process of depressurizing the air-dissolved pressurized water to atmospheric pressure, the air dissolved in the water is precipitated to generate microbubbles. However, in the fine bubble generating nozzle described above, a situation occurs in which the amount of fine bubbles at the outflow point is insufficient.

本明細書では、微細気泡を大量に発生させることができる技術を提供する。 The present specification provides a technique capable of generating a large amount of microbubbles.

本明細書によって開示される浴槽に供給される水に微細気泡を発生させる微細気泡発生ノズルは、空気が水に溶解している空気溶解加圧水が流入する流入口と、円柱部と、前記円柱部に設けられており、前記流入口から流入する空気溶解加圧水の圧力を大気圧よりも低い圧力に減圧し、減圧された空気溶解加圧水を噴出する噴出孔を有する減圧部と、を有するノズル本体と、前記ノズル本体よりも下流側に設けられている第1衝突室であって、円板形状を有しており、前記減圧部の噴出孔に対向する位置に設けられており、前記減圧部の噴出孔から流入する空気溶解加圧水が衝突することによって空気溶解加圧水の流路の向きを変更させる第1衝突壁を備え、空気溶解加圧水の圧力は、前記第1衝突室に流入することによって、前記減圧部を通過した直後の圧力よりも高く、大気圧よりも低い第1圧力に増圧される、前記第1衝突室と、前記第1衝突壁から前記ノズル本体側に延びる内側円筒部であって、前記内側円筒部の内径が前記円柱部の外径よりも大きい、前記内側円筒部と、前記内側円筒部と前記円柱部との間に形成される第1水路と、前記第1水路によって、前記第1衝突室と接続される第2衝突室であって、前記円柱部の外周面に接続されており、円環形状を有しており、前記第1衝突室を通過した空気溶解加圧水が衝突することによって空気溶解加圧水の流路の向きを変更させる第2衝突壁を備え、前記第2衝突室の容積は、前記第1衝突室の容積より大きく、空気溶解加圧水の圧力は、前記第2衝突室に流入することによって、前記第1圧力よりも高く、大気圧よりも低い第2圧力に増圧される、前記第2衝突室と、前記第2衝突壁から前記第1衝突室側に延びる外側円筒部であって、前記外側円筒部の内径が前記内側円筒部の外径よりも大きい、前記外側円筒部と、前記外側円筒部と前記内側円筒部との間に形成される第2水路と、前記第2水路を介して前記第2衝突室と接続され、前記第2衝突室を通過した水を前記浴槽に流出させる流出口と、を備える。 A microbubble generating nozzle for generating microbubbles in water supplied to a bathtub disclosed by the present specification includes an inlet into which air-dissolved pressurized water in which air is dissolved in water flows, a cylindrical portion, and the cylindrical portion. a nozzle body having a decompression part having a jet hole for decompressing the pressure of the air-dissolved pressurized water flowing in from the inlet to a pressure lower than the atmospheric pressure and jetting the decompressed air-dissolved pressurized water; , a first collision chamber provided downstream of the nozzle main body, having a disk shape, provided at a position facing the ejection hole of the decompression unit, and A first collision wall is provided for changing the direction of the flow path of the air-dissolved pressurized water by colliding with the air-dissolved pressurized water flowing in from the ejection hole, and the pressure of the air-dissolved pressurized water flows into the first collision chamber, thereby The first collision chamber is pressurized to a first pressure higher than the pressure immediately after passing through the decompression section and lower than the atmospheric pressure; and an inner cylindrical portion extending from the first collision wall toward the nozzle body. the inner cylindrical portion having an inner diameter larger than the outer diameter of the cylindrical portion; a first channel formed between the inner cylindrical portion and the cylindrical portion; , a second collision chamber connected to the first collision chamber, which is connected to the outer peripheral surface of the cylindrical portion and has an annular shape, and the air-dissolved pressurized water that has passed through the first collision chamber; a second collision wall that changes the direction of the flow path of the air- dissolved pressurized water by colliding with the the second impingement chamber and the first impingement wall from the second impingement wall that is pressurized to a second pressure that is higher than the first pressure and lower than atmospheric pressure by flowing into the second impingement chamber; an outer cylindrical portion extending toward the room side, wherein the outer cylindrical portion has an inner diameter larger than the outer diameter of the inner cylindrical portion; and the outer cylindrical portion is formed between the outer cylindrical portion and the inner cylindrical portion. and an outflow port connected to the second collision chamber via the second water passage and allowing the water that has passed through the second collision chamber to flow out to the bathtub .

上記の構成によると、ノズル本体の減圧部を通過して減圧された空気溶解加圧水の圧力は、第1衝突室に流入することによって、第1圧力に増圧された後、第2衝突室に流入する。第2衝突室の容積は、第1衝突室の容積より大きいために、第2衝突室に流入する空気溶解加圧水の流速が遅くなり、この結果、空気溶解加圧水の圧力が第1圧力よりも高い第2圧力に増圧される。なお、第1圧力及び第2圧力は大気圧よりも低い。その後、空気溶解加圧水が浴槽に流出されると、空気溶解加圧水は、大気圧まで増圧される。即ち、減圧部で減圧された空気溶解加圧水は、大気圧まで徐々に増圧される。まず、空気溶解加圧水が大気圧よりも低い圧力に減圧されることによって、空気溶解加圧水内に、比較的に大きな気泡(以下では、単に「気泡」と呼ぶ)が生成される。そして、空気溶解加圧水の圧力が第1圧力に増圧されることによって、空気溶解加圧水内の気泡の一部が、分裂して微細気泡になる。そして、空気溶解加圧水の圧力が第2圧力まで増圧されると、第1衝突室を通過した空気溶解加圧水内に残存している気泡の一部が、分裂して微細気泡になる。そして、空気溶解加圧水の圧力が大気圧まで増圧されると、第2衝突室を通過した空気溶解加圧水内に残存している気泡の一部が、分裂して微細気泡になる。従って、微細気泡発生ノズル内において、微細気泡に分裂する気泡の量を多くすることができ、浴槽で発生する微細気泡の量を多くすることができる。 According to the above configuration, the pressure of the air-dissolved pressurized water decompressed through the decompression part of the nozzle body flows into the first collision chamber, is increased to the first pressure, and then flows into the second collision chamber. influx. Since the volume of the second collision chamber is larger than the volume of the first collision chamber, the flow velocity of the air-dissolved pressurized water flowing into the second collision chamber is slow, and as a result, the pressure of the air-dissolved pressurized water is higher than the first pressure. The pressure is increased to a second pressure. Note that the first pressure and the second pressure are lower than the atmospheric pressure. Thereafter, when the air-dissolved pressurized water is discharged into the bathtub , the pressure of the air-dissolved pressurized water is increased to atmospheric pressure. That is, the pressure of the air-dissolved pressurized water decompressed by the decompression unit is gradually increased to the atmospheric pressure. First, by depressurizing the air-dissolved pressurized water to a pressure lower than the atmospheric pressure, relatively large air bubbles (hereinafter simply referred to as "bubbles") are generated in the air-dissolved pressurized water. Then, by increasing the pressure of the air-dissolved pressurized water to the first pressure, some of the bubbles in the air-dissolved pressurized water split to become fine bubbles. Then, when the pressure of the air-dissolved pressurized water is increased to the second pressure, some of the air bubbles remaining in the air-dissolved pressurized water that have passed through the first collision chamber split into fine air bubbles. Then, when the pressure of the air-dissolved pressurized water is increased to the atmospheric pressure, some of the bubbles remaining in the air-dissolved pressurized water that have passed through the second collision chamber split into fine bubbles. Therefore, it is possible to increase the amount of bubbles split into fine bubbles in the fine bubble generating nozzle, and to increase the amount of fine bubbles generated in the bathtub .

また、ノズル本体の減圧部を通過することによって形成される気泡は、第1衝突室の第1衝突壁、及び、第2衝突室の第2衝突壁に衝突することによって、より小さな気泡に分裂し得る。従って、浴槽で発生する微細気泡の量をより多くすることができる。 Also, the bubbles formed by passing through the decompression portion of the nozzle body are split into smaller bubbles by colliding with the first collision wall of the first collision chamber and the second collision wall of the second collision chamber. can. Therefore, the amount of microbubbles generated in the bathtub can be increased.

上記の微細気泡発生ノズルにおいて、第1衝突壁の空気溶解加圧水が衝突する面に凹凸が設けられていてもよい。 In the fine bubble generating nozzle described above, unevenness may be provided on the surface of the first collision wall on which the air-dissolved pressurized water collides.

ノズル本体の減圧部を通過して、第1衝突室に流入する空気溶解加圧水の流速は、比較的に速い。このため、空気溶解加圧水が第1衝突壁に衝突することによって、音が発生し得る。上記の構成によると、第1衝突壁に設けられている凹凸によって、空気溶解加圧水が第1衝突壁に衝突するときの衝撃が緩和される。従って、微細気泡発生ノズルを使用中に発生する音を抑制することができる。なお、第1衝突壁の空気溶解加圧水が衝突する面の凹凸は、複数個の凹部、複数個の凸部、複数の貫通孔などであってもよい。 The flow velocity of the air-dissolved pressurized water passing through the decompression portion of the nozzle body and flowing into the first impingement chamber is relatively high. Therefore, the air-dissolved pressurized water may collide with the first collision wall to generate sound. According to the above configuration, the unevenness provided on the first collision wall mitigates the impact when the air-dissolved pressurized water collides with the first collision wall. Therefore, it is possible to suppress the noise generated during the use of the microbubble generating nozzle. The unevenness of the surface of the first collision wall with which the air-dissolved pressurized water collides may be a plurality of concave portions, a plurality of convex portions, a plurality of through holes, or the like.

上記の微細気泡発生ノズルにおいて、減圧部の中心軸が、第1衝突壁に対して傾斜していてもよい。 In the fine bubble generating nozzle described above, the central axis of the decompression portion may be inclined with respect to the first collision wall.

上記の構成によると、減圧部の中心軸が第1衝突壁に対して傾斜していることによって、減圧部を通過する空気溶解加圧水は、第1衝突壁に対して傾斜している状態で衝突する。この場合、第1衝突壁に衝突した後の空気溶解加圧水が、旋回流になり得る。これにより、第1衝突室の通過後において、空気溶解加圧水が撹拌され、空気溶解加圧水内の気泡が微細気泡に分裂することが促進される。従って、浴槽で発生する微細気泡の量をより多くすることができる。 According to the above configuration, the air-dissolved pressurized water passing through the decompression section collides in a state of being slanted with respect to the first collision wall because the central axis of the decompression section is inclined with respect to the first collision wall. do. In this case, the air-dissolved pressurized water after colliding with the first collision wall can become a swirling flow. As a result, the air-dissolved pressurized water is agitated after passing through the first collision chamber, and the air-dissolved pressurized water is accelerated to split into fine air bubbles. Therefore, the amount of microbubbles generated in the bathtub can be increased.

本明細書によって開示される浴槽に供給される水に微細気泡を発生させる微細気泡発生ノズルは、気体が水に溶解している気体溶解加圧水が流入する流入口と、円柱部と、前記円柱部に設けられており、前記流入口から流入する気体溶解加圧水の圧力を大気圧よりも低い圧力に減圧し、減圧された気体溶解加圧水を噴出する噴出孔を有する減圧部と、を有するノズル本体と、前記ノズル本体よりも下流側に設けられている第1衝突室であって、円板形状を有しており、前記減圧部の噴出孔に対向する位置に設けられており、前記減圧部の噴出孔から流入する気体溶解加圧水が衝突することによって気体溶解加圧水の流路の向きを変更させる第1衝突壁を備え、気体溶解加圧水の圧力は、前記第1衝突室に流入することによって、前記減圧部を通過した直後の圧力よりも高く、大気圧よりも低い第1圧力に増圧される、前記第1衝突室と、前記第1衝突壁から前記ノズル本体側に延びる内側円筒部であって、前記内側円筒部の内径が前記円柱部の外径よりも大きい、前記内側円筒部と、前記内側円筒部と前記円柱部との間に形成される第1水路と、前記第1水路によって、前記第1衝突室と接続される第2衝突室であって、前記円柱部の外周面に接続されており、円環形状を有しており、前記第1衝突室を通過した気体溶解加圧水が衝突することによって気体溶解加圧水の流路の向きを変更させる第2衝突壁を備え、前記第2衝突室の容積は、前記第1衝突室の容積より大きく、気体溶解加圧水の圧力は、前記第2衝突室に流入することによって、前記第1圧力よりも高く、大気圧よりも低い第2圧力に増圧される、前記第2衝突室と、前記第2衝突壁から前記第1衝突室側に延びる外側円筒部であって、前記外側円筒部の内径が前記内側円筒部の外径よりも大きい、前記外側円筒部と、前記外側円筒部と前記内側円筒部との間に形成される第2水路と、前記第2水路を介して前記第2衝突室と接続され、前記第2衝突室を通過した水を前記浴槽に流出させる流出口と、を備える。 A microbubble generating nozzle for generating microbubbles in water supplied to a bathtub disclosed by the present specification includes an inlet into which gas-dissolved pressurized water in which gas is dissolved in water flows, a cylindrical portion, and the cylindrical portion. and a nozzle body having a decompression part having a jet hole for decompressing the pressure of the gas-dissolved pressurized water flowing in from the inlet to a pressure lower than atmospheric pressure and jetting the decompressed gas-dissolved pressurized water , a first collision chamber provided downstream of the nozzle main body, having a disk shape, provided at a position facing the ejection hole of the decompression unit, and a first collision wall that changes the direction of the flow path of the gas-dissolved pressurized water by colliding with the gas-dissolved pressurized water flowing in from the ejection hole , and the pressure of the gas-dissolved pressurized water flows into the first collision chamber to The first collision chamber is pressurized to a first pressure higher than the pressure immediately after passing through the decompression section and lower than the atmospheric pressure; and an inner cylindrical portion extending from the first collision wall toward the nozzle body. the inner cylindrical portion having an inner diameter larger than the outer diameter of the cylindrical portion; a first channel formed between the inner cylindrical portion and the cylindrical portion; , a second collision chamber connected to the first collision chamber, which is connected to the outer peripheral surface of the cylindrical portion and has an annular shape, and gas-dissolved pressurized water passing through the first collision chamber; a second collision wall that changes the direction of the flow path of the gas-dissolved pressurized water by colliding with the second collision chamber, the volume of the second collision chamber is larger than the volume of the first collision chamber, and the pressure of the gas-dissolved pressurized water is the second impingement chamber and the first impingement wall from the second impingement wall that is pressurized to a second pressure that is higher than the first pressure and lower than atmospheric pressure by flowing into the second impingement chamber; an outer cylindrical portion extending toward the room side, wherein the outer cylindrical portion has an inner diameter larger than the outer diameter of the inner cylindrical portion; and the outer cylindrical portion is formed between the outer cylindrical portion and the inner cylindrical portion. and an outflow port connected to the second collision chamber via the second water passage and allowing the water that has passed through the second collision chamber to flow out to the bathtub .

上記の構成によると、ノズル本体の減圧部を通過して減圧された気体溶解加圧水の圧力は、第1衝突室に流入することによって、第1圧力に増圧された後、第2衝突室に流入する。第2衝突室の容積は、第1衝突室の容積より大きいために、第2衝突室に流入する気体溶解加圧水の流速が遅くなり、この結果、気体溶解加圧水の圧力が第1圧力よりも高い第2圧力に増圧される。なお、第1圧力及び第2圧力は大気圧よりも低い。その後、気体溶解加圧水が浴槽に流出されると、気体溶解加圧水は、大気圧まで増圧される。即ち、減圧部で減圧された気体溶解加圧水は、大気圧まで徐々に増圧される。まず、気体溶解加圧水が大気圧よりも低い圧力に減圧されることによって、気体溶解加圧水内に、比較的に大きな気泡(以下では、単に「気泡」と呼ぶ)が生成される。そして、気体溶解加圧水の圧力が第1圧力に増圧されることによって、気体溶解加圧水内の気泡の一部が、分裂して微細気泡になる。そして、気体溶解加圧水の圧力が第2圧力まで増圧されると、第1衝突室を通過した気体溶解加圧水内に残存している気泡の一部が、分裂して微細気泡になる。そして、気体溶解加圧水の圧力が大気圧まで増圧されると、第2衝突室を通過した気体溶解加圧水内に残存している気泡の一部が、分裂して微細気泡になる。従って、微細気泡発生ノズル内において、微細気泡に分裂する気泡の量を多くすることができ、浴槽で発生する微細気泡の量を多くすることができる。 According to the above configuration, the pressure of the gas-dissolved pressurized water that has been decompressed through the decompression part of the nozzle body flows into the first collision chamber, is increased to the first pressure, and then flows into the second collision chamber. influx. Since the volume of the second collision chamber is larger than the volume of the first collision chamber, the flow velocity of the gas-dissolved pressurized water flowing into the second collision chamber is slow, and as a result, the pressure of the gas-dissolved pressurized water is higher than the first pressure. The pressure is increased to a second pressure. Note that the first pressure and the second pressure are lower than the atmospheric pressure. Thereafter, when the gas-dissolved pressurized water is discharged into the bathtub , the pressure of the gas-dissolved pressurized water is increased to atmospheric pressure. That is, the pressure of the gas-dissolved pressurized water decompressed by the decompression unit is gradually increased to the atmospheric pressure. First, by depressurizing the gas-dissolved pressurized water to a pressure lower than the atmospheric pressure, relatively large bubbles (hereinafter simply referred to as "bubbles") are generated in the gas-dissolved pressurized water. Then, by increasing the pressure of the gas-dissolved pressurized water to the first pressure, some of the bubbles in the gas-dissolved pressurized water split to become fine bubbles. Then, when the pressure of the gas-dissolved pressurized water is increased to the second pressure, some of the bubbles remaining in the gas-dissolved pressurized water that has passed through the first collision chamber are split into fine bubbles. Then, when the pressure of the gas-dissolved pressurized water is increased to the atmospheric pressure, some of the bubbles remaining in the gas-dissolved pressurized water that has passed through the second collision chamber split into fine bubbles. Therefore, it is possible to increase the amount of bubbles split into fine bubbles in the fine bubble generating nozzle, and to increase the amount of fine bubbles generated in the bathtub .

また、ノズル本体の減圧部を通過することによって形成される気泡は、第1衝突室の第1衝突壁、及び、第2衝突室の第2衝突壁に衝突することによって、より小さな気泡に分裂し得る。従って、浴槽で発生する微細気泡の量をより多くすることができる。 Also, the bubbles formed by passing through the decompression portion of the nozzle body are split into smaller bubbles by colliding with the first collision wall of the first collision chamber and the second collision wall of the second collision chamber. can. Therefore, the amount of microbubbles generated in the bathtub can be increased.

本実施例に係る微細気泡発生ノズル10の斜視図である。1 is a perspective view of a microbubble generating nozzle 10 according to an embodiment; FIG. 図1のII-II線に沿った微細気泡発生ノズル10の断面図である。FIG. 2 is a cross-sectional view of the fine bubble generating nozzle 10 taken along line II-II of FIG. 1; 本実施例に係るノズル本体20の斜視図である。It is a perspective view of the nozzle main body 20 which concerns on a present Example. 本実施例に係るホルダ部40の斜視図及び後面図である。4A and 4B are a perspective view and a rear view of the holder part 40 according to the embodiment. FIG. 微細気泡発生ノズル10に流入する空気溶解加圧水の圧力を示す図である。4 is a diagram showing the pressure of air-dissolved pressurized water flowing into the fine bubble generating nozzle 10. FIG. 第1変形例に係るノズル本体120の斜視図及び後面図である。FIG. 11 is a perspective view and a rear view of a nozzle body 120 according to a first modified example; 第2変形例に係るホルダ部240の後面図である。FIG. 11 is a rear view of a holder part 240 according to a second modified example; 第3変形例に係るノズル本体320の左側面図及び後面図である。It is a left view and a rear view of the nozzle main body 320 which concerns on a 3rd modification.

(微細気泡発生ノズル10の構成)
図1~図4を参照して、微細気泡発生ノズル10について説明する。微細気泡発生ノズル10は、浴槽(図示省略)等の流出箇所に微細気泡を発生させるためのノズルである。図1に示すように、微細気泡発生ノズル10は、ノズル本体20と、ホルダ部40と、を備える。図1、図2において、ノズル本体20は、ホルダ部40に支持されている。
(Structure of fine bubble generating nozzle 10)
The microbubble generating nozzle 10 will be described with reference to FIGS. 1 to 4. FIG. The microbubble generating nozzle 10 is a nozzle for generating microbubbles at an outflow location such as a bathtub (not shown). As shown in FIG. 1 , the microbubble generating nozzle 10 includes a nozzle body 20 and a holder portion 40 . 1 and 2, the nozzle body 20 is supported by the holder portion 40. As shown in FIG.

(ノズル本体20の構成)
図1~図3を参照して、ノズル本体20の構成について説明する。なお、以下では、図2の微細気泡発生ノズル10の中心軸C1に平行なX軸方向を前後方向といい、X軸方向に直交するZ軸方向を上下方向といい、X軸及びZ軸に直交するY方向を左右方向という。図3に示すように、ノズル本体20は、円筒部22と、円板部24と、円柱部26と、を備える。円筒部22には、流入口22aが設けられている。円筒部22には、空気が水に溶解している空気溶解加圧水を微細気泡発生ノズル10に供給するための給水管(図示省略)が接続される。円板部24は、円筒部22と円柱部26との間に設けられている。図2に示すように、円板部24の外径は、円柱部26の外径よりも大きい。円柱部26の外径は、円筒部22の外径よりも小さい。ノズル本体20は、さらに、2個の減圧部28を備えている。減圧部28は、円筒部22、円板部24、及び、円柱部26を貫通している。減圧部28は、噴出口28aを有する。減圧部28における水路の断面積は、流入口22aの水路の断面積よりも小さい。本実施例では、減圧部28を通過した後の空気溶解加圧水の圧力が、大気圧よりも低い圧力になるように、減圧部28の水路の断面積が設定されている。なお、減圧部28の中心軸C2は、中心軸C1に対して平行であり、後述するホルダ部40の円板部46に対して直交する。
(Structure of Nozzle Body 20)
The configuration of the nozzle body 20 will be described with reference to FIGS. 1 to 3. FIG. In the following description, the X-axis direction parallel to the central axis C1 of the microbubble generating nozzle 10 in FIG. The orthogonal Y direction is called the left-right direction. As shown in FIG. 3, the nozzle body 20 includes a cylindrical portion 22, a disk portion 24, and a cylindrical portion 26. As shown in FIG. The cylindrical portion 22 is provided with an inlet 22a. A water supply pipe (not shown) for supplying air-dissolved pressurized water in which air is dissolved in water to the fine bubble generating nozzle 10 is connected to the cylindrical portion 22 . The disc portion 24 is provided between the cylindrical portion 22 and the cylindrical portion 26 . As shown in FIG. 2, the outer diameter of the disc portion 24 is larger than the outer diameter of the columnar portion 26 . The outer diameter of the cylindrical portion 26 is smaller than the outer diameter of the cylindrical portion 22 . The nozzle body 20 further includes two decompression sections 28 . The decompression portion 28 penetrates through the cylindrical portion 22 , the disk portion 24 and the cylindrical portion 26 . The decompression part 28 has an ejection port 28a. The cross-sectional area of the channel in the decompression part 28 is smaller than the cross-sectional area of the channel in the inlet 22a. In this embodiment, the cross-sectional area of the channel of the decompression section 28 is set so that the pressure of the air-dissolved pressurized water after passing through the decompression section 28 is lower than the atmospheric pressure. Note that the central axis C2 of the decompression part 28 is parallel to the central axis C1 and orthogonal to the disk part 46 of the holder part 40, which will be described later.

(ホルダ部40の構成)
続いて、図1、図2、図4を参照して、ホルダ部40の構成について説明する。なお、図4(a)は、ホルダ部40の斜視図であり、図4(b)はホルダ部40を後方から見た後面図である。図4(a)に示すように、ホルダ部40は、外側円筒部42と、2個の連結部52と、を備える。図2に示すように、外側円筒部42は、第1円筒部42aと、第2円筒部42bと、で構成される。第1円筒部42aの外径と第2円筒部42bの外径は一致する。第2円筒部42bの内径は、ノズル本体20の円板部24の外径と略一致する(図2参照)。第2円筒部42bの内径は、第1円筒部42aの内径よりも大きく、第1円筒部42aと第2円筒部42bとの間には、段差が設けられている。
(Configuration of holder portion 40)
Next, the configuration of the holder portion 40 will be described with reference to FIGS. 1, 2, and 4. FIG. 4(a) is a perspective view of the holder portion 40, and FIG. 4(b) is a rear view of the holder portion 40 as viewed from behind. As shown in FIG. 4( a ), the holder portion 40 includes an outer cylindrical portion 42 and two connecting portions 52 . As shown in FIG. 2, the outer cylindrical portion 42 is composed of a first cylindrical portion 42a and a second cylindrical portion 42b. The outer diameter of the first cylindrical portion 42a and the outer diameter of the second cylindrical portion 42b are the same. The inner diameter of the second cylindrical portion 42b substantially matches the outer diameter of the disk portion 24 of the nozzle body 20 (see FIG. 2). The inner diameter of the second cylindrical portion 42b is larger than the inner diameter of the first cylindrical portion 42a, and a step is provided between the first cylindrical portion 42a and the second cylindrical portion 42b.

図4(a)に示すように、連結部52は、外側円筒部42の外周面から外側に突出している。連結部52には、ネジ穴Bが設けられている。連結部52のネジ穴Bは、ホルダ部40を浴槽接続具(図示省略)に取付けるためのネジ穴である。なお、浴槽接続具は、微細気泡発生ノズル10を浴槽に取付けるための器具である。ホルダ部40内に、ノズル本体20を挿入した後に、浴槽接続具の取付穴(図示省略)と連結部52のネジ穴Bを位置合わせし、ネジ部材(図示省略)をネジ穴Bに螺合させることで、微細気泡発生ノズル10と浴槽接続具が連結される。 As shown in FIG. 4A , the connecting portion 52 protrudes outward from the outer peripheral surface of the outer cylindrical portion 42 . A screw hole B is provided in the connecting portion 52 . A screw hole B of the connecting portion 52 is a screw hole for attaching the holder portion 40 to a bathtub connector (not shown). The bathtub connector is a device for attaching the microbubble generating nozzle 10 to the bathtub. After inserting the nozzle body 20 into the holder part 40, the mounting hole (not shown) of the bathtub connector and the screw hole B of the connecting part 52 are aligned, and the screw member (not shown) is screwed into the screw hole B. By doing so, the fine bubble generating nozzle 10 and the bathtub connector are connected.

また、図2、図4(b)に示すように、外側円筒部42の内側には、内側円筒部44と、円板部46と、が設けられている。円板部46は、4個の接続部48を介して、外側円筒部42に接続されている。図2に示すように、内側円筒部44は、円板部46の後端46aから後方に延びている。内側円筒部44の外径は、円板部46の外径と一致する。内側円筒部44の外径は、外側円筒部42の内径よりも小さい。即ち、内側円筒部44と外側円筒部42との間には、隙間が設けられている。内側円筒部44と外側円筒部42との間の隙間によって4個の流出口50が形成される。内側円筒部44の内径は、ノズル本体20の円柱部26の外径よりも大きい。即ち、内側円筒部44と円柱部26との間には、隙間が設けられている。内側円筒部44の後端44aは、ノズル本体20の円板部24の前端24aと、円柱部26の前端26aとの間に位置する。 As shown in FIGS. 2 and 4B, an inner cylindrical portion 44 and a disk portion 46 are provided inside the outer cylindrical portion 42 . The disk portion 46 is connected to the outer cylindrical portion 42 via four connection portions 48 . As shown in FIG. 2, the inner cylindrical portion 44 extends rearward from the rear end 46a of the disk portion 46. As shown in FIG. The outer diameter of the inner cylindrical portion 44 matches the outer diameter of the disc portion 46 . The outer diameter of the inner cylindrical portion 44 is smaller than the inner diameter of the outer cylindrical portion 42 . That is, a gap is provided between the inner cylindrical portion 44 and the outer cylindrical portion 42 . A gap between the inner cylindrical portion 44 and the outer cylindrical portion 42 forms four outlets 50 . The inner diameter of the inner cylindrical portion 44 is larger than the outer diameter of the cylindrical portion 26 of the nozzle body 20 . That is, a gap is provided between the inner cylindrical portion 44 and the cylindrical portion 26 . A rear end 44 a of the inner cylindrical portion 44 is located between a front end 24 a of the disk portion 24 of the nozzle body 20 and a front end 26 a of the cylindrical portion 26 .

また、図2に示すように、ノズル本体20がホルダ部40に支持されている状態において、ホルダ部40内には、第1衝突室60と、第1水路62と、第2衝突室64と、第2水路66と、が形成される。第1衝突室60は、円板部46の後端46aとノズル本体20の円柱部26の前端26aとの間の領域であり、円板部46及び内側円筒部44によって画定される。第1衝突室60は、外径d1(内側円筒部44の内径)、及び、幅W1を有する領域である。第1衝突室60の容積V1は、以下の式(1)によって算出される。 Further, as shown in FIG. 2, in a state in which the nozzle body 20 is supported by the holder portion 40, the holder portion 40 includes a first collision chamber 60, a first water channel 62, and a second collision chamber 64. , a second channel 66 are formed. The first collision chamber 60 is the area between the rear end 46 a of the disk portion 46 and the front end 26 a of the cylindrical portion 26 of the nozzle body 20 , and is defined by the disk portion 46 and the inner cylindrical portion 44 . The first collision chamber 60 is a region having an outer diameter d1 (the inner diameter of the inner cylindrical portion 44) and a width W1. The volume V1 of the first collision chamber 60 is calculated by the following formula (1).

Figure 0007281307000001
Figure 0007281307000001

第1水路62は、第1衝突室60と第2衝突室64とを接続する水路である。第1水路62は、内側円筒部44と円柱部26との間の隙間によって形成される。 The first water channel 62 is a water channel that connects the first collision chamber 60 and the second collision chamber 64 . A first water channel 62 is formed by a gap between the inner cylindrical portion 44 and the columnar portion 26 .

第2衝突室64は、内側円筒部44の後端44aと円板部24の前端24aとの間の領域であり、外側円筒部42、円板部24、及び、円柱部26によって画定される。第2衝突室64は、内径d2(円柱部26の外径)、外径d3(第1円筒部42aの内径)、及び、幅W2を有する領域である。第2衝突室64の容積V2は、以下の式(2)によって算出される。なお、第2衝突室64の容積V2は、第1衝突室60の容積V1よりも大きい。 A second collision chamber 64 is the area between the rearward end 44a of the inner cylindrical portion 44 and the forward end 24a of the disk portion 24 and is defined by the outer cylindrical portion 42, the disk portion 24, and the cylindrical portion 26. . The second collision chamber 64 is a region having an inner diameter d2 (the outer diameter of the cylindrical portion 26), an outer diameter d3 (the inner diameter of the first cylindrical portion 42a), and a width W2. The volume V2 of the second collision chamber 64 is calculated by the following formula (2). Note that the volume V2 of the second collision chamber 64 is larger than the volume V1 of the first collision chamber 60 .

Figure 0007281307000002
Figure 0007281307000002

第2水路66は、第2衝突室64と流出口50とを接続する水路である。第2水路66は、外側円筒部42と内側円筒部44との間の隙間によって形成される。 The second water channel 66 is a water channel that connects the second collision chamber 64 and the outlet 50 . A second water channel 66 is formed by a gap between the outer cylindrical portion 42 and the inner cylindrical portion 44 .

続いて、図2、図5を参照して、微細気泡発生ノズル10内を空気溶解加圧水が流れる水路、及び、空気溶解加圧水が微細気泡発生ノズル10内を流れているときの空気溶解加圧水の圧力について説明する。なお、図2において、実線矢印は水の流路を示す。 Next, referring to FIGS. 2 and 5, a water channel through which the air-dissolved pressurized water flows in the microbubble generating nozzle 10, and the pressure of the air-dissolved pressurized water when the air-dissolved pressurized water flows in the microbubble generating nozzle 10. will be explained. In addition, in FIG. 2, the solid line arrow indicates the flow path of the water.

まず、ノズル本体20の流入口22aを介して、空気溶解加圧水が微細気泡発生ノズル10に流入する。この時点における空気溶解加圧水の圧力Vaは、大気圧よりも大きい(図5(a)参照)。そして、空気溶解加圧水は、減圧部28に流入する。空気溶解加圧水が減圧部28を通過することによって、空気溶解加圧水の流速が速くなり、この結果、空気溶解加圧水の圧力が大気圧よりも低い圧力Vbまで減圧される(図5(b)参照)。なお、この時点において、空気溶解加圧水内に気泡が生成される。 First, the air-dissolved pressurized water flows into the microbubble generating nozzle 10 through the inlet 22 a of the nozzle body 20 . The pressure Va of the air-dissolved pressurized water at this point is higher than the atmospheric pressure (see FIG. 5(a)). Then, the air-dissolved pressurized water flows into the decompression section 28 . As the air-dissolved pressurized water passes through the pressure reducing section 28, the flow velocity of the air-dissolved pressurized water increases, and as a result, the pressure of the air-dissolved pressurized water is reduced to a pressure Vb lower than the atmospheric pressure (see FIG. 5(b)). . At this point, air bubbles are generated in the air-dissolved pressurized water.

次いで、空気溶解加圧水は、噴出口28aを介して、ホルダ部40の第1衝突室60内に噴出される。空気溶解加圧水が第1衝突室60に噴出されることによって、空気溶解加圧水の流速が遅くなり、この結果、空気溶解加圧水の圧力が圧力Vcまで増圧される(図5(c)参照)。空気溶解加圧水の圧力が圧力Vcまで増圧されることによって、空気溶解加圧水内の気泡が収縮する。そして、空気溶解加圧水内の気泡の一部は、分裂して微細気泡になる。また、空気溶解加圧水内の気泡の一部は、空気溶解加圧水が円板部46に衝突することによって、より小さな気泡に分裂する。 Next, the air-dissolved pressurized water is jetted into the first collision chamber 60 of the holder portion 40 through the jet port 28a. As the air-dissolved pressurized water is ejected into the first collision chamber 60, the flow velocity of the air-dissolved pressurized water slows down, and as a result, the pressure of the air-dissolved pressurized water is increased to the pressure Vc (see FIG. 5(c)). By increasing the pressure of the air-dissolved pressurized water to the pressure Vc, the bubbles in the air-dissolved pressurized water contract. Some of the air bubbles in the air-dissolved pressurized water split into fine air bubbles. Also, some of the bubbles in the air-dissolved pressurized water are split into smaller bubbles when the air-dissolved pressurized water collides with the disk portion 46 .

次いで、円板部46に衝突した空気溶解加圧水は、第1水路62を通って、第2衝突室64に流入する。上述のように、第2衝突室64の容積V2は、第1衝突室60の容積V1よりも大きい。このため、第2衝突室64に流入した空気溶解加圧水の流速が遅くなり、この結果、空気溶解加圧水の圧力が圧力Vcよりも大きい圧力Vdまで増圧される(図5(d)参照)。これにより、第1衝突室60を通過した空気溶解加圧水内に残存している気泡が収縮し、気泡の一部が分裂して微細気泡になる。また、空気溶解加圧水内の気泡の一部は、空気溶解加圧水がノズル本体20の円板部24に衝突することによって、より小さな気泡に分裂する。 The air-dissolved pressurized water that has collided with the disk portion 46 then passes through the first water passage 62 and flows into the second collision chamber 64 . As mentioned above, the volume V2 of the second impingement chamber 64 is greater than the volume V1 of the first impingement chamber 60 . Therefore, the flow velocity of the air-dissolved pressurized water flowing into the second collision chamber 64 slows down, and as a result, the pressure of the air-dissolved pressurized water is increased to a pressure Vd higher than the pressure Vc (see FIG. 5(d)). As a result, the air bubbles remaining in the air-dissolved pressurized water that has passed through the first collision chamber 60 shrink, and some of the air bubbles split into fine air bubbles. Some of the bubbles in the air-dissolved pressurized water are split into smaller bubbles when the air-dissolved pressurized water collides with the disk portion 24 of the nozzle body 20 .

次いで、円板部24に衝突した空気溶解加圧水は、第2水路66及びホルダ部40の流出口50を通って、浴槽等の流出箇所に流出する。空気溶解加圧水の圧力は、流出箇所において、大気圧まで増圧される(図5(e)参照)。これにより、第2衝突室64を通過した空気溶解加圧水内に残存している気泡が収縮し、気泡の一部が分裂して微細気泡になる。なお、流出箇所に流出する空気溶解加圧水には、第1衝突室60及び第2衝突室64で生成された微細気泡も含まれる。これにより、流出箇所に大量の微細気泡が発生する。 Then, the air-dissolved pressurized water that has collided with the disk portion 24 passes through the second water channel 66 and the outlet 50 of the holder portion 40 and flows out to an outflow location such as a bathtub. The pressure of the air-dissolved pressurized water is increased to atmospheric pressure at the outflow point (see FIG. 5(e)). As a result, the air bubbles remaining in the air-dissolved pressurized water that has passed through the second collision chamber 64 shrink, and some of the air bubbles split into fine air bubbles. The air-dissolved pressurized water that flows out to the outflow location also contains fine air bubbles generated in the first collision chamber 60 and the second collision chamber 64 . As a result, a large amount of microbubbles are generated at the outflow location.

上述のように、ノズル本体20の減圧部28を通過して減圧された空気溶解加圧水は、第1衝突室60に流入することによって、圧力Vcまで増圧される(図5(c)参照)。また、第2衝突室64の容積V2が、第1衝突室60の容積V1より大きいために、第2衝突室64に流入する空気溶解加圧水の流速が遅くなり、この結果、空気溶解加圧水の圧力が圧力Vcよりも圧力Vdに増圧される(図5(d)参照)。その後、空気溶解加圧水が流出箇所に流出されると、空気溶解加圧水は、大気圧まで増圧される(図5(e)参照)。即ち、減圧部28で減圧された空気溶解加圧水は、大気圧まで徐々に増圧される。まず、空気溶解加圧水が大気圧よりも低い圧力Vbに減圧されることによって、空気溶解加圧水内に、気泡が生成される。そして、空気溶解加圧水の圧力が圧力Vcに増圧されることによって、空気溶解加圧水内の気泡の一部が、分裂して微細気泡になる。そして、空気溶解加圧水の圧力が圧力Vdまで増圧されると、第1衝突室60を通過した空気溶解加圧水内に残存している気泡の一部が、分裂して微細気泡になる。そして、空気溶解加圧水の圧力が大気圧まで増圧されると、第2衝突室64を通過した空気溶解加圧水内に残存している気泡の一部が、分裂して微細気泡になる。従って、微細気泡発生ノズル10内において、微細気泡に分裂する気泡の量を多くすることができ、流出箇所で発生する微細気泡の量を多くすることができる。 As described above, the air-dissolved pressurized water decompressed through the decompression part 28 of the nozzle body 20 flows into the first collision chamber 60 and is increased to the pressure Vc (see FIG. 5(c)). . Also, since the volume V2 of the second collision chamber 64 is larger than the volume V1 of the first collision chamber 60, the flow velocity of the air-dissolved pressurized water flowing into the second collision chamber 64 is slowed down, and as a result, the pressure of the air-dissolved pressurized water is increased from pressure Vc to pressure Vd (see FIG. 5(d)). Thereafter, when the air-dissolved pressurized water is discharged to the outflow location, the pressure of the air-dissolved pressurized water is increased to atmospheric pressure (see FIG. 5(e)). That is, the pressure of the air-dissolved pressurized water decompressed by the decompression unit 28 is gradually increased to the atmospheric pressure. First, air bubbles are generated in the air-dissolved pressurized water by depressurizing the air-dissolved pressurized water to a pressure Vb lower than the atmospheric pressure. Then, by increasing the pressure of the air-dissolved pressurized water to the pressure Vc, some of the bubbles in the air-dissolved pressurized water split and become fine bubbles. Then, when the pressure of the air-dissolved pressurized water is increased to the pressure Vd, some of the bubbles remaining in the air-dissolved pressurized water that has passed through the first collision chamber 60 split into fine bubbles. Then, when the pressure of the air-dissolved pressurized water is increased to the atmospheric pressure, some of the bubbles remaining in the air-dissolved pressurized water that has passed through the second collision chamber 64 split into fine bubbles. Therefore, in the fine bubble generating nozzle 10, the amount of bubbles split into fine bubbles can be increased, and the amount of fine bubbles generated at the outflow point can be increased.

また、ノズル本体20の減圧部28を通過することによって形成される気泡は、第1衝突室60の円板部46、及び、第2衝突室64の円板部24に衝突することによって、より小さな気泡に分裂する。従って、流出箇所で発生する微細気泡の量をより多くすることができる。 Further, the bubbles formed by passing through the decompression portion 28 of the nozzle body 20 collide with the disk portion 46 of the first collision chamber 60 and the disk portion 24 of the second collision chamber 64, thereby Break up into small bubbles. Therefore, it is possible to increase the amount of microbubbles generated at the outflow location.

(対応関係)
ホルダ部40の円板部46、ノズル本体20の円板部24が、それぞれ、「第1衝突壁」、「第2衝突壁」の一例である。
(correspondence relationship)
The disk portion 46 of the holder portion 40 and the disk portion 24 of the nozzle body 20 are examples of the "first collision wall" and the "second collision wall", respectively.

以上、各実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although each embodiment has been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

以下の変形例において、実施例と共通する構成については、同様の符号を付して、その説明を省略する。 In the following modified examples, the same reference numerals are given to the configurations common to the embodiment, and the description thereof is omitted.

(第1変形例)ノズル本体20に設けられる減圧部28の数は、2個に限定されず、1個でもよいし、3個以上でもよい。例えば、図6(a)(b)に示すように、ノズル本体120に、6個の減圧部128が設けられていてもよい。図6(b)に示すように、本変形例では、6個の減圧部128は、同心円状に設けられている。 (First Modification) The number of decompression units 28 provided in the nozzle body 20 is not limited to two, and may be one or three or more. For example, as shown in FIGS. 6A and 6B, the nozzle body 120 may be provided with six decompression units 128 . As shown in FIG. 6B, in this modification, the six decompression units 128 are provided concentrically.

(第2変形例)図7に示すように、ホルダ部240の円板部246に、複数個の孔246aが設けられていてもよい。ノズル本体20の減圧部28を通過して、第1衝突室60に流入する空気溶解加圧水の流速は、比較的に速い。本変形例では、第1衝突室60の円板部246に設けられている複数の孔246aによって、空気溶解加圧水が円板部246に衝突するときの衝撃が緩和される。従って、微細気泡発生ノズル10を使用中に発生する音を抑制することができる。本変形例では、複数個の孔246aが「凹凸」の一例である。なお、別の変形例では。円板部246に、複数個の凹部、複数個の凸部などが設けられていてもよい。 (Second Modification) As shown in FIG. 7, the disk portion 246 of the holder portion 240 may be provided with a plurality of holes 246a. The flow velocity of the air-dissolved pressurized water passing through the decompression portion 28 of the nozzle body 20 and flowing into the first collision chamber 60 is relatively high. In this modification, the plurality of holes 246 a provided in the disk portion 246 of the first collision chamber 60 mitigate the impact of the air-dissolved pressurized water colliding with the disk portion 246 . Therefore, the noise generated during use of the fine bubble generating nozzle 10 can be suppressed. In this modified example, the plurality of holes 246a is an example of "unevenness". Note that in another variant The disk portion 246 may be provided with a plurality of concave portions, a plurality of convex portions, and the like.

(第3変形例)図8(a)、(b)に示すように、ノズル本体320の減圧部328の中心軸C32が円板部46に対して傾斜していてもよい。なお、図8(a)は、ノズル本体320を左方から見た左側面図であり、図8(b)は、ノズル本体320を後方から見た後面図である。本変形例では、減圧部328の中心軸C32が円板部46に対して傾斜している。このため、噴出口328aを介して、ホルダ部40の第1衝突室60内に噴出される空気溶解加圧水は、円板部46に対して傾斜している状態で円板部46に衝突する。この場合、円板部46に衝突した後の空気溶解加圧水が、旋回流になり得る。これにより、第1衝突室60を通過した後において、空気溶解加圧水が撹拌され、空気溶解加圧水内の気泡が微細気泡に分裂することが促進される。従って、流出箇所で発生する微細気泡の量をより多くすることができる。 (Third Modification) As shown in FIGS. 8A and 8B, the central axis C32 of the decompression portion 328 of the nozzle body 320 may be inclined with respect to the disc portion 46 . 8A is a left side view of the nozzle body 320 viewed from the left, and FIG. 8B is a rear view of the nozzle body 320 viewed from the rear. In this modified example, the central axis C32 of the pressure reducing portion 328 is inclined with respect to the disc portion 46 . Therefore, the air-dissolved pressurized water ejected into the first collision chamber 60 of the holder portion 40 through the ejection port 328a collides with the disc portion 46 while being inclined with respect to the disc portion 46 . In this case, the air-dissolved pressurized water after colliding with the disk portion 46 can become a swirling flow. As a result, the air-dissolved pressurized water is agitated after passing through the first collision chamber 60, and the breakup of air bubbles in the air-dissolved pressurized water into fine bubbles is facilitated. Therefore, it is possible to increase the amount of microbubbles generated at the outflow location.

(第4変形例)上記の実施例では、微細気泡発生ノズル10に、空気溶解加圧水が流入する。変形例では、空気溶解加圧水に代えて、気体が溶解している気体溶解加圧水が微細気泡発生ノズル10に流入してもよい。このような構成によると、気体溶解加圧水が微細気泡発生ノズル10を通過することによって、流出箇所で発生する微細気泡の量を多くすることができる。気体は、例えば、炭酸ガス、酸素、水素等である。 (Fourth Modification) In the above embodiment, the air-dissolved pressurized water flows into the fine bubble generating nozzle 10 . In a modification, instead of the air-dissolved pressurized water, gas-dissolved pressurized water in which gas is dissolved may flow into the microbubble generating nozzle 10 . With such a configuration, the gas-dissolved pressurized water passes through the microbubble generating nozzle 10, thereby increasing the amount of microbubbles generated at the outflow location. The gas is, for example, carbon dioxide, oxygen, hydrogen, or the like.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in this specification or in the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims as of the filing. In addition, the techniques exemplified in this specification or drawings can simultaneously achieve a plurality of purposes, and achieving one of them has technical utility in itself.

10 :微細気泡発生ノズル
20 :ノズル本体
22 :円筒部
22a :流入口
24 :円板部
26 :円柱部
28 :減圧部
28a :噴出口
40 :ホルダ部
42 :外側円筒部
42a :第1円筒部
42b :第2円筒部
44 :内側円筒部
46 :円板部
48 :接続部
50 :流出口
52 :連結部
60 :第1衝突室
62 :第1水路
64 :第2衝突室
66 :第2水路
B :ネジ穴
10: Fine bubble generating nozzle 20: Nozzle main body 22: Cylindrical portion 22a: Inlet 24: Disk portion 26: Cylindrical portion 28: Decompression portion 28a: Jet port 40: Holder portion 42: Outer cylindrical portion 42a: First cylindrical portion 42b: Second cylindrical portion 44: Inner cylindrical portion 46: Disk portion 48: Connection portion 50: Outflow port 52: Connection portion 60: First collision chamber 62: First water channel 64: Second collision chamber 66: Second water channel B: screw hole

Claims (4)

浴槽に供給される水に微細気泡を発生させる微細気泡発生ノズルであって、
空気が水に溶解している空気溶解加圧水が流入する流入口と、
円柱部と、前記円柱部に設けられており、前記流入口から流入する空気溶解加圧水の圧力を大気圧よりも低い圧力に減圧し、減圧された空気溶解加圧水を噴出する噴出孔を有する減圧部と、を有するノズル本体と、
前記ノズル本体よりも下流側に設けられている第1衝突室であって、円板形状を有しており、前記減圧部の噴出孔に対向する位置に設けられており、前記減圧部の噴出孔から流入する空気溶解加圧水が衝突することによって空気溶解加圧水の流路の向きを変更させる第1衝突壁を備え、空気溶解加圧水の圧力は、前記第1衝突室に流入することによって、前記減圧部を通過した直後の圧力よりも高く、大気圧よりも低い第1圧力に増圧される、前記第1衝突室と、
前記第1衝突壁から前記ノズル本体側に延びる内側円筒部であって、前記内側円筒部の内径が前記円柱部の外径よりも大きい、前記内側円筒部と、
前記内側円筒部と前記円柱部との間に形成される第1水路と、
前記第1水路によって、前記第1衝突室と接続される第2衝突室であって、前記円柱部の外周面に接続されており、円環形状を有しており、前記第1衝突室を通過した空気溶解加圧水が衝突することによって空気溶解加圧水の流路の向きを変更させる第2衝突壁を備え、前記第2衝突室の容積は、前記第1衝突室の容積より大きく、空気溶解加圧水の圧力は、前記第2衝突室に流入することによって、前記第1圧力よりも高く、大気圧よりも低い第2圧力に増圧される、前記第2衝突室と、
前記第2衝突壁から前記第1衝突室側に延びる外側円筒部であって、前記外側円筒部の内径が前記内側円筒部の外径よりも大きい、前記外側円筒部と、
前記外側円筒部と前記内側円筒部との間に形成される第2水路と、
前記第2水路を介して前記第2衝突室と接続され、前記第2衝突室を通過した水を前記浴槽に流出させる流出口と、を備える、微細気泡発生ノズル。
A microbubble generating nozzle for generating microbubbles in water supplied to a bathtub ,
an inlet into which air-dissolved pressurized water in which air is dissolved in water flows;
a cylindrical portion; and a decompression portion provided in the cylindrical portion and having a jet hole for reducing the pressure of the air-dissolved pressurized water flowing in from the inlet to a pressure lower than the atmospheric pressure and jetting the reduced pressure-dissolved air-dissolved pressurized water. and a nozzle body having
A first collision chamber provided on the downstream side of the nozzle body, having a disk shape, and provided at a position facing the ejection hole of the decompression unit, and A first collision wall is provided for changing the direction of the flow path of the air-dissolved pressurized water by collision of the air-dissolved pressurized water flowing in from the hole, and the pressure of the air-dissolved pressurized water is reduced by flowing into the first collision chamber. said first impingement chamber being pressurized to a first pressure higher than the pressure immediately after passing through the section and lower than atmospheric pressure ;
an inner cylindrical portion extending from the first collision wall toward the nozzle body, the inner cylindrical portion having an inner diameter larger than an outer diameter of the cylindrical portion;
a first water channel formed between the inner cylindrical portion and the cylindrical portion;
A second collision chamber connected to the first collision chamber by the first water channel, is connected to the outer peripheral surface of the cylindrical portion, has an annular shape, and is connected to the first collision chamber. A second collision wall is provided for changing the flow path direction of the air-dissolved pressurized water by collision of the passed air-dissolved pressurized water, wherein the volume of the second collision chamber is larger than the volume of the first collision chamber, and the volume of the air-dissolved pressurized water is greater than that of the first collision chamber. the second impingement chamber, wherein the pressure of pressurized water is increased to a second pressure higher than the first pressure and lower than atmospheric pressure by flowing into the second impingement chamber;
an outer cylindrical portion extending from the second collision wall toward the first collision chamber, wherein the inner diameter of the outer cylindrical portion is larger than the outer diameter of the inner cylindrical portion;
a second water channel formed between the outer cylindrical portion and the inner cylindrical portion;
an outflow port connected to the second collision chamber through the second water channel, and configured to flow water that has passed through the second collision chamber into the bathtub .
前記第1衝突壁の空気溶解加圧水が衝突する面に凹凸が設けられている、請求項1に記載の微細気泡発生ノズル。 2. The nozzle for generating microbubbles according to claim 1, wherein a surface of said first collision wall with which the air-dissolved pressurized water collides is provided with irregularities. 前記減圧部の中心軸が、前記第1衝突壁に対して傾斜している、請求項1又は2に記載の微細気泡発生ノズル。 3. The micro-bubble generating nozzle according to claim 1, wherein the central axis of said decompression part is inclined with respect to said first collision wall. 浴槽に供給される水に微細気泡を発生させる微細気泡発生ノズルであって、
気体が水に溶解している気体溶解加圧水が流入する流入口と、
円柱部と、前記円柱部に設けられており、前記流入口から流入する気体溶解加圧水の圧力を大気圧よりも低い圧力に減圧し、減圧された気体溶解加圧水を噴出する噴出孔を有する減圧部と、を有するノズル本体と、
前記ノズル本体よりも下流側に設けられている第1衝突室であって、円板形状を有しており、前記減圧部の噴出孔に対向する位置に設けられており、前記減圧部の噴出孔から流入する気体溶解加圧水が衝突することによって気体溶解加圧水の流路の向きを変更させる第1衝突壁を備え、気体溶解加圧水の圧力は、前記第1衝突室に流入することによって、前記減圧部を通過した直後の圧力よりも高く、大気圧よりも低い第1圧力に増圧される、前記第1衝突室と、
前記第1衝突壁から前記ノズル本体側に延びる内側円筒部であって、前記内側円筒部の内径が前記円柱部の外径よりも大きい、前記内側円筒部と、
前記内側円筒部と前記円柱部との間に形成される第1水路と、
前記第1水路によって、前記第1衝突室と接続される第2衝突室であって、前記円柱部の外周面に接続されており、円環形状を有しており、前記第1衝突室を通過した気体溶解加圧水が衝突することによって気体溶解加圧水の流路の向きを変更させる第2衝突壁を備え、前記第2衝突室の容積は、前記第1衝突室の容積より大きく、気体溶解加圧水の圧力は、前記第2衝突室に流入することによって、前記第1圧力よりも高く、大気圧よりも低い第2圧力に増圧される、前記第2衝突室と、
前記第2衝突壁から前記第1衝突室側に延びる外側円筒部であって、前記外側円筒部の内径が前記内側円筒部の外径よりも大きい、前記外側円筒部と、
前記外側円筒部と前記内側円筒部との間に形成される第2水路と、
前記第2水路を介して前記第2衝突室と接続され、前記第2衝突室を通過した水を前記浴槽に流出させる流出口と、を備える、微細気泡発生ノズル。
A microbubble generating nozzle for generating microbubbles in water supplied to a bathtub ,
an inlet into which gas-dissolved pressurized water in which gas is dissolved in water flows;
and a decompression part provided in the cylindrical part and having a jet hole for reducing the pressure of the gas-dissolved pressurized water flowing in from the inlet to a pressure lower than the atmospheric pressure and jetting out the reduced gas-dissolved pressurized water. and a nozzle body having
A first collision chamber provided on the downstream side of the nozzle body, having a disk shape, and provided at a position facing the ejection hole of the decompression unit, and A first collision wall is provided for changing the direction of the flow path of the gas-dissolved pressurized water by colliding with the gas-dissolved pressurized water flowing in from the hole, and the pressure of the gas-dissolved pressurized water is reduced by flowing into the first collision chamber. said first impingement chamber being pressurized to a first pressure higher than the pressure immediately after passing through the section and lower than atmospheric pressure ;
an inner cylindrical portion extending from the first collision wall toward the nozzle body, the inner cylindrical portion having an inner diameter larger than an outer diameter of the cylindrical portion;
a first water channel formed between the inner cylindrical portion and the cylindrical portion;
A second collision chamber connected to the first collision chamber by the first water channel, is connected to the outer peripheral surface of the cylindrical portion, has an annular shape, and is connected to the first collision chamber. a second collision wall for changing the direction of the flow path of the gas-dissolved pressurized water by collision of the passed gas-dissolved pressurized water, wherein the volume of the second collision chamber is larger than the volume of the first collision chamber, and the second impingement chamber, wherein the pressure of pressurized water is increased to a second pressure higher than the first pressure and lower than atmospheric pressure by flowing into the second impingement chamber;
an outer cylindrical portion extending from the second collision wall toward the first collision chamber, wherein the inner diameter of the outer cylindrical portion is larger than the outer diameter of the inner cylindrical portion;
a second water channel formed between the outer cylindrical portion and the inner cylindrical portion;
an outflow port connected to the second collision chamber through the second water channel, for causing water that has passed through the second collision chamber to flow out to the bathtub .
JP2019041978A 2018-09-26 2019-03-07 Fine bubble generation nozzle Active JP7281307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910881695.1A CN110947535A (en) 2018-09-26 2019-09-18 Micro-bubble generating nozzle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018180352 2018-09-26
JP2018180352 2018-09-26

Publications (2)

Publication Number Publication Date
JP2020054987A JP2020054987A (en) 2020-04-09
JP7281307B2 true JP7281307B2 (en) 2023-05-25

Family

ID=70105913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041978A Active JP7281307B2 (en) 2018-09-26 2019-03-07 Fine bubble generation nozzle

Country Status (1)

Country Link
JP (1) JP7281307B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7285176B2 (en) * 2019-09-05 2023-06-01 リンナイ株式会社 Fine bubble generation nozzle
TWI750883B (en) * 2020-11-04 2021-12-21 毅強光電有限公司 Micro bubble generator

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118542A (en) 2003-09-24 2005-05-12 Matsushita Electric Works Ltd Microbubble generator
JP2006320886A (en) 2005-05-13 2006-11-30 Taichi Inada Micron bubble generator
JP2007167557A (en) 2005-12-26 2007-07-05 Gastar Corp Fine air bubble jet nozzle and fine air bubble generator using the same
CN101101087A (en) 2006-07-05 2008-01-09 稻田太一 Pipe system for producing super fine air bubble in water
JP2008149209A (en) 2006-12-14 2008-07-03 Marcom:Kk Fine air bubble producer and fine air bubble supply system
JP2009082906A (en) 2007-09-12 2009-04-23 Yamaha Motor Co Ltd Bubble generator and bubble generation device
JP2009082841A (en) 2007-09-30 2009-04-23 Sanso Electric Co Ltd Microbubble generation nozzle
JP2010155191A (en) 2008-12-26 2010-07-15 Daikin Ind Ltd Device for generating microbubble
JP2013173118A (en) 2012-02-27 2013-09-05 Shibaura Mechatronics Corp Device and method for generating micro bubble and device and method for processing substrate
JP2015077566A (en) 2013-10-17 2015-04-23 株式会社アスプ Air-containing liquid generation device and ejection mechanism for air-containing liquid
JP2017176950A (en) 2016-03-29 2017-10-05 三相電機株式会社 Nozzle and fine bubble generator
CN207271082U (en) 2017-09-08 2018-04-27 北京爱尔斯生态环境工程有限公司 A kind of ultramicro air bubble occurrence of equipment and device for generating super-fine air bubble

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005118542A (en) 2003-09-24 2005-05-12 Matsushita Electric Works Ltd Microbubble generator
JP2006320886A (en) 2005-05-13 2006-11-30 Taichi Inada Micron bubble generator
JP2007167557A (en) 2005-12-26 2007-07-05 Gastar Corp Fine air bubble jet nozzle and fine air bubble generator using the same
CN101101087A (en) 2006-07-05 2008-01-09 稻田太一 Pipe system for producing super fine air bubble in water
JP2008149209A (en) 2006-12-14 2008-07-03 Marcom:Kk Fine air bubble producer and fine air bubble supply system
JP2009082906A (en) 2007-09-12 2009-04-23 Yamaha Motor Co Ltd Bubble generator and bubble generation device
JP2009082841A (en) 2007-09-30 2009-04-23 Sanso Electric Co Ltd Microbubble generation nozzle
JP2010155191A (en) 2008-12-26 2010-07-15 Daikin Ind Ltd Device for generating microbubble
JP2013173118A (en) 2012-02-27 2013-09-05 Shibaura Mechatronics Corp Device and method for generating micro bubble and device and method for processing substrate
JP2015077566A (en) 2013-10-17 2015-04-23 株式会社アスプ Air-containing liquid generation device and ejection mechanism for air-containing liquid
JP2017176950A (en) 2016-03-29 2017-10-05 三相電機株式会社 Nozzle and fine bubble generator
CN207271082U (en) 2017-09-08 2018-04-27 北京爱尔斯生态环境工程有限公司 A kind of ultramicro air bubble occurrence of equipment and device for generating super-fine air bubble

Also Published As

Publication number Publication date
JP2020054987A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP7281307B2 (en) Fine bubble generation nozzle
JP6417158B2 (en) Fluid nozzle
JP2015516191A (en) shower head
JP5167040B2 (en) Injection nozzle for inner surface irradiation
JP6649304B2 (en) Cavitation jet nozzle and fluid ejection device
JP2019166493A (en) Fine bubble generation nozzle
JP2018089597A (en) One fluid nozzle
JP7265934B2 (en) Fine bubble generation nozzle
JP2006255865A (en) Surface modification method for metallic material, semiconductor material, and the like, modification device implementing it, and cavitation shotless peening method exhibiting high machinability
JP7329397B2 (en) Fine bubble generating nozzle body
JP2001269603A (en) Fluid jetting nozzle
CN110947535A (en) Micro-bubble generating nozzle
JP7232713B2 (en) Fine bubble generation nozzle
JP7285176B2 (en) Fine bubble generation nozzle
JPH0985625A (en) Liquid injection nozzle, manufacture of the nozzle and stress relieving device using the nozzle
US20230390713A1 (en) Fine bubble generating nozzle
JP2014226251A (en) Bathtub system
JP6990848B2 (en) Injection nozzle and injection method
JP2010120138A (en) Particle blasting nozzle
JP4766623B2 (en) Gas-liquid mixed flow injection device
JP7395152B2 (en) Fine bubble generating nozzle body
JP2007152169A (en) Liquid discharge nozzle
JP4246550B2 (en) Injection nozzle
JPH05162311A (en) Pressure generating chamber of ink jet
JP4057292B2 (en) Injection nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7281307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150