JP7395152B2 - Fine bubble generating nozzle body - Google Patents

Fine bubble generating nozzle body Download PDF

Info

Publication number
JP7395152B2
JP7395152B2 JP2020018290A JP2020018290A JP7395152B2 JP 7395152 B2 JP7395152 B2 JP 7395152B2 JP 2020018290 A JP2020018290 A JP 2020018290A JP 2020018290 A JP2020018290 A JP 2020018290A JP 7395152 B2 JP7395152 B2 JP 7395152B2
Authority
JP
Japan
Prior art keywords
pressurized water
inlet
gas
side opening
dissolved pressurized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020018290A
Other languages
Japanese (ja)
Other versions
JP2021122524A (en
Inventor
拓也 岩▲崎▼
隆志 秦
悠祐 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Rinnai Corp
Original Assignee
Institute of National Colleges of Technologies Japan
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Rinnai Corp filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2020018290A priority Critical patent/JP7395152B2/en
Publication of JP2021122524A publication Critical patent/JP2021122524A/en
Application granted granted Critical
Publication of JP7395152B2 publication Critical patent/JP7395152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)

Description

本明細書で開示する技術は、微細気泡発生ノズル本体に関する。 The technology disclosed herein relates to a microbubble generating nozzle body.

特許文献1には、微細気泡発生ノズルが開示されている。この微細気泡発生ノズルは、微細な噴出孔を有する筒状部材であるノズル本体と、ノズル本体の先端に取り付けられるノズルカバーとを備える。ノズルカバーは、噴出孔に対向する壁と、噴出孔よりも微細な流出孔とを有する。 Patent Document 1 discloses a fine bubble generating nozzle. This fine bubble generating nozzle includes a nozzle body which is a cylindrical member having fine ejection holes, and a nozzle cover attached to the tip of the nozzle body. The nozzle cover has a wall facing the nozzle hole and an outlet hole that is finer than the nozzle hole.

特許文献1の微細気泡発生ノズルでは、気体(例えば空気、炭酸ガス、水素等)が水に溶解している気体溶解加圧水がノズル本体に供給されると、気体溶解加圧水は、ノズル本体を通って噴出孔から壁に向けて噴出される。噴出孔から噴出された気体溶解加圧水は、壁に衝突してノズルカバー内で迂回した後、流出孔から流出箇所(具体的には浴槽)に流出される。気体溶解加圧水は、微細な噴出孔、及び、さらに微細な流出孔を通過することにより、大気圧まで徐々に減圧される。気体溶解加圧水が減圧される過程において、気体溶解加圧水に溶解されていた気体が析出し、微細気泡が発生する。即ち、特許文献1の微細気泡発生ノズルでは、気体溶解加圧水の流通過程で気体溶解加圧水を減圧することにより、流出箇所(具体的には浴槽)に流出される気体溶解加圧水に微細気泡を含ませることができる。 In the fine bubble generating nozzle of Patent Document 1, when gas-dissolved pressurized water in which gas (e.g., air, carbon dioxide, hydrogen, etc.) is dissolved in water is supplied to the nozzle body, the gas-dissolved pressurized water passes through the nozzle body. It is ejected from the nozzle towards the wall. The gas-dissolved pressurized water ejected from the ejection hole collides with the wall and takes a detour within the nozzle cover, and then flows out from the outflow hole to an outflow location (specifically, a bathtub). The pressure of the gas-dissolved pressurized water is gradually reduced to atmospheric pressure by passing through fine ejection holes and even finer outflow holes. In the process of reducing the pressure of the gas-dissolved pressurized water, the gas dissolved in the gas-dissolved pressurized water precipitates, generating fine bubbles. That is, in the fine bubble generation nozzle of Patent Document 1, by reducing the pressure of the gas-dissolved pressurized water during the flow process of the gas-dissolved pressurized water, fine bubbles are included in the gas-dissolved pressurized water flowing out to the outflow location (specifically, the bathtub). be able to.

特開2007-167557号公報Japanese Patent Application Publication No. 2007-167557

しかしながら、特許文献1の微細気泡発生ノズルでは、流出箇所に流出される気体溶解加圧水に含まれる微細気泡の量が不十分であるという状況が発生する。 However, with the microbubble generating nozzle of Patent Document 1, a situation occurs in which the amount of microbubble contained in the gas-dissolved pressurized water flowing out to the outflow location is insufficient.

本明細書では、流出箇所に流出される気体溶解加圧水に微細気泡を大量に含ませることができる技術を提供する。 This specification provides a technique that can contain a large amount of microbubbles in gas-dissolved pressurized water that flows out to an outflow location.

本明細書によって開示される微細気泡発生ノズル本体は、上流側端部から下流側端部に向けて、気体が水に溶解している気体溶解加圧水を通過させる減圧管と、前記上流側端部に開口され、外部から前記減圧管内に前記気体溶解加圧水を導入する導入口と、前記減圧管のうち前記導入口よりも下流側に設けられ、前記減圧管内に導入された前記気体溶解加圧水を通過させる入口側開口部と、前記入口側開口部よりも下流側である前記下流側端部に開口された出口側開口部と、を備えている。前記入口側開口部の開口面積は前記導入口の開口面積よりも小さく、前記出口側開口部の開口面積は前記入口側開口部の開口面積よりも大きく、前記減圧管のうち、前記導入口と前記入口側開口部の間の第1の部分の内周壁に、前記減圧管内を通過する前記気体溶解加圧水の流速を減速させる減速部が形成されている。前記減速部は、入口側開口部の内周壁付近を流れる気体溶解加圧水と、入口側開口部の中心付近を流れる気体溶解加圧水と、の間の流速差を大きくするように構成されている。前記減速部は、前記第1の部分の内周壁の周方向に沿って形成されるとともに、前記導入口から前記入口側開口部に向かうにつれて内径が減少する複数段の段差構造である。 The fine bubble generating nozzle body disclosed in this specification includes a pressure reducing pipe through which gas-dissolved pressurized water in which gas is dissolved in water passes from an upstream end to a downstream end; an inlet opened to introduce the gas-dissolved pressurized water from the outside into the decompression pipe; and an inlet provided downstream of the inlet in the decompression pipe, through which the gas-dissolved pressurized water introduced into the decompression pipe passes. and an outlet opening that is opened at the downstream end that is downstream of the inlet opening. The opening area of the inlet side opening is smaller than the opening area of the inlet, and the opening area of the outlet side opening is larger than the opening area of the inlet side opening. A deceleration portion that decelerates the flow rate of the gas-dissolved pressurized water passing through the pressure reducing pipe is formed on the inner circumferential wall of the first portion between the inlet side openings. The speed reducer is configured to increase the difference in flow velocity between the gas-dissolved pressurized water flowing near the inner circumferential wall of the inlet-side opening and the gas-dissolved pressurized water flowing near the center of the inlet-side opening. The speed reducer is formed along the circumferential direction of the inner circumferential wall of the first portion, and has a multi-step structure in which the inner diameter decreases from the introduction port toward the inlet side opening.

上記の構成によると、気体溶解加圧水は、外部から減圧管内に導入される際に入口側開口部を通過することによって流速が上昇し、その結果減圧される(ベンチュリー効果)。気体溶解加圧水が減圧されることにより、気体溶解加圧水に溶解していた気体が析出し、微細気泡の元になる気泡(気泡核とも言う)が発生する。その後、減圧管の出口側開口部から排出された気体溶解加圧水は、流出箇所に流出されるまでの間、所定の流通経路を流通されながら増圧される。減圧によって気泡が析出させられた後の気体溶解加圧水が増圧されると、気体溶解加圧水に含まれる気泡が分裂して微細気泡になる。 According to the above configuration, when gas-dissolved pressurized water is introduced from the outside into the pressure reducing pipe, the flow rate increases by passing through the inlet side opening, and as a result, the pressure is reduced (Venturi effect). When the gas-dissolved pressurized water is depressurized, the gas dissolved in the gas-dissolved pressurized water is precipitated, and bubbles (also referred to as bubble nuclei), which are the source of fine bubbles, are generated. Thereafter, the gas-dissolved pressurized water discharged from the outlet opening of the pressure reducing pipe is increased in pressure while flowing through a predetermined distribution path until it is discharged to an outflow location. When the pressure of the gas-dissolved pressurized water after bubbles have been precipitated by reduced pressure is increased, the bubbles contained in the gas-dissolved pressurized water are split into fine bubbles.

そして、上記の構成によると、減速部が形成されていることで、減速部付近の気体溶解加圧水の流れる向きが不規則になる。この際に流れの剥離が生じる。その結果、減圧管内のうち、減圧管の内周壁付近の流速が、減圧管の径方向中心付近の流速よりも遅くなる。内周壁付近の流速と中心付近の流速との差が大きくなることで、入口側開口部の通過時に、より多くの気泡核が発生する。その結果、上記の微細気泡発生ノズル本体を用いることで、気泡核を元にする微細気泡を大量に発生させることができる。 According to the above configuration, since the deceleration part is formed, the flow direction of the gas-dissolved pressurized water near the deceleration part becomes irregular. At this time, flow separation occurs. As a result, within the pressure reducing pipe, the flow velocity near the inner peripheral wall of the pressure reducing pipe becomes slower than the flow velocity near the radial center of the pressure reducing pipe. As the difference between the flow velocity near the inner circumferential wall and the flow velocity near the center increases, more bubble nuclei are generated when passing through the inlet side opening. As a result, by using the above fine bubble generating nozzle body, a large amount of fine bubbles based on bubble nuclei can be generated.

ここで言う「気体」は、空気、炭酸ガス、水素等、水に溶解可能な任意の気体を含む。また、「減速部」は、付近を通過する気体溶解加圧水の流速を遅くすることで流れの剥離を生じさせることができる任意の構成を含む。例えば、段差構造、返し構造、凹凸構造、トゲ(突起)構造、ディンプル構造等のいずれか、もしくはこれらの組合せであってもよい。 The term "gas" used herein includes any gas that can be dissolved in water, such as air, carbon dioxide, and hydrogen. Further, the "deceleration section" includes any configuration capable of causing flow separation by slowing down the flow rate of gas-dissolved pressurized water passing nearby. For example, it may be a stepped structure, a barbed structure, an uneven structure, a thorn (protrusion) structure, a dimple structure, etc., or a combination thereof.

第1の部分(即ち、減圧管のうち、導入口と入口側開口部の間の部分)の内周壁は、他の部分の内周壁に比べて加工を施しやすい。従って、この構成によると、減速部を有する微細気泡発生ノズル本体を比較的容易に製造できるという利点がある。 The inner circumferential wall of the first portion (that is, the portion of the pressure reducing pipe between the inlet and the inlet side opening) is easier to process than the inner circumferential wall of other portions. Therefore, this configuration has the advantage that the fine bubble generating nozzle main body having the speed reduction section can be manufactured relatively easily.

第1実施例の微細気泡発生ノズル10の斜視図。FIG. 1 is a perspective view of a microbubble generating nozzle 10 according to a first embodiment. 図1のII-II線に沿った微細気泡発生ノズル10の断面図。FIG. 2 is a cross-sectional view of the fine bubble generating nozzle 10 taken along line II-II in FIG. 1. 第1実施例のノズル本体20の斜視図。FIG. 2 is a perspective view of a nozzle body 20 of the first embodiment. 第1実施例のノズル本体20の入口側開口部24近傍の拡大断面図。FIG. 3 is an enlarged sectional view of the vicinity of the inlet side opening 24 of the nozzle body 20 of the first embodiment. 第1実施例のホルダ部40の斜視図。FIG. 4 is a perspective view of the holder section 40 of the first embodiment. 第2実施例のノズル本体20の入口側開口部24近傍の拡大断面図。FIG. 7 is an enlarged sectional view of the vicinity of the inlet side opening 24 of the nozzle body 20 of the second embodiment.

(第1実施例)
(微細気泡発生ノズル10の構成)
図1~図5を参照して、第1実施例の微細気泡発生ノズル10について説明する。微細気泡発生ノズル10は、浴槽(図示省略)等の流出箇所に微細気泡を含む水を供給するためのノズルである。図1に示すように、微細気泡発生ノズル10は、ノズル本体20と、ホルダ部40と、を備える。図1、図2において、ノズル本体20は、ホルダ部40に支持されている。
(First example)
(Configuration of fine bubble generating nozzle 10)
A fine bubble generating nozzle 10 according to a first embodiment will be described with reference to FIGS. 1 to 5. The fine bubble generating nozzle 10 is a nozzle for supplying water containing fine bubbles to an outflow location such as a bathtub (not shown). As shown in FIG. 1, the microbubble generating nozzle 10 includes a nozzle main body 20 and a holder part 40. In FIGS. 1 and 2, the nozzle body 20 is supported by a holder portion 40. As shown in FIG.

(ノズル本体20の構成)
図1~図4を参照して、ノズル本体20の構成について説明する。なお、以下の説明では、図2中のX軸方向を左右方向、Y軸方向を上下方向、Z軸方向を前後方向と呼ぶ場合がある。図3に示すように、ノズル本体20は、減圧管22と鍔部28とを備える。
(Configuration of nozzle body 20)
The configuration of the nozzle body 20 will be described with reference to FIGS. 1 to 4. In the following description, the X-axis direction in FIG. 2 may be referred to as the left-right direction, the Y-axis direction as the up-down direction, and the Z-axis direction as the front-back direction. As shown in FIG. 3, the nozzle main body 20 includes a pressure reducing tube 22 and a collar portion 28.

図1~図4に示すように、減圧管22は、空気が水に溶解している空気溶解加圧水の圧力を減圧することができる管状部材である。図2に示すように、減圧管22の内部には、減圧管22内を2本の管部に区画する区画壁25が設けられている。減圧管22の後方側の上流側端部22a(図中Z軸の負方向側の端部)には、2個の導入口23が開口されている。導入口23には、空気が水に溶解している空気溶解加圧水を供給するための給水手段(図示しない)から、空気溶解加圧水が供給される。導入口23には上記給水手段が接続されていてもよい。ここで、空気溶解加圧水は、流出箇所に供給される微細気泡を含む水の原料となる液体である。 As shown in FIGS. 1 to 4, the pressure reducing pipe 22 is a tubular member capable of reducing the pressure of air-dissolved pressurized water in which air is dissolved in water. As shown in FIG. 2, a dividing wall 25 is provided inside the pressure reducing tube 22 to partition the inside of the pressure reducing tube 22 into two pipe sections. Two introduction ports 23 are opened at the rear upstream end 22a of the pressure reducing pipe 22 (the end on the negative side of the Z-axis in the figure). Air-dissolved pressurized water is supplied to the inlet 23 from a water supply means (not shown) for supplying air-dissolved pressurized water in which air is dissolved in water. The introduction port 23 may be connected to the water supply means described above. Here, the air-dissolved pressurized water is a liquid that serves as a raw material for water containing microbubbles that is supplied to the outflow location.

減圧管22のうち、上流側端部22aの近傍であって、2個の導入口23よりもやや前方寄り(即ち、下流側寄り。Z軸の正方向寄りとも言う)の位置には、2個の入口側開口部24が開口されている。入口側開口部24の開口面積は、導入口23の開口面積よりも小さい。言い換えると、減圧管22は、入口側開口部24において縮径されている。区画壁25は、減圧管22の後方側の上流側端部22a(図中Z軸の負方向側の端部)から、減圧管22の途中までの区間を2本の管部に区画している。そのため、減圧管22の前方側の下流側端部22b(図中Z軸の正方向側の端部)は、区画壁25によって2本の管部に区画されていない。下流側端部22bには、1個の出口側開口部26のみが開口されている。本実施例では、出口側開口部26の開口面積(即ちXY平面上の面積)は、2個の入口側開口部24の開口面積(即ちXY平面上の面積)の合計面積よりも大きい。言い換えると、減圧管22は、入口側開口部24から出口側開口部26に向かって拡径されている。 In the pressure reducing pipe 22, in the vicinity of the upstream end 22a and slightly forward of the two inlets 23 (that is, downstream, also referred to as positive direction of the Z axis), there is a 2 Inlet side openings 24 are opened. The opening area of the inlet side opening 24 is smaller than the opening area of the introduction port 23. In other words, the pressure reducing pipe 22 has a reduced diameter at the inlet opening 24 . The partition wall 25 divides a section from the rear upstream end 22a of the pressure reducing pipe 22 (the end on the negative side of the Z axis in the figure) to the middle of the pressure reducing pipe 22 into two pipe parts. There is. Therefore, the front downstream end 22b (the end in the positive direction of the Z-axis in the figure) of the pressure reducing pipe 22 is not divided into two pipe parts by the partition wall 25. Only one outlet opening 26 is opened at the downstream end 22b. In this embodiment, the opening area of the outlet opening 26 (ie, the area on the XY plane) is larger than the total area of the opening areas of the two entrance openings 24 (ie, the area on the XY plane). In other words, the pressure reducing pipe 22 is expanded in diameter from the inlet side opening 24 toward the outlet side opening 26.

図2、図4に示すように、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁には、減速部30が形成されている。本実施例の減速部30は、導入口23と入口側開口部24の間の内周壁に段差を形成した段差構造である。後で詳しく説明するが、減速部30が備えられることで、減速部30付近の気体溶解加圧水の流れる向きが不規則になり、その結果、減圧管22内のうち、内周壁付近の流速が径方向中心付近の流速よりも遅くなる。内周壁付近と中心付近の流速差が大きくなることで、微細気泡の元になる気泡(気泡核とも言う)がより多く生じる。 As shown in FIGS. 2 and 4, a deceleration section 30 is formed on the inner circumferential wall of the pressure reducing pipe 22 at a portion between the inlet 23 and the inlet opening 24. As shown in FIGS. The speed reducer 30 of this embodiment has a stepped structure in which a step is formed on the inner circumferential wall between the inlet 23 and the inlet opening 24 . As will be explained in detail later, by providing the deceleration section 30, the flow direction of the gas-dissolved pressurized water near the deceleration section 30 becomes irregular, and as a result, the flow velocity near the inner circumferential wall within the pressure reducing pipe 22 becomes irregular. The flow velocity becomes slower than the flow velocity near the direction center. As the difference in flow velocity between the inner circumferential wall and the center increases, more bubbles (also referred to as bubble nuclei), which are the source of fine bubbles, are generated.

図1~図3に示すように、鍔部28は、減圧管22の前後方向中間部付近の外面に設けられている円板状部材である。図2に示すように、鍔部28の外径は、減圧管22の外径よりも大きい。 As shown in FIGS. 1 to 3, the collar portion 28 is a disk-shaped member provided on the outer surface of the pressure reducing tube 22 near the middle portion in the front-rear direction. As shown in FIG. 2, the outer diameter of the collar portion 28 is larger than the outer diameter of the pressure reducing tube 22.

(ホルダ部40の構成)
続いて、図1、図2、図5を参照して、ホルダ部40の構成について説明する。図5に顕著に示されるように、ホルダ部40は、外側円筒部42と、内側円筒部44と、2個の連結部52と、を備える。外側円筒部42と2個の連結部52とは連続して一体に成形されている。内側円筒部44は、外側円筒部42の内側に収容されて形成されている。
(Configuration of holder section 40)
Next, the configuration of the holder section 40 will be described with reference to FIGS. 1, 2, and 5. As clearly shown in FIG. 5, the holder part 40 includes an outer cylindrical part 42, an inner cylindrical part 44, and two connecting parts 52. The outer cylindrical portion 42 and the two connecting portions 52 are continuously integrally molded. The inner cylindrical portion 44 is formed and housed inside the outer cylindrical portion 42 .

外側円筒部42は、円筒状の部材である。図2、図5に示すように、後方側の開口部には、上述のノズル本体20の鍔部28を収容するための段差43が形成されている。 The outer cylindrical portion 42 is a cylindrical member. As shown in FIGS. 2 and 5, a step 43 for accommodating the flange 28 of the nozzle body 20 described above is formed in the rear opening.

2個の連結部52は、それぞれ、外側円筒部42の外周面から外側に突出して形成されている。連結部52には、ネジ穴Bが設けられている。連結部52のネジ穴Bは、ホルダ部40を浴槽接続具(図示省略)に取付けるためのネジ穴である。なお、浴槽接続具は、微細気泡発生ノズル10を浴槽に取付けるための機具である。ホルダ部40内に、ノズル本体20を挿入した後に、浴槽接続具の取付穴(図示省略)と連結部52のネジ穴Bを位置合わせし、ネジ部材(図示省略)をネジ穴Bに螺合させることで、微細気泡発生ノズル10と浴槽接続具が連結される。 The two connecting portions 52 are each formed to protrude outward from the outer peripheral surface of the outer cylindrical portion 42 . The connecting portion 52 is provided with a screw hole B. The screw hole B of the connecting portion 52 is a screw hole for attaching the holder portion 40 to a bathtub connector (not shown). Note that the bathtub connector is a device for attaching the microbubble generating nozzle 10 to the bathtub. After inserting the nozzle body 20 into the holder part 40, align the mounting hole (not shown) of the bathtub connector with the screw hole B of the connecting part 52, and screw the screw member (not shown) into the screw hole B. By doing so, the fine bubble generating nozzle 10 and the bathtub connector are connected.

内側円筒部44は、外側円筒部42の内側に収容されて形成されている筒状部材である。内側円筒部44は、4個の接続部48を介して外側円筒部42の内面と接続されている。内側円筒部44と外側円筒部42との間の隙間により、4個の流出口50が形成されている。 The inner cylindrical portion 44 is a cylindrical member formed and housed inside the outer cylindrical portion 42 . The inner cylindrical portion 44 is connected to the inner surface of the outer cylindrical portion 42 via four connecting portions 48 . Four outlet ports 50 are formed by the gaps between the inner cylindrical portion 44 and the outer cylindrical portion 42 .

内側円筒部44の前方側端部には、円板部46が形成されている。円板部46は、内側円筒部44の前方側端部を閉塞している。円板部46のXY平面における中心部には、Y軸に沿って突出部49が形成されている。突出部49は、円板部46の後側の面から後方に向けて突出する略壁状の突起部材である。図5に顕著に示されるように、突出部49によって、円板部46の後側の面が左右に分断される。図2に示すように、突出部49の先端付近は、後方から前方に向かう方向(即ち、空気溶解加圧水の流れ方向(図2中矢印参照))に沿って見た場合に、当該方向に対してやや傾斜している。言い換えると、突出部49の先端付近は、後方に向かって丸く尖るように形成されている。 A disk portion 46 is formed at the front end of the inner cylindrical portion 44 . The disk portion 46 closes the front end of the inner cylindrical portion 44 . A protrusion 49 is formed at the center of the disk portion 46 in the XY plane along the Y axis. The protruding portion 49 is a substantially wall-shaped protruding member that protrudes rearward from the rear surface of the disc portion 46 . As clearly shown in FIG. 5, the protruding portion 49 divides the rear surface of the disc portion 46 into left and right sides. As shown in FIG. 2, the vicinity of the tip of the protrusion 49, when viewed along the direction from the rear to the front (that is, the flow direction of air-dissolved pressurized water (see arrow in FIG. 2)), It is slightly sloping. In other words, the vicinity of the tip of the protrusion 49 is formed to be round and pointed toward the rear.

(ノズル本体20がホルダ部40に支持される状態)
続いて、ノズル本体20がホルダ部40に支持される状態における各構成要素の位置関係について説明する。図1、図2に示すように、ノズル本体20がホルダ部40に支持されることにより、本実施例の微細気泡発生ノズル10が形成される。この状態では、ノズル本体20のうち、減圧管22の下流側端部22b及び鍔部28がホルダ部40内に差し込まれている。具体的には、減圧管22の下流側端部22bは、ホルダ部40の内側円筒部44(後述)内に差し込まれている。また、鍔部28は、外側円筒部42の開口部に形成されている段差43内に収容されている。この際、鍔部28の前面28aは、段差43と当接する。ノズル本体20がホルダ部40に支持されている状態では、減圧管22の上流側端部22aは、ホルダ部40の後方側に突出している。
(State where nozzle body 20 is supported by holder part 40)
Next, the positional relationship of each component when the nozzle body 20 is supported by the holder part 40 will be explained. As shown in FIGS. 1 and 2, the nozzle body 20 is supported by the holder portion 40, thereby forming the microbubble generating nozzle 10 of this embodiment. In this state, the downstream end portion 22b of the pressure reducing tube 22 and the collar portion 28 of the nozzle body 20 are inserted into the holder portion 40. Specifically, the downstream end 22b of the pressure reducing pipe 22 is inserted into an inner cylindrical portion 44 (described later) of the holder portion 40. Furthermore, the flange portion 28 is housed within a step 43 formed at the opening of the outer cylindrical portion 42 . At this time, the front surface 28a of the collar portion 28 comes into contact with the step 43. When the nozzle body 20 is supported by the holder section 40 , the upstream end 22 a of the pressure reducing tube 22 projects toward the rear side of the holder section 40 .

図2に示すように、ノズル本体20がホルダ部40に支持される状態では、突出部49の先端部分は、減圧管22の下流側端部22bに対向して配置される。さらに言うと、突出部49の先端部分は、区画壁25の前端部と対向している。そして、この状態では、減圧管22の下流側端部22bと円板部46とが対向するように配置される。 As shown in FIG. 2, when the nozzle body 20 is supported by the holder portion 40, the tip portion of the protrusion portion 49 is disposed opposite to the downstream end portion 22b of the pressure reducing pipe 22. More specifically, the tip of the protrusion 49 faces the front end of the partition wall 25. In this state, the downstream end 22b of the pressure reducing pipe 22 and the disc part 46 are arranged to face each other.

ノズル本体20がホルダ部40に支持されることにより、ノズル本体20とホルダ部40とによって、流路空間62、通路64、流路空間66、及び、通路68が形成される。流路空間62、通路64、流路空間66、通路68は、いずれも、空気溶解加圧水をこの順で流通させるための空間及び通路である。 By supporting the nozzle body 20 by the holder part 40, the nozzle body 20 and the holder part 40 form a passage space 62, a passage 64, a passage space 66, and a passage 68. The passage space 62, the passage 64, the passage space 66, and the passage 68 are all spaces and passages through which air-dissolved pressurized water flows in this order.

流路空間62は、減圧管22の下流側端部22bと円板部46との間に形成される。流路空間62の流路面積は、どの部分においても、上述の出口側開口部26の流路面積の合計面積よりも大きい。詳しく言うと、減圧管22の下流側端部22bの前方における、下流側端部22bの延長線と突出部49との間の空間のXY平面上の面積、および、下流側端部22bと円板部46との間の空間の面積(より詳しくは、円板部46のXY平面上の中心から垂直に伸びる軸線を中心軸とし、かつ、XY平面上における上記中心軸と下流側端部22bの外側とを結ぶ線を半径とする仮想的な円柱のうち、下流側端部22bと円板部46との間の範囲の外側面部分の面積)のいずれもが、上述の出口側開口部26の流路面積の合計面積よりも大きい。 The flow path space 62 is formed between the downstream end 22b of the pressure reducing pipe 22 and the disc portion 46. The flow path area of the flow path space 62 is larger than the total area of the flow path areas of the above-mentioned outlet side opening 26 at any portion. Specifically, the area on the XY plane of the space between the extension line of the downstream end 22b and the protrusion 49 in front of the downstream end 22b of the pressure reducing pipe 22, and the area between the downstream end 22b and the circle The area of the space between the plate part 46 (more specifically, the center axis is the axis extending perpendicularly from the center of the disk part 46 on the XY plane, and the area between the central axis and the downstream end 22b on the XY plane Of the virtual cylinder whose radius is a line connecting the outside of It is larger than the total area of 26 flow path areas.

通路64は、流路空間62の下流側に形成される。通路64は、内側円筒部44の内面と、内側円筒部44内に配置された減圧管22の外面との間に形成される。ここで、通路64の流路面積(即ちXY平面上の面積)は、上述の流路空間62のどの部分の流路面積よりも大きい。 The passage 64 is formed on the downstream side of the flow path space 62. Passage 64 is formed between the inner surface of inner cylindrical portion 44 and the outer surface of pressure reducing tube 22 disposed within inner cylindrical portion 44 . Here, the flow area of the passage 64 (that is, the area on the XY plane) is larger than the flow area of any part of the flow path space 62 described above.

流路空間66は、通路64の下流側に形成される。流路空間66は、内側円筒部44の後端と鍔部28の前面28aとの間に形成される。流路空間66は、内側円筒部44の後端、外側円筒部42の内面、減圧管22の外面、及び、鍔部28の前面28aによって画定される空間である。流路空間66の流路面積は、どの部分においても、上述の通路64の流路面積よりも大きい。詳しく言うと、内側円筒部44の後端と減圧管22の外面の間の空間のXY平面上の面積、内側円筒部44の後端と鍔部28の前面28aとの間の空間の面積(より詳しくは、円板部46のXY平面上の中心から垂直に伸びる軸線を中心軸とし、かつ、XY平面上における上記中心軸と内側円筒部44の外側とを結ぶ線を半径とする仮想的な円柱のうち、内側円筒部44の後端と前面28aとの間の範囲の外側面部分の面積)、および、内側円筒部44の後端と外側円筒部42の内面との間の空間のXY平面上の面積、のいずれもが、上述の通路64の流路面積よりも大きい。 A flow path space 66 is formed on the downstream side of the passage 64. The flow path space 66 is formed between the rear end of the inner cylindrical portion 44 and the front surface 28a of the collar portion 28. The flow path space 66 is a space defined by the rear end of the inner cylindrical portion 44, the inner surface of the outer cylindrical portion 42, the outer surface of the pressure reducing tube 22, and the front surface 28a of the collar portion 28. The flow path area of the flow path space 66 is larger than the flow path area of the above-mentioned passage 64 at any portion. Specifically, the area on the XY plane of the space between the rear end of the inner cylindrical part 44 and the outer surface of the pressure reducing tube 22, and the area of the space between the rear end of the inner cylindrical part 44 and the front surface 28a of the collar part 28 ( More specifically, a hypothetical system whose central axis is an axis extending perpendicularly from the center of the disk portion 46 on the XY plane, and whose radius is a line connecting the central axis and the outside of the inner cylindrical portion 44 on the XY plane. (area of the outer surface portion in the range between the rear end of the inner cylindrical portion 44 and the front surface 28a) and the space between the rear end of the inner cylindrical portion 44 and the inner surface of the outer cylindrical portion 42. Both areas on the XY plane are larger than the flow area of the passage 64 described above.

通路68は、流路空間66の下流側に形成される。通路68は、流路空間66と流出口50とを接続する通路である。通路68は、外側円筒部42の内面と内側円筒部44の外面との間の隙間によって形成される。ここで、通路68の流路面積(即ちXY平面上の面積)は、上述の流路空間66のどの部分の流路面積よりも大きい。 Passage 68 is formed downstream of flow path space 66 . The passage 68 is a passage that connects the flow path space 66 and the outlet 50. Passage 68 is formed by a gap between the inner surface of outer cylindrical section 42 and the outer surface of inner cylindrical section 44 . Here, the passage area of the passage 68 (ie, the area on the XY plane) is larger than the passage area of any part of the passage space 66 described above.

(空気溶解加圧水の流れ)
図2、図4を参照して、微細気泡発生ノズル10内における空気溶解加圧水の流れ、及び、それに伴って微細気泡が形成される過程について説明する。図2、図4において、実線矢印が空気溶解加圧水の流路を示している。
(Flow of air-dissolved pressurized water)
With reference to FIGS. 2 and 4, the flow of air-dissolved pressurized water in the micro-bubble generating nozzle 10 and the process by which micro-bubbles are formed will be described. In FIGS. 2 and 4, solid arrows indicate flow paths of air-dissolved pressurized water.

図2、図4に示すように、まず、ノズル本体20の導入口23を介して、外部から空気溶解加圧水が減圧管22内に導入される。この時点における空気溶解加圧水の圧力は、大気圧よりも大きい。 As shown in FIGS. 2 and 4, air-dissolved pressurized water is first introduced into the pressure reducing pipe 22 from the outside through the inlet 23 of the nozzle body 20. The pressure of air-dissolved pressurized water at this point is greater than atmospheric pressure.

導入口23から導入された空気溶解加圧水は、導入口23よりも開口面積が小さい入口側開口部24を通過する。これにより、空気溶解加圧水の流速が上昇し、空気溶解加圧水が大気圧よりも低い圧力まで減圧される(即ちベンチュリー効果による減圧)。空気溶解加圧水が減圧されることにより、空気溶解加圧水に溶解していた空気が析出し、気泡が発生する。 The air-dissolved pressurized water introduced from the inlet 23 passes through the inlet side opening 24, which has a smaller opening area than the inlet 23. As a result, the flow rate of the air-dissolved pressurized water increases, and the pressure of the air-dissolved pressurized water is reduced to a pressure lower than atmospheric pressure (that is, the pressure is reduced by the Venturi effect). When the air-dissolved pressurized water is depressurized, the air dissolved in the air-dissolved pressurized water is precipitated and bubbles are generated.

ただし、本実施例では、上述の通り、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁には、段差構造の減速部30が形成されている。そのため、図4の波型矢印に示すように、減速部30付近を流れる空気溶解加圧水は、減速部30に当たって流れる向きが不規則になる。この際に流れの剥離が生じる。その結果、減圧管22内のうち、内周壁付近の流速(図4の波型矢印参照)が径方向中心付近の流速(図4の直線矢印参照)よりも遅くなる。その結果、空気溶解加圧水が入口側開口部24を通過する際における内周壁付近と中心付近の流速差が大きくなり、微細気泡の元になる気泡(気泡核とも言う)がより多く生じる。 However, in the present embodiment, as described above, the deceleration part 30 having a stepped structure is formed on the inner circumferential wall of the portion of the pressure reducing pipe 22 between the inlet 23 and the inlet opening 24 . Therefore, as shown by the wave-shaped arrow in FIG. 4, the air-dissolved pressurized water flowing near the deceleration part 30 hits the deceleration part 30 and flows in an irregular direction. At this time, flow separation occurs. As a result, within the pressure reducing pipe 22, the flow velocity near the inner circumferential wall (see wavy arrows in FIG. 4) is slower than the flow velocity near the radial center (see straight arrows in FIG. 4). As a result, when the air-dissolved pressurized water passes through the inlet side opening 24, the difference in flow velocity between the vicinity of the inner circumferential wall and the vicinity of the center increases, and more bubbles (also referred to as bubble nuclei), which are the source of fine bubbles, are generated.

上記の通り、本実施例では、減圧管22は、入口側開口部24から出口側開口部26に向けて流路面積が増加するように形成されている。そのため、入口側開口部24を通過したことで減圧された減圧管22内の空気溶解加圧水が入口側開口部24から出口側開口部26に向かって減圧管22内を流れる間に、空気溶解加圧水の流速が低下する。流速が低下する結果、空気溶解加圧水が増圧される。空気溶解加圧水が増圧されることにより、空気溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。 As described above, in this embodiment, the pressure reducing pipe 22 is formed such that the flow area increases from the inlet side opening 24 to the outlet side opening 26. Therefore, while the air-dissolved pressurized water in the pressure-reducing pipe 22 whose pressure has been reduced by passing through the inlet-side opening 24 flows through the pressure-reducing pipe 22 from the inlet-side opening 24 toward the outlet-side opening 26, the air-dissolved pressurized water flow rate decreases. As a result of the reduced flow rate, the air-dissolved pressurized water is increased in pressure. By increasing the pressure of the air-dissolved pressurized water, some of the air bubbles contained in the air-dissolved pressurized water are split into fine bubbles.

出口側開口部26に向かって減圧管22内を流れてきた空気溶解加圧水は、出口側開口部26から流路空間62内へと排出される。上記の通り、流路空間62の流路面積は、出口側開口部26の流路面積より大きい。そのため、出口側開口部26を通って流路空間62内へと排出された空気溶解加圧水の流速はさらに低下する。これにより、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water that has flowed through the pressure reducing pipe 22 toward the outlet opening 26 is discharged from the outlet opening 26 into the flow path space 62 . As described above, the flow path area of the flow path space 62 is larger than the flow path area of the outlet side opening 26. Therefore, the flow rate of the air-dissolved pressurized water discharged into the flow path space 62 through the outlet opening 26 is further reduced. This further increases the pressure of the air-dissolved pressurized water. As a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

また、流路空間62内へと排出された空気溶解加圧水は、円板部46に衝突する。この際、流路空間62内へと排出された空気溶解加圧水の一部は、突出部49に衝突した後で円板部46に衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Further, the air-dissolved pressurized water discharged into the flow path space 62 collides with the disk portion 46 . At this time, a portion of the air-dissolved pressurized water discharged into the flow path space 62 collides with the protrusion 49 and then collides with the disk portion 46 . As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow rate of the air-dissolved pressurized water is further reduced. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

円板部46に衝突した後の空気溶解加圧水は、通路64を通過して流路空間66内へと排出される。上記の通り、通路64の流路面積は、流路空間62のどの部分の流路面積よりも大きい。そして、流路空間66の流路面積は、通路64の流路面積よりも大きい。そのため、通路64を通過して流路空間66内へと排出された空気溶解加圧水の流速はさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water after colliding with the disk portion 46 passes through the passage 64 and is discharged into the flow passage space 66 . As described above, the flow area of the passage 64 is larger than the flow area of any part of the flow path space 62. The flow path area of the flow path space 66 is larger than the flow path area of the passage 64. Therefore, the flow rate of the air-dissolved pressurized water that passes through the passage 64 and is discharged into the flow path space 66 is further reduced. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

そして、流路空間66内へと排出された空気溶解加圧水は、鍔部28の前面28aに衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水もさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Then, the air-dissolved pressurized water discharged into the flow path space 66 collides with the front surface 28a of the collar portion 28. As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow rate of the air-dissolved pressurized water is further reduced. Air-dissolved pressurized water is also further pressurized. As a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

鍔部28の前面28aに衝突した後の空気溶解加圧水は、通路68を通過し、流出口50から流出箇所(浴槽等)に向けて流出する。上記の通り、通路68の流路面積は、流路空間66のどの部分の流路面積よりも大きい。通路68を通過する空気溶解加圧水の流速はさらに低下する。そして、流出箇所に空気溶解加圧水が流出されることにより、空気溶解加圧水の流速がさらに低下し、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water after colliding with the front surface 28a of the collar portion 28 passes through the passage 68 and flows out from the outflow port 50 toward an outflow location (such as a bathtub). As described above, the flow area of the passage 68 is larger than the flow area of any part of the flow path space 66. The flow rate of air-dissolved pressurized water through passageway 68 is further reduced. Then, by flowing out the air-dissolved pressurized water to the outflow location, the flow rate of the air-dissolved pressurized water is further reduced, and the pressure of the air-dissolved pressurized water is further increased. As a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

以上、本実施例の微細気泡発生ノズル10の構成及び作用について説明した。上記の通り、本実施例では、ノズル本体20が減速部30を有することで、空気溶解加圧水が入口側開口部24を通過する際における内周壁付近と中心付近の流速差が大きくなり、微細気泡の元になる気泡(気泡核)がより多く生じる(図4参照)。その結果、本実施例の微細気泡発生ノズル10によると、流出箇所に流出される空気溶解加圧水には、微細気泡を大量に含ませることができる。 The structure and operation of the microbubble generating nozzle 10 of this embodiment have been described above. As described above, in this embodiment, the nozzle body 20 has the deceleration part 30, so that when the air-dissolved pressurized water passes through the inlet side opening 24, the difference in flow velocity between the inner circumferential wall and the center increases, causing fine bubbles to form. More bubbles (bubble nuclei), which are the source of , are generated (see FIG. 4). As a result, according to the microbubble generating nozzle 10 of this embodiment, the air-dissolved pressurized water flowing out to the outflow location can contain a large amount of microbubble.

また、本実施例では、減速部30は、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁に形成されている。この部分(即ち、導入口23と入口側開口部24の間の部分)の内周壁は、他の部分の内周壁に比べて加工を施しやすい。従って、この構成によると、減速部30を有するノズル本体20を比較的容易に製造できるという利点がある。 Further, in this embodiment, the speed reducer 30 is formed on the inner circumferential wall of the pressure reducing pipe 22 at a portion between the inlet 23 and the inlet opening 24 . The inner circumferential wall of this portion (that is, the portion between the inlet 23 and the inlet opening 24) is easier to process than the inner circumferential wall of other portions. Therefore, this configuration has the advantage that the nozzle main body 20 having the deceleration part 30 can be manufactured relatively easily.

本実施例のノズル本体20が「微細気泡発生ノズル本体」の一例である。減圧管22のうち、導入口23と入口側開口部24の間の部分が「第1の部分」の一例である。 The nozzle body 20 of this embodiment is an example of a "fine bubble generating nozzle body". A portion of the pressure reducing pipe 22 between the inlet 23 and the inlet opening 24 is an example of the "first portion."

(第2実施例)
図6を参照して、第2実施例の微細気泡発生ノズルについて、第1実施例と異なる点を中心に説明する。本実施例は、第1実施例の変形例の一つである。図6では、第1実施例と同じ構成を有する要素を、図1~図5で用いられる符号と同じ符号を用いて表している。図6に示すように、本実施例では、ノズル本体20の減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁に形成される減速部130の形状が、第1実施例とは異なっている。
(Second example)
With reference to FIG. 6, the fine bubble generating nozzle of the second embodiment will be described, focusing on the differences from the first embodiment. This embodiment is one of the modifications of the first embodiment. In FIG. 6, elements having the same configuration as those in the first embodiment are represented using the same symbols as those used in FIGS. 1 to 5. As shown in FIG. 6, in this embodiment, the shape of the speed reducer 130 formed on the inner circumferential wall of the portion between the inlet port 23 and the inlet side opening 24 of the pressure reducing pipe 22 of the nozzle body 20 is This is different from the first embodiment.

本実施例の減速部130は、減圧管22の上流側端部22a側(図中Z軸の負方向側)に向けて内壁面が突出するいわゆる「返し構造」を有している。 The speed reducer 130 of this embodiment has a so-called "reverse structure" in which an inner wall surface protrudes toward the upstream end 22a of the pressure reducing pipe 22 (the negative side of the Z axis in the figure).

図6の波型矢印に示すように、本実施例でも、減速部130付近を流れる空気溶解加圧水は、減速部130に当たって流れる向きが不規則になる。その結果、減圧管22内のうち、内周壁付近の流速(図6の波型矢印参照)が径方向中心付近の流速(図6の直線矢印参照)よりも遅くなる。その結果、空気溶解加圧水が入口側開口部24を通過する際における内周壁付近と中心付近の流速差が大きくなり、微細気泡の元になる気泡(気泡核とも言う)がより多く生じる。そのため、本実施例のノズル本体20を使用する場合も、第1実施例と同様に、流出箇所に流出される空気溶解加圧水には、微細気泡を大量に含ませることができる。 As shown by the wave-shaped arrow in FIG. 6, in this embodiment as well, the air-dissolved pressurized water flowing near the deceleration section 130 hits the deceleration section 130 and flows in an irregular direction. As a result, within the pressure reducing pipe 22, the flow velocity near the inner circumferential wall (see wavy arrows in FIG. 6) is slower than the flow velocity near the radial center (see straight arrows in FIG. 6). As a result, when the air-dissolved pressurized water passes through the inlet side opening 24, the difference in flow velocity between the vicinity of the inner circumferential wall and the vicinity of the center increases, and more bubbles (also referred to as bubble nuclei), which are the source of fine bubbles, are generated. Therefore, when the nozzle body 20 of this embodiment is used, as in the first embodiment, the air-dissolved pressurized water flowing out to the outflow location can contain a large amount of microbubbles.

以上、実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the embodiments have been described in detail above, these are merely illustrative and do not limit the scope of the claims. The techniques described in the claims include various modifications and changes to the specific examples illustrated above.

(変形例1)上記の各実施例では、減速部30、130は、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁に形成されている(図4、図6参照)。これに限られず、減速部は、減圧管22のうち、入口側開口部24よりも下流側であって入口側開口部24近傍の部分の内周壁に形成されてもよい。また、さらに他の例では、減速部は、減圧管22のうち、導入口23と入口側開口部24の間の部分の内周壁と、入口側開口部24よりも下流側であって入口側開口部24近傍の部分の内周壁と、の双方に形成されてもよい。 (Modification 1) In each of the above-described embodiments, the deceleration parts 30 and 130 are formed on the inner circumferential wall of the portion of the pressure reducing pipe 22 between the inlet 23 and the inlet side opening 24 (see FIG. (See Figure 6). The present invention is not limited thereto, and the deceleration portion may be formed on the inner circumferential wall of a portion of the pressure reducing pipe 22 that is downstream of the inlet side opening 24 and near the inlet side opening 24 . In still another example, the speed reducer includes the inner circumferential wall of a portion of the pressure reducing pipe 22 between the inlet 23 and the inlet opening 24, and the inlet side downstream of the inlet opening 24. It may be formed both on the inner circumferential wall of the portion near the opening 24.

(変形例2)減速部は、第1、第2実施例で開示した段差構造、返し構造に限られず、付近を通過する気体溶解加圧水の流速を遅くすることで流れの剥離を生じさせることができる任意の構成で形成されていてもよい。例えば、段差構造、返し構造、凹凸構造、トゲ(突起)構造、ディンプル構造等のいずれか、もしくはこれらの組合せであってもよい。 (Modification 2) The deceleration part is not limited to the stepped structure and the return structure disclosed in the first and second embodiments, and can cause flow separation by slowing down the flow rate of the gas-dissolved pressurized water passing nearby. It may be formed in any possible configuration. For example, it may be a stepped structure, a barbed structure, an uneven structure, a thorn (protrusion) structure, a dimple structure, etc., or a combination thereof.

(変形例3)上記の各実施例では、微細気泡発生ノズルは、空気が水に溶解した空気溶解加圧水の供給を受け、空気溶解加圧水内の空気を析出させて微細気泡に変え、空気の微細気泡を含む水を流出箇所に供給する。これに限られず、微細気泡発生ノズルは、空気以外の他の気体(例えば、炭酸ガスや水素等)が水に溶解した気体溶解加圧水の供給を受け、当該気体溶解加圧水内の気体を析出させて微細気泡に変え、その期待の微細気泡を含む水を流出箇所に供給するようにしてもよい。即ち、「気体」は空気に限られず、炭酸ガスや水素等の任意の気体であってもよい。 (Modification 3) In each of the above embodiments, the micro-bubble generating nozzle receives a supply of air-dissolved pressurized water in which air is dissolved in water, precipitates the air in the air-dissolved pressurized water, and converts it into micro-bubbles. Supply bubbly water to the spill point. The fine bubble generating nozzle is not limited to this, and the fine bubble generating nozzle receives a supply of gas-dissolved pressurized water in which a gas other than air (for example, carbon dioxide, hydrogen, etc.) is dissolved in water, and precipitates the gas in the gas-dissolved pressurized water. The water may be changed to microbubbles and water containing the expected microbubbles may be supplied to the outflow location. That is, the "gas" is not limited to air, and may be any gas such as carbon dioxide or hydrogen.

(変形例4)減圧管22の区画壁25が省略されていてもよい。即ち、減圧管22は、2本の管部に区画されていなくてもよい。 (Modification 4) The partition wall 25 of the pressure reducing pipe 22 may be omitted. That is, the pressure reducing pipe 22 does not need to be divided into two pipe parts.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in this specification or the drawings exhibit technical utility alone or in various combinations, and are not limited to the combinations described in the claims as filed. Furthermore, the techniques illustrated in this specification or the drawings can achieve multiple objectives simultaneously, and achieving one of the objectives has technical utility in itself.

10:微細気泡発生ノズル
20:ノズル本体
22:減圧管
22a:上流側端部
22b:下流側端部
23:導入口
24:入口側開口部
25:区画壁
26:出口側開口部
28:鍔部
28a:前面
30:減速部
40:ホルダ部
42:外側円筒部
43:段差
44:内側円筒部
46:円板部
48:接続部
49:突出部
50:流出口
52:連結部
62:流路空間
64:通路
66:流路空間
68:通路
130:減速部
B:ネジ穴
10: Fine bubble generation nozzle 20: Nozzle body 22: Decompression tube 22a: Upstream end 22b: Downstream end 23: Inlet 24: Inlet opening 25: Partition wall 26: Outlet opening 28: Flange 28a: Front surface 30: Reduction section 40: Holder section 42: Outer cylindrical section 43: Step 44: Inner cylindrical section 46: Disc section 48: Connecting section 49: Projecting section 50: Outlet 52: Connecting section 62: Channel space 64: Passage 66: Flow path space 68: Passage 130: Reduction part B: Screw hole

Claims (1)

上流側端部から下流側端部に向けて、気体が水に溶解している気体溶解加圧水を通過させる減圧管と、
前記上流側端部に開口され、外部から前記減圧管内に前記気体溶解加圧水を導入する導入口と、
前記減圧管のうち前記導入口よりも下流側に設けられ、前記減圧管内に導入された前記気体溶解加圧水を通過させる入口側開口部と、
前記入口側開口部よりも下流側である前記下流側端部に開口された出口側開口部と、
を備えており、
前記入口側開口部の開口面積は前記導入口の開口面積よりも小さく、
前記出口側開口部の開口面積は前記入口側開口部の開口面積よりも大きく、
前記減圧管のうち、前記導入口と前記入口側開口部の間の第1の部分の内周壁に、前記減圧管内を通過する前記気体溶解加圧水の流速を減速させる減速部が形成されており、
前記減速部は、前記入口側開口部の内周壁付近を流れる気体溶解加圧水と、前記入口側開口部の中心付近を流れる気体溶解加圧水と、の間の流速差を大きくするように構成されており、
前記減速部は、前記第1の部分の内周壁の周方向に沿って形成されるとともに、前記導入口から前記入口側開口部に向かうにつれて内径が減少する複数段の段差構造である、
微細気泡発生ノズル本体。
a pressure reducing pipe that passes gas-dissolved pressurized water in which gas is dissolved in water from an upstream end to a downstream end;
an inlet opening at the upstream end and introducing the gas-dissolved pressurized water into the pressure reducing pipe from the outside;
an inlet side opening that is provided downstream of the introduction port of the pressure reduction pipe and allows the gas-dissolved pressurized water introduced into the pressure reduction pipe to pass;
an outlet side opening opened at the downstream end that is downstream of the inlet side opening;
It is equipped with
The opening area of the inlet side opening is smaller than the opening area of the inlet,
The opening area of the outlet side opening is larger than the opening area of the inlet side opening,
A deceleration part that reduces the flow rate of the gas-dissolved pressurized water passing through the pressure reduction pipe is formed on the inner circumferential wall of a first portion of the pressure reduction pipe between the introduction port and the inlet side opening,
The speed reducer is configured to increase a flow velocity difference between gas-dissolved pressurized water flowing near the inner peripheral wall of the inlet-side opening and gas-dissolved pressurized water flowing near the center of the inlet-side opening . ,
The speed reducer is formed along the circumferential direction of the inner circumferential wall of the first portion, and has a multi-step structure in which the inner diameter decreases from the inlet toward the inlet side opening.
Fine bubble generating nozzle body.
JP2020018290A 2020-02-05 2020-02-05 Fine bubble generating nozzle body Active JP7395152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020018290A JP7395152B2 (en) 2020-02-05 2020-02-05 Fine bubble generating nozzle body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020018290A JP7395152B2 (en) 2020-02-05 2020-02-05 Fine bubble generating nozzle body

Publications (2)

Publication Number Publication Date
JP2021122524A JP2021122524A (en) 2021-08-30
JP7395152B2 true JP7395152B2 (en) 2023-12-11

Family

ID=77457979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020018290A Active JP7395152B2 (en) 2020-02-05 2020-02-05 Fine bubble generating nozzle body

Country Status (1)

Country Link
JP (1) JP7395152B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290051A (en) 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Fine bubble generator
KR20090010385A (en) 2007-07-23 2009-01-30 삼성전자주식회사 Method and apparatus for recording image communication in image communication terminal
JP2010000402A (en) 2008-06-18 2010-01-07 Sato Kogyo Co Ltd Microbubble generator
JP2010075838A (en) 2008-09-25 2010-04-08 Itaken:Kk Bubble generation nozzle
US20130168879A1 (en) 2012-01-04 2013-07-04 Chun-Hsin Lee Venturi tube for shower head

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450938Y1 (en) * 2008-04-08 2010-11-11 오태준 A micro-bubble generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290051A (en) 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd Fine bubble generator
KR20090010385A (en) 2007-07-23 2009-01-30 삼성전자주식회사 Method and apparatus for recording image communication in image communication terminal
JP2010000402A (en) 2008-06-18 2010-01-07 Sato Kogyo Co Ltd Microbubble generator
JP2010075838A (en) 2008-09-25 2010-04-08 Itaken:Kk Bubble generation nozzle
US20130168879A1 (en) 2012-01-04 2013-07-04 Chun-Hsin Lee Venturi tube for shower head

Also Published As

Publication number Publication date
JP2021122524A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP6487041B2 (en) Atomizer nozzle
KR102283310B1 (en) shower head, and mist generating unit
CN106660842B (en) Micro-bubble nozzle
JP5825852B2 (en) Fine bubble generating nozzle and fine bubble generating device
JP2017225961A (en) Fine bubble generation nozzle
KR101633234B1 (en) Microbuble generator
JPS588288B2 (en) ejector assembly
JP2020054987A (en) Fine bubble generation nozzle
TW201914686A (en) Bubble generating device and bubble generating method
JP7395152B2 (en) Fine bubble generating nozzle body
JP7285176B2 (en) Fine bubble generation nozzle
JP7329397B2 (en) Fine bubble generating nozzle body
JP7265934B2 (en) Fine bubble generation nozzle
JP7232713B2 (en) Fine bubble generation nozzle
JP2008161829A (en) Bubble generator
JP4016628B2 (en) Nozzle for fine bubble generator
US20230390713A1 (en) Fine bubble generating nozzle
JP4887555B2 (en) Nozzle of fine bubble generator
JP6319861B1 (en) Microbubble generator
JP7213143B2 (en) Fine bubble generation nozzle
JP2008161830A (en) Bubble generator
JP2011011101A (en) Apparatus for ejecting foam
JP2007152169A (en) Liquid discharge nozzle
JPWO2019069350A1 (en) Bubble generation device, bubble generation method
JP2021159818A (en) Microbubble generator and shower head comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7395152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150