JP7213143B2 - Fine bubble generation nozzle - Google Patents

Fine bubble generation nozzle Download PDF

Info

Publication number
JP7213143B2
JP7213143B2 JP2019100630A JP2019100630A JP7213143B2 JP 7213143 B2 JP7213143 B2 JP 7213143B2 JP 2019100630 A JP2019100630 A JP 2019100630A JP 2019100630 A JP2019100630 A JP 2019100630A JP 7213143 B2 JP7213143 B2 JP 7213143B2
Authority
JP
Japan
Prior art keywords
pressurized water
gas
dissolved pressurized
dissolved
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019100630A
Other languages
Japanese (ja)
Other versions
JP2020192510A (en
Inventor
邦夫 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2019100630A priority Critical patent/JP7213143B2/en
Publication of JP2020192510A publication Critical patent/JP2020192510A/en
Application granted granted Critical
Publication of JP7213143B2 publication Critical patent/JP7213143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本明細書で開示する技術は、微細気泡発生ノズルに関する。 The technology disclosed in this specification relates to a microbubble generating nozzle.

特許文献1には、微細気泡発生ノズルが開示されている。この微細気泡発生ノズルは、微細な噴出孔を有する筒状部材であるノズル本体と、ノズル本体の先端に取り付けられるノズルカバーとを備える。ノズルカバーは、噴出孔に対向する壁と、噴出孔よりも微細な流出孔とを備える。 Patent Literature 1 discloses a microbubble generating nozzle. This fine bubble generating nozzle includes a nozzle body, which is a cylindrical member having fine ejection holes, and a nozzle cover attached to the tip of the nozzle body. The nozzle cover has a wall facing the ejection hole and an outflow hole that is finer than the ejection hole.

特許文献1の微細気泡発生ノズルでは、気体(例えば空気、炭酸ガス、水素等)が水に溶解している気体溶解加圧水がノズル本体に供給されると、気体溶解加圧水は、ノズル本体を通って噴出孔から壁に向けて噴出される。噴出孔から噴出された気体溶解加圧水は、壁に衝突してノズルカバー内で迂回した後、流出孔から流出箇所(具体的には浴槽)に流出される。気体溶解加圧水は、微細な噴出孔、及び、さらに微細な流出孔を通過することにより、大気圧まで徐々に減圧される。気体溶解加圧水が減圧される過程において、気体溶解加圧水に溶解されていた気体が析出し、微細気泡が発生する。即ち、特許文献1の微細気泡発生ノズルでは、気体溶解加圧水の流通過程で気体溶解加圧水を減圧することにより、流出箇所(具体的には浴槽)に流出される気体溶解加圧水に微細気泡を含ませることができる。 In the fine bubble generating nozzle of Patent Document 1, when gas-dissolved pressurized water in which gas (for example, air, carbon dioxide, hydrogen, etc.) is dissolved in water is supplied to the nozzle body, the gas-dissolved pressurized water passes through the nozzle body. It is ejected from the ejection port toward the wall. The gas-dissolved pressurized water ejected from the ejection hole collides with the wall, detours within the nozzle cover, and then flows out from the outflow hole to an outflow location (specifically, a bathtub). The gas-dissolved pressurized water is gradually decompressed to atmospheric pressure by passing through fine jet holes and finer outflow holes. In the process of depressurizing the gas-dissolved pressurized water, the gas dissolved in the gas-dissolved pressurized water is precipitated to generate fine bubbles. That is, in the microbubble generating nozzle of Patent Document 1, the pressure of the gas-dissolved pressurized water is reduced in the process of circulation of the gas-dissolved pressurized water, so that the gas-dissolved pressurized water flowing out to the outflow location (specifically, the bathtub) contains fine bubbles. be able to.

特開2007-167557号公報JP 2007-167557 A

しかしながら、特許文献1の微細気泡発生ノズルでは、流出箇所に流出される気体溶解加圧水に含まれる微細気泡の量が不十分であるという状況が発生する。 However, in the microbubble generating nozzle of Patent Document 1, a situation occurs in which the amount of microbubbles contained in the gas-dissolved pressurized water flowing out to the outflow location is insufficient.

本明細書では、流出箇所に流出される気体溶解加圧水に微細気泡を大量に含ませることができる技術を提供する。 The present specification provides a technique that allows a large amount of microbubbles to be included in the gas-dissolved pressurized water that flows out to the outflow location.

本明細書によって開示される微細気泡発生ノズルは、気体が水に溶解している気体溶解加圧水の圧力を減圧する減圧流通部であって、減圧管と、前記減圧管の上流側端部に設けられ、前記気体溶解加圧水を前記減圧管内に導入する入口側開口部と、前記減圧管の下流側端部に設けられ、前記減圧管を通過した前記気体溶解加圧水を排出する出口側開口部と、を備える前記減圧流通部と、前記出口側開口部から排出された後の前記気体溶解加圧水を流出箇所に流出させる流出部と、前記出口側開口部と前記流出部との間の流通経路と、前記流通経路内に配置され、前記流通経路内を通過する前記気体溶解加圧水の流れを受けて、前記流通経路内で回転する回転体と、を備える。前記回転体は、前記出口側開口部に対向する範囲に設けられ、前記出口側開口部から排出される前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる板状の本体部と、前記本体部を前記減圧管の長手方向軸と平行な回転軸を中心に周方向に回転させるための軸部と、前記本体部の外周縁から前記減圧管に向けて立設される筒状の側壁部であって、その先端側が前記減圧管の前記下流側端部の外側に配置される、前記側壁部と、前記側壁部に設けられる複数枚の羽根と、を備える。前記複数枚の羽根が前記気体溶解加圧水の流れを受けることにより、前記本体部、前記側壁部、前記複数枚の羽根は、前記軸部を中心に前記周方向に回転する。 The fine bubble generating nozzle disclosed in the present specification is a reduced pressure flow part for reducing the pressure of gas-dissolved pressurized water in which gas is dissolved in water, and is provided at a pressure reducing pipe and an upstream end of the pressure reducing pipe. an inlet-side opening for introducing the gas-dissolved pressurized water into the pressure-reducing pipe; an outlet-side opening provided at the downstream end of the pressure-reducing pipe for discharging the gas-dissolved pressurized water that has passed through the pressure-reducing pipe; an outflow portion that causes the gas-dissolved pressurized water discharged from the outlet-side opening to flow out to an outflow location; a circulation path between the outlet-side opening and the outflow portion; a rotating body that is arranged in the circulation path and rotates in the circulation path upon receiving the flow of the gas-dissolved pressurized water that passes through the circulation path. The rotary body is provided in a range facing the outlet-side opening, and is a plate-like main body that changes the flow direction of the gas-dissolved pressurized water discharged from the outlet-side opening by colliding with the gas-dissolved pressurized water. a shaft portion for rotating the main body in the circumferential direction around a rotation axis parallel to the longitudinal axis of the pressure reducing tube; A cylindrical side wall portion, the tip side of which is disposed outside the downstream end portion of the decompression tube, and a plurality of blades provided on the side wall portion. When the plurality of blades receive the flow of the gas-dissolved pressurized water, the main body portion, the side wall portion, and the plurality of blades rotate in the circumferential direction around the shaft portion.

上記の構成によると、気体溶解加圧水は、外部から減圧管内に導入される際に入口側開口部を通過することによって流速が上昇し、その結果減圧される(ベンチュリー効果)。気体溶解加圧水が減圧されることにより、気体溶解加圧水に溶解していた気体が析出し、気泡が発生する。入口側開口部を通過した気体溶解加圧水は、減圧管内を流れ、出口側開口部から流通経路内に排出される。なお、ここで言う「気体」は、空気、炭酸ガス、水素等、水に溶解可能な任意の気体を含む。 According to the above configuration, when the gas-dissolved pressurized water is introduced into the decompression tube from the outside, the flow rate increases by passing through the inlet side opening, resulting in decompression (Venturi effect). By reducing the pressure of the gas-dissolved pressurized water, the gas dissolved in the gas-dissolved pressurized water is precipitated to generate bubbles. The gas-dissolved pressurized water that has passed through the inlet-side opening flows through the decompression pipe and is discharged from the outlet-side opening into the flow path. The term "gas" used herein includes any gas that can be dissolved in water, such as air, carbon dioxide, and hydrogen.

さらに、上記の構成によると、回転体は、流通経路内を通過する気体溶解加圧水の流れを受けて流通経路内で回転する。回転体が回転軸を中心として回転することにより、特定部分を通過する際の気体溶解加圧水が撹拌される。この結果、気体溶解加圧水の流れの向きが変わる。そのため、気体溶解加圧水の流速が大幅に低下する。流速が大幅に低下することにより、気体溶解加圧水は大幅に増圧される。減圧によって気泡が析出させられた後の気体溶解加圧水が増圧されると、気体溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。即ち、上記の構成によると、特定部分を通過した気体溶解加圧水を大幅に増圧させることができ、微細気泡を多く形成することができる。従って、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡を大量に含ませることができる。
また、上記の構成によると、出口側開口部から排出される気体溶解加圧水が本体部に衝突することにより、気体溶解加圧水の流れる向きが変更されるとともに、気体溶解加圧水の流速が低下する。これにより気体溶解加圧水を増圧させ、気体溶解加圧水に含まれる微細気泡を増加させることができる。さらに、上記の構成によると、複数枚の羽根が気体溶解加圧水の流れを受けることにより、本体部、側壁部、及び、複数枚の羽根が、軸部を中心に周方向に回転する。これにより、回転する複数枚の羽根によって、流通経路のうち、羽根が配置されていた部分(即ち、上記の特定部分の一例)を通過する気体溶解加圧水が、回転する羽根によって撹拌される。この結果、気体溶解加圧水内に微細気泡をより多く形成することができる。従って、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡をより多く含ませることができる。
Furthermore, according to the above configuration, the rotating body rotates within the circulation path upon receiving the flow of the gas-dissolved pressurized water passing through the circulation path. The gas-dissolved pressurized water is agitated when passing through the specific portion by rotating the rotating body around the rotation axis. As a result, the flow direction of the gas-dissolved pressurized water changes. Therefore, the flow velocity of the gas-dissolved pressurized water is greatly reduced. The pressure of the gas-dissolved pressurized water is greatly increased due to the significant decrease in flow velocity. When the pressure of the gas-dissolved pressurized water after bubbles are precipitated by depressurization is increased, some of the bubbles contained in the gas-dissolved pressurized water split to become fine bubbles. That is, according to the above configuration, it is possible to greatly increase the pressure of the gas-dissolved pressurized water that has passed through the specific portion, so that many fine bubbles can be formed. Therefore, according to the above configuration, a large amount of microbubbles can be included in the gas-dissolved pressurized water that flows out to the outflow location.
Further, according to the above configuration, the gas-dissolved pressurized water discharged from the outlet side opening collides with the main body, thereby changing the flow direction of the gas-dissolved pressurized water and reducing the flow velocity of the gas-dissolved pressurized water. As a result, the pressure of the gas-dissolved pressurized water can be increased, and the microbubbles contained in the gas-dissolved pressurized water can be increased. Furthermore, according to the above configuration, when the plurality of blades receive the flow of the gas-dissolved pressurized water, the main body portion, the side wall portion, and the plurality of blades rotate in the circumferential direction about the shaft portion. As a result, the gas-dissolved pressurized water passing through the portion of the flow path where the blades are arranged (that is, an example of the above-mentioned specific portion) is stirred by the rotating blades. As a result, more microbubbles can be formed in the gas-dissolved pressurized water. Therefore, according to the above configuration, the gas-dissolved pressurized water flowing out to the outflow portion can contain more fine bubbles.

前記微細気泡発生ノズルは、前記減圧管の外側であって前記側壁部の先端側に設けられる衝突壁であって、前記本体部に衝突し、その後、前記衝突することによって前記気体溶解加圧水の流れる向きを変更させる前記衝突壁をさらに備えてもよい。前記複数枚の羽根は、前記側壁部の外面に設けられ、前記衝突壁に衝突して向きが変更された後の前記気体溶解加圧水の流れを受けてもよい。 The microbubble generating nozzle is a collision wall provided outside the decompression tube and on the tip side of the side wall, and collides with the main body, and then the gas-dissolved pressurized water flows by the collision. The collision wall that changes orientation may be further provided. The plurality of blades may be provided on the outer surface of the side wall portion and receive the flow of the gas-dissolved pressurized water after it collides with the collision wall and changes direction.

この構成によると、本体部に衝突し、側壁部と減圧管の下流側端部の外側との間に形成される経路を通過した後の気体溶解加圧水がさらに衝突壁に衝突することにより、気体溶解加圧水の流れる向きがさらに変更されるとともに、気体溶解加圧水の流速が低下する。これにより気体溶解加圧水を増圧させ、気体溶解加圧水に含まれる微細気泡を増加させることができる。さらに、上記の構成によると、複数枚の羽根が、衝突壁に衝突して向きが変更された後の気体溶解加圧水の流れを受けることにより、本体部、側壁部、及び、複数枚の羽根が、軸部を中心に周方向に回転する。この結果、気体溶解加圧水内に微細気泡をより多く形成することができる。従って、上記の構成によると、流出箇所に流出される気体溶解加圧水に微細気泡をより多く含ませることができる。 According to this configuration, the gas-dissolved pressurized water after colliding with the main body and passing through the path formed between the side wall and the outside of the downstream end of the decompression tube further collides with the colliding wall to generate gas. The flow direction of the dissolved pressurized water is further changed, and the flow velocity of the gas-dissolved pressurized water is reduced. As a result, the pressure of the gas-dissolved pressurized water can be increased, and the microbubbles contained in the gas-dissolved pressurized water can be increased. Furthermore, according to the above configuration, the plurality of blades receive the flow of the gas-dissolved pressurized water after colliding with the collision wall and changing the direction, so that the main body portion, the side wall portion, and the plurality of blades , rotates in the circumferential direction about the shaft. As a result, more microbubbles can be formed in the gas-dissolved pressurized water. Therefore, according to the above configuration, the gas-dissolved pressurized water flowing out to the outflow portion can contain more fine bubbles.

前記本体部の前記出口側開口部に対向する側の面には、前記出口側開口部に向かって突出する複数個の突出部が設けられていてもよい。 A plurality of protrusions protruding toward the outlet-side opening may be provided on a surface of the main body facing the outlet-side opening.

この構成によると、本体部に衝突する気体溶解加圧水の一部は、さらに突出部に衝突し、気体溶解加圧水の流速が低下する。これにより気体溶解加圧水を増圧させ、気体溶解加圧水に含まれる微細気泡を増加させることができる。さらに、本体部が回転すると、本体部の回転とともに突出部も回転する。そのため、出口側開口部から排出される気体溶解加圧水が本体部に衝突する際に、回転する突出部によって気体溶解加圧水を撹拌させることができる。この結果、気体溶解加圧水内に微細気泡をより多く形成することができる。 According to this configuration, part of the gas-dissolved pressurized water that collides with the main body portion further collides with the projecting portion, and the flow velocity of the gas-dissolved pressurized water decreases. As a result, the pressure of the gas-dissolved pressurized water can be increased, and the microbubbles contained in the gas-dissolved pressurized water can be increased. Further, when the main body rotates, the protruding part rotates together with the rotation of the main body. Therefore, when the gas-dissolved pressurized water discharged from the outlet side opening collides with the main body, the rotating projecting portion can stir the gas-dissolved pressurized water. As a result, more microbubbles can be formed in the gas-dissolved pressurized water.

前記複数個の突出部のそれぞれは、前記本体部を前記長手方向軸に沿って見た場合において、前記軸部を中心として放射状に延び、かつ、前記周方向と反対方向に向けて曲げられた線形状に形成されていてもよい。 Each of the plurality of projecting portions extends radially around the shaft portion and is bent in a direction opposite to the circumferential direction when the main body portion is viewed along the longitudinal axis. It may be formed in a linear shape.

この構成によると、回転する突出部による気体溶解加圧水の撹拌がより促進される。この結果、気体溶解加圧水内に微細気泡をより多く形成することができる。 According to this configuration, stirring of the gas-dissolved pressurized water by the rotating projecting portion is further promoted. As a result, more microbubbles can be formed in the gas-dissolved pressurized water.

微細気泡発生ノズル10の斜視図。FIG. 2 is a perspective view of the microbubble generating nozzle 10. FIG. 図1の微細気泡発生ノズル10の分解斜視図。2 is an exploded perspective view of the microbubble generating nozzle 10 of FIG. 1. FIG. 図1のIII-III線に沿った微細気泡発生ノズル10の断面図。FIG. 2 is a cross-sectional view of the fine bubble generating nozzle 10 taken along line III-III in FIG. 1; ノズル本体20の斜視図。3 is a perspective view of the nozzle body 20; FIG. ホルダ部40の斜視図。4 is a perspective view of the holder part 40. FIG. 回転体80の斜視図。4 is a perspective view of a rotating body 80; FIG. 回転体80の右側面図。4 is a right side view of the rotating body 80. FIG.

(実施例)
(微細気泡発生ノズル10の構成)
図1~図7を参照して、実施例の微細気泡発生ノズル10について説明する。微細気泡発生ノズル10は、浴槽(図示省略)等の流出箇所に微細気泡を含む水を供給するためのノズルである。図1及び図2に示すように、微細気泡発生ノズル10は、ノズル本体20と、ホルダ部40と、回転体80とを備える。図1及び図3において、ノズル本体20及び回転体80は、ホルダ部40に支持されている。
(Example)
(Structure of fine bubble generating nozzle 10)
A microbubble generating nozzle 10 of an embodiment will be described with reference to FIGS. 1 to 7. FIG. The microbubble generating nozzle 10 is a nozzle for supplying water containing microbubbles to an outflow location such as a bathtub (not shown). As shown in FIGS. 1 and 2, the microbubble generating nozzle 10 includes a nozzle body 20, a holder portion 40, and a rotating body 80. As shown in FIGS. 1 and 3, the nozzle body 20 and the rotating body 80 are supported by the holder portion 40. As shown in FIG.

図1~図4を参照して、ノズル本体20の構成について説明する。なお、以下の説明では、各図中のX軸方向を左右方向、Y軸方向を上下方向、Z軸方向を前後方向と呼ぶ場合がある。図2、図4に示すように、ノズル本体20は、減圧管22と、鍔部28と、2個の連結部30とを備える。 The configuration of the nozzle body 20 will be described with reference to FIGS. 1 to 4. FIG. In the following description, the X-axis direction in each drawing may be referred to as the left-right direction, the Y-axis direction as the up-down direction, and the Z-axis direction as the front-back direction. As shown in FIGS. 2 and 4 , the nozzle body 20 includes a decompression tube 22 , a collar portion 28 and two connecting portions 30 .

図1~図4に示される減圧管22は、空気が水に溶解している空気溶解加圧水の圧力を減圧することができる管状部材である。図2~図4に示すように、減圧管22の内部には、減圧管22内を2本の管部に区画する区画壁25が設けられている。減圧管22の後方側の上流側端部22a(図中Z軸の正方向側の端部)には、2個の流入口23が開口されている。流入口23には、空気が水に溶解している空気溶解加圧水を供給するための給水手段(図示しない)が接続される。空気溶解加圧水は、流出箇所に供給される微細気泡を含む水の原料となる液体である。 The decompression tube 22 shown in FIGS. 1 to 4 is a tubular member capable of decompressing the pressure of air-dissolved pressurized water in which air is dissolved in water. As shown in FIGS. 2 to 4, inside the decompression tube 22, a partition wall 25 is provided to partition the interior of the decompression tube 22 into two tube portions. Two inlets 23 are opened at the upstream end portion 22a (the end portion on the positive side of the Z axis in the figure) on the rear side of the decompression tube 22 . A water supply means (not shown) for supplying air-dissolved pressurized water in which air is dissolved in water is connected to the inlet 23 . The air-dissolved pressurized water is a liquid that serves as a raw material for water containing microbubbles that is supplied to the outflow point.

減圧管22のうち、上流側端部22aの近傍であって、2個の流入口23よりもやや前方寄り(Z軸の負方向寄り)の位置には、2個の入口側開口部24が開口されている。入口側開口部24の開口面積は、流入口23の開口面積よりも小さい。言い換えると、減圧管22は、入口側開口部24において縮径されている。区画壁25は、減圧管22の後方側の上流側端部22a(図中Z軸の正方向側の端部)から、減圧管22の下流側端部22bまでの区間を2本の管部に区画している。そのため、下流側端部22bにも、2個の出口側開口部26が開口されている。本実施例では、2個の出口側開口部26の開口面積(即ちXY平面上の面積)の合計面積は、2個の入口側開口部24の開口面積(即ちXY平面上の面積)の合計面積よりも大きい。言い換えると、減圧管22は、入口側開口部24から出口側開口部26に向かって拡径されている。 Two inlet-side openings 24 are located in the vicinity of the upstream end 22a of the decompression pipe 22 and slightly forward (closer to the negative direction of the Z axis) than the two inlets 23. is open. The opening area of the inlet side opening 24 is smaller than the opening area of the inflow port 23 . In other words, the decompression tube 22 has a reduced diameter at the inlet-side opening 24 . The partition wall 25 extends from the rear upstream end 22a of the decompression tube 22 (the end in the positive direction of the Z axis in the drawing) to the downstream end 22b of the decompression tube 22. are divided into Therefore, two outlet side openings 26 are also opened in the downstream end 22b. In this embodiment, the total area of the opening areas of the two outlet side openings 26 (that is, the area on the XY plane) is the sum of the opening areas of the two inlet side openings 24 (that is, the area on the XY plane) larger than area. In other words, the decompression tube 22 expands in diameter from the inlet side opening 24 toward the outlet side opening 26 .

図2~図4に示すように、鍔部28は、減圧管22の前後方向中間部付近の外面に設けられている円板状部材である。図2に示すように、鍔部28の外径は、減圧管22の外径よりも大きい。また、鍔部28の前面28aには、回転体80の外側円筒部82を規制するための環状リブ28bも形成されている。 As shown in FIGS. 2 to 4, the collar portion 28 is a disk-shaped member provided on the outer surface of the decompression tube 22 near the middle portion in the front-rear direction. As shown in FIG. 2 , the outer diameter of the collar portion 28 is larger than the outer diameter of the pressure reducing tube 22 . An annular rib 28b is also formed on the front surface 28a of the flange 28 for restricting the outer cylindrical portion 82 of the rotating body 80. As shown in FIG.

図2~図4に示すように、2個の連結部30は、それぞれ、鍔部28の外周面から外側に突出している。連結部30には、ネジ穴32が設けられている。連結部30のネジ穴32は、後述のホルダ部40の連結部52のネジ穴54と位置合わせ可能なネジ穴である。 As shown in FIGS. 2 to 4, the two connecting portions 30 protrude outward from the outer peripheral surface of the collar portion 28, respectively. A screw hole 32 is provided in the connecting portion 30 . The screw hole 32 of the connecting portion 30 is a screw hole that can be aligned with the screw hole 54 of the connecting portion 52 of the holder portion 40 to be described later.

(ホルダ部40の構成)
続いて、図1~図3、図5を参照して、ホルダ部40の構成について説明する。図2及び図5に顕著に示されるように、ホルダ部40は、外側円筒部42と、内側円筒部44と、2個の連結部52と、を備える。外側円筒部42と2個の連結部52とは連続して一体に成形されている。内側円筒部44は、外側円筒部42の内側に配置されている。
(Configuration of holder portion 40)
Next, the configuration of the holder portion 40 will be described with reference to FIGS. 1 to 3 and 5. FIG. 2 and 5, the holder portion 40 includes an outer cylindrical portion 42, an inner cylindrical portion 44, and two connecting portions 52. As shown in FIGS. The outer cylindrical portion 42 and the two connecting portions 52 are continuously and integrally formed. The inner cylindrical portion 44 is arranged inside the outer cylindrical portion 42 .

外側円筒部42は、円筒状の部材である。2個の連結部52は、それぞれ、外側円筒部42の外周面から外側に突出して形成されている。図3、図5に示すように、外側円筒部42及び2個の連結部52の後方側の開口部には、上述のノズル本体20の鍔部28及び2個の連結部30を収容するための段差43が形成されている。 The outer cylindrical portion 42 is a cylindrical member. The two connecting portions 52 are formed to protrude outward from the outer peripheral surface of the outer cylindrical portion 42 . As shown in FIGS. 3 and 5, the openings on the rear side of the outer cylindrical portion 42 and the two connecting portions 52 accommodate the flange portion 28 of the nozzle body 20 and the two connecting portions 30 described above. is formed.

上記の通り、各連結部52には、ネジ穴54が設けられている。ノズル本体20及び回転体80をホルダ部40に差し込み、鍔部28及び2個の連結部30が段差43に収容されると、ホルダ部40の連結部52のネジ穴54と、ノズル本体20の連結部30のネジ穴32とが位置合わせされる。位置合わせ済みのネジ穴54、32は、微細気泡発生ノズル10を浴槽接続具(図示省略)に取付けるためのネジ穴として機能する。ホルダ部40内にノズル本体20及び回転体80を収容した後に、位置合わせ済みのネジ穴54、32と、浴槽接続具の取付穴(図示省略)とをさらに位置合わせし、ネジ部材(図示省略)をネジ穴54、32に螺合させることで、微細気泡発生ノズル10と浴槽接続具が連結される。 As described above, each connecting portion 52 is provided with a screw hole 54 . When the nozzle body 20 and the rotating body 80 are inserted into the holder part 40 and the flange part 28 and the two connecting parts 30 are accommodated in the step 43, the screw hole 54 of the connecting part 52 of the holder part 40 and the nozzle body 20 The threaded hole 32 of the connecting portion 30 is aligned. Aligned screw holes 54, 32 serve as screw holes for attaching the microbubble generating nozzle 10 to a bathtub fitting (not shown). After housing the nozzle body 20 and the rotating body 80 in the holder part 40, the aligned screw holes 54, 32 are further aligned with the mounting holes (not shown) of the bathtub connector, and screw members (not shown) are installed. ) into the screw holes 54 and 32, the microbubble generating nozzle 10 and the bathtub connector are connected.

内側円筒部44は、外側円筒部42の内側に配置されている筒状部材である。内側円筒部44の後方側端部は、4個の接続部48aを介して外側円筒部42の前方側端部と接続されているとともに、2個の支柱部48bを介して連結部52の前方側端部とも接続されている。内側円筒部44と外側円筒部42との間の隙間、及び、内側円筒部44と連結部52との間の隙間により、6個の流出口50が形成されている。 The inner cylindrical portion 44 is a cylindrical member arranged inside the outer cylindrical portion 42 . The rear end of the inner cylindrical portion 44 is connected to the front end of the outer cylindrical portion 42 via four connecting portions 48a, and is connected to the front of the connecting portion 52 via two struts 48b. The side ends are also connected. A gap between the inner cylindrical portion 44 and the outer cylindrical portion 42 and a gap between the inner cylindrical portion 44 and the connecting portion 52 form six outflow ports 50 .

内側円筒部44の前方側端部には、円板部46が形成されている。円板部46は、内側円筒部44の前方側端部を閉塞している。円板部46の後面のうち、XY平面における中心部には、凹部49が形成されている。凹部49は、後述の回転体80の軸部87を支持するための部位である。 A disc portion 46 is formed at the front end portion of the inner cylindrical portion 44 . The disk portion 46 closes the front end of the inner cylindrical portion 44 . A concave portion 49 is formed in the center portion of the rear surface of the disk portion 46 in the XY plane. The recessed portion 49 is a portion for supporting a shaft portion 87 of a rotating body 80 which will be described later.

(回転体80の構成)
図2、図3、図6、図7を参照して、回転体80の構成について説明する。図6及び図7に顕著に示されるように、回転体80は、外側円筒部82と、内側円筒部84とを備える。内側円筒部84は、外側円筒部82の内側に収容されて形成されている。
(Structure of rotating body 80)
The configuration of the rotor 80 will be described with reference to FIGS. 2, 3, 6, and 7. FIG. As clearly shown in FIGS. 6 and 7, the rotating body 80 has an outer cylindrical portion 82 and an inner cylindrical portion 84 . The inner cylindrical portion 84 is formed inside the outer cylindrical portion 82 .

図3に示すように、外側円筒部82は、その外径が、上述のホルダ部40の外側円筒部42の内径よりも僅かに小さく形成されている筒状部材である。 As shown in FIG. 3, the outer cylindrical portion 82 is a cylindrical member having an outer diameter slightly smaller than the inner diameter of the outer cylindrical portion 42 of the holder portion 40 described above.

図3に示すように、内側円筒部84は、外側円筒部82の内側に収容されて形成されている筒状部材である。内側円筒部84は、その外径が、上述のホルダ部40の内側円筒部44の内径よりも僅かに小さく形成されている。 As shown in FIG. 3 , the inner cylindrical portion 84 is a cylindrical member that is accommodated inside the outer cylindrical portion 82 . The inner cylindrical portion 84 has an outer diameter slightly smaller than the inner diameter of the inner cylindrical portion 44 of the holder portion 40 described above.

図2、図3に示すように、内側円筒部84の前方側端部には、円板部86が形成されている。円板部86は、内側円筒部84の前方側端部を閉塞している。円板部86の前面のうち、XY平面における中心部には、軸部87が形成されている。軸部87は、半球形状の凸部である。軸部87は、円板部86を、減圧管22の長手方向軸と同軸の回転軸Cを中心に周方向(図7の矢印R方向参照)に回転させるための支点として機能する。 As shown in FIGS. 2 and 3, a disc portion 86 is formed at the front end portion of the inner cylindrical portion 84 . The disc portion 86 closes the front end of the inner cylindrical portion 84 . A shaft portion 87 is formed at the center of the front surface of the disk portion 86 in the XY plane. The shaft portion 87 is a hemispherical projection. The shaft portion 87 functions as a fulcrum for rotating the disc portion 86 in the circumferential direction (see the direction of arrow R in FIG. 7) around a rotation axis C coaxial with the longitudinal axis of the pressure reducing tube 22 .

一方、図6、図7に示すように、円板部86の後面には、出口側開口部26に向かって(即ちZ軸の正方向(後方)に向かって)突出する5個の突出部88が形成されている。5個の突出部88のそれぞれは、円板部86の後面のXY平面において(即ち、円板部86をZ軸の負方向側に向かって見た場合において)、回転軸C(即ち、軸部87の位置)を中心として放射状に延びているとともに、かつ、各突出部88が回転軸Cから円板部86の外周に向かって伸びる際に、円板部86の外周近傍の部分が円板部86の回転方向(図7の矢印R方向)と反対方向に曲げられたような線形状に形成されている。 On the other hand, as shown in FIGS. 6 and 7, on the rear surface of the disk portion 86, five protrusions protrude toward the exit side opening 26 (that is, toward the positive direction (rearward) of the Z axis). 88 are formed. Each of the five protruding portions 88 has a rotation axis C (that is, an axis 87 position), and when each projecting portion 88 extends from the rotation axis C toward the outer circumference of the disk portion 86, the portion near the outer circumference of the disk portion 86 becomes circular. It is formed in a linear shape as if it were bent in a direction opposite to the direction of rotation of the plate portion 86 (direction of arrow R in FIG. 7).

また、図6、図7に示すように、内側円筒部84の外面は、5個の羽根部89を介して、外側円筒部82の内面と接続されている。内側円筒部84と外側円筒部82との間の隙間により、5個の流通口90が形成されている。5枚の羽根部89のそれぞれは、円板部86をZ軸の負方向側に向かって見た場合において、回転軸Cを中心として螺旋状に形成されている。即ち、5枚の羽根部89のそれぞれは、円板部86をZ軸の負方向側に向かって見た場合において、各羽根部89が外側円筒部82から内側円筒部84に向かって伸びる際に、回転方向(図7の矢印R方向)と反対の方向に沿って、Z軸の負方向に向かうように傾斜させて形成されている。 6 and 7, the outer surface of the inner cylindrical portion 84 is connected to the inner surface of the outer cylindrical portion 82 via five vane portions 89. As shown in FIGS. A gap between the inner cylindrical portion 84 and the outer cylindrical portion 82 forms five circulation ports 90 . Each of the five blade portions 89 is spirally formed around the rotation axis C when the disk portion 86 is viewed in the negative direction of the Z axis. That is, when each of the five blade portions 89 extends from the outer cylindrical portion 82 toward the inner cylindrical portion 84 when the disk portion 86 is viewed in the negative direction of the Z axis, 2, along the direction opposite to the direction of rotation (the direction of arrow R in FIG. 7) and inclined toward the negative direction of the Z-axis.

(ノズル本体20及び回転体80がホルダ部40に支持される状態)
続いて、ノズル本体20及び回転体80がホルダ部40に支持される状態における各構成要素の位置関係について説明する。図1~図3に示すように、ノズル本体20及び回転体80がホルダ部40に収容及び支持されることにより、本実施例の微細気泡発生ノズル10が形成される。この状態では、回転体80の全体と、ノズル本体20のうち、減圧管22の下流側端部22b、鍔部28、及び、連結部30がホルダ部40内に収容されている。
(State in which the nozzle body 20 and the rotating body 80 are supported by the holder portion 40)
Next, the positional relationship of each component when the nozzle body 20 and the rotating body 80 are supported by the holder portion 40 will be described. As shown in FIGS. 1 to 3, the nozzle body 20 and the rotating body 80 are accommodated and supported by the holder portion 40 to form the microbubble generating nozzle 10 of this embodiment. In this state, the entire rotor 80 , the downstream end 22 b of the decompression tube 22 , the flange 28 , and the connecting portion 30 of the nozzle body 20 are accommodated in the holder 40 .

具体的に言うと、図3に示すように、回転体80の内側円筒部84は、ホルダ部40の内側円筒部44の内側に収容され、回転体80の外側円筒部82は、ホルダ部40の外側円筒部42の内側に収容される。この際、回転体80の軸部87が、ホルダ部40の円板部46の凹部49と当接する。これにより、軸部87が凹部49によって回転可能な態様で支持される。 Specifically, as shown in FIG. 3, the inner cylindrical portion 84 of the rotating body 80 is housed inside the inner cylindrical portion 44 of the holder portion 40, and the outer cylindrical portion 82 of the rotating body 80 is housed inside the holder portion 40. is housed inside the outer cylindrical portion 42 of the . At this time, the shaft portion 87 of the rotating body 80 contacts the concave portion 49 of the disk portion 46 of the holder portion 40 . Thereby, the shaft portion 87 is rotatably supported by the concave portion 49 .

上記のように回転体80がホルダ部40内に収容された状態で、さらに、ノズル本体20のうち、減圧管22の下流側端部22b、鍔部28、及び、連結部30がホルダ部40内に差し込まれる。この際、ノズル本体20のうちの減圧管22の下流側端部22bが、回転体80の内側円筒部84内に差し込まれる。その結果、下流側端部22bは、回転体80の円板部86と近接して配置される。また、鍔部28及び連結部30は、ホルダ部40の後側に形成された段差43内に収容される。鍔部28の前面28a及び連結部30は段差43と当接する。そして、ノズル本体20の連結部30のネジ穴32と、ホルダ部40の連結部52のネジ穴54とが位置合わせされる。また、ノズル本体20がホルダ部40に支持されている状態では、減圧管22の上流側端部22aは、ホルダ部40の後方側に突出している。 With the rotating body 80 housed in the holder portion 40 as described above, the downstream end portion 22b of the decompression tube 22, the collar portion 28, and the connecting portion 30 of the nozzle body 20 are further arranged in the holder portion 40. inserted inside. At this time, the downstream end portion 22b of the decompression tube 22 of the nozzle body 20 is inserted into the inner cylindrical portion 84 of the rotor 80 . As a result, the downstream end 22b is arranged in close proximity to the disc portion 86 of the rotating body 80 . Also, the flange portion 28 and the connecting portion 30 are accommodated in a step 43 formed on the rear side of the holder portion 40 . The front surface 28 a of the collar portion 28 and the connecting portion 30 abut on the step 43 . Then, the screw hole 32 of the connecting portion 30 of the nozzle body 20 and the screw hole 54 of the connecting portion 52 of the holder portion 40 are aligned. Further, when the nozzle body 20 is supported by the holder portion 40 , the upstream end portion 22 a of the decompression tube 22 protrudes rearward from the holder portion 40 .

さらに、図3に示すように、回転体80の外側円筒部82の後端部(即ち開口縁部)は、ホルダ部40の外側円筒部42の内面と、ノズル本体20の鍔部28の前面28aと、環状リブ28bと、の間に収容され、XY平面方向に揺動しないように規制される。この結果、ホルダ部40とノズル本体20とが相互に固定される。一方で、回転体80は、減圧管22の長手方向軸と同軸の回転軸C(即ち軸部87)を中心として周方向に回転可能な態様でホルダ部40とノズル本体20との間で支持される。 Furthermore, as shown in FIG. 3, the rear end portion (that is, the opening edge) of the outer cylindrical portion 82 of the rotating body 80 is located between the inner surface of the outer cylindrical portion 42 of the holder portion 40 and the front surface of the collar portion 28 of the nozzle body 20. 28a and the annular rib 28b, and is regulated so as not to swing in the XY plane direction. As a result, the holder portion 40 and the nozzle body 20 are fixed to each other. On the other hand, the rotating body 80 is supported between the holder part 40 and the nozzle body 20 so as to be rotatable in the circumferential direction around the rotation axis C (that is, the shaft part 87) coaxial with the longitudinal axis of the pressure reducing tube 22. be done.

ノズル本体20と回転体80がホルダ部40に支持されることにより、ノズル本体20、回転体80、及び、ホルダ部40によって、流路空間100と、通路110と、流路空間120と、流路空間130とが形成される。流路空間100、通路110、流路空間120、流路空間130は、いずれも、空気溶解加圧水をこの順で流通させるための空間及び通路である。 Since the nozzle body 20 and the rotating body 80 are supported by the holder part 40, the nozzle body 20, the rotating body 80, and the holder part 40 form the channel space 100, the passage 110, the channel space 120, and the flow path. A road space 130 is formed. The channel space 100, the passage 110, the channel space 120, and the channel space 130 are all spaces and passages for circulating the air-dissolved pressurized water in this order.

流路空間100は、減圧管22の下流側に形成される。流路空間100は、減圧管22の下流側端部22bと円板部86との間に形成される空間である。流路空間100の流路面積は、減圧管22の2個の出口側開口部26の流路面積の合計面積よりも大きい。詳しく言うと、減圧管22の下流側端部22bの前方における、下流側端部22bと円板部86との間の空間のXY平面上の面積と、下流側端部22bと円板部86との間に形成される仮想的な円柱のうちの外側面部分の面積と、のいずれもが、2個の出口側開口部26の流路面積の合計面積よりも大きい。 A channel space 100 is formed downstream of the pressure reducing pipe 22 . The flow path space 100 is a space formed between the downstream end 22b of the decompression tube 22 and the disk portion 86. As shown in FIG. The channel area of the channel space 100 is larger than the total area of the channel areas of the two outlet-side openings 26 of the decompression tube 22 . More specifically, the area of the space between the downstream end 22b and the disk portion 86 in front of the downstream end 22b of the pressure reducing tube 22 on the XY plane, are larger than the total area of the flow path areas of the two outlet-side openings 26 .

通路110は、流路空間100の下流側に形成される。通路110は、内側円筒部84の内面と、内側円筒部84内に配置された減圧管22の外面との間に形成される。ここで、通路110の流路面積(即ちXY平面上の面積)は、上述の流路空間100のどの部分の流路面積よりも大きい。 A passageway 110 is formed downstream of the channel space 100 . Passage 110 is formed between the inner surface of inner cylindrical portion 84 and the outer surface of vacuum tube 22 disposed within inner cylindrical portion 84 . Here, the channel area of the passage 110 (that is, the area on the XY plane) is larger than the channel area of any portion of the channel space 100 described above.

流路空間120は、通路110の下流側に形成される。流路空間120は、内側円筒部84の後端と鍔部28の前面28aとの間に形成される。流路空間120は、内側円筒部84の後端部、内側円筒部84の外面、外側円筒部82の内面、減圧管22の外面、及び、鍔部28の前面28aによって画定される空間である。流路空間120の流路面積は、どの部分においても、上述の通路110の流路面積よりも大きい。詳しく言うと、内側円筒部84の後端と減圧管22の外面の間の空間のXY平面上の面積、内側円筒部84の後端と鍔部28の前面28aとの間の空間の面積(より詳しくは、回転軸Cを中心軸とし、かつ、XY平面上において回転軸Cと内側円筒部84の外側とを結ぶ線を半径とする仮想的な円柱のうち、内側円筒部84の後端と前面28aとの間の範囲の外側面部分の面積)、および、内側円筒部84の外面と外側円筒部82の内面との間の空間のXY平面上の面積、のいずれもが、上述の通路110の流路面積よりも大きい。 A channel space 120 is formed downstream of the passage 110 . A flow passage space 120 is formed between the rear end of the inner cylindrical portion 84 and the front surface 28 a of the collar portion 28 . The flow passage space 120 is a space defined by the rear end portion of the inner cylindrical portion 84, the outer surface of the inner cylindrical portion 84, the inner surface of the outer cylindrical portion 82, the outer surface of the pressure reducing tube 22, and the front surface 28a of the collar portion 28. . The flow area of the flow space 120 is larger than the flow area of the passage 110 described above at any portion. Specifically, the area on the XY plane of the space between the rear end of the inner cylindrical portion 84 and the outer surface of the decompression tube 22, the area of the space between the rear end of the inner cylindrical portion 84 and the front surface 28a of the collar portion 28 ( More specifically, the rear end of the inner cylindrical portion 84 of a virtual cylinder whose central axis is the rotational axis C and whose radius is a line connecting the rotational axis C and the outside of the inner cylindrical portion 84 on the XY plane and the front surface 28a), and the area on the XY plane of the space between the outer surface of the inner cylindrical portion 84 and the inner surface of the outer cylindrical portion 82. It is larger than the flow area of passage 110 .

流路空間130は、流路空間120の下流側に形成される。即ち、流路空間130には、5個の流通口90を通過した後の空気溶解加圧水が導入される。流路空間130は、ホルダ部40の外側円筒部42の内面と、4個の接続部48aと、2個の支柱部48bと、内側円筒部44の内面と、回転体80の5枚の羽根部89と、内側円筒部84の外面と、の間の隙間によって形成される。流路空間130の流路面積(即ち、XY平面上の面積)は、上述の流路空間120のどの部分の流路面積よりも大きい。さらに、流路空間130は、流出口50と接続される通路としても機能する。 The channel space 130 is formed downstream of the channel space 120 . That is, the air-dissolved pressurized water that has passed through the five circulation ports 90 is introduced into the channel space 130 . The flow path space 130 is defined by the inner surface of the outer cylindrical portion 42 of the holder portion 40, the four connecting portions 48a, the two support portions 48b, the inner surface of the inner cylindrical portion 44, and the five blades of the rotor 80. It is formed by a gap between the portion 89 and the outer surface of the inner cylindrical portion 84 . The channel area of the channel space 130 (that is, the area on the XY plane) is larger than the channel area of any portion of the channel space 120 described above. Furthermore, the channel space 130 also functions as a passage connected to the outflow port 50 .

(空気溶解加圧水の流れ)
図3を参照して、微細気泡発生ノズル10内における空気溶解加圧水の流れ、及び、それに伴って微細気泡が形成される過程について説明する。図3において、実線矢印が空気溶解加圧水の流路を示している。
(Flow of air-dissolved pressurized water)
The flow of the air-dissolving pressurized water in the microbubble generating nozzle 10 and the accompanying process of forming microbubbles will be described with reference to FIG. In FIG. 3, solid arrows indicate the flow path of the air-dissolved pressurized water.

まず、ノズル本体20の流入口23を介して、外部から空気溶解加圧水が減圧管22内に導入される。この時点における空気溶解加圧水の圧力は、大気圧よりも大きい。 First, air-dissolved pressurized water is introduced into the decompression tube 22 from the outside through the inlet 23 of the nozzle body 20 . The pressure of the air-dissolved pressurized water at this point is greater than the atmospheric pressure.

流入口23から導入された空気溶解加圧水は、流入口23よりも開口面積が小さい入口側開口部24を通過する。これにより、空気溶解加圧水の流速が上昇し、空気溶解加圧水が大気圧よりも低い圧力まで減圧される(即ちベンチュリー効果による減圧)。空気溶解加圧水が減圧されることにより、空気溶解加圧水に溶解していた空気が析出し、気泡が発生する。 The air-dissolved pressurized water introduced from the inlet 23 passes through an inlet-side opening 24 having an opening area smaller than that of the inlet 23 . As a result, the flow velocity of the air-dissolved pressurized water increases, and the pressure of the air-dissolved pressurized water is reduced to a pressure lower than the atmospheric pressure (that is, decompression due to the Venturi effect). By reducing the pressure of the air-dissolved pressurized water, the air dissolved in the air-dissolved pressurized water is precipitated to generate air bubbles.

上記の通り、本実施例では、減圧管22は、入口側開口部24から出口側開口部26に向けて流路面積が増加するように形成されている。そのため、入口側開口部24を通過したことで減圧された減圧管22内の空気溶解加圧水が入口側開口部24から出口側開口部26に向かって減圧管22内を流れる間に、空気溶解加圧水の流速が低下する。流速が低下する結果、空気溶解加圧水が増圧される。空気溶解加圧水が増圧されることにより、空気溶解加圧水に含まれる気泡の一部が分裂して微細気泡になる。 As described above, in this embodiment, the decompression tube 22 is formed so that the passage area increases from the inlet-side opening 24 toward the outlet-side opening 26 . Therefore, while the air-dissolved pressurized water in the decompression pipe 22 decompressed by passing through the entrance-side opening 24 flows through the decompression pipe 22 from the entrance-side opening 24 toward the exit-side opening 26, the air-dissolved pressurized water flow velocity decreases. As a result of the decrease in flow velocity, the pressure of the air-dissolved pressurized water is increased. By increasing the pressure of the air-dissolved pressurized water, some of the air bubbles contained in the air-dissolved pressurized water split into fine air bubbles.

減圧管22内を流れてきた空気溶解加圧水は、出口側開口部26から流路空間100内へと排出される。上記の通り、流路空間100の流路面積は、どの部分においても、減圧管22の2個の出口側開口部26の流路面積の合計面積よりも大きい。そのため、出口側開口部26から流路空間100内へと排出された空気溶解加圧水の流速はさらに低下する。これにより、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water that has flowed through the decompression tube 22 is discharged from the outlet-side opening 26 into the channel space 100 . As described above, the channel area of the channel space 100 is larger than the total area of the channel areas of the two outlet-side openings 26 of the decompression tube 22 at any portion. Therefore, the flow velocity of the air-dissolved pressurized water discharged from the outlet side opening 26 into the channel space 100 further decreases. This further increases the pressure of the air-dissolved pressurized water. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

また、流路空間100内へと排出された空気溶解加圧水は、回転体80の円板部86に衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Also, the air-dissolved pressurized water discharged into the channel space 100 collides with the disk portion 86 of the rotating body 80 . As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow velocity of the air-dissolved pressurized water further decreases. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

さらに、円板部86に衝突した後の空気溶解加圧水の一部は、円板部86の後面に形成された5個の突出部88にさらに衝突する。これにより、空気溶解加圧水の流速がさらに低下し、結果として微細気泡がさらに増加する。また、この時点で既に円板部86が回転軸Cを中心に周方向(図7の矢印R方向)に回転していれば、回転する突出部88によって、空気溶解加圧水を撹拌させることができる。特に、本実施例では、各突出部88が回転軸Cから円板部86の外周に向かって伸びる際に、円板部86の外周近傍の部分が円板部86の回転方向(図7の矢印R方向)と反対方向に曲げられたような線形状に形成されている。そのため、空気溶解加圧水を効果的に撹拌させることができる。この結果、空気溶解加圧水の流れの向きが変わり、空気溶解加圧水の流速を大幅に低下させ、空気溶解加圧水を大幅に増圧させることができる。この結果、空気溶解加圧水内に微細気泡をより多く形成することができる。 Further, a part of the air-dissolved pressurized water after colliding with the disk portion 86 further collides with five projecting portions 88 formed on the rear surface of the disk portion 86 . This further reduces the flow velocity of the air-dissolved pressurized water, resulting in a further increase in microbubbles. Further, if the disc portion 86 is already rotating in the circumferential direction (in the direction of the arrow R in FIG. 7) around the rotation axis C at this time, the rotating projecting portion 88 can stir the air-dissolved pressurized water. . In particular, in this embodiment, when each projecting portion 88 extends from the rotation axis C toward the outer circumference of the disk portion 86, the portion near the outer circumference of the disk portion 86 extends in the direction of rotation of the disk portion 86 (see FIG. 7). It is formed in a linear shape that is bent in the direction opposite to the arrow R direction). Therefore, the air-dissolved pressurized water can be effectively stirred. As a result, the direction of flow of the air-dissolved pressurized water is changed, the flow velocity of the air-dissolved pressurized water can be significantly reduced, and the pressure of the air-dissolved pressurized water can be greatly increased. As a result, more microbubbles can be formed in the air-dissolved pressurized water.

円板部86に衝突した後の空気溶解加圧水は、通路110を通過して流路空間120内へと排出される。上記の通り、通路110の流路面積は、流路空間100のどの部分の流路面積よりも大きい。そして、流路空間120の流路面積は、通路110の流路面積よりも大きい。そのため、通路110を通過して流路空間120内へと排出された空気溶解加圧水の流速はさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 After colliding with the disk portion 86 , the air-dissolved pressurized water passes through the passage 110 and is discharged into the flow passage space 120 . As described above, the flow area of passage 110 is greater than the flow area of any portion of flow space 100 . The channel area of the channel space 120 is larger than the channel area of the passage 110 . Therefore, the flow velocity of the air-dissolved pressurized water discharged into the channel space 120 through the passage 110 further decreases. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

そして、流路空間120内へと排出された空気溶解加圧水は、鍔部28の前面28aに衝突する。これにより、空気溶解加圧水が流れる向きが変更されるとともに、空気溶解加圧水の流速がさらに低下する。空気溶解加圧水もさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 Then, the air-dissolved pressurized water discharged into the channel space 120 collides with the front surface 28 a of the flange 28 . As a result, the direction in which the air-dissolved pressurized water flows is changed, and the flow velocity of the air-dissolved pressurized water further decreases. The air-dissolved pressurized water is also further pressurized. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

鍔部28の前面28aに衝突した後の空気溶解加圧水は、流路空間120から流路空間130に向かって流れる。その際、空気溶解加圧水は、回転体80の内側円筒部84の外面と外側円筒部82の内面とを接続する5個の羽根部89に衝突する。上記の通り、5枚の羽根部89のそれぞれは、円板部86をZ軸の負方向側に向かって見た場合において、回転軸Cを中心として螺旋状に形成されている(図6、図7参照)。そのため、羽根部89に衝突する空気溶解加圧水の流れによって、羽根部89に周方向(図7の矢印R方向)の力が加わる。羽根部89に衝突した後の空気溶解加圧水は、流通口90を通って流路空間130に向かって流れる。 The air-dissolved pressurized water that has collided with the front surface 28 a of the collar portion 28 flows from the channel space 120 toward the channel space 130 . At that time, the air-dissolved pressurized water collides with five vane portions 89 connecting the outer surface of the inner cylindrical portion 84 and the inner surface of the outer cylindrical portion 82 of the rotor 80 . As described above, each of the five blade portions 89 is spirally formed around the rotation axis C when the disk portion 86 is viewed in the negative direction of the Z axis (FIGS. See Figure 7). Therefore, due to the flow of the air-dissolved pressurized water that collides with the blade portion 89, force is applied to the blade portion 89 in the circumferential direction (in the direction of arrow R in FIG. 7). The air-dissolved pressurized water that has collided with the blade portion 89 flows through the circulation port 90 toward the channel space 130 .

上記のように、空気溶解加圧水によって羽根部89に周方向(図7の矢印R方向)の力が加わると、回転体80全体にも同方向の力が加わる。この結果、回転体80は、軸部87(即ち回転軸C)を中心に周方向に回転する。この際、回転体80の外側円筒部82の内面端部は、環状リブ28bによって規制されているため、回転中の回転体80が傾いてガタついたり回転が阻害されたりすることはない。 As described above, when the air-dissolved pressurized water applies force to the blade portion 89 in the circumferential direction (in the direction of arrow R in FIG. 7), the force in the same direction is also applied to the entire rotating body 80 . As a result, the rotating body 80 rotates in the circumferential direction around the shaft portion 87 (that is, the rotation axis C). At this time, since the inner end portion of the outer cylindrical portion 82 of the rotating body 80 is regulated by the annular rib 28b, the rotating body 80 is not tilted, rattling, or prevented from rotating.

回転体80が回転軸Cを中心として回転することにより、流路空間120から流路空間130に向けて流れる空気溶解加圧水が、周方向に回転する5枚の羽根部89によって撹拌される。この結果、空気溶解加圧水の流れの向きが変わる。そのため、空気溶解加圧水の流速を大幅に低下させ、特定部分を通過した空気溶解加圧水を大幅に増圧させることができ、微細気泡をより多く形成することができる。 As the rotating body 80 rotates around the rotation axis C, the air-dissolved pressurized water flowing from the flow path space 120 toward the flow path space 130 is agitated by the five blades 89 rotating in the circumferential direction. As a result, the flow direction of the air-dissolved pressurized water is changed. Therefore, the flow velocity of the air-dissolved pressurized water can be greatly reduced, the pressure of the air-dissolved pressurized water that has passed through the specific portion can be greatly increased, and more fine bubbles can be formed.

上記の通り、流通口90を通過した後の空気溶解加圧水は、流路空間130内へと排出される。上記の通り、流路空間130の流路面積は、流路空間120の流路面積より大きい。そのため、流通口90を通過して流路空間130内へと排出された空気溶解加圧水の流速はさらに低下する。空気溶解加圧水がさらに増圧され、結果として、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 As described above, the air-dissolved pressurized water that has passed through the circulation port 90 is discharged into the channel space 130 . As described above, the channel area of channel space 130 is larger than the channel area of channel space 120 . Therefore, the flow velocity of the air-dissolved pressurized water discharged into the channel space 130 through the circulation port 90 further decreases. The pressure of the air-dissolved pressurized water is further increased, and as a result, some of the bubbles contained in the air-dissolved pressurized water are further split into fine bubbles.

流路空間130内の空気溶解加圧水は、流路空間130を通過し、流出口50から流出箇所(浴槽等)に向けて流出する。流出箇所に空気溶解加圧水が流出されることにより、空気溶解加圧水の流速がさらに低下し、空気溶解加圧水はさらに増圧される。その結果、空気溶解加圧水に含まれる気泡の一部がさらに分裂して微細気泡になる。 The air-dissolved pressurized water in the channel space 130 passes through the channel space 130 and flows out from the outlet 50 toward an outflow location (such as a bathtub). By flowing out the air-dissolved pressurized water to the outflow point, the flow velocity of the air-dissolved pressurized water further decreases, and the pressure of the air-dissolved pressurized water is further increased. As a result, some of the bubbles contained in the air-dissolved pressurized water are further divided into fine bubbles.

このような流路で微細気泡発生ノズル10内を空気溶解加圧水が流れることにより、流出箇所に流出される空気溶解加圧水には、微細気泡を大量に含ませることができる。 By flowing the air-dissolved pressurized water through the microbubble generating nozzle 10 in such a flow path, the air-dissolved pressurized water flowing out to the outflow portion can contain a large amount of microbubbles.

以上、本実施例の微細気泡発生ノズル10の構成及び作用について説明した。本実施例と請求項の記載の対応関係を説明しておく。空気溶解加圧水が「気体溶解加圧水」の一例である。減圧管22、流入口23、入口側開口部24、及び、出口側開口部26の組み合わせが「減圧流通部」の一例である。流出口50が「流出部」の一例である。流路空間100、通路110、流路空間120、及び、流路空間130の組み合わせが「流通経路」の一例である。流路空間120のうち、5枚の羽根部89が配置されている部分が「特定部分」の一例である。円板部86が「本体部」の一例である。内側円筒部84が「側壁部」の一部である。羽根部89が「羽根」の一例である。鍔部28の前面28aが「衝突壁」の一例である。通路110が「側壁部と減圧管の下流側端部の外側との間に形成される経路」の一例である。 The configuration and operation of the microbubble generating nozzle 10 of this embodiment have been described above. The correspondence relationship between this embodiment and the descriptions in the claims will be described. Air-dissolved pressurized water is an example of "gas-dissolved pressurized water." A combination of the pressure reducing tube 22, the inlet 23, the inlet side opening 24, and the outlet side opening 26 is an example of the "low pressure flow part". The outflow port 50 is an example of the "outflow part". A combination of the channel space 100, the passageway 110, the channel space 120, and the channel space 130 is an example of a "flow path." A portion of the channel space 120 in which the five blade portions 89 are arranged is an example of the “specific portion”. The disc portion 86 is an example of the "main body portion". The inner cylindrical portion 84 is part of the "side wall". The blade portion 89 is an example of a "wing". The front surface 28a of the collar portion 28 is an example of the "collision wall". Passage 110 is an example of "a path formed between the side wall and the outside of the downstream end of the vacuum tube."

以上、実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although the embodiments have been described in detail above, these are only examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

(変形例1)上記の実施例では、5本の突出部88は、円板部86の後面のXY平面において、回転軸Cを中心として放射状に延びているとともに、かつ、円板部86の回転方向(図7の矢印R方向)と反対方向に曲げられた線形状に形成されている。しかしながら、突出部の数及び形状はこれに限られず、任意の数及び形状で備えられていてもよい。 (Modification 1) In the above embodiment, the five protruding portions 88 radially extend around the rotation axis C in the XY plane of the rear surface of the disk portion 86 and It is formed in a linear shape bent in the direction opposite to the direction of rotation (direction of arrow R in FIG. 7). However, the number and shape of the protrusions are not limited to this, and any number and shape may be provided.

(変形例2)また、円板部86の後面に突出部が設けられていなくてもよい。 (Modification 2) Further, the rear surface of the disc portion 86 may not be provided with a protrusion.

(変形例3)回転体80の羽根部は、流路空間120内に限られず、通路110内にも設けられていてもよい。また、羽根部が通路110内に設けられる場合、流路空間120内の羽根部が省略されてもよい。 (Modification 3) The vanes of the rotating body 80 are not limited to being provided inside the flow path space 120 , and may be provided inside the passage 110 . Further, when the vanes are provided in the passage 110, the vanes in the channel space 120 may be omitted.

(変形例4)羽根部89の数及び形状も、任意の数及び形状であってもよい。 (Modification 4) The number and shape of the blade portions 89 may also be arbitrary.

(変形例5)回転体80の形状も任意であってもよい。即ち、回転体80は、空気溶解加圧水の流れ方向と平行に配置される回転軸を中心として回転し、出口側開口部26から流出口50までの間の経路内の空気溶解加圧水を撹拌可能であれば、任意の形状を有していてもよい。 (Modification 5) The shape of the rotating body 80 may also be arbitrary. That is, the rotating body 80 rotates around a rotating shaft arranged parallel to the flow direction of the air-dissolved pressurized water, and can stir the air-dissolved pressurized water in the path from the outlet side opening 26 to the outlet 50. If present, it may have any shape.

(変形例6)減圧管22の2個の出口側開口部26の開口面積の合計は、2個の入口側開口部24の開口面積の合計と同じであってもよい。この場合も、減圧管22内の空気溶解加圧水の流速が、入口側開口部24から出口側開口部26に向かう間に低下すればよい。 (Modification 6) The total opening area of the two outlet side openings 26 of the decompression tube 22 may be the same as the total opening area of the two inlet side openings 24 . In this case as well, the flow velocity of the air-dissolved pressurized water in the decompression tube 22 should be reduced from the inlet side opening 24 toward the outlet side opening 26 .

(変形例7)減圧管22の区画壁25が省略されていてもよい。即ち、減圧管22は、2本の管部に区画されていなくてもよい。 (Modification 7) The partition wall 25 of the decompression tube 22 may be omitted. That is, the decompression tube 22 does not have to be divided into two tube portions.

(変形例8)上記の各実施例では、微細気泡発生ノズルは、空気が水に溶解した空気溶解加圧水の供給を受け、空気溶解加圧水内の空気を析出させて微細気泡に変え、空気の微細気泡を含む水を流出箇所に供給する。これに限られず、微細気泡発生ノズルは、空気以外の他の気体(例えば、炭酸ガスや水素等)が水に溶解した気体溶解加圧水の供給を受け、当該気体溶解加圧水内の気体を析出させて微細気泡に変え、その期待の微細気泡を含む水を流出箇所に供給するようにしてもよい。即ち、「気体」は空気に限られず、炭酸ガスや水素等の任意の気体であってもよい。 (Modification 8) In each of the above embodiments, the microbubble generating nozzle receives supply of air-dissolved pressurized water in which air is dissolved in water, and precipitates the air in the air-dissolved pressurized water to convert it into microbubbles. Water containing air bubbles is supplied to the outflow point. Not limited to this, the fine bubble generating nozzle is supplied with gas-dissolved pressurized water in which gas other than air (for example, carbon dioxide gas, hydrogen, etc.) is dissolved in water, and precipitates the gas in the gas-dissolved pressurized water. Instead of microbubbles, water containing the expected microbubbles may be supplied to the outflow location. That is, the "gas" is not limited to air, and may be any gas such as carbon dioxide or hydrogen.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 The technical elements described in this specification or in the drawings exhibit technical utility either singly or in various combinations, and are not limited to the combinations described in the claims as filed. In addition, the techniques exemplified in this specification or drawings can simultaneously achieve a plurality of purposes, and achieving one of them has technical utility in itself.

10:微細気泡発生ノズル
20:ノズル本体
22:減圧管
22a:上流側端部
22b:下流側端部
23:流入口
24:入口側開口部
25:区画壁
26:出口側開口部
28:鍔部
28a:前面
28b:環状リブ
30:連結部
32:ネジ穴
40:ホルダ部
42:外側円筒部
43:段差
44:内側円筒部
46:円板部
48a:接続部
48b:支柱部
49:凹部
50:流出口
52:連結部
54:ネジ穴
80:回転体
82:外側円筒部
84:内側円筒部
86:円板部
87:軸部
88:突出部
89:羽根部
90:流通口
100:流路空間
110:通路
120:流路空間
130:流路空間
C:回転軸
R:(周方向を示す)矢印
10: Microbubble generating nozzle 20: Nozzle body 22: Decompression pipe 22a: Upstream end 22b: Downstream end 23: Inlet 24: Inlet side opening 25: Partition wall 26: Outlet side opening 28: Collar 28a: front surface 28b: annular rib 30: connecting portion 32: screw hole 40: holder portion 42: outer cylindrical portion 43: step 44: inner cylindrical portion 46: disk portion 48a: connecting portion 48b: strut portion 49: concave portion 50: Outlet 52: Connecting portion 54: Screw hole 80: Rotating body 82: Outer cylindrical portion 84: Inner cylindrical portion 86: Disk portion 87: Shaft portion 88: Protruding portion 89: Blade portion 90: Flow port 100: Channel space 110: Passage 120: Flow path space 130: Flow path space C: Axis of rotation R: Arrow (indicating circumferential direction)

Claims (4)

気体が水に溶解している気体溶解加圧水の圧力を減圧する減圧流通部であって、減圧管と、前記減圧管の上流側端部に設けられ、前記気体溶解加圧水を前記減圧管内に導入する入口側開口部と、前記減圧管の下流側端部に設けられ、前記減圧管を通過した前記気体溶解加圧水を排出する出口側開口部と、を備える前記減圧流通部と、
前記出口側開口部から排出された後の前記気体溶解加圧水を流出箇所に流出させる流出部と、
前記出口側開口部と前記流出部との間の流通経路と、
前記流通経路内に配置され、前記流通経路内を通過する前記気体溶解加圧水の流れを受けて、前記流通経路内で回転する回転体と、
を備え、
前記回転体は、
前記出口側開口部に対向する範囲に設けられ、前記出口側開口部から排出される前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる板状の本体部と、
前記本体部を前記減圧管の長手方向軸と平行な回転軸を中心に周方向に回転させるための軸部と、
前記本体部の外周縁から前記減圧管に向けて立設される筒状の側壁部であって、その先端側が前記減圧管の前記下流側端部の外側に配置される、前記側壁部と、
前記側壁部に設けられる複数枚の羽根と、
を備えており、
前記複数枚の羽根が前記気体溶解加圧水の流れを受けることにより、前記本体部、前記側壁部、前記複数枚の羽根は、前記軸部を中心に前記周方向に回転する、
微細気泡発生ノズル。
A decompression flow part for decompressing gas-dissolved pressurized water in which gas is dissolved in water, comprising a decompression pipe and a decompression pipe provided at an upstream end of the decompression pipe for introducing the gas-dissolved pressurized water into the decompression pipe. the reduced-pressure flow section including an inlet-side opening and an outlet-side opening provided at a downstream end of the reduced-pressure tube for discharging the gas-dissolved pressurized water that has passed through the reduced-pressure tube;
an outflow part that causes the gas-dissolved pressurized water discharged from the outlet side opening to flow out to an outflow location;
a flow path between the outlet-side opening and the outlet;
a rotating body arranged in the circulation path and rotating in the circulation path upon receiving the flow of the gas-dissolved pressurized water passing through the circulation path;
with
The rotating body is
a plate-like main body provided in a range facing the outlet side opening and configured to change the direction of flow of the gas-dissolved pressurized water discharged from the outlet-side opening by colliding with the gas-dissolved pressurized water;
a shaft for rotating the main body in the circumferential direction around a rotation axis parallel to the longitudinal axis of the pressure reducing tube;
a cylindrical side wall portion erected from the outer peripheral edge of the main body toward the pressure reducing tube, the side wall portion having a tip side disposed outside the downstream end portion of the pressure reducing tube;
a plurality of blades provided on the side wall;
and
When the plurality of blades receive the flow of the gas-dissolved pressurized water, the main body portion, the side wall portion, and the plurality of blades rotate in the circumferential direction about the shaft portion.
Fine bubble generation nozzle.
前記減圧管の外側であって前記側壁部の先端側に設けられる衝突壁であって、前記本体部に衝突し、その後、前記側壁部と前記減圧管の前記下流側端部の外側との間に形成される経路を通過した後の前記気体溶解加圧水が衝突することによって前記気体溶解加圧水の流れる向きを変更させる前記衝突壁をさらに備え、
前記複数枚の羽根は、前記側壁部の外面に設けられ、前記衝突壁に衝突して向きが変更された後の前記気体溶解加圧水の流れを受ける、請求項に記載の微細気泡発生ノズル。
A collision wall provided on the outside of the decompression tube and on the tip side of the side wall, collides with the main body, and then between the side wall and the outside of the downstream end of the decompression tube. further comprising the collision wall that changes the direction of flow of the gas-dissolved pressurized water by colliding with the gas-dissolved pressurized water after passing through the path formed in the
2. The microbubble generating nozzle according to claim 1 , wherein the plurality of blades are provided on the outer surface of the side wall portion and receive the flow of the gas-dissolved pressurized water after colliding with the collision wall and changing its direction.
前記本体部の前記出口側開口部に対向する側の面には、前記出口側開口部に向かって突出する複数個の突出部が設けられている、請求項2に記載の微細気泡発生ノズル。 3. The nozzle for generating microbubbles according to claim 2 , wherein a surface of the main body facing the outlet side opening is provided with a plurality of projections projecting toward the outlet side opening. 前記複数個の突出部のそれぞれは、前記本体部を前記長手方向軸に沿って見た場合において、前記軸部を中心として放射状に延び、かつ、前記周方向と反対方向に向けて曲げられた線形状に形成されている、請求項に記載の微細気泡発生ノズル。 Each of the plurality of projecting portions extends radially around the shaft portion and is bent in a direction opposite to the circumferential direction when the main body portion is viewed along the longitudinal axis. 4. The fine bubble generating nozzle according to claim 3 , which is formed in a linear shape.
JP2019100630A 2019-05-29 2019-05-29 Fine bubble generation nozzle Active JP7213143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019100630A JP7213143B2 (en) 2019-05-29 2019-05-29 Fine bubble generation nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019100630A JP7213143B2 (en) 2019-05-29 2019-05-29 Fine bubble generation nozzle

Publications (2)

Publication Number Publication Date
JP2020192510A JP2020192510A (en) 2020-12-03
JP7213143B2 true JP7213143B2 (en) 2023-01-26

Family

ID=73548425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019100630A Active JP7213143B2 (en) 2019-05-29 2019-05-29 Fine bubble generation nozzle

Country Status (1)

Country Link
JP (1) JP7213143B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143658A (en) 2000-11-13 2002-05-21 Teruji Sasaki Bubble water manufacturing device
JP2008307515A (en) 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2009082906A (en) 2007-09-12 2009-04-23 Yamaha Motor Co Ltd Bubble generator and bubble generation device
JP2010274224A (en) 2009-05-29 2010-12-09 Yamaha Motor Co Ltd Bubble generator and bubble generation apparatus equipped with the same
JP2014104441A (en) 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
JP2017035679A (en) 2015-08-06 2017-02-16 日本スピンドル製造株式会社 Dispersion system
KR101881407B1 (en) 2017-04-04 2018-08-27 신창기 Remote management system for nano micro bubble generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166975B1 (en) * 2010-05-03 2012-07-23 용인송담대학 산학협력단 The Micro Bubble Shower Device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002143658A (en) 2000-11-13 2002-05-21 Teruji Sasaki Bubble water manufacturing device
JP2008307515A (en) 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd Apparatus for generating microbubble
JP2009082906A (en) 2007-09-12 2009-04-23 Yamaha Motor Co Ltd Bubble generator and bubble generation device
JP2010274224A (en) 2009-05-29 2010-12-09 Yamaha Motor Co Ltd Bubble generator and bubble generation apparatus equipped with the same
JP2014104441A (en) 2012-11-29 2014-06-09 Idec Corp Fine bubble generating nozzle and fine bubble generating device
JP2017035679A (en) 2015-08-06 2017-02-16 日本スピンドル製造株式会社 Dispersion system
KR101881407B1 (en) 2017-04-04 2018-08-27 신창기 Remote management system for nano micro bubble generator

Also Published As

Publication number Publication date
JP2020192510A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7050304B2 (en) Equipment and systems for producing gas and liquid containing fine bubbles
JP6048841B2 (en) Fine bubble generator
KR20170104351A (en) Apparatus for generating micro bubbles
JP5573879B2 (en) Microbubble generator
KR101667492B1 (en) Apparatus for generating micro bubbles
JP2009160576A (en) Fine air bubble generator
JP4426612B2 (en) Fine bubble generation nozzle
JP7213143B2 (en) Fine bubble generation nozzle
US11623185B2 (en) Stirring element device
JP2000120595A (en) Centrifugal compressor with cooling fluid injection nozzle
JP5285794B1 (en) shower head
TW201914686A (en) Bubble generating device and bubble generating method
JP2019166493A (en) Fine bubble generation nozzle
US20210213400A1 (en) Gas-liquid mixing device
JP7265934B2 (en) Fine bubble generation nozzle
JP5401229B2 (en) Fluid dispersion pump
JP7329397B2 (en) Fine bubble generating nozzle body
JP7285176B2 (en) Fine bubble generation nozzle
JP4519655B2 (en) Equipment for mixing
JP7232713B2 (en) Fine bubble generation nozzle
JP2021122524A (en) Fine bubble generation nozzle body
JP7153449B2 (en) Nozzle device
JP2000051107A (en) Bubble generator
CN117619183A (en) Differential type mixed flow structure
JP5895559B2 (en) Nozzle device for jet bath

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230116

R150 Certificate of patent or registration of utility model

Ref document number: 7213143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150