JP6794900B2 - Manufacturing method of fluid passage device and fluid passage device - Google Patents

Manufacturing method of fluid passage device and fluid passage device Download PDF

Info

Publication number
JP6794900B2
JP6794900B2 JP2017067937A JP2017067937A JP6794900B2 JP 6794900 B2 JP6794900 B2 JP 6794900B2 JP 2017067937 A JP2017067937 A JP 2017067937A JP 2017067937 A JP2017067937 A JP 2017067937A JP 6794900 B2 JP6794900 B2 JP 6794900B2
Authority
JP
Japan
Prior art keywords
passage
wall surface
closed
shot
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017067937A
Other languages
Japanese (ja)
Other versions
JP2018168794A (en
Inventor
雅至 中野
雅至 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017067937A priority Critical patent/JP6794900B2/en
Priority to US15/867,984 priority patent/US10920725B2/en
Priority to DE102018101018.4A priority patent/DE102018101018B4/en
Publication of JP2018168794A publication Critical patent/JP2018168794A/en
Application granted granted Critical
Publication of JP6794900B2 publication Critical patent/JP6794900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/001Making specific metal objects by operations not covered by a single other subclass or a group in this subclass valves or valve housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/16Making specific metal objects by operations not covered by a single other subclass or a group in this subclass plates with holes of very small diameter, e.g. for spinning or burner nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • F16L43/001Bends; Siphons made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2215/00Details of workpieces
    • B23B2215/24Components of internal combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2215/00Details of workpieces
    • B23B2215/72Tubes, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2220/00Details of turning, boring or drilling processes
    • B23B2220/44Roughing
    • B23B2220/445Roughing and finishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/85Mounting of fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、流体を流通させる通路を有する流体通路装置、およびその製造方法に関する。 The present invention relates to a fluid passage device having a passage through which a fluid flows, and a method for manufacturing the same.

流体を流通させるメイン通路、およびメイン通路から分岐する分岐通路が金属部材の内部に形成されたボデーを備える流体通路装置として、内燃機関に用いられるコモンレール、燃料ポンプおよび燃料噴射弁等が挙げられる。この種の流体通路装置では、通路壁面に高圧がかかることに起因して、メイン通路と分岐通路との交差部分である角部に応力集中が生じる。そのため、角部が欠ける等、交差部分の損傷が懸念される。この懸念に対し特許文献1では、メイン通路および分岐通路をドリルで穴あけ加工した後に、交差部分にショット材を衝突させるショットピーニングを行って、引張応力を除去するとともに残留圧縮応力を交差部分に付与させている。 Examples of the fluid passage device including the main passage through which the fluid flows and the body in which the branch passage branching from the main passage is formed inside the metal member include a common rail used for an internal combustion engine, a fuel pump, and a fuel injection valve. In this type of fluid passage device, stress concentration occurs at the corners where the main passage and the branch passage intersect due to the high pressure applied to the passage wall surface. Therefore, there is a concern that the intersection may be damaged, such as a chipped corner. In response to this concern, in Patent Document 1, after drilling a main passage and a branch passage, shot peening is performed in which a shot material collides with the intersection to remove tensile stress and apply residual compressive stress to the intersection. I'm letting you.

具体的には、メイン通路となる貫通穴を穴あけ加工した後、貫通穴の一方の開口から噴射ノズルを挿入するとともに、貫通穴の他方の開口からは反射材を挿入する。噴射ノズルは貫通穴方向にショット材を噴射するものであり、反射材の先端には、噴射ノズルから噴射されたショット材を直角方向に跳ね返す反射面が形成されている。そして、反射面が交差部分に対向する位置となるように反射材を位置決めしておくことで、ショット材を交差部分に衝突させて残留圧縮応力を付与させる。 Specifically, after the through hole serving as the main passage is drilled, the injection nozzle is inserted from one opening of the through hole, and the reflective material is inserted from the other opening of the through hole. The injection nozzle injects the shot material in the through hole direction, and a reflective surface is formed at the tip of the reflective material to bounce the shot material injected from the injection nozzle in the perpendicular direction. Then, by positioning the reflective material so that the reflective surface faces the intersecting portion, the shot material collides with the intersecting portion and a residual compressive stress is applied.

なお、流体通路装置に要求されるメイン通路が先端を閉塞させた形状である場合であっても、先ずは貫通穴を穴あけ加工して反射材を挿入できるようにしておき、ショットピーニングを行った後に貫通穴の他方の開口を蓋で閉塞するのが一般的である。 Even if the main passage required for the fluid passage device has a shape in which the tip is closed, first, a through hole is drilled so that a reflective material can be inserted, and shot peening is performed. It is common to later close the other opening of the through hole with a lid.

特開2001−200773号公報Japanese Unexamined Patent Publication No. 2001-200773

しかしながら、上記従来の製造方法では反射面が直ぐに摩耗していくので、反射材の頻繁な交換を要する。特に、流体通路装置を量産する場合には、反射材の交換頻度が極めて高くなるので生産性が悪い。 However, in the above-mentioned conventional manufacturing method, the reflective surface is worn immediately, so that the reflective material needs to be replaced frequently. In particular, in the case of mass production of fluid passage devices, the frequency of replacement of the reflective material becomes extremely high, resulting in poor productivity.

なお、貫通穴方向に対して直角な方向への噴射が可能な噴射ノズルを用いることで、反射材を不要にした製造方法についても本発明者は検討した。しかし、この種の噴射ノズルは、貫通穴方向へ噴射されたショット材を反射させて噴射の向きを変える反射面を有する構造である。そのため、この構造によれば反射材が不要となるものの、結局は噴射ノズルが有する反射面の摩耗を避けられず、摩耗進行に伴い噴射ノズルの交換を要するので生産性悪化の対策にはならない。 The present inventor has also studied a manufacturing method that eliminates the need for a reflective material by using an injection nozzle capable of injecting in a direction perpendicular to the through hole direction. However, this type of injection nozzle has a structure having a reflecting surface that reflects the shot material injected in the through hole direction to change the direction of injection. Therefore, although a reflective material is not required according to this structure, wear of the reflective surface of the injection nozzle cannot be avoided in the end, and the injection nozzle needs to be replaced as the wear progresses, which is not a countermeasure for deterioration of productivity.

本発明は、上記問題を鑑みてなされたもので、その目的は、摩耗部品の頻繁な交換を抑制できるようにした流体通路装置およびその製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a fluid passage device capable of suppressing frequent replacement of worn parts and a method for manufacturing the same.

ここに開示される発明は上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。 The invention disclosed herein employs the following technical means in order to achieve the above object. The scope of claims and the reference numerals in parentheses described in this section indicate the correspondence with the specific means described in the embodiments described later, and do not limit the technical scope of the invention. ..

開示される発明の1つは、流体を流通させる通路を有する流体通路装置において、
所定方向へ直線状に延びる形状かつ先端が閉塞された形状の閉塞通路(21a)と、閉塞通路から分岐する分岐通路(31a、32a)とが内部に形成された金属製のボデー(10、10A、10B)を備え、
閉塞通路の閉塞側の先端部分を形成する壁面のうち、所定方向に対して垂直な面を天井壁面(22)とし、所定方向に平行な面を通路壁面(21)とし、天井壁面および通路壁面を繋ぐ面を連結壁面(23)とし、連結壁面が、閉塞通路を拡げる側に湾曲した形状であり、
分岐通路の直径をDとし、
閉塞通路の直径をDaとし、
連結壁面の曲率半径をRとし、
天井壁面から分岐通路までの所定方向の長さをHとし、
D、Da、RをパラメータとしてHの下限値を特定する関数をf1(D、Da、R)とし、
D、Da、RをパラメータとしてHの上限値を特定する関数をf2(D、Da、R)とし、
以下の数式1、数式2および数式3の条件が満たされている流体通路装置である。
[数式1]
f1(D、Da、R)=(0.019×Da−0.0050×D+0.077)×R+(0.16×Da−0.68×D+0.70)
[数式2]
f2(D、Da、R)=(−0.018×Da+0.011×D+0.35)×R+(0.16×Da−0.49×D+1.6)
[数式3]
f1(D、Da、R)≦H≦f2(D、Da、R)
One of the disclosed inventions is in a fluid passage device having a passage for circulating fluid.
A metal body (10, 10A) in which a closed passage (21a) having a shape extending linearly in a predetermined direction and having a closed tip and a branch passage (31a, 32a) branching from the closed passage are formed inside. With 10B)
Of the wall surfaces forming the tip of the closed passage on the closed side, the surface perpendicular to the predetermined direction is referred to as the ceiling wall surface (22), the surface parallel to the predetermined direction is referred to as the passage wall surface (21), and the ceiling wall surface and the passage wall surface. and a surface connecting the connecting wall (23), connecting walls, Ri shape der curved on the side to expand the closed channel,
Let D be the diameter of the branch passage
Let the diameter of the closed passage be Da
Let R be the radius of curvature of the connecting wall surface
Let H be the length from the ceiling wall surface to the branch passage in the predetermined direction.
Let f1 (D, Da, R) be a function that specifies the lower limit of H with D, Da, and R as parameters.
Let f2 (D, Da, R) be a function that specifies the upper limit of H with D, Da, and R as parameters.
The following Equation 1, a fluid passage apparatus that have conditions of Equation 2 and Equation 3 is satisfied.
[Formula 1]
f1 (D, Da, R) = (0.019 x Da-0.0050 x D + 0.077) x R + (0.16 x Da-0.68 x D + 0.70)
[Formula 2]
f2 (D, Da, R) = (-0.018 x Da + 0.011 x D + 0.35) x R + (0.16 x Da-0.49 x D + 1.6)
[Formula 3]
f1 (D, Da, R) ≦ H ≦ f2 (D, Da, R)

上記発明によれば、閉塞通路の閉塞側の先端部分を形成する先端壁面のうち天井壁面および通路壁面を繋ぐ連結壁面が、閉塞通路を拡げる側に湾曲した形状である。そのため、閉塞通路の壁面と分岐通路の壁面とが交差する交差部分、つまり応力集中による損傷が懸念される閉塞通路と分岐通路との交差部分(角部)にショット材を衝突させて残留圧縮応力を付与させることを、次のように実現できる。すなわち、閉塞通路の開口から噴射ノズルを挿入し、噴射ノズルから所定方向へショット材を噴射すれば、噴射されたショット材は、天井壁面で反射されて交差部分に衝突し、加えて、連結壁面で反射されて交差部分に衝突するようになる。そのため、従来の反射材による反射の機能をボデーに持たせることになるので、従来の反射材を不要にでき、摩耗部品の頻繁な交換を抑制できる。 According to the above invention, among the tip wall surfaces forming the tip end portion on the closed side of the closed passage, the connecting wall surface connecting the ceiling wall surface and the passage wall surface has a shape curved to the side where the closed passage is expanded. Therefore, the shot material collides with the intersection (corner) where the wall surface of the closed passage and the wall surface of the branch passage intersect, that is, the intersection (corner) between the closed passage and the branch passage where damage due to stress concentration is feared, and the residual compressive stress is applied. Can be realized as follows. That is, if the injection nozzle is inserted through the opening of the closed passage and the shot material is injected from the injection nozzle in a predetermined direction, the injected shot material is reflected by the ceiling wall surface and collides with the intersecting portion, and in addition, the connecting wall surface is connected. It will be reflected by and will collide with the intersection. Therefore, since the body is provided with the function of reflection by the conventional reflective material, the conventional reflective material can be eliminated and frequent replacement of worn parts can be suppressed.

開示される発明の1つは、所定方向へ直線状に延びる形状かつ先端が閉塞された形状の閉塞通路(21a)と、閉塞通路から分岐する分岐通路(31a、32a)とが内部に形成された金属製のボデー(10、10A、10B)を備え、閉塞通路および分岐通路に流体を流通させる流体通路装置の製造方法において、
ボデーのうち閉塞通路に対応する部分を、貫通させずに穴あけ加工して閉塞通路を形成する穴あけ工程(S10)と、
穴あけ工程の後、ショット材(90)を噴射する噴射口(62)を有する噴射ノズル(60)を閉塞通路へ挿入するショット準備工程(S31)と、
ショット準備工程の後、噴射口から挿入方向へショット材を噴射するショット工程(S32)と、を含み、
ショット準備工程では、分岐通路よりも挿入方向手前側に噴射口を位置させ、ショット工程では、噴射口から噴射されたショット材を、閉塞通路の閉塞側の先端部分を形成する先端壁面(20a)で反射させて、閉塞通路の壁面と分岐通路の壁面とが交差する交差部分(11)に衝突させる流体通路装置の製造方法である。
In one of the disclosed inventions, a closed passage (21a) having a shape extending linearly in a predetermined direction and having a closed tip and a branch passage (31a, 32a) branching from the closed passage are formed inside. In a method for manufacturing a fluid passage device having a metal body (10, 10A, 10B) and allowing fluid to flow through a closed passage and a branch passage.
A drilling step (S10) of forming a closed passage by drilling a portion of the body corresponding to the closed passage without penetrating it.
After the drilling step, the shot preparation step (S31) of inserting the injection nozzle (60) having the injection port (62) for injecting the shot material (90) into the closed passage, and the shot preparation step (S31).
After the shot preparation step, the shot step (S32) of injecting the shot material from the injection port in the insertion direction is included.
In the shot preparation step, the injection port is positioned on the front side in the insertion direction from the branch passage, and in the shot step, the shot material injected from the injection port is used as the tip wall surface (20a) forming the tip portion on the closing side of the closing passage. It is a method of manufacturing a fluid passage device which is reflected by the above and collides with an intersecting portion (11) where the wall surface of the closed passage and the wall surface of the branch passage intersect.

上記発明によれば、閉塞通路の壁面と分岐通路の壁面とが交差する交差部分、つまり応力集中による損傷が懸念される角部に、ショット材を衝突させるにあたり、ボデーの先端壁面にショット材を反射させて衝突させる。そのため、従来の反射材による反射の機能をボデーに持たせることになるので、従来の反射材を不要にでき、摩耗部品の頻繁な交換を抑制できる。 According to the above invention, when the shot material is made to collide with the intersection where the wall surface of the closed passage and the wall surface of the branch passage intersect, that is, the corner portion where damage due to stress concentration is feared, the shot material is applied to the tip wall surface of the body. Reflect and collide. Therefore, since the body is provided with the function of reflection by the conventional reflective material, the conventional reflective material can be eliminated and frequent replacement of worn parts can be suppressed.

本発明の第1実施形態に係る流体通路装置の断面図。Sectional drawing of the fluid passage device which concerns on 1st Embodiment of this invention. 図1のII−II線に沿う断面図。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 第1実施形態に係る流体通路装置の製造方法の手順を示すフローチャート。The flowchart which shows the procedure of the manufacturing method of the fluid passage device which concerns on 1st Embodiment. 第1実施形態において、穴あけ加工に用いるドリルを示す図。The figure which shows the drill used for drilling in 1st Embodiment. 第1実施形態において、ショット材を噴射している状態を示す断面図。FIG. 5 is a cross-sectional view showing a state in which a shot material is injected in the first embodiment. 第1実施形態において、ショット材の反射経路を示す模式図。The schematic diagram which shows the reflection path of a shot material in 1st Embodiment. 第1実施形態において、ショットピーニングが要求される範囲を示す断面図。FIG. 5 is a cross-sectional view showing a range in which shot peening is required in the first embodiment. 第1実施形態において、ショット材が交差部分に衝突する確率と、各パラメータとの関係をシミュレーションした結果を示す図。The figure which shows the result of simulating the relationship between the probability that a shot material collides with an intersection part and each parameter in 1st Embodiment. 本発明の第2実施形態に係る流体通路装置の断面図。Sectional drawing of the fluid passage device which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る流体通路装置の断面図。Sectional drawing of the fluid passage device which concerns on 3rd Embodiment of this invention.

以下、図面を参照しながら発明を実施するための複数の形態を説明する。各形態において、先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において、構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を参照し適用することができる。 Hereinafter, a plurality of modes for carrying out the invention will be described with reference to the drawings. In each form, the same reference numerals may be given to the parts corresponding to the matters described in the preceding forms, and duplicate description may be omitted. When only a part of the configuration is described in each form, the other parts of the configuration can be applied with reference to the other forms described above.

(第1実施形態)
本実施形態に係る流体通路装置は、車両に搭載された高圧燃料ポンプに適用されている。高圧燃料ポンプは、所定圧以上の高圧に燃料を加圧し、その高圧燃料(流体)をコモンレールへ供給するものである。コモンレールは、高圧燃料ポンプから供給された高圧燃料を蓄圧し、複数の燃料噴射弁へ分配する。燃料噴射弁は、分配された高圧燃料を内燃機関の燃焼室へ噴射する。高圧燃料ポンプは、袋孔シリンダ10(図1参照)および図示しないピストンを備え、袋孔シリンダ10へ流入した低圧燃料をピストンで圧縮してコモンレールへ圧送する。
(First Embodiment)
The fluid passage device according to the present embodiment is applied to a high-pressure fuel pump mounted on a vehicle. The high-pressure fuel pump pressurizes fuel to a high pressure equal to or higher than a predetermined pressure, and supplies the high-pressure fuel (fluid) to the common rail. The common rail accumulates high-pressure fuel supplied from the high-pressure fuel pump and distributes it to a plurality of fuel injection valves. The fuel injection valve injects the distributed high-pressure fuel into the combustion chamber of the internal combustion engine. The high-pressure fuel pump includes a bag hole cylinder 10 (see FIG. 1) and a piston (not shown), and the low pressure fuel flowing into the bag hole cylinder 10 is compressed by the piston and pumped to the common rail.

図1に示すように、袋孔シリンダ10は、シリンダ部20および吐出部30を有する金属製の部品である。シリンダ部20および吐出部30は、金属母材を切削加工して一体に形成されており、袋孔シリンダ10は、後に詳述する閉塞通路21aおよび分岐通路が内部に形成された金属製の「ボデー」に相当する。シリンダ部20では図示しないピストンにより燃料が圧縮され、シリンダ部20で圧縮された高圧燃料は、吐出部30からコモンレールへ吐出される。 As shown in FIG. 1, the bag hole cylinder 10 is a metal part having a cylinder portion 20 and a discharge portion 30. The cylinder portion 20 and the discharge portion 30 are integrally formed by cutting a metal base material, and the bag hole cylinder 10 is made of metal in which a closing passage 21a and a branch passage, which will be described in detail later, are formed therein. Corresponds to "body". Fuel is compressed by a piston (not shown) in the cylinder portion 20, and the high-pressure fuel compressed by the cylinder portion 20 is discharged from the discharge portion 30 to the common rail.

シリンダ部20の内部には、所定方向(図1の上下方向)へ直線状に延びる形状かつ先端が閉塞された形状の閉塞通路21aが形成されている。閉塞通路21aは断面円形の形状であり、閉塞通路21aの中心線C1が延びる方向が上記所定方向に相当する。シリンダ部20の端面に位置する閉塞通路21aの開口21bは、中心線C1方向から見て円形であり、シリンダ部20のうち開口21bを形成する部分は、中心線C1方向に延びる円筒形状である。なお、シリンダ部20の中心線と閉塞通路21aの中心線C1とは一致する。 Inside the cylinder portion 20, a closed passage 21a having a shape extending linearly in a predetermined direction (vertical direction in FIG. 1) and having a closed tip is formed. The closed passage 21a has a circular cross section, and the direction in which the center line C1 of the closed passage 21a extends corresponds to the predetermined direction. The opening 21b of the closed passage 21a located on the end surface of the cylinder portion 20 is circular when viewed from the center line C1 direction, and the portion of the cylinder portion 20 forming the opening 21b has a cylindrical shape extending in the center line C1 direction. .. The center line of the cylinder portion 20 and the center line C1 of the closed passage 21a coincide with each other.

図1および図2に示すように、閉塞通路21aの閉塞側の先端部分を形成する壁面のうち、閉塞通路21aの中心線C1方向(所定方向)に対して垂直な面を天井壁面22と呼び、中心線C1方向に平行な面を通路壁面21と呼ぶ。通路壁面21、天井壁面22および連結壁面23は切削加工により金属で一体に形成されている。そして、天井壁面22および通路壁面21を繋ぐ面を連結壁面23と呼ぶ。図2中の符号A1は通路壁面21の領域を示し、符号A2は天井壁面22の領域を示し、符号A3は連結壁面23の領域を示す。 As shown in FIGS. 1 and 2, among the wall surfaces forming the tip portion of the closed passage 21a on the closed side, the surface perpendicular to the center line C1 direction (predetermined direction) of the closed passage 21a is called the ceiling wall surface 22. The surface parallel to the center line C1 direction is called the passage wall surface 21. The passage wall surface 21, the ceiling wall surface 22, and the connecting wall surface 23 are integrally formed of metal by cutting. The surface connecting the ceiling wall surface 22 and the passage wall surface 21 is referred to as a connecting wall surface 23. Reference numeral A1 in FIG. 2 indicates a region of the passage wall surface 21, reference numeral A2 indicates a region of the ceiling wall surface 22, and reference numeral A3 indicates a region of the connecting wall surface 23.

通路壁面21は、中心線C1を中心とした環状の周面であり、中心線C1方向から見て円環形状である。天井壁面22は、中心線C1に対して垂直に拡がる平坦面であり、中心線C1方向から見て円板形状である。そして連結壁面23は、中心線C1を中心として環状に延びる形状であり、閉塞通路21aを拡げる側に湾曲した形状である。換言すれば、中心線C1を含む断面視において、径方向外側に湾曲した円弧形状である。 The passage wall surface 21 is an annular peripheral surface centered on the center line C1 and has an annular shape when viewed from the center line C1 direction. The ceiling wall surface 22 is a flat surface extending perpendicularly to the center line C1 and has a disk shape when viewed from the center line C1 direction. The connecting wall surface 23 has a shape extending in an annular shape about the center line C1 and curved toward the side where the closed passage 21a is expanded. In other words, it is an arc shape curved outward in the radial direction in a cross-sectional view including the center line C1.

なお、本実施形態では、閉塞通路21aの閉塞側の先端部分を形成する壁面を先端壁面20aと呼ぶ場合があり、先端壁面20aには天井壁面22および連結壁面23が少なくとも含まれている。閉塞通路21aの通路径は、符号A1に示す通路壁面21の領域では均一であり、符号A3に示す連結壁面23の領域では徐々に小さくなる。 In the present embodiment, the wall surface forming the tip portion of the closed passage 21a on the closed side may be referred to as the tip wall surface 20a, and the tip wall surface 20a includes at least the ceiling wall surface 22 and the connecting wall surface 23. The passage diameter of the closed passage 21a is uniform in the region of the passage wall surface 21 indicated by reference numeral A1, and gradually decreases in the region of the connecting wall surface 23 indicated by reference numeral A3.

吐出部30の内部には、閉塞通路21aから分岐する分岐通路31a、32aが形成されている。分岐通路31a、32aの中心線C2が延びる方向は、中心線C1の方向(所定方向)に直交する。分岐通路31a、32aは断面円形の形状である。吐出部30の端面に位置する分岐通路31aの開口31bは、中心線C2方向から見て円形であり、吐出部30のうち開口31bを形成する部分は、中心線C2方向に延びる円筒形状である。また、分岐通路31a、32aの中心線C2が閉塞通路21aの中心線C1と直行することに起因して、分岐通路31a、32aのうち閉塞通路21aと連通する連通口32bは、中心線C2方向視において円形である。 Branch passages 31a and 32a branching from the closed passage 21a are formed inside the discharge portion 30. The direction in which the center line C2 of the branch passages 31a and 32a extends is orthogonal to the direction (predetermined direction) of the center line C1. The branch passages 31a and 32a have a circular cross section. The opening 31b of the branch passage 31a located on the end surface of the discharge portion 30 is circular when viewed from the center line C2 direction, and the portion of the discharge portion 30 forming the opening 31b has a cylindrical shape extending in the center line C2 direction. .. Further, due to the fact that the center line C2 of the branch passages 31a and 32a is orthogonal to the center line C1 of the block passage 21a, the communication port 32b communicating with the block passage 21a among the branch passages 31a and 32a is in the direction of the center line C2. It is circular in sight.

連通口32bは、吐出部30端面に形成される開口31bよりも小径である。つまり、分岐通路31a、32aのうち連通口32bを含む部分を小径分岐通路32aと呼び、開口31bを含む部分を大径分岐通路31aと呼び、小径分岐通路32aの通路径は大径分岐通路31aの通路径よりも小さく設定されている。大径分岐通路31aを形成する壁面を大径壁面31と呼び、小径分岐通路32aを形成する壁面を小径壁面32と呼ぶ。連通口32bは通路壁面21に形成されている。詳細には、連通口32bの全体が通路壁面21に位置する。換言すれば、連結壁面23の全体が、連通口32bに対して天井壁面22の側に位置する。 The communication port 32b has a smaller diameter than the opening 31b formed on the end face of the discharge portion 30. That is, of the branch passages 31a and 32a, the portion including the communication port 32b is called the small diameter branch passage 32a, the portion including the opening 31b is called the large diameter branch passage 31a, and the passage diameter of the small diameter branch passage 32a is the large diameter branch passage 31a. It is set smaller than the passage diameter of. The wall surface forming the large-diameter branch passage 31a is referred to as a large-diameter wall surface 31, and the wall surface forming the small-diameter branch passage 32a is referred to as a small-diameter wall surface 32. The communication port 32b is formed on the passage wall surface 21. Specifically, the entire communication port 32b is located on the passage wall surface 21. In other words, the entire connecting wall surface 23 is located on the side of the ceiling wall surface 22 with respect to the communication port 32b.

袋孔シリンダ10(ボデー)のうち、閉塞通路21aの通路壁面21と分岐通路の小径壁面32とが交差する部分を交差部分11と呼ぶ。交差部分11は連通口32bの周囲の部分であり、交差部分11のうち連通口32bに隣接する部分(角部)は、図1の断面視にて直角の形状である。交差部分11には後述するショットピーニングが施してあり、これにより、引張応力が除去されるとともに残留圧縮応力が付与されている。 Of the bag hole cylinder 10 (body), the portion where the passage wall surface 21 of the closed passage 21a and the small diameter wall surface 32 of the branch passage intersect is referred to as an intersection portion 11. The intersection portion 11 is a portion around the communication port 32b, and the portion (corner portion) of the intersection portion 11 adjacent to the communication port 32b has a right-angled shape in the cross-sectional view of FIG. Shot peening, which will be described later, is applied to the intersecting portion 11, whereby tensile stress is removed and residual compressive stress is applied.

次に、高圧燃料ポンプ(流体通路装置)が備える袋孔シリンダ10の製造手順について、図3を用いて説明する。 Next, the manufacturing procedure of the bag hole cylinder 10 included in the high-pressure fuel pump (fluid passage device) will be described with reference to FIG.

先ず、金属母材の外面を切削加工して、閉塞通路21aおよび分岐通路31a、32aが形成されていない状態の金属加工品を準備する。次に、図3の工程S10(穴あけ工程)において、金属加工品に対してドリルで穴あけするドリル加工を行って、閉塞通路21aを形成する。 First, the outer surface of the metal base material is cut to prepare a metal processed product in a state in which the closed passage 21a and the branch passages 31a and 32a are not formed. Next, in step S10 (drilling step) of FIG. 3, a drilling process is performed to drill a hole in the metal processed product to form a closed passage 21a.

上記工程S10によるドリル加工では、先ず工程S11において、ボデーのうち閉塞通路21aに相当する箇所に、図4に示す下穴用ドリル51で貫通させずに下穴210aを形成する。続く工程S12では、粗仕上げ用ドリル52で下穴210aを所望の直径に切削する。続く工程S13では、先端R加工用ドリル53で連結壁面23を所望の曲率半径に切削する。 In the drilling according to the step S10, first, in the step S11, a pilot hole 210a is formed in the portion of the body corresponding to the closed passage 21a without being penetrated by the pilot hole drill 51 shown in FIG. In the subsequent step S12, the pilot hole 210a is cut to a desired diameter with the rough finishing drill 52. In the subsequent step S13, the connecting wall surface 23 is cut to a desired radius of curvature with the tip R processing drill 53.

工程S10により閉塞通路21aをドリル加工した後、続く工程S20では、閉塞通路21aが形成された金属加工品に対してドリルで穴あけするドリル加工を行って、分岐通路31a、32aを形成する。詳細に説明すると、先ず、ボデーのうち分岐通路31a、32aに相当する箇所に下穴用ドリルで下穴を形成する。次に、小径ドリルで小径分岐通路32aを形成し、その後、大径ドリルで大径分岐通路31aを形成する。 After the closed passage 21a is drilled in the step S10, in the subsequent step S20, the metal processed product in which the closed passage 21a is formed is drilled to form the branch passages 31a and 32a. To be described in detail, first, a pilot hole is formed in a portion of the body corresponding to the branch passages 31a and 32a with a pilot hole drill. Next, the small-diameter branch passage 32a is formed by the small-diameter drill, and then the large-diameter branch passage 31a is formed by the large-diameter drill.

工程S20により分岐通路31a、32aをドリル加工した後、続く工程S30では、ボデーの交差部分11つまり残留圧縮応力を付与させたい部分に、ショットピーニングを施す。詳細には、先ず、工程S31(ショット準備工程)において、図5に示す噴射ノズル60を開口21bから閉塞通路21aへ挿入する。噴射ノズル60は、ガラスビーズ等のショット材90を噴射する配管である。噴射ノズル60の内部にはショット材90を流通させるショット通路61が形成されており、ショット通路61の開口である噴射口62からショット材90が噴射される。 After drilling the branch passages 31a and 32a in step S20, in the subsequent step S30, shot peening is applied to the intersecting portion 11 of the body, that is, the portion to which the residual compressive stress is to be applied. Specifically, first, in step S31 (shot preparation step), the injection nozzle 60 shown in FIG. 5 is inserted into the closed passage 21a through the opening 21b. The injection nozzle 60 is a pipe that injects a shot material 90 such as glass beads. A shot passage 61 for circulating the shot material 90 is formed inside the injection nozzle 60, and the shot material 90 is injected from the injection port 62 which is the opening of the shot passage 61.

噴射ノズル60は、噴射ノズル60の中心線C3が閉塞通路21aの中心線C1と一致するように位置決めされている。また、噴射口62が連通口32bの手前側(開口21b側)に位置し、かつ、噴射口62が天井壁面22と対向するように、噴射ノズル60は位置決めされている。このように噴射ノズル60を位置決めした後、続く工程S32(ショット工程)において、噴射口62からショット材90を噴射させる。 The injection nozzle 60 is positioned so that the center line C3 of the injection nozzle 60 coincides with the center line C1 of the closed passage 21a. Further, the injection nozzle 60 is positioned so that the injection port 62 is located on the front side (opening 21b side) of the communication port 32b and the injection port 62 faces the ceiling wall surface 22. After positioning the injection nozzle 60 in this way, in the subsequent step S32 (shot step), the shot material 90 is injected from the injection port 62.

図6に示すように、噴射口62から噴射されたショット材90は、天井壁面22および連結壁面23(先端壁面20a)で反射した後、ボデーの交差部分11のうち通路壁面21を形成する部分である改質面11aに衝突する。図7中の網点を付した部分が、ショット材90を衝突させたい部分である改質面11aに相当する。 As shown in FIG. 6, the shot material 90 injected from the injection port 62 is reflected by the ceiling wall surface 22 and the connecting wall surface 23 (tip wall surface 20a), and then the portion of the body intersecting portion 11 that forms the passage wall surface 21. It collides with the modified surface 11a. The portion with halftone dots in FIG. 7 corresponds to the modified surface 11a, which is the portion to which the shot material 90 is to collide.

図6中の実線に示す経路Y1は、噴射口62から噴射されたショット材90が天井壁面22に衝突した後に改質面11aに衝突する経路を示す。図6中の点線に示す経路Y2は、噴射口62から噴射されたショット材90が連結壁面23に衝突した後に天井壁面22に衝突し、その後改質面11aに衝突する経路を示す。図6中の一点鎖線に示す経路Y3は、噴射口62から噴射されたショット材90が連結壁面23に衝突した後に改質面11aに衝突する経路を示す。経路Y1、Y3は、先端壁面20aで1回反射してから改質面11aに衝突する例であり、経路Y2は、先端壁面20aで2回反射してから改質面11aに衝突する例である。 The path Y1 shown by the solid line in FIG. 6 indicates a path in which the shot material 90 injected from the injection port 62 collides with the ceiling wall surface 22 and then collides with the modified surface 11a. The path Y2 shown by the dotted line in FIG. 6 indicates a path in which the shot material 90 injected from the injection port 62 collides with the connecting wall surface 23, then collides with the ceiling wall surface 22, and then collides with the modified surface 11a. The path Y3 shown by the alternate long and short dash line in FIG. 6 indicates a path in which the shot material 90 injected from the injection port 62 collides with the connecting wall surface 23 and then collides with the modified surface 11a. Paths Y1 and Y3 are examples of reflecting once on the tip wall surface 20a and then colliding with the modified surface 11a, and paths Y2 are examples of reflecting twice on the tip wall surface 20a and then colliding with the modified surface 11a. is there.

噴射口62から噴射されたショット材90のうち、改質面11aに衝突しないショット材90を減らすことが望ましい。また、改質面11aに衝突する場合であっても、先端壁面20aでの反射回数が2回以下であることが望ましい。つまり、できるだけ多くのショット材90が2回以下の反射回数で改質面11aに衝突することが望ましく、このような望ましい衝突態様となるように、以下に説明する各種寸法は設定されている。 Of the shot materials 90 injected from the injection port 62, it is desirable to reduce the shot materials 90 that do not collide with the modified surface 11a. Further, even when it collides with the modified surface 11a, it is desirable that the number of reflections on the tip wall surface 20a is 2 times or less. That is, it is desirable that as many shot materials 90 as possible collide with the modified surface 11a with a number of reflections of 2 times or less, and various dimensions described below are set so as to achieve such a desirable collision mode.

図6および図7に示すように、閉塞通路21aの直径をDaとし、小径分岐通路32a(分岐通路)の直径をDとし、連結壁面23の曲率半径をRとする。また、小径分岐通路32aから天井壁面22までの所定方向の長さをHとする。詳細には、連通口32bの天井壁面22側の端部から天井壁面22までの所定方向(中心線C1方向)の長さをHとする。また、分岐通路から噴射ノズル60までの所定方向の長さをHaとする。詳細には、連通口32bの噴射ノズル60側の端部から噴射口62までの所定方向(中心線C1方向)の長さをHaとする。 As shown in FIGS. 6 and 7, the diameter of the closed passage 21a is Da, the diameter of the small diameter branch passage 32a (branch passage) is D, and the radius of curvature of the connecting wall surface 23 is R. Further, let H be the length in a predetermined direction from the small diameter branch passage 32a to the ceiling wall surface 22. Specifically, let H be the length in a predetermined direction (center line C1 direction) from the end of the communication port 32b on the ceiling wall surface 22 side to the ceiling wall surface 22. Further, the length from the branch passage to the injection nozzle 60 in a predetermined direction is defined as Ha. Specifically, the length of the communication port 32b from the end on the injection nozzle 60 side to the injection port 62 in a predetermined direction (center line C1 direction) is defined as Ha.

本発明者は、上述したDa、D、R、H、Haの5つのパラメータを変化させた場合に、2回以下の反射回数で改質面11aに衝突する確率がどのように変化するかについてシミュレーションした。図8はそのシミュレーション結果を示す図であり、ショット材90が改質面11aに2回以内の反射で衝突する確率と、各パラメータとの関係を示す。 The present inventor describes how the probability of collision with the modified surface 11a changes with the number of reflections of 2 or less when the above-mentioned five parameters of Da, D, R, H, and Ha are changed. I simulated it. FIG. 8 is a diagram showing the simulation results, and shows the relationship between the probability that the shot material 90 collides with the modified surface 11a with reflection within two times and each parameter.

このシミュレーションでは、各パラメータの組み合わせをNo.1〜No.23までの23通りについて設定し、No.1〜No.23の各条件での上記確率を計算している。これら23通りに係る各々のパラメータの値は、実験計画法(DOE:Design of experiments)に基づき作成されている。 In this simulation, the combination of each parameter is No. 1-No. Set about 23 ways up to 23, and No. 1-No. The above probabilities under each of the 23 conditions are calculated. The values of each of these 23 parameters are created based on the Design of experiments (DOE).

例えば、図8中のNo.8に示すパラメータの組み合わせは、R=0.5mm、H=3.2mm、Da=6.42mm、D=1mm、Ha=3mmである。この条件では、均等な角度間隔で噴射される100ショットのうち、壁面に反射せずに改質面11aに衝突するショット材90の数は2個、先端壁面20aに1回反射して改質面11aに衝突するショット材90の数は6個、先端壁面20aに2回反射して改質面11aに衝突するショット材90の数は11個である。したがって、2回以下の反射回数で改質面11aに衝突するショット材90の数は100個中19個である。よって、2回以下の反射回数で改質面11aに衝突する確率は19%である。このように、23通りの条件について計算された確率が図8の最右欄に記載されている。 For example, No. in FIG. The combination of parameters shown in 8 is R = 0.5 mm, H = 3.2 mm, Da = 6.42 mm, D = 1 mm, Ha = 3 mm. Under this condition, out of 100 shots ejected at equal angular intervals, the number of shot materials 90 that collide with the modified surface 11a without being reflected on the wall surface is two, and the shot material 90 is reflected once on the tip wall surface 20a and modified. The number of shot materials 90 that collide with the surface 11a is 6, and the number of shot materials 90 that collide with the modified surface 11a after being reflected twice by the tip wall surface 20a is 11. Therefore, the number of shot materials 90 that collide with the modified surface 11a with the number of reflections of 2 or less is 19 out of 100. Therefore, the probability of colliding with the modified surface 11a with the number of reflections of 2 or less is 19%. In this way, the probabilities calculated for the 23 conditions are shown in the rightmost column of FIG.

次に、図8に示すシミュレーション結果から、5つのパラメータと上記確率との関係を算出する。例えば、応答曲面法(RSM:response surface methodology)を用いて、確率が最大値(最大確率)となるパラメータの値の組み合わせを探索する。次に、このように最大確率となるパラメータの値を含み、かつ、その最大確率に対して95%以上の確率となるパラメータの範囲を演算する。その演算結果によれば以下のことが導き出される。すなわち、以下の数式1、数式2および数式3の条件が満たされるように4つのパラメータDa、D、R、Hを設定すれば、上述した最大確率×95%以上となるような高い確率(衝突確率)を得ることができる。但し、Haを0mm〜3mmの範囲に設定することを前提とする。
[数式1]
f1(D、Da、R)=(0.019×Da−0.0050×D+0.077)×R+(0.16×Da−0.68×D+0.70)
[数式2]
f2(D、Da、R)=(−0.018×Da+0.011×D+0.35)×R+(0.16×Da−0.49×D+1.6)
[数式3]
f1(D、Da、R)≦H≦f2(D、Da、R)
Next, the relationship between the five parameters and the above probabilities is calculated from the simulation results shown in FIG. For example, a response surface methodology (RSM) is used to search for a combination of parameter values having a maximum probability (maximum probability). Next, the range of the parameter including the value of the parameter having the maximum probability and having the probability of 95% or more with respect to the maximum probability is calculated. According to the calculation result, the following can be derived. That is, if the four parameters Da, D, R, and H are set so that the conditions of the following formulas 1, 2, and 3 are satisfied, a high probability (collision) such that the above-mentioned maximum probability × 95% or more is obtained. Probability) can be obtained. However, it is premised that Ha is set in the range of 0 mm to 3 mm.
[Formula 1]
f1 (D, Da, R) = (0.019 x Da-0.0050 x D + 0.077) x R + (0.16 x Da-0.68 x D + 0.70)
[Formula 2]
f2 (D, Da, R) = (-0.018 x Da + 0.011 x D + 0.35) x R + (0.16 x Da-0.49 x D + 1.6)
[Formula 3]
f1 (D, Da, R) ≦ H ≦ f2 (D, Da, R)

要するに、数式1に記載のf1(D、Da、R)は、D、Da、RをパラメータとしてHの下限値を特定する関数である。数式2に記載のf2(D、Da、R)は、D、Da、RをパラメータとしてHの上限値を特定する関数である。また、本発明者は、Ha=0、Ha=1.5、Ha=3の3パターンについて、上記数式1〜3が妥当であることを確認している。 In short, f1 (D, Da, R) described in Equation 1 is a function that specifies the lower limit of H with D, Da, and R as parameters. F2 (D, Da, R) described in Equation 2 is a function that specifies the upper limit value of H with D, Da, and R as parameters. Further, the present inventor has confirmed that the above formulas 1 to 3 are valid for the three patterns of Ha = 0, Ha = 1.5, and Ha = 3.

噴射口62から噴射されるショット材90の拡散角度θ(図5参照)は、実際には90°〜120°の範囲となる蓋然性が高く、上記シミュレーションでは、拡散角度θが120°であることを条件としている。但し本発明者は、拡散角度θが120°以外であっても90°〜120°の範囲であれば、上記数式1〜3が妥当となることを確認している。 The diffusion angle θ (see FIG. 5) of the shot material 90 injected from the injection port 62 is likely to actually be in the range of 90 ° to 120 °, and in the above simulation, the diffusion angle θ is 120 °. Is a condition. However, the present inventor has confirmed that the above equations 1 to 3 are valid as long as the diffusion angle θ is in the range of 90 ° to 120 ° even if the diffusion angle θ is other than 120 °.

この点を鑑みた本実施形態では、工程S31においてHaが0mm〜3mmの範囲となるように噴射ノズル60を位置決めし、工程S32において拡散角度θが90°〜120°の範囲となるようにショット材90を噴射させている。よって、噴射口62から噴射されたショット材90は、最大確率×95%以上となる衝突確率で改質面11aに衝突している筈である。 In view of this point, in the present embodiment, the injection nozzle 60 is positioned so that Ha is in the range of 0 mm to 3 mm in step S31, and the shot is shot so that the diffusion angle θ is in the range of 90 ° to 120 ° in step S32. The material 90 is injected. Therefore, the shot material 90 injected from the injection port 62 should collide with the modified surface 11a with a collision probability of maximum probability × 95% or more.

なお、上記シミュレーションでは、ショット材90が改質面11aに衝突したか否かを判断するにあたり、連通口32bを径方向に1mm拡大した領域に衝突した場合に改質面11aに衝突したと判断することを条件としている。拡大領域を1mmより大きく設定した場合には衝突確率はさらに高くなるので、上記シミュレーションでは、拡大領域を1mm以上に設定することを条件としていると言える。 In the above simulation, in determining whether or not the shot material 90 collided with the modified surface 11a, it was determined that the shot material 90 collided with the modified surface 11a when it collided with a region in which the communication port 32b was expanded by 1 mm in the radial direction. It is a condition to do. Since the collision probability becomes even higher when the enlarged area is set to be larger than 1 mm, it can be said that the above simulation is conditional on setting the enlarged area to 1 mm or more.

本実施形態に反してHを下限値f1(D、Da、R)より小さくした場合、図6に示す経路Y2により改質面11aへ衝突するショット材90の数が少なくなり、改質面11aへの衝突確率が低くなる。本実施形態に反してHを上限値f2(D、Da、R)より大きくした場合、図6に示す経路Y3により改質面11aへ衝突するショット材90の数が少なくなり、改質面11aへの衝突確率が低くなる。 Contrary to this embodiment, when H is made smaller than the lower limit value f1 (D, Da, R), the number of shot materials 90 colliding with the modified surface 11a is reduced by the path Y2 shown in FIG. 6, and the modified surface 11a The probability of collision with is low. Contrary to this embodiment, when H is made larger than the upper limit value f2 (D, Da, R), the number of shot materials 90 colliding with the modified surface 11a is reduced by the path Y3 shown in FIG. 6, and the modified surface 11a The probability of collision with is low.

また、工程S10では、Da、D、R、Hの値が数式1、数式2および数式3の条件を全て満たすように閉塞通路21aを形成している。例えば、工程S13では、上記条件を満たすRの値(最適R)となるように先端R加工用ドリル53を選定し、連結壁面23を最適Rに形成する。また、工程S11、S12では、上記条件を満たすHの値(最適H)となるように、下穴用ドリル51および用ドリル52による切削深さを調整して、通路壁面21の所定方向長さを最適Hに形成する。同様にして、DaおよびDの値についても上記条件を満たす最適Daおよび最適Dとなるように閉塞通路21aおよび小径分岐通路32aをドリル加工する。 Further, in step S10, the closed passage 21a is formed so that the values of Da, D, R, and H satisfy all the conditions of Formula 1, Formula 2, and Formula 3. For example, in step S13, the tip R machining drill 53 is selected so that the value of R satisfying the above conditions (optimal R) is obtained, and the connecting wall surface 23 is formed at the optimum R. Further, in steps S11 and S12, the cutting depth of the pilot hole drill 51 and the drill 52 is adjusted so that the value of H satisfying the above conditions (optimal H) is obtained, and the length of the passage wall surface 21 in a predetermined direction is adjusted. Is formed to the optimum H. Similarly, the closed passage 21a and the small-diameter branch passage 32a are drilled so that the values of Da and D are the optimum Da and the optimum D that satisfy the above conditions.

なお、DaおよびDの値については、袋孔シリンダ10に要求される能力に基づき設定し、その設定値となるように、ステップS10、S20での穴あけ工程(ドリル加工)を実行してもよい。この場合、それらの設定値を数式1および数式2に代入した上で、数式1、数式2および数式3の条件が全て満たされるように2つのパラメータR、Hを設定すればよい。 The values of Da and D may be set based on the capacity required for the bag hole cylinder 10, and the drilling steps (drilling) in steps S10 and S20 may be executed so as to be the set values. .. In this case, after substituting those set values into the formula 1 and the formula 2, the two parameters R and H may be set so that all the conditions of the formula 1, the formula 2 and the formula 3 are satisfied.

以上により、本実施形態の製造方法では、穴あけ工程S10で閉塞通路21aを形成し、その後のショット準備工程S31で噴射ノズル60を閉塞通路21aへ挿入し、その後のショット工程S32で噴射口62から挿入方向へショット材90を噴射する。ショット準備工程S31では、小径分岐通路32a(分岐通路)よりも挿入方向手前側に噴射口62を位置させる。ショット工程S32では、噴射口62から噴射されたショット材90を、閉塞通路21aの先端部分を形成する先端壁面20aで反射させて交差部分11に衝突させる。 As described above, in the manufacturing method of the present embodiment, the closed passage 21a is formed in the drilling step S10, the injection nozzle 60 is inserted into the closed passage 21a in the subsequent shot preparation step S31, and the injection nozzle 62 is inserted from the injection port 62 in the subsequent shot step S32. The shot material 90 is injected in the insertion direction. In the shot preparation step S31, the injection port 62 is positioned on the front side in the insertion direction of the small diameter branch passage 32a (branch passage). In the shot step S32, the shot material 90 injected from the injection port 62 is reflected by the tip wall surface 20a forming the tip portion of the closed passage 21a and collides with the intersecting portion 11.

これによれば、交差部分11(角部)にショット材90を衝突させるにあたり、ボデーの先端壁面20aにショット材90を反射させて衝突させるので、従来の反射材による反射の機能を袋孔シリンダ10(ボデー)に持たせることになる。よって、従来の反射材を不要にでき、摩耗部品の頻繁な交換を抑制できる。 According to this, when the shot material 90 collides with the intersecting portion 11 (corner portion), the shot material 90 is reflected and collided with the tip wall surface 20a of the body, so that the function of reflection by the conventional reflective material is applied to the bag hole cylinder. It will be given to 10 (body). Therefore, the conventional reflective material can be eliminated, and frequent replacement of worn parts can be suppressed.

さらに本実施形態の製造方法では、連結壁面23は、閉塞通路21aを拡げる側に湾曲した形状である。よって、連結壁面23が湾曲していない形状である場合、例えば天井壁面22の端部と通路壁面21の端部とを直線で繋ぐテーパ形状である場合に比べて、先端壁面20aで反射したショット材90が改質面11aに衝突する確率を向上できる。 Further, in the manufacturing method of the present embodiment, the connecting wall surface 23 has a shape curved to the side where the closed passage 21a is expanded. Therefore, when the connecting wall surface 23 has a non-curved shape, for example, a shot reflected by the tip wall surface 20a has a tapered shape in which the end portion of the ceiling wall surface 22 and the end portion of the passage wall surface 21 are connected by a straight line. The probability that the material 90 collides with the modified surface 11a can be improved.

また、本実施形態の高圧燃料ポンプ(流体通路装置)は、所定方向へ直線状に延びる形状かつ先端が閉塞された形状の閉塞通路21aと、閉塞通路21aから分岐する分岐通路31a、32aとが内部に形成された金属製のボデー(袋孔シリンダ10)を備える。閉塞通路21aの先端部分を形成する壁面のうち、所定方向に対して垂直な面を天井壁面22とし、所定方向に平行な面を通路壁面21とし、天井壁面22および通路壁面21を繋ぐ連結壁面23が、閉塞通路21aを拡げる側に湾曲した形状である。 Further, in the high-pressure fuel pump (fluid passage device) of the present embodiment, a closed passage 21a having a shape extending linearly in a predetermined direction and having a closed tip, and branch passages 31a and 32a branching from the closed passage 21a are provided. A metal body (bag hole cylinder 10) formed inside is provided. Of the wall surfaces forming the tip of the closed passage 21a, the surface perpendicular to the predetermined direction is the ceiling wall surface 22, the surface parallel to the predetermined direction is the passage wall surface 21, and the connecting wall surface connecting the ceiling wall surface 22 and the passage wall surface 21 is connected. Reference numeral 23 denotes a curved shape on the side that expands the closed passage 21a.

そのため、応力集中による損傷が懸念される交差部分11にショット材90を衝突させて残留圧縮応力を付与させることを、次のように実現できる。すなわち、閉塞通路21aの開口21bから噴射ノズル60を挿入し、噴射ノズル60から閉塞通路21aの中心線C1方向(挿入方向)へショット材90を噴射させた場合、連結壁面23で反射するショット材90を高確率で交差部分に衝突させることができる。そのため、従来の反射材による反射の機能をボデーに持たせることができるので、従来の反射材を不要にでき、摩耗部品の頻繁な交換を抑制できる。 Therefore, it is possible to apply the residual compressive stress by colliding the shot material 90 with the intersecting portion 11 where damage due to stress concentration is a concern as follows. That is, when the injection nozzle 60 is inserted from the opening 21b of the closed passage 21a and the shot material 90 is injected from the injection nozzle 60 in the center line C1 direction (insertion direction) of the closed passage 21a, the shot material reflected by the connecting wall surface 23 is reflected. The 90 can be made to collide with the intersection with high probability. Therefore, since the body can be provided with the function of reflection by the conventional reflector, the conventional reflector can be eliminated and frequent replacement of worn parts can be suppressed.

さらに本実施形態の製造方法および高圧燃料ポンプでは、先述した数式1〜3の条件が満たされるように4つのパラメータH、D、Da、Rが設定されている。Daは閉塞通路21aの直径、Dは小径分岐通路32a(分岐通路)の直径、Rは連結壁面23の曲率半径、Hは、天井壁面22から小径分岐通路32aまでの中心線C1方向(所定方向)の長さである。そして、これらの数式1〜3は、ショット材90が先端壁面20aで反射して改質面11aに衝突する確率を十分に高くするように数値解析して得られたものである。 Further, in the manufacturing method and the high-pressure fuel pump of the present embodiment, four parameters H, D, Da, and R are set so as to satisfy the conditions of the above-mentioned formulas 1 to 3. Da is the diameter of the closed passage 21a, D is the diameter of the small diameter branch passage 32a (branch passage), R is the radius of curvature of the connecting wall surface 23, and H is the center line C1 direction (predetermined direction) from the ceiling wall surface 22 to the small diameter branch passage 32a. ) Is the length. Then, these formulas 1 to 3 are obtained by numerical analysis so as to sufficiently increase the probability that the shot material 90 is reflected by the tip wall surface 20a and collides with the modified surface 11a.

具体的には、反射回数2回以下で改質面11aに衝突する最大確率の95%以上となるような高い衝突確率となるパラメータH、D、Da、Rの組み合わせの範囲を数値解析し、このような範囲を表す数式1〜3が算出されている。したがって、数式1〜3の条件を満たす本実施形態によれば、最大確率の95%以上となるような高い衝突確率を得ることができるので、ショットピーニングに要する作業時間を短くできる。 Specifically, a range of combinations of parameters H, D, Da, and R having a high collision probability such that the maximum probability of collision with the modified surface 11a is 95% or more when the number of reflections is 2 or less is numerically analyzed. Equations 1 to 3 representing such a range have been calculated. Therefore, according to the present embodiment that satisfies the conditions of Equations 1 to 3, a high collision probability that is 95% or more of the maximum probability can be obtained, so that the work time required for shot peening can be shortened.

(第2実施形態)
上記第1実施形態に係る袋孔シリンダ10は、ショットピーニングが要求される改質面11aが1箇所である。これに対し本実施形態では、図9に示すように、ショットピーニングが要求される改質面11aが2箇所である。
(Second Embodiment)
The bag hole cylinder 10 according to the first embodiment has one modified surface 11a that requires shot peening. On the other hand, in the present embodiment, as shown in FIG. 9, there are two modified surfaces 11a that require shot peening.

具体的には、本実施形態に係る袋孔シリンダ10Aは、2つの分岐通路(小径分岐通路32a)を備える。2つの小径分岐通路32aの噴射ノズル挿入方向(図9の上下方向)における位置は同じである。2つの連通口32bは互いに向かい合う位置に配置されている。その他の構造および製造方法については上記第1実施形態と基本的に同様であるが、1つの噴射ノズル60から噴射されるショット材90で、2箇所の改質面11aを同時にショットピーニングする点で異なる。 Specifically, the bag hole cylinder 10A according to the present embodiment includes two branch passages (small diameter branch passage 32a). The positions of the two small-diameter branch passages 32a in the injection nozzle insertion direction (vertical direction in FIG. 9) are the same. The two communication ports 32b are arranged so as to face each other. The other structures and manufacturing methods are basically the same as those in the first embodiment, but the shot material 90 injected from one injection nozzle 60 is shot peened at two modified surfaces 11a at the same time. different.

このように、改質面11aが複数箇所存在する本実施形態においても、ショット準備工程S31では、小径分岐通路32a(分岐通路)よりも挿入方向手前側に噴射口62を位置させる。そしてショット工程S32では、噴射口62から噴射されたショット材90を、閉塞通路21aの先端部分を形成する先端壁面20aで反射させて2箇所の交差部分11に衝突させる。 As described above, even in the present embodiment in which the modified surfaces 11a are present at a plurality of locations, in the shot preparation step S31, the injection port 62 is positioned on the front side in the insertion direction with respect to the small diameter branch passage 32a (branch passage). Then, in the shot step S32, the shot material 90 injected from the injection port 62 is reflected by the tip wall surface 20a forming the tip portion of the closed passage 21a and collides with the two intersecting portions 11.

そのため、2箇所の交差部分11(角部)に、ショット材90を衝突させるにあたり、ボデーの先端壁面20aにショット材90を反射させて衝突させる。よって、従来の反射材による反射の機能を袋孔シリンダ10B(ボデー)に持たせて従来の反射材を不要にできるので、摩耗部品の頻繁な交換を抑制できる。 Therefore, when the shot material 90 collides with the two intersecting portions 11 (corner portions), the shot material 90 is reflected and collided with the tip wall surface 20a of the body. Therefore, since the bag hole cylinder 10B (body) can be provided with the function of reflection by the conventional reflector to eliminate the need for the conventional reflector, frequent replacement of worn parts can be suppressed.

(第3実施形態)
上記第2実施形態では、2箇所の改質面11aの噴射ノズル挿入方向(図9の上下方向)における位置が同じである。これに対し本実施形態では、図10に示すように、2箇所の改質面11aの噴射ノズル挿入方向における位置が異なる。
(Third Embodiment)
In the second embodiment, the positions of the two modified surfaces 11a in the injection nozzle insertion direction (vertical direction in FIG. 9) are the same. On the other hand, in the present embodiment, as shown in FIG. 10, the positions of the two modified surfaces 11a in the injection nozzle insertion direction are different.

具体的には、本実施形態に係る袋孔シリンダ10Cは、2つの分岐通路(小径分岐通路32a)を備える。2つの小径分岐通路32aの噴射ノズル挿入方向(図10の上下方向)における位置は異なる。挿入方向の奥側(図10の上側)に位置する小径分岐通路32aの直径は、手前側(図10の下側)に位置する小径分岐通路32aの直径よりも小さい。つまり、奥側の連通口32bは手前側の連通口32bより小さい。奥側の小径分岐通路32aの周方向位置は、手前側の小径分岐通路32aの周方向位置と同じである。奥側の連通口32bと連通する部分の閉塞通路21aの直径は、手前側の連通口32bと連通する部分の閉塞通路21aの直径よりも小さい。 Specifically, the bag hole cylinder 10C according to the present embodiment includes two branch passages (small diameter branch passage 32a). The positions of the two small-diameter branch passages 32a in the injection nozzle insertion direction (vertical direction in FIG. 10) are different. The diameter of the small-diameter branch passage 32a located on the back side (upper side in FIG. 10) in the insertion direction is smaller than the diameter of the small-diameter branch passage 32a located on the front side (lower side in FIG. 10). That is, the communication port 32b on the back side is smaller than the communication port 32b on the front side. The circumferential position of the small diameter branch passage 32a on the back side is the same as the circumferential position of the small diameter branch passage 32a on the front side. The diameter of the closed passage 21a in the portion communicating with the communication port 32b on the back side is smaller than the diameter of the closed passage 21a in the portion communicating with the communication port 32b on the front side.

本実施形態に係る天井壁面22は奥側の閉塞通路21aに位置する。したがって本実施形態では、通路壁面21および連結壁面23は奥側の閉塞通路21aに位置し、これら通路壁面21および連結壁面23を含む先端壁面20aは奥側の閉塞通路21aに位置する。手前側の閉塞通路21aを形成する壁面のうち、噴射ノズル挿入方向(図10の上下方向)に平行な面を手前側通路壁面21xとし、通路壁面21および手前側通路壁面21xを繋ぐ面を手前側連結壁面23xとする。そして手前側連結壁面23xは、手前側の閉塞通路21aを拡げる側に湾曲した形状である。 The ceiling wall surface 22 according to the present embodiment is located in the closed passage 21a on the back side. Therefore, in the present embodiment, the passage wall surface 21 and the connecting wall surface 23 are located in the closed passage 21a on the back side, and the tip wall surface 20a including the passage wall surface 21 and the connecting wall surface 23 is located in the closed passage 21a on the back side. Of the wall surfaces forming the closed passage 21a on the front side, the surface parallel to the injection nozzle insertion direction (vertical direction in FIG. 10) is the front passage wall surface 21x, and the surface connecting the passage wall surface 21 and the front passage wall surface 21x is the front side. The side connecting wall surface is 23x. The front side connecting wall surface 23x has a shape curved to the side where the front side closed passage 21a is expanded.

その他の構造および製造方法については上記第2実施形態と基本的に同様であるが、本実施形態では、手前側の小径分岐通路32aのさらに手前側に噴射口62を位置させている点で異なる。 Other structures and manufacturing methods are basically the same as those of the second embodiment, but the present embodiment is different in that the injection port 62 is located further in front of the small diameter branch passage 32a on the front side. ..

このように、改質面11aが挿入方向に異なる位置に存在する本実施形態においても、ショット準備工程S31では、小径分岐通路32a(分岐通路)よりも挿入方向手前側に噴射口62を位置させる。より詳細には手前側の小径分岐通路32aよりも挿入方向手前側に噴射口62を位置させる。そしてショット工程S32では、噴射口62から噴射されたショット材90を、奥側の閉塞通路21aの先端部分を形成する先端壁面20aで反射させて交差部分11に衝突させる。 As described above, even in the present embodiment in which the modified surface 11a exists at different positions in the insertion direction, in the shot preparation step S31, the injection port 62 is positioned in front of the small diameter branch passage 32a (branch passage) in the insertion direction. .. More specifically, the injection port 62 is located closer to the front side in the insertion direction than the small diameter branch passage 32a on the front side. Then, in the shot step S32, the shot material 90 injected from the injection port 62 is reflected by the tip wall surface 20a forming the tip portion of the closed passage 21a on the back side and collides with the intersecting portion 11.

そのため、2箇所の交差部分11(角部)に、ショット材90を衝突させるにあたり、ボデーの先端壁面20a、通路壁面21、手前側連結壁面23xおよび手前側通路壁面21xにショット材90を反射させて衝突させる。よって、従来の反射材による反射の機能を袋孔シリンダ10C(ボデー)に持たせて従来の反射材を不要にできるので、摩耗部品の頻繁な交換を抑制できる。 Therefore, when the shot material 90 collides with the two intersecting portions 11 (corners), the shot material 90 is reflected on the tip wall surface 20a of the body, the passage wall surface 21, the front side connecting wall surface 23x, and the front side passage wall surface 21x. To collide. Therefore, since the bag hole cylinder 10C (body) can be provided with the function of reflection by the conventional reflector to eliminate the need for the conventional reflector, frequent replacement of worn parts can be suppressed.

(他の実施形態)
以上、発明の好ましい実施形態について説明したが、発明は上述した実施形態に何ら制限されることなく、以下に例示するように種々変形して実施することが可能である。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(Other embodiments)
Although the preferred embodiment of the invention has been described above, the invention can be implemented in various modifications as illustrated below without being limited to the above-described embodiment. Not only the combination of the parts that clearly indicate that the combination is possible in each embodiment, but also the partial combination of the embodiments even if the combination is not specified if there is no problem in the combination. Is also possible.

上記第1実施形態では、図8に示すシミュレーション結果に基づき、最大確率の所定割合以上の確率となるパラメータの範囲となるように数式1〜3を算出しており、上記所定割合を95%に設定している。これに対し、所定割合を95%より大きい値に設定してもよいし、90%、85%、80%等、95%未満の値に設定してもよい。 In the first embodiment, based on the simulation result shown in FIG. 8, formulas 1 to 3 are calculated so as to be in the range of parameters having a probability equal to or higher than a predetermined ratio of the maximum probability, and the predetermined ratio is set to 95%. It is set. On the other hand, the predetermined ratio may be set to a value larger than 95%, or may be set to a value less than 95% such as 90%, 85%, 80%.

上記第1実施形態において、Daが6.42mm以上10mm以下の範囲であり、Dが1以上2.1mm以下の範囲である場合には、Hの範囲は0mm以上3.2mm以下であり、かつ、Rの範囲は0.5mm以上3.2mm以下であることが望ましい。また、数式1〜3を満たした上でH>Dとなるように4つのパラメータDa、D、R、Hを設定してもよいし、H<Dとなるように設定してもよい。 In the first embodiment, when Da is in the range of 6.42 mm or more and 10 mm or less and D is in the range of 1 or more and 2.1 mm or less, the range of H is 0 mm or more and 3.2 mm or less. The range of R is preferably 0.5 mm or more and 3.2 mm or less. Further, the four parameters Da, D, R, and H may be set so that H> D after satisfying the equations 1 to 3, or H <D may be set.

上記第1実施形態では、工程S31においてHaが0mm〜3mmの範囲となるように噴射ノズル60を位置決めし、工程S32において拡散角度θが90°〜120°の範囲となるようにショット材90を噴射させている。これに対し、Haを3mm以上に設定してショット材90を噴射させてもよいし、拡散角度θを90°〜120°の範囲外に設定してショット材90を噴射させてもよい。 In the first embodiment, the injection nozzle 60 is positioned so that Ha is in the range of 0 mm to 3 mm in step S31, and the shot material 90 is placed in step S32 so that the diffusion angle θ is in the range of 90 ° to 120 °. I'm spraying. On the other hand, the shot material 90 may be injected by setting Ha to 3 mm or more, or the shot material 90 may be injected by setting the diffusion angle θ outside the range of 90 ° to 120 °.

上記各実施形態では、連結壁面23は、閉塞通路21aを拡げる側に湾曲した形状に形成されている。これに対し、連結壁面23はテーパ形状であってもよいし、矩形であってもよい。上記第2、第3実施形態では、ショットピーニングが要求される改質面11aが2箇所であるが、3箇所以上であってもよい。 In each of the above embodiments, the connecting wall surface 23 is formed in a curved shape on the side where the closed passage 21a is expanded. On the other hand, the connecting wall surface 23 may have a tapered shape or a rectangular shape. In the second and third embodiments, the modified surface 11a that requires shot peening is at two locations, but it may be at three or more locations.

上記第1実施形態では、噴射ノズル60の中心線C3と閉塞通路21aの中心線C1とを一致させるように噴射ノズル60を位置決めしているが、噴射ノズル60の中心線C3を閉塞通路21aの中心線C1からずれた位置となるように位置決めしてもよい。 In the first embodiment, the injection nozzle 60 is positioned so that the center line C3 of the injection nozzle 60 and the center line C1 of the closed passage 21a coincide with each other. However, the center line C3 of the injection nozzle 60 is located on the closed passage 21a. Positioning may be performed so that the position deviates from the center line C1.

上記第2実施形態では、2つの連通口32bは互いに向かい合う位置に配置されており、周方向において180°ずれた位置に配置されているが、向かい合う位置からずらして配置されていてもよい。 In the second embodiment, the two communication ports 32b are arranged at positions facing each other and are arranged at positions shifted by 180 ° in the circumferential direction, but they may be arranged at positions shifted from the facing positions.

上記各実施形態では、穴あけ工程S10において、閉塞通路21aおよび分岐通路をドリルで穴あけ加工しているが、閉塞通路21aおよび分岐通路の少なくとも一方をレーザで穴あけ加工してもよい。 In each of the above embodiments, in the drilling step S10, the closed passage 21a and the branch passage are drilled, but at least one of the closed passage 21a and the branch passage may be drilled with a laser.

上記各実施形態では、流体通路装置を高圧燃料ポンプに適用させているが、先端が閉塞された閉塞通路および閉塞通路から分岐する分岐通路が形成された金属製ボデーを備える流体通路装置であれば、高圧燃料ポンプ以外にも適用可能である。例えば、内燃機関での燃焼に用いる燃料を噴射する燃料噴射弁に適用させてもよいし、燃料噴射弁に高圧燃料を分配供給するコモンレールに適用させてもよい。 In each of the above embodiments, the fluid passage device is applied to the high-pressure fuel pump, but any fluid passage device having a closed passage at the tip and a metal body having a branch passage branched from the closed passage is formed. , It can be applied to other than high pressure fuel pumps. For example, it may be applied to a fuel injection valve that injects fuel used for combustion in an internal combustion engine, or may be applied to a common rail that distributes and supplies high-pressure fuel to the fuel injection valve.

10、10A、10B…ボデー、11…交差部分、20a…先端壁面、21…通路壁面、21a…閉塞通路、22…天井壁面、23…連結壁面、31a…大径分岐通路(分岐通路)、32a…小径分岐通路(分岐通路)、60…噴射ノズル、62…噴射口、90…ショット材、S10…穴あけ工程、S31…ショット準備工程、S32…ショット工程。 10, 10A, 10B ... Body, 11 ... Intersection, 20a ... Tip wall surface, 21 ... Passage wall surface, 21a ... Blocked passage, 22 ... Ceiling wall surface, 23 ... Connecting wall surface, 31a ... Large diameter branch passage (branch passage), 32a ... Small diameter branch passage (branch passage), 60 ... Injection nozzle, 62 ... Injection port, 90 ... Shot material, S10 ... Drilling process, S31 ... Shot preparation process, S32 ... Shot process.

Claims (4)

流体を流通させる通路を有する流体通路装置において、
所定方向へ直線状に延びる形状かつ先端が閉塞された形状の閉塞通路(21a)と、前記閉塞通路から分岐する分岐通路(31a、32a)とが内部に形成された金属製のボデー(10、10A、10B)を備え、
前記閉塞通路の閉塞側の先端部分を形成する壁面のうち、前記所定方向に対して垂直な面を天井壁面(22)とし、前記所定方向に平行な面を通路壁面(21)とし、前記天井壁面および前記通路壁面を繋ぐ面を連結壁面(23)とし、
前記連結壁面が、前記閉塞通路を拡げる側に湾曲した形状であり、
前記分岐通路の直径をDとし、
前記閉塞通路の直径をDaとし、
前記連結壁面の曲率半径をRとし、
前記天井壁面から前記分岐通路までの前記所定方向の長さをHとし、
D、Da、RをパラメータとしてHの下限値を特定する関数をf1(D、Da、R)とし、
D、Da、RをパラメータとしてHの上限値を特定する関数をf2(D、Da、R)とし、
以下の数式1、数式2および数式3の条件が満たされている流体通路装置。
[数式1]
f1(D、Da、R)=(0.019×Da−0.0050×D+0.077)×R+(0.16×Da−0.68×D+0.70)
[数式2]
f2(D、Da、R)=(−0.018×Da+0.011×D+0.35)×R+(0.16×Da−0.49×D+1.6)
[数式3]
f1(D、Da、R)≦H≦f2(D、Da、R)
In a fluid passage device having a passage for circulating fluid,
A metal body (10,) in which a closed passage (21a) having a shape extending linearly in a predetermined direction and having a closed tip and a branch passage (31a, 32a) branching from the closed passage are formed inside. 10A, 10B)
Of the wall surfaces forming the tip portion on the closed side of the closed passage, the surface perpendicular to the predetermined direction is referred to as the ceiling wall surface (22), and the surface parallel to the predetermined direction is referred to as the passage wall surface (21). The surface connecting the wall surface and the passage wall surface is defined as a connecting wall surface (23).
The connecting walls, Ri shape der curved on the side to widen the closed channel,
Let D be the diameter of the branch passage.
The diameter of the closed passage is set to Da.
Let R be the radius of curvature of the connecting wall surface.
Let H be the length in the predetermined direction from the ceiling wall surface to the branch passage.
Let f1 (D, Da, R) be a function that specifies the lower limit of H with D, Da, and R as parameters.
Let f2 (D, Da, R) be a function that specifies the upper limit of H with D, Da, and R as parameters.
A fluid passage device that satisfies the conditions of the following formulas 1, 2 and 3 .
[Formula 1]
f1 (D, Da, R) = (0.019 x Da-0.0050 x D + 0.077) x R + (0.16 x Da-0.68 x D + 0.70)
[Formula 2]
f2 (D, Da, R) = (-0.018 x Da + 0.011 x D + 0.35) x R + (0.16 x Da-0.49 x D + 1.6)
[Formula 3]
f1 (D, Da, R) ≦ H ≦ f2 (D, Da, R)
所定方向へ直線状に延びる形状かつ先端が閉塞された形状の閉塞通路(21a)と、前記閉塞通路から分岐する分岐通路(31a、32a)とが内部に形成された金属製のボデー(10、10A、10B)を備え、
前記閉塞通路および前記分岐通路に流体を流通させる流体通路装置の製造方法において、
前記ボデーのうち前記閉塞通路に対応する部分を、貫通させずに穴あけ加工して前記閉塞通路を形成する穴あけ工程(S10)と、
前記穴あけ工程の後、ショット材(90)を噴射する噴射口(62)を有する噴射ノズル(60)を前記閉塞通路へ挿入するショット準備工程(S31)と、
前記ショット準備工程の後、前記噴射口から挿入方向へ前記ショット材を噴射するショット工程(S32)と、
を含み、
前記ショット準備工程では、前記分岐通路よりも挿入方向手前側に前記噴射口を位置させ、
前記ショット工程では、前記噴射口から噴射された前記ショット材を、前記閉塞通路の閉塞側の先端部分を形成する先端壁面(20a)で反射させて、前記閉塞通路の壁面と前記分岐通路の壁面とが交差する交差部分(11)に衝突させる流体通路装置の製造方法。
A metal body (10,) in which a closed passage (21a) having a shape extending linearly in a predetermined direction and having a closed tip and a branch passage (31a, 32a) branching from the closed passage are formed inside. 10A, 10B)
In the method for manufacturing a fluid passage device that allows fluid to flow through the closed passage and the branch passage.
A drilling step (S10) of forming the closed passage by drilling a portion of the body corresponding to the closed passage without penetrating the body.
After the drilling step, a shot preparation step (S31) of inserting the injection nozzle (60) having an injection port (62) for injecting the shot material (90) into the closed passage,
After the shot preparation step, a shot step (S32) of injecting the shot material from the injection port in the insertion direction and
Including
In the shot preparation step, the injection port is positioned on the front side in the insertion direction from the branch passage.
In the shot step, the shot material injected from the injection port is reflected by the tip wall surface (20a) forming the tip portion on the block side of the block passage, and the wall surface of the block passage and the wall surface of the branch passage. A method for manufacturing a fluid passage device that collides with an intersecting portion (11) at which the two intersects.
前記先端壁面のうち、前記所定方向に対して垂直な面を天井壁面(22)とし、前記所定方向に平行な面を通路壁面(21)とし、前記天井壁面および前記通路壁面を繋ぐ面を連結壁面(23)とし、
前記穴あけ工程では、前記連結壁面を、前記閉塞通路を拡げる側に湾曲した形状に形成する請求項に記載の流体通路装置の製造方法。
Of the tip wall surfaces, the surface perpendicular to the predetermined direction is designated as the ceiling wall surface (22), the surface parallel to the predetermined direction is designated as the passage wall surface (21), and the surface connecting the ceiling wall surface and the passage wall surface is connected. The wall surface (23)
The method for manufacturing a fluid passage device according to claim 2 , wherein in the drilling step, the connecting wall surface is formed in a curved shape on the side where the closed passage is expanded.
前記分岐通路の直径をDとし、
前記閉塞通路の直径をDaとし、
前記連結壁面の曲率半径をRとし、
前記天井壁面から前記分岐通路までの前記所定方向の長さをHとし、
D、Da、RをパラメータとしてHの下限値を特定する関数をf1(D、Da、R)とし、
D、Da、RをパラメータとしてHの上限値を特定する関数をf2(D、Da、R)とし、
前記穴あけ工程では、以下の数式1、数式2および数式3の条件を満たすよう、前記閉塞通路および前記分岐通路を形成する請求項に記載の流体通路装置の製造方法。
[数式1]
f1(D、Da、R)=(0.019×Da−0.0050×D+0.077)×R+(0.16×Da−0.68×D+0.70)
[数式2]
f2(D、Da、R)=(−0.018×Da+0.011×D+0.35)×R+(0.16×Da−0.49×D+1.6)
[数式3]
f1(D、Da、R)≦H≦f2(D、Da、R)
Let D be the diameter of the branch passage.
The diameter of the closed passage is set to Da.
Let R be the radius of curvature of the connecting wall surface.
Let H be the length in the predetermined direction from the ceiling wall surface to the branch passage.
Let f1 (D, Da, R) be a function that specifies the lower limit of H with D, Da, and R as parameters.
Let f2 (D, Da, R) be a function that specifies the upper limit of H with D, Da, and R as parameters.
The method for manufacturing a fluid passage device according to claim 3 , wherein in the drilling step, the closed passage and the branch passage are formed so as to satisfy the conditions of the following formulas 1, 2 and 3.
[Formula 1]
f1 (D, Da, R) = (0.019 x Da-0.0050 x D + 0.077) x R + (0.16 x Da-0.68 x D + 0.70)
[Formula 2]
f2 (D, Da, R) = (-0.018 x Da + 0.011 x D + 0.35) x R + (0.16 x Da-0.49 x D + 1.6)
[Formula 3]
f1 (D, Da, R) ≦ H ≦ f2 (D, Da, R)
JP2017067937A 2017-03-30 2017-03-30 Manufacturing method of fluid passage device and fluid passage device Active JP6794900B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017067937A JP6794900B2 (en) 2017-03-30 2017-03-30 Manufacturing method of fluid passage device and fluid passage device
US15/867,984 US10920725B2 (en) 2017-03-30 2018-01-11 Fluid passage device and method of manufacturing the same
DE102018101018.4A DE102018101018B4 (en) 2017-03-30 2018-01-18 Fluid passage device and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017067937A JP6794900B2 (en) 2017-03-30 2017-03-30 Manufacturing method of fluid passage device and fluid passage device

Publications (2)

Publication Number Publication Date
JP2018168794A JP2018168794A (en) 2018-11-01
JP6794900B2 true JP6794900B2 (en) 2020-12-02

Family

ID=63524600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067937A Active JP6794900B2 (en) 2017-03-30 2017-03-30 Manufacturing method of fluid passage device and fluid passage device

Country Status (3)

Country Link
US (1) US10920725B2 (en)
JP (1) JP6794900B2 (en)
DE (1) DE102018101018B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018101832A1 (en) 2018-01-26 2019-09-26 Schott Schweiz Ag Method and apparatus for hot forming glass containers

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1803578A (en) * 1927-04-13 1931-05-05 Jr Albert J Weatherhead Sectional pipe coupling
WO2000055467A1 (en) 1999-03-03 2000-09-21 Earth Tool Company, L.L.C. Method and apparatus for directional boring
JP2000343429A (en) 1999-06-09 2000-12-12 Isuzu Motors Ltd Air shot peening device for inner wall of hole
DE19936534A1 (en) * 1999-08-03 2001-03-01 Bosch Gmbh Robert High pressure fuel accumulator
JP2001200773A (en) * 1999-11-08 2001-07-27 Otics Corp Common rail and its reinforce treatment method
WO2001066900A2 (en) 2000-03-03 2001-09-13 Vermeer Manufacturing Company Method and apparatus for directional boring under mixed conditions
US6929288B2 (en) 2001-12-20 2005-08-16 Usui Kokusai Sangyo Kaisha Limited Connecting structure of branch connector in fuel pressure accumulating container
US20050252691A1 (en) 2004-03-19 2005-11-17 Smith International, Inc. Drill bit having increased resistance to fatigue cracking and method of producing same
GB0602742D0 (en) 2005-06-06 2006-03-22 Delphi Tech Inc Machining method
DE602006005169D1 (en) * 2006-11-27 2009-03-26 Delphi Tech Inc Housing with intersecting passages
WO2008109738A1 (en) * 2007-03-07 2008-09-12 Nelson Stud Welding, Inc. One-piece elbow hydraulic fitting designed for electric arc stud welding
JP5066430B2 (en) 2007-11-20 2012-11-07 日本発條株式会社 Reflective member for shot peening and shot peening method using the same
JP5167040B2 (en) 2008-09-11 2013-03-21 日立建機株式会社 Injection nozzle for inner surface irradiation
DE102012218688B4 (en) 2012-10-15 2018-06-21 Continental Automotive Gmbh High-pressure casing

Also Published As

Publication number Publication date
DE102018101018A1 (en) 2018-10-04
US10920725B2 (en) 2021-02-16
JP2018168794A (en) 2018-11-01
DE102018101018B4 (en) 2023-03-02
US20180283337A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP4988791B2 (en) Fuel injection valve
KR102056962B1 (en) Lance nozzle and excess sprayed coating removal deⅵce including the same
US20170356294A1 (en) Airfoil cooling passageways for generating improved protective film
JP6794900B2 (en) Manufacturing method of fluid passage device and fluid passage device
CN102151989A (en) Device and method for machining workpiece with a laser beam
JP2016011649A (en) Stator vanes, gas turbine with stator vanes, stator vane manufacturing method, and stator vane modification method
CN106051297A (en) Modal attenuator
JP6630262B2 (en) Injector
EP2320084B1 (en) Housing with intersecting passages for high pressure fluid applications
US7121480B2 (en) Fuel injector and an engine including such as injector
EP0651856B1 (en) Thin-walled valve-closed-orifice spray tip for fuel injection nozzle
US11441779B2 (en) Configuring and positioning air passage holes in a combustion chamber wall
CN112368475B (en) Fuel injection valve
CN103328149A (en) Method for perforating a wall of a combustion chamber
JP2007270749A (en) Internal combustion engine
EP3002449B1 (en) Fuel injection valve
KR102231327B1 (en) Packer for repairing crack of concrete structure
KR101703105B1 (en) Air-hole simulation model propeller for good prediction of full-scale cavitation performance
US11560868B2 (en) Injector for injecting a fluid, having a tapering inflow area of a through-opening
JP2020112044A (en) Fuel injection valve
KR101100973B1 (en) Valve for a fuel injection system and a fuel injection pump
KR20190103390A (en) High Pressure Accumulator in High Pressure Fuel Injection System
US20160237970A1 (en) Process for manufacturing an injector body
US11852106B2 (en) Valve for metering a fluid
EP2690277A1 (en) Fuel injection valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R151 Written notification of patent or utility model registration

Ref document number: 6794900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151