JP5167040B2 - Injection nozzle for inner surface irradiation - Google Patents

Injection nozzle for inner surface irradiation Download PDF

Info

Publication number
JP5167040B2
JP5167040B2 JP2008233338A JP2008233338A JP5167040B2 JP 5167040 B2 JP5167040 B2 JP 5167040B2 JP 2008233338 A JP2008233338 A JP 2008233338A JP 2008233338 A JP2008233338 A JP 2008233338A JP 5167040 B2 JP5167040 B2 JP 5167040B2
Authority
JP
Japan
Prior art keywords
passage
pipe member
hole inner
swirl flow
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008233338A
Other languages
Japanese (ja)
Other versions
JP2010064194A (en
Inventor
修一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2008233338A priority Critical patent/JP5167040B2/en
Publication of JP2010064194A publication Critical patent/JP2010064194A/en
Application granted granted Critical
Publication of JP5167040B2 publication Critical patent/JP5167040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加工対象物の穴内面にショットブラストやショットピーニングを照射する穴内面照射用噴射ノズルに関する。   The present invention relates to a hole inner surface irradiation nozzle for irradiating shot blasting or shot peening on a hole inner surface of a workpiece.

従来より、機械部品等のワークの表面を硬化または研掃するための手段として、圧縮空気によって硬質粒子をワークに噴射衝突させるショットピーニングやショットブラストといった方法が知られている。とくに、ワークの円筒穴内面に照射する場合に、噴射ノズルの噴出口の先に偏向部材を配設し、偏向部材により硬質粒子を含む噴流を偏向させて、円筒穴面に照射するようにした照射ノズルが知られている(例えば特許文献1参照)。この特許文献1記載の噴射ノズルでは、ノズル管路内に管軸方向に沿って支柱を延設し、この支柱の先端に偏向部材が支持される。支柱は支持部材によってノズル管路の周面から支持され、支持部材の上流側から高圧エアとともに硬質粒子が供給される。   Conventionally, methods such as shot peening and shot blasting in which hard particles are jetted into and collided with compressed air are known as means for hardening or abrading the surface of a workpiece such as a machine part. In particular, when irradiating the inner surface of the cylindrical hole of the workpiece, a deflecting member is disposed at the tip of the jet nozzle outlet, and the jet containing hard particles is deflected by the deflecting member to irradiate the cylindrical hole surface. An irradiation nozzle is known (see, for example, Patent Document 1). In the injection nozzle described in Patent Document 1, a support column is extended in the nozzle axis along the tube axis direction, and a deflection member is supported at the tip of the support column. The support column is supported from the peripheral surface of the nozzle pipe line by the support member, and hard particles are supplied together with high-pressure air from the upstream side of the support member.

特開2000−343429号公報JP 2000-343429 A

しかしながら、上記特許文献1記載の照射ノズルでは、支持部材の上流側から高圧エアとともに硬質粒子が供給されるので、支持部材による流れの損失が大きく、噴射効率が悪い。   However, in the irradiation nozzle described in Patent Document 1, since hard particles are supplied together with high-pressure air from the upstream side of the support member, the flow loss due to the support member is large and the injection efficiency is poor.

本発明は、加工対象物の穴内面に圧縮空気により硬質粒子を照射する穴内面照射用噴射ノズルであって、硬質粒子照射用の通路を有する管部材と、管部材の端部の噴出口から噴射された硬質粒子を加工対象物の穴内面に向けて偏向する偏向部材と、通路内に延設され、先端部に偏向部材が取り付けられる棒部材と、通路内にて棒部材を支持する支持部材と、管部材の内周面に沿って旋回しつつ噴出口に向けて流れるように圧縮空気に旋回流を発生させる旋回流発生機構とを備え、支持部材は、旋回流が発生する管部材の内周面から軸方向もしくは径方向に離間して設けられることを特徴とする。   The present invention is a hole inner surface irradiation spray nozzle that irradiates hard particles with compressed air on the inner surface of a hole of a workpiece, and includes a tube member having a path for hard particle irradiation, and a jet outlet at an end of the tube member. A deflection member that deflects the ejected hard particles toward the inner surface of the hole of the workpiece, a rod member that extends in the passage and has a deflection member attached to the tip, and a support that supports the rod member in the passage And a swirl flow generating mechanism for generating a swirl flow in the compressed air so as to flow toward the jet outlet while swirling along the inner peripheral surface of the tube member, and the support member is a tube member that generates the swirl flow It is characterized by being provided apart from the inner peripheral surface in the axial direction or radial direction.

本発明は、加工対象物の穴内面に圧縮空気により硬質粒子を照射する穴内面照射用噴射ノズルであって、一端部の供給口から供給される硬質粒子を他端部の噴出口から噴出させるための通路を有する管部材と、前記管部材の端部の噴出口から噴射された前記硬質粒子を加工対象物の穴内面に向けて偏向する偏向部材と、前記通路内に延設され、先端部に前記偏向部材が取り付けられる棒部材と、前記通路内にて前記棒部材を支持する支持部材と、前記管部材の内周面に沿って旋回しつつ前記噴出口に向けて流れるように前記圧縮空気に旋回流を発生させる旋回流発生機構とを備え、前記管部材は、先端部に前記噴出口が開口され、基端部に前記旋回流発生機構が設けられた第1の管部材と、前記第1の管部材の前記基端部に連設され、前記第1の管部材内に前記硬質粒子を導く第2の管部材とを有し、前記支持部材は、前記第2の管部材に設けられることを特徴とする。 The present invention is a hole inner surface irradiation spray nozzle that irradiates hard particles with compressed air onto a hole inner surface of a workpiece , and ejects hard particles supplied from a supply port at one end from an outlet at the other end. a tube member having a passage for a deflection member for deflecting toward the hard particles ejected from the ejection port of the other end portion of the tube member into the hole inner surface of the object, is extended into the passage, A rod member to which the deflection member is attached at the tip, a support member that supports the rod member in the passage, and a flow toward the jet port while turning along the inner peripheral surface of the tube member A swirl flow generating mechanism for generating a swirl flow in the compressed air, and the tube member is a first tube member in which the spout is opened at a distal end and the swirl flow generating mechanism is provided at a proximal end. And connected to the base end of the first pipe member, And a second tubular member that guides the hard particles within a tubular member, the support member may be provided in the second tubular member.

−第1の実施の形態−
以下、図1、2を参照して本発明による穴内面照射用噴射ノズルの第1の実施の形態について説明する。
図1(a)は、第1の実施の形態に係る穴内面照射用噴射ノズルの概略構成を示す断面図である。この噴射ノズルは、例えば油圧ポンプのシリンダブロックに設けられたピストン挿入用の円筒穴の内面に、ショットブラストやショットピーニング加工をするために用いられる。すなわち噴射ノズルは、鉄鋼材料やガラス、セラミックなどの硬質粒子を噴射し、衝突させることにより、穴内面の表面研掃や表面硬化を行うものである。
-First embodiment-
A first embodiment of a hole inner surface irradiation nozzle according to the present invention will be described below with reference to FIGS.
Fig.1 (a) is sectional drawing which shows schematic structure of the injection nozzle for hole inner surface irradiation which concerns on 1st Embodiment. This injection nozzle is used, for example, for performing shot blasting or shot peening on the inner surface of a cylindrical hole for inserting a piston provided in a cylinder block of a hydraulic pump. That is, the jet nozzle jets hard particles such as steel material, glass, ceramic, etc. and collides them to perform surface cleaning and surface hardening of the inner surface of the hole.

図1(a)に示す噴射ノズルは、流路管1と、流路管1に直列かつ流路管1と同軸上に配設された吸入管2とを有する。吸入管2は流路管1の端部の隔壁9を貫通して支持されている。流路管1と吸入管2は、硬質粒子7の通過用の通路PS1,PS2を形成する。なお、隔壁9は後述のチャンバ11を形成する。   The injection nozzle shown in FIG. 1A includes a flow channel pipe 1 and a suction pipe 2 arranged in series with the flow path tube 1 and coaxially with the flow path tube 1. The suction pipe 2 is supported through the partition wall 9 at the end of the flow path pipe 1. The channel tube 1 and the suction tube 2 form passages PS1 and PS2 for the passage of the hard particles 7. The partition wall 9 forms a chamber 11 described later.

流路管1の内部にはその軸線に沿って棒部材3が延設されている。棒部材3の一端部は、流路管1の端部の噴出口1aよりも外側に突出し、その一端部に偏向部材4が取り付けられている。偏向部材4は、噴出口1aに対向し径方向外側にかけてラッパ状(円錐状)に広がるテーパ面4aを有し、噴出口1aから噴射された硬質粒子7がテーパ面4aに衝突することで、硬質粒子7の噴射方向が偏向される。   A rod member 3 extends along the axis of the channel tube 1. One end of the rod member 3 protrudes outward from the jet outlet 1a at the end of the flow channel tube 1, and the deflection member 4 is attached to the one end. The deflecting member 4 has a tapered surface 4a that faces the ejection port 1a and spreads in a trumpet shape (conical shape) outward in the radial direction, and the hard particles 7 ejected from the ejection port 1a collide with the tapered surface 4a. The injection direction of the hard particles 7 is deflected.

棒部材3の他端部は吸入管2内に挿入されている。図1(a)のb−b線断面図である図1(b)に示すように、棒部材3の周囲には例えば周方向3カ所に棒状の支持部5が設けられ、棒部材3はこれら支持部5を介して吸入管2の内周面から支持されている。図1(a)の支持部5の上流側(図の右側)には、硬質粒子7の供給源である粒子供給部(不図示)が設けられ、硬質粒子7は、この粒子供給部から支持部5の隙間を通過して流路管1内に供給される。   The other end of the bar member 3 is inserted into the suction pipe 2. As shown in FIG. 1B, which is a cross-sectional view taken along the line bb of FIG. 1A, rod-like support portions 5 are provided around the rod member 3 at, for example, three circumferential directions. It is supported from the inner peripheral surface of the suction pipe 2 through these support portions 5. A particle supply unit (not shown) as a supply source of the hard particles 7 is provided on the upstream side (right side in the drawing) of the support unit 5 in FIG. 1A, and the hard particles 7 are supported from the particle supply unit. It passes through the gap of the part 5 and is supplied into the flow path pipe 1.

流路管1の端部において、流路管1の周囲にはチャンバ11が設けられている。チャンバ11には送入管14が接続され、送入管14を介してチャンバ11内に圧縮空気が供給される。流路管1の端部には、吸入管2の先端部よりも上流側にて、隔壁9との間に全周にわたり環状の細隙12が設けられ、細隙12を介してチャンバ11と流路管1内の通路PS2とが連通している。さらに流路管1には、細隙12から通路下流側(図の左側)にかけて通路PS2の内径が徐々に縮小する傾斜面部13が形成され、吸入管2の端部はこの傾斜面部13の内側に傾斜面部13から離間して配置されている。以上のチャンバ11と細隙12と傾斜面部13は旋回流発生機構10を構成する。   A chamber 11 is provided around the channel tube 1 at the end of the channel tube 1. An inlet pipe 14 is connected to the chamber 11, and compressed air is supplied into the chamber 11 through the inlet pipe 14. An annular slit 12 is provided at the end portion of the flow channel pipe 1 over the entire circumference with the partition wall 9 on the upstream side of the distal end portion of the suction pipe 2. The passage PS2 in the flow channel pipe 1 is in communication. Further, the flow path pipe 1 is formed with an inclined surface portion 13 in which the inner diameter of the passage PS2 gradually decreases from the slit 12 to the downstream side of the passage (left side in the figure), and the end portion of the suction pipe 2 is located inside the inclined surface portion 13. Are spaced apart from the inclined surface portion 13. The chamber 11, the slit 12, and the inclined surface portion 13 constitute a swirl flow generating mechanism 10.

第1の実施の形態に係る噴射ノズルの動作を説明する。送入管14を介してチャンバ11内に送入された圧縮空気は、チャンバ11内に蓄えられた後、細隙12を介して全周方向から均一に通路SP2内に噴出する。通路SP2内に噴出した空気は、傾斜面部13に沿って旋回しながら流れ、旋回流(いわゆるコアンダスパイラルフロー)が形成される。この旋回流は流路管1の内周面に沿って通路PS2内を流れ、噴出口1aから噴出する。   The operation of the injection nozzle according to the first embodiment will be described. The compressed air sent into the chamber 11 via the feed pipe 14 is stored in the chamber 11 and then jetted uniformly into the passage SP2 from the entire circumference via the slit 12. The air ejected into the passage SP2 flows while swirling along the inclined surface portion 13, and a swirling flow (so-called Coanda spiral flow) is formed. This swirling flow flows in the passage PS2 along the inner peripheral surface of the flow channel tube 1 and is ejected from the ejection port 1a.

このとき旋回流の中心部は負圧となるため、吸入管2内の硬質粒子7が負圧により吸引され、通路PS2内に導かれる。通路PS2内に導かれた硬質粒子7は、旋回流の流れに沿って搬送され、図2(a)に示すように噴出口1aから噴出する。噴出した硬質粒子7は偏向部材4のテーパ面4aに衝突および反射して偏向され、径方向外側の加工面6(シリンダブロックの円筒穴内面)に向けて噴射される。あるいは偏向部材4に衝突せずにそのまま加工面6に向けて噴射される。これにより加工面6の硬化または研掃が行われる。   At this time, since the central portion of the swirling flow has a negative pressure, the hard particles 7 in the suction pipe 2 are sucked by the negative pressure and guided into the passage PS2. The hard particles 7 guided into the passage PS2 are transported along the flow of the swirling flow and ejected from the ejection port 1a as shown in FIG. The ejected hard particles 7 are deflected by colliding and reflecting on the tapered surface 4a of the deflecting member 4, and are ejected toward the processing surface 6 on the radially outer side (the inner surface of the cylindrical hole of the cylinder block). Alternatively, it is injected toward the machining surface 6 without colliding with the deflecting member 4. Thereby, the processing surface 6 is hardened or polished.

第1の実施の形態によれば以下のような作用効果を奏することができる。
(1)流路管1と吸入管2を連設して硬質粒子照射用の通路PS1,PS2を形成し、その通路PS1,PS2内に棒部材3を延設するとともに、支持部5を介して棒部材3を吸入管2の内周面から支持し、棒部材3の先端に偏向部材4を取り付け、流路管1の端部に旋回流を発生させる旋回流発生機構10を設けた。これにより支持部5が流路管1の内周面から離間して設けられるので、支持部5により旋回流れが妨げられることを防止でき、噴射効率を向上できる。また、吸入管2には圧縮空気が流れないため、支持部5に圧縮噴流が衝突することがなく、支持部5の損傷等を防止できる。
According to 1st Embodiment, there can exist the following effects.
(1) The flow path pipe 1 and the suction pipe 2 are connected to form the paths PS1 and PS2 for irradiating the hard particles, the rod member 3 is extended in the paths PS1 and PS2, and the support section 5 is interposed therebetween. The bar member 3 is supported from the inner peripheral surface of the suction pipe 2, the deflection member 4 is attached to the tip of the bar member 3, and the swirl flow generating mechanism 10 that generates the swirl flow at the end of the flow path pipe 1 is provided. Thereby, since the support part 5 is provided away from the inner peripheral surface of the flow channel tube 1, it is possible to prevent the swirling flow from being hindered by the support part 5, and to improve the injection efficiency. Further, since compressed air does not flow through the suction pipe 2, the compressed jet does not collide with the support portion 5, and damage to the support portion 5 can be prevented.

(2)流路管1の端部の噴出口1aから旋回流に沿って硬質粒子7が噴出されるので、図2(b)に示すような硬質粒子7の偏向部材4への直線的な衝突を避けることができ、偏向部材1の表面の損傷を抑えることができる。また、直線的な圧縮噴流が流れる場合に比べ、流路管1の内壁の磨耗も抑えることができる。
(3)流路管1の端部の隔壁9を貫通して吸入管2を設け、流路管1の周囲に圧縮空気用チャンバ11を形成して、チャンバ11と通路SP2とを流路管1の端部と隔壁9との間の環状の細隙12を介して連通するとともに、細隙12から通路下流側にかけて通路径が縮小するように傾斜面部13を形成した。これにより旋回流の発生部において吸入管2から硬質粒子7を吸い込むことができ、効率的である。
(4)流路管1と吸入管2を互いに同軸上に設け、棒部材3を吸入管2の軸中心上で支持するようにしたので、棒部材3が旋回流れの妨げとなることを防止できる。
(2) Since the hard particles 7 are ejected from the jet outlet 1a at the end of the flow channel pipe 1 along the swirling flow, the hard particles 7 linear to the deflecting member 4 as shown in FIG. Collisions can be avoided and damage to the surface of the deflecting member 1 can be suppressed. In addition, wear of the inner wall of the flow channel pipe 1 can be suppressed as compared with the case where a linear compression jet flows.
(3) The suction pipe 2 is provided through the partition wall 9 at the end of the flow pipe 1, the compressed air chamber 11 is formed around the flow pipe 1, and the chamber 11 and the passage SP2 are connected to the flow pipe. The inclined surface portion 13 was formed so as to be communicated via an annular slit 12 between one end portion and the partition wall 9 and the passage diameter was reduced from the slit 12 toward the downstream side of the passage. As a result, the hard particles 7 can be sucked from the suction pipe 2 in the swirl flow generating portion, which is efficient.
(4) Since the flow channel pipe 1 and the suction pipe 2 are provided coaxially with each other and the bar member 3 is supported on the axial center of the suction pipe 2, the bar member 3 is prevented from obstructing the swirling flow. it can.

−第2の実施の形態−
図3,4を参照して本発明による穴内面照射用噴射ノズルの第2の実施の形態について説明する。
図3は、第2の実施の形態に係る穴内面照射用噴射ノズルの概略構成を示す断面図である。なお、図1と同一の箇所には同一の符号を付し、以下では、第1の実施の形態との相違点を主に説明する。第2の実施の形態が第1の実施の形態と異なるのは、流路管1内の通路PS2の形状である。
-Second Embodiment-
With reference to FIGS. 3 and 4, a second embodiment of the injection nozzle for hole inner surface irradiation according to the present invention will be described.
FIG. 3 is a cross-sectional view showing a schematic configuration of a hole inner surface irradiation nozzle according to the second embodiment. In addition, the same code | symbol is attached | subjected to the location same as FIG. 1, and the difference with 1st Embodiment is mainly demonstrated below. The second embodiment differs from the first embodiment in the shape of the passage PS2 in the flow channel pipe 1.

すなわち、図3に示すように流路管1の内周面には、傾斜面部13よりも下流側に、通路下流側にかけて通路PS2の内径が徐々に縮小する傾斜面部15が設けられている。このように傾斜面部15を設けることで、通路径が絞られて旋回流が加速され、硬質粒子7が加工面6に衝突する際の衝撃力を高めることができる。その結果、加工面6の硬化および研掃の効果を高めることができる。   That is, as shown in FIG. 3, the inner peripheral surface of the flow channel pipe 1 is provided with an inclined surface portion 15 on the downstream side of the inclined surface portion 13 so that the inner diameter of the passage PS2 gradually decreases toward the downstream side of the passage. By providing the inclined surface portion 15 in this manner, the passage diameter is reduced, the swirling flow is accelerated, and the impact force when the hard particles 7 collide with the machining surface 6 can be increased. As a result, the effect of hardening and scouring of the processed surface 6 can be enhanced.

なお、傾斜面部15は1カ所に限らず、複数箇所に設けてもよい。図4は、傾斜面部15を2カ所設けた例である。このように傾斜面部15を複数設けることで、旋回流をより加速することができ、加工面6の硬化および研掃の効果をより高めることができる。なお、傾斜面部15の絞り量を大きくしすぎると、流路管1の内壁面の磨耗が問題となるため、絞り量が大きい場合には、傾斜面部15を複数設けて絞り領域を複数に分けることが好ましい。   In addition, you may provide the inclined surface part 15 not only in one place but in multiple places. FIG. 4 is an example in which two inclined surface portions 15 are provided. By providing a plurality of inclined surface portions 15 in this way, the swirl flow can be further accelerated, and the effect of hardening and scouring the processed surface 6 can be further enhanced. If the amount of restriction on the inclined surface portion 15 is excessively large, wear of the inner wall surface of the flow channel pipe 1 becomes a problem. Therefore, when the amount of restriction is large, a plurality of inclined surface portions 15 are provided to divide the restriction region into a plurality of regions. It is preferable.

−第3の実施の形態−
図5を参照して本発明による穴内面照射用噴射ノズルの第3の実施の形態について説明する。
図5は、第3の実施の形態に係る穴内面照射用噴射ノズルの概略構成を示す断面図である。なお、図1と同一の箇所には同一の符号を付し、以下では、第1の実施の形態との相違点を主に説明する。第3の実施の形態が第1の実施の形態と異なるのは、流路管1内の通路PS2の形状である。
-Third embodiment-
With reference to FIG. 5, a third embodiment of the injection nozzle for hole inner surface irradiation according to the present invention will be described.
FIG. 5 is a cross-sectional view illustrating a schematic configuration of a hole inner surface irradiation nozzle according to the third embodiment. In addition, the same code | symbol is attached | subjected to the location same as FIG. 1, and the difference with 1st Embodiment is mainly demonstrated below. The third embodiment differs from the first embodiment in the shape of the passage PS2 in the flow channel pipe 1.

すなわち、図5に示すように流路管1の内周面には、噴出口1aを終端とした通路下流側にかけて通路PS2の内径が徐々に拡大する傾斜面部16が設けられている。このように傾斜面部16を設けることで、旋回流の軸方向の速度ベクトルが小さくなり、加工面6に対してより垂直に近い角度で硬質粒子7を噴出することができる。その結果、硬質粒子7が加工面10に衝突する際の衝撃力を高めることができ、加工面10の硬化および研掃の効果を高めることができる。この場合、硬質粒子7は加工面6に対し垂直に近い角度で噴出するため、偏向部材4の外径は図1のものよりも大きくすることが好ましい。   That is, as shown in FIG. 5, the inner peripheral surface of the flow channel pipe 1 is provided with an inclined surface portion 16 in which the inner diameter of the passage PS <b> 2 gradually increases toward the downstream side of the passage with the jet outlet 1 a as a terminal. By providing the inclined surface portion 16 in this way, the velocity vector in the axial direction of the swirling flow is reduced, and the hard particles 7 can be ejected at an angle closer to the perpendicular to the processing surface 6. As a result, the impact force when the hard particles 7 collide with the processed surface 10 can be increased, and the effect of hardening and erasing the processed surface 10 can be increased. In this case, since the hard particles 7 are ejected at an angle close to perpendicular to the processing surface 6, the outer diameter of the deflecting member 4 is preferably larger than that of FIG.

なお、図6に示すように流路管1の内周面に傾斜面部15と傾斜面部16をそれぞれ設けるようにしてもよい。これにより旋回流が傾斜面部15で加速され、傾斜面部16における速度低下の影響を緩和することができる。図7に示すように傾斜面部15を複数箇所に設けて、加速の効果を高めるようにしてもよい。   In addition, as shown in FIG. 6, you may make it provide the inclined surface part 15 and the inclined surface part 16 in the internal peripheral surface of the flow-path pipe 1, respectively. As a result, the swirling flow is accelerated by the inclined surface portion 15, and the influence of the speed reduction in the inclined surface portion 16 can be mitigated. As shown in FIG. 7, the inclined surface portions 15 may be provided at a plurality of locations to enhance the acceleration effect.

なお、上記実施の形態では、硬質粒子照射用の通路PS1,PS2を形成する管部材としての流路管1(第1の管部材)と吸入管2(第2の管部材)とを連設し、吸入管2の端部を旋回流の発生部である細隙12よりも通路下流側に配置したが、吸入管2の端部を細隙12よりも通路上流側に配置してもよい。細隙12よりも通路上流側に設けた支持部5で棒部材3を支持したが、旋回流が発生する流路管1の内周面から離間して設けるのであれば、支持部を細隙12の通路下流側に設けてもよい。例えば図8に示すように細隙12よりも下流側の吸入管2の先端部に支持部5を設けてもよい。棒部材3を流路管1と吸入管2の軸線に沿って延設したが、軸線からずれて設けてもよい。偏向部材4や支持部材としての支持部5の形状は上述したものに限らない。支持部5により棒部材3を片持ちで支持してもよいし、両持ちで支持してもよい。   In the above embodiment, the flow path pipe 1 (first pipe member) and the suction pipe 2 (second pipe member) as the pipe members forming the hard particle irradiation passages PS1 and PS2 are connected in series. Although the end of the suction pipe 2 is disposed downstream of the slit 12 that is the swirl flow generating portion, the end of the suction pipe 2 may be disposed upstream of the slit 12. . Although the rod member 3 is supported by the support portion 5 provided on the upstream side of the passage from the slit 12, if the support member 5 is provided apart from the inner peripheral surface of the flow channel tube 1 where the swirl flow is generated, the support portion is provided as a slit. You may provide in 12 channel | paths downstream. For example, as shown in FIG. 8, the support portion 5 may be provided at the distal end portion of the suction pipe 2 on the downstream side of the slit 12. Although the rod member 3 extends along the axis of the flow channel pipe 1 and the suction pipe 2, it may be provided so as to deviate from the axis. The shapes of the deflection member 4 and the support portion 5 as a support member are not limited to those described above. The bar member 3 may be supported by the support portion 5 in a cantilever manner or may be supported in both the support manners.

流路管1の周囲に圧縮空気用チャンバ11を設け、このチャンバ11と通路PS2とを環状の細隙12で連通するとともに、細隙12から通路下流側にかけて通路径が徐々に縮小する傾斜面部13(通路縮径部)を設けることにより旋回流発生機構10を構成したが、流路管1の内周面に沿って旋回しつつ噴出口1aに向けて流れる圧縮空気の旋回流を発生させるのであれば、旋回流発生機構10の構成はいかなるものでもよい。旋回流を加速する旋回流れ加速部としての傾斜面部15の構成、および旋回流を加工面6に垂直に近づける旋回流れ偏向部としての傾斜面部16の構成も上述したものに限らない。すなわち本発明の特徴、機能を実現できる限り、本発明は実施の形態の穴内面照射用噴射ノズルに限定されない。   A chamber 11 for compressed air is provided around the flow path pipe 1, and the chamber 11 and the passage PS2 are communicated with an annular slit 12, and an inclined surface portion whose passage diameter gradually decreases from the slit 12 to the downstream side of the passage. Although the swirling flow generating mechanism 10 is configured by providing 13 (passage diameter reducing portion), the swirling flow of the compressed air flowing toward the jet outlet 1a is generated while swirling along the inner peripheral surface of the flow channel pipe 1. In this case, the swirl flow generating mechanism 10 may have any configuration. The configuration of the inclined surface portion 15 as the swirling flow acceleration portion that accelerates the swirling flow and the configuration of the inclined surface portion 16 as the swirling flow deflecting portion that brings the swirling flow perpendicularly to the machining surface 6 are not limited to those described above. That is, as long as the features and functions of the present invention can be realized, the present invention is not limited to the hole inner surface irradiation spray nozzle of the embodiment.

本発明の第1の実施の形態に係る穴内面照射用噴射ノズルの概略構成を示す断面図。Sectional drawing which shows schematic structure of the injection nozzle for hole inner surface irradiation which concerns on the 1st Embodiment of this invention. 本実施の形態の効果を示す図。The figure which shows the effect of this Embodiment. 本発明の第2の実施の形態に係る穴内面照射用噴射ノズルの概略構成を示す断面図。Sectional drawing which shows schematic structure of the injection nozzle for hole inner surface irradiation which concerns on the 2nd Embodiment of this invention. 図3の変形例を示す図。The figure which shows the modification of FIG. 本発明の第3の実施の形態に係る穴内面照射用噴射ノズルの概略構成を示す断面図。Sectional drawing which shows schematic structure of the injection nozzle for hole inner surface irradiation which concerns on the 3rd Embodiment of this invention. 図5の変形例を示す図。The figure which shows the modification of FIG. 図5の別の変形例を示す図。The figure which shows another modification of FIG. 図1の変形例を示す図。The figure which shows the modification of FIG.

符号の説明Explanation of symbols

1 流路管
2 吸入管
3 棒部材
4 偏向部材
5 支持部
10 旋回流発生機構
11 チャンバ
12 環状細隙
13 傾斜面部
15,16 傾斜面部
DESCRIPTION OF SYMBOLS 1 Channel pipe 2 Suction pipe 3 Rod member 4 Deflection member 5 Support part 10 Swirling flow generation mechanism 11 Chamber 12 Annular slit 13 Inclined surface parts 15 and 16 Inclined surface part

Claims (5)

加工対象物の穴内面に圧縮空気により硬質粒子を照射する穴内面照射用噴射ノズルであって、
一端部の供給口から供給される硬質粒子を他端部の噴出口から噴出させるための通路を有する管部材と、
前記管部材の端部の噴出口から噴射された前記硬質粒子を加工対象物の穴内面に向けて偏向する偏向部材と、
前記通路内に延設され、先端部に前記偏向部材が取り付けられる棒部材と、
前記通路内にて前記棒部材を支持する支持部材と、
前記管部材の内周面に沿って旋回しつつ前記噴出口に向けて流れるように前記圧縮空気に旋回流を発生させる旋回流発生機構とを備え、
前記管部材は、
先端部に前記噴出口が開口され、基端部に前記旋回流発生機構が設けられた第1の管部材と、
前記第1の管部材の前記基端部に連設され、前記第1の管部材内に前記硬質粒子を導く第2の管部材とを有し、
前記支持部材は、前記第2の管部材に設けられることを特徴とする穴内面照射用噴射ノズル。
A hole inner surface irradiation nozzle for irradiating hard particles with compressed air on the inner surface of a hole of a workpiece,
A pipe member having a passage for ejecting hard particles supplied from a supply port at one end from an outlet at the other end ;
A deflecting member for deflecting said hard particles ejected from the ejection port of the other end portion of the tube member toward the hole inner surface of the workpiece,
A rod member extending in the passage and having the deflection member attached to the tip portion;
A support member for supporting the rod member in the passage;
A swirl flow generating mechanism for generating a swirl flow in the compressed air so as to flow toward the jet port while swirling along the inner peripheral surface of the pipe member;
The pipe member is
A first pipe member in which the jet port is opened at a distal end portion and the swirl flow generating mechanism is provided at a proximal end portion;
A second pipe member that is connected to the base end of the first pipe member and guides the hard particles into the first pipe member;
The hole inner surface irradiation nozzle, wherein the support member is provided on the second pipe member.
請求項1に記載の穴内面照射量噴射ノズルにおいて、
前記旋回流発生機構は、
前記第1の管部材の外周面の圧縮空気導入管から供給された圧縮空気が挿入される環状の圧縮空気用チャンバと、
前記圧縮空気用チャンバと前記第1の管部材の内側通路とを連通する環状の細隙と、
前記環状の細隙から通路下流側にかけて前記通路の径が徐々に縮小する通路縮径部とを有することを特徴とする穴内面照射用噴射ノズル。
In the hole inner surface dose injection nozzle according to claim 1,
The swirl flow generating mechanism is
An annular compressed air chamber into which the compressed air supplied from the compressed air introduction pipe on the outer peripheral surface of the first pipe member is inserted;
An annular slit communicating the compressed air chamber and the inner passage of the first pipe member;
An injection nozzle for irradiating an inner surface of a hole, comprising: a passage reduced diameter portion in which the diameter of the passage gradually decreases from the annular slit toward the downstream side of the passage.
請求項2に記載の穴内面照射量噴射ノズルにおいて、  In the hole inner surface dose injection nozzle according to claim 2,
前記第2の管部材の先端は、前記旋回流発生機構の前記通路縮径部内において前記細隙の近傍に位置するように、前記第1の管部材に連設していることを特徴とする穴内面照射用噴射ノズル。  The tip of the second pipe member is connected to the first pipe member so as to be positioned in the vicinity of the slit in the reduced diameter portion of the swirl flow generating mechanism. Injection nozzle for hole inner surface irradiation.
請求項1〜3のいずれか1項に記の穴内面照射量噴射ノズルにおいて、
前記通路は、前記旋回流の発生部と前記噴出口との間で通路径が徐々に縮小する旋回流れ加速部を有することを特徴とする穴内面照射用噴射ノズル。
In the hole inner surface dose injection nozzle of the mounting serial to any one of claims 1 to 3,
The hole inner surface irradiation nozzle, wherein the passage has a swirl flow acceleration portion in which a passage diameter gradually decreases between the swirl flow generating portion and the jet outlet.
請求項1〜4のいずれか1項に記載の穴内面照射量噴射ノズルにおいて、
前記通路は、前記噴出口を終端とした通路下流側にかけて通路径が徐々に拡大する旋回流れ偏向部を有することを特徴とする穴内面照射用噴射ノズル。
In the hole inner surface dose injection nozzle according to any one of claims 1 to 4,
The nozzle for irradiating a hole inner surface, wherein the passage has a swirl flow deflecting portion in which the passage diameter gradually increases toward the downstream side of the passage with the jet outlet as a terminal.
JP2008233338A 2008-09-11 2008-09-11 Injection nozzle for inner surface irradiation Active JP5167040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233338A JP5167040B2 (en) 2008-09-11 2008-09-11 Injection nozzle for inner surface irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233338A JP5167040B2 (en) 2008-09-11 2008-09-11 Injection nozzle for inner surface irradiation

Publications (2)

Publication Number Publication Date
JP2010064194A JP2010064194A (en) 2010-03-25
JP5167040B2 true JP5167040B2 (en) 2013-03-21

Family

ID=42190229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233338A Active JP5167040B2 (en) 2008-09-11 2008-09-11 Injection nozzle for inner surface irradiation

Country Status (1)

Country Link
JP (1) JP5167040B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6254379B2 (en) * 2013-08-08 2017-12-27 ブラスト工業株式会社 Blast processing apparatus and blast processing method
JP6794900B2 (en) 2017-03-30 2020-12-02 株式会社デンソー Manufacturing method of fluid passage device and fluid passage device
CN110695854A (en) * 2019-10-29 2020-01-17 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Sand blasting device applied to surface treatment in bearing mounting hole
CN113618644A (en) * 2021-07-29 2021-11-09 常州中车汽车零部件有限公司 Tool nozzle for manual shot blasting and method for improving quality of turbine shell runner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59209766A (en) * 1983-05-11 1984-11-28 Atsuji Tekko Kk Nozzle device for blasting pipe inner surface
JP3251008B2 (en) * 1990-10-03 2002-01-28 ソニー株式会社 Gas vortex generator
JP3164931B2 (en) * 1993-02-19 2001-05-14 清之 堀井 Water jet nozzle
JPH0752046A (en) * 1993-05-31 1995-02-28 Nkk Corp Shot working nozzle for inner face of tube
JP2000343429A (en) * 1999-06-09 2000-12-12 Isuzu Motors Ltd Air shot peening device for inner wall of hole
JP2006239837A (en) * 2005-03-04 2006-09-14 Bridgestone Corp Inner surface washing method and device for cylindrical part

Also Published As

Publication number Publication date
JP2010064194A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US8297540B1 (en) Reverse-flow nozzle for generating cavitating or pulsed jets
JP5167040B2 (en) Injection nozzle for inner surface irradiation
JP2713814B2 (en) Ejector for compressible fluid
JP2001276678A (en) Air atomizing nozzle assembly having advanced air cap
JP5039757B2 (en) Laser processing head in laser processing equipment
JP2010046770A (en) Multilayer jet type nozzle device
JP2009233784A (en) Method of reducing waterjet injection sound
JP2007084924A (en) Film forming apparatus and jetting nozzle
JP7281307B2 (en) Fine bubble generation nozzle
JP2007185600A (en) Cavitation water jetting nozzle and jetting method
JP2010120138A (en) Particle blasting nozzle
US11399916B2 (en) Mixing chamber and handpiece
JP2018089597A (en) One fluid nozzle
KR20110072674A (en) Water jet cutting device
JP2665386B2 (en) Coanda nozzle
WO2020222504A1 (en) Fluid supply nozzle insert
JP2005015923A (en) Weft insertion nozzle of water jet type loom
JP6028578B2 (en) Combustor
JP4719478B2 (en) Granule injection device
JP2010137341A5 (en) INJECTION PROCESSING DEVICE AND INJECTION PROCESSING METHOD
JP2000343429A (en) Air shot peening device for inner wall of hole
JP5342600B2 (en) Rotary atomization coating equipment
KR102273574B1 (en) apparatus for oscillating fluid injection
JP2006263547A (en) Water jet nozzle device
KR101595418B1 (en) Injection nozzles for dry type cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5167040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150