JP2021109319A - Welding method of thermoplastic resin molded products - Google Patents

Welding method of thermoplastic resin molded products Download PDF

Info

Publication number
JP2021109319A
JP2021109319A JP2020000786A JP2020000786A JP2021109319A JP 2021109319 A JP2021109319 A JP 2021109319A JP 2020000786 A JP2020000786 A JP 2020000786A JP 2020000786 A JP2020000786 A JP 2020000786A JP 2021109319 A JP2021109319 A JP 2021109319A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
molded body
resin molded
straight line
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020000786A
Other languages
Japanese (ja)
Other versions
JP7411991B2 (en
Inventor
正孝 三徳
Masataka Mitoku
正孝 三徳
美里 粕谷
Misato Kasuya
美里 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Campus Create Co Ltd
Original Assignee
Campus Create Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Campus Create Co Ltd filed Critical Campus Create Co Ltd
Priority to JP2020000786A priority Critical patent/JP7411991B2/en
Publication of JP2021109319A publication Critical patent/JP2021109319A/en
Application granted granted Critical
Publication of JP7411991B2 publication Critical patent/JP7411991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

To provide a welding method of thermoplastic resin molded products, capable of easily setting conditions, while suppressing thermal damage, and continuously welding thermoplastic resin molded products each other with high productivity and energy saving.SOLUTION: Provided is a welding method of thermoplastic resin molded products in which a feed rate and a photon density of infrared rays to be irradiated are controlled within a range above a straight line p and below a straight line q of a graph showing the relation between a feed rate v (mm/s) and a photon density P (photons/mm2-s) obtained in a specific process to be performed in advance by regarding, as P, the photon density of the infrared rays that can weld the molded products together by infrared ray irradiation at the feed rate v without causing burning or deformation on the infrared ray irradiation side of the molded product, when at least two thermoplastic resin molded products are arranged in contact with each other and furthermore a heat radiating material is arranged in contact and the infrared rays are irradiated while scanning from the heat radiating material side so as to weld the molded products together.SELECTED DRAWING: Figure 2

Description

本発明は、熱可塑性樹脂成形体の溶着方法に関する。 The present invention relates to a method for welding a thermoplastic resin molded product.

熱可塑性樹脂フィルム等の熱可塑性樹脂成形体同士の溶着方法として、超音波溶着法、高周波溶着法、赤外線溶着法等が知られている。超音波溶着法は、成形体を構成する熱可塑性樹脂が軟質樹脂、摩擦係数の小さいフッ素樹脂の場合に、超音波エネルギーが減衰しやすく、溶着が困難となる場合が多い。また、高周波溶着法は、誘電損失の少ないポリエチレン、ポリプロピレン、ポリスチレンポリエステル等の汎用樹脂や、フッ素樹脂等には適用が困難となる場合が多い。 As a welding method between thermoplastic resin molded bodies such as a thermoplastic resin film, an ultrasonic welding method, a high frequency welding method, an infrared welding method and the like are known. In the ultrasonic welding method, when the thermoplastic resin constituting the molded body is a soft resin or a fluororesin having a small friction coefficient, the ultrasonic energy is easily attenuated and welding is often difficult. Further, the high frequency welding method is often difficult to apply to general-purpose resins such as polyethylene, polypropylene, and polystyrene polyester, which have low dielectric loss, and fluororesins.

赤外線溶着法は、赤外線を用いて溶着部分を加熱溶融して溶着する方法である。しかし、成形体の赤外線が照射される側の表面で焼け等の熱損傷が生じやすい。そこで、熱可塑性樹脂成形体同士を接触配置し、さらに赤外線を照射する側の成形体に赤外線透過性の放熱材を接触配置した状態で、赤外線を走査しながら照射して溶着する方法が提案されている(例えば、特許文献1)。 The infrared welding method is a method of heating and melting a welded portion using infrared rays to weld the welded portion. However, thermal damage such as burning is likely to occur on the surface of the molded product on the side irradiated with infrared rays. Therefore, a method has been proposed in which thermoplastic resin molded bodies are placed in contact with each other, and an infrared-transparent heat-dissipating material is placed in contact with the molded body on the side to be irradiated with infrared rays, and then irradiated while scanning infrared rays for welding. (For example, Patent Document 1).

特許第4279674号公報Japanese Patent No. 4279674

しかし、特許文献1のような放熱材を用いた従来の赤外線溶着法は、条件設定が難しく、また走査する赤外線の送り速度は数mm/sであり、生産性が劣る。また、熱可塑性樹脂成形体同士の溶着においては、省エネルギー化も重要である。 However, in the conventional infrared welding method using a heat radiating material as in Patent Document 1, it is difficult to set the conditions, and the sending speed of the infrared rays to be scanned is several mm / s, which is inferior in productivity. In addition, energy saving is also important in welding between thermoplastic resin molded bodies.

本発明は、条件設定が容易で、最表面、溶着部分の焼け等の熱損傷を抑制しつつ、高い生産性かつ省エネルギーで熱可塑性樹脂成形体同士を連続的に溶着できる熱可塑性樹脂成形体の溶着方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY According to the present invention, a thermoplastic resin molded product capable of continuously welding thermoplastic resin molded products with high productivity and energy saving while suppressing thermal damage such as burning of the outermost surface and the welded portion can be easily set. It is an object of the present invention to provide a welding method.

本発明は、以下の態様を有する。
[1]少なくとも2個の赤外線吸収性の熱可塑性樹脂成形体を互いに接触配置させ、さらに一方の外側の前記熱可塑性樹脂成形体の外表面に放熱材を接触配置させ、前記放熱材側から赤外線を走査させながら照射して前記熱可塑性樹脂成形体同士を溶着する方法であって、
走査する赤外線の送り速度をv(mm/s)とし、赤外線の光子密度をP(photons/mm・s)として、事前に実施する下記の工程(a)〜(d)で求められる、送り速度vと光子密度Pとの関係を示すグラフの直線pよりも上側、かつ直線qよりも下側の範囲内で、照射する赤外線の送り速度及び光子密度を制御する、熱可塑性樹脂成形体の溶着方法。
工程(a):溶着しようとする熱可塑性樹脂成形体同士が互いに接触配置された試験体の一方の外側の前記熱可塑性樹脂成形体の外表面に前記放熱材を接触配置し、前記放熱材側から赤外線を走査させながら照射して溶着状態を確認する試験を、条件を変えながら繰り返して、前記放熱材と接する前記熱可塑性樹脂成形体の赤外線を照射する側に焼け及び変形が生じずに前記熱可塑性樹脂成形体同士が溶着される前記送り速度vの最小値v及びそのときの最小光子密度Pと、前記送り速度vの最大値v及びそのときの最大光子密度Pとを求める。
工程(b):点A(v,P)と点B(v,P)を送り速度vと光子密度Pとの関係を示すグラフにプロットし、点Aと点Bを通る直線を直線kとする。
工程(c):前記グラフにおける前記試験で前記熱可塑性樹脂成形体が溶着されなかった点のうち、前記直線kよりも下側で、かつ前記直線kに最も距離が近い点C(v,P)(ただし、v>vである。)まで前記直線kを平行移動させた直線を直線pとする。
工程(d):前記グラフにおける前記試験で前記熱可塑性樹脂成形体が白化した点のうち、前記直線kよりも上側で、かつ前記直線kに最も距離が近い点D(v,P)(ただし、v<vである。)まで前記直線kを平行移動させた直線を直線qとする。
[2]前記直線k上において、前記試験で前記熱可塑性樹脂成形体中に気泡、白化及び黒化を生じさせずに前記熱可塑性樹脂成形体同士を溶着できる前記送り速度vの最大値vを求め、前記送り速度vがv以上v以下の範囲で照射する前記赤外線の送り速度及び光子密度を制御する、[1]に記載の熱可塑性樹脂成形体の溶着方法。
[3]前記赤外線の送り速度がv以上であるときにそれを通知する通知手段を備えた溶着装置を用いて前記熱可塑性樹脂成形体同士を溶着する、[2]に記載の熱可塑性樹脂成形体の溶着方法。
The present invention has the following aspects.
[1] At least two infrared-absorbing thermoplastic resin molded bodies are arranged in contact with each other, and a heat-dissipating material is contact-arranged on the outer surface of the thermoplastic resin molded body on the outer side of one of the heat-dissipating materials. Is a method of welding the thermoplastic resin molded bodies to each other by irradiating while scanning.
The feed rate of the infrared rays to be scanned is v (mm / s), and the photon density of the infrared rays is P (photons / mm 2 · s). A thermoplastic resin molded body that controls the infrared ray feeding rate and photon density to be irradiated within the range above the straight line p and below the straight line q in the graph showing the relationship between the velocity v and the photon density P. Welding method.
Step (a): The heat-dissipating material is contact-arranged on the outer surface of the thermoplastic resin molded body on the outer side of one of the test pieces in which the thermoplastic resin molded bodies to be welded are arranged in contact with each other, and the heat-dissipating material side. The test of irradiating the thermoplastic resin molded body while scanning the infrared rays to confirm the welding state was repeated while changing the conditions, and the thermoplastic resin molded body in contact with the heat radiating material was not burnt or deformed on the side to be irradiated with the infrared rays. The minimum value v 1 of the feed rate v at which the thermoplastic resin molded bodies are welded to each other and the minimum photon density P 1 at that time, and the maximum value v 2 of the feed rate v and the maximum photon density P 2 at that time are set. Ask.
Step (b): Point A (v 1 , P 1 ) and point B (v 2 , P 2 ) are plotted on a graph showing the relationship between the feed rate v and the photon density P, and a straight line passing through the points A and B. Let be a straight line k.
Step (c): Among the point at which the thermoplastic resin molded article in the test of the graph has not been welded, the below side of the straight line k, and most distance point close C to the straight line k (v 3, Let the straight line p be a straight line obtained by moving the straight line k in parallel to P 3 ) (where v 3 > v 2).
Step (d): Of the points where the thermoplastic resin molded product was whitened in the test in the graph, points D (v 4 , P 4 ) above the straight line k and closest to the straight line k. (However, the straight line obtained by moving the straight line k in parallel up to v 4 <v 1) is defined as the straight line q.
[2] On the straight line k, the maximum value v 5 of the feed rate v capable of welding the thermoplastic resin molded bodies to each other without causing bubbles, whitening and blackening in the thermoplastic resin molded body in the test. The method for welding a thermoplastic resin molded product according to [1], wherein the method for welding the thermoplastic resin molded product according to [1], wherein the method for welding the thermoplastic resin molded product according to [1], which controls the feeding speed and photon density of the infrared rays irradiated in the range where the feeding speed v is v 1 or more and v 5 or less.
[3] to weld the thermoplastic resin molded bodies using a welding apparatus provided with a notifying means for notifying it when the feed speed of the infrared is v 5 or more, the thermoplastic resin described in [2] Welding method of molded product.

本発明によれば、条件設定が容易で、最表面、溶着部分の焼け等の熱損傷を抑制しつつ、高い生産性かつ省エネルギーで熱可塑性樹脂成形体同士を連続的に溶着できる熱可塑性樹脂成形体の溶着方法を提供できる。 According to the present invention, it is easy to set conditions, and while suppressing thermal damage such as burning of the outermost surface and the welded portion, thermoplastic resin molding capable of continuously welding thermoplastic resin molded bodies with high productivity and energy saving. A method of welding the body can be provided.

本発明の熱可塑性樹脂成形体の溶着方法の一例を示した断面図である。It is sectional drawing which showed an example of the welding method of the thermoplastic resin molded article of this invention. 送り速度の最小値v及び最小光子密度P(点A)と、送り速度の最大値v及び最大光子密度P(点B)とをプロットして直線kで結んだグラフを示した図である。A graph in which the minimum feed rate v 1 and the minimum photon density P 1 (point A) and the maximum feed rate v 2 and the maximum photon density P 2 (point B) are plotted and connected by a straight line k is shown. It is a figure. 図2のグラフの直線k上に送り速度の最大値v及び光子密度P(点C)をプロットした様子を示した図である。It is a figure which showed the state which the maximum value v 3 of the feed rate and the photon density P 3 (point C) were plotted on the straight line k of the graph of FIG. 本発明の熱可塑性樹脂成形体の溶着方法の他の例を示した断面図である。It is sectional drawing which showed another example of the welding method of the thermoplastic resin molded article of this invention.

本発明の熱可塑性樹脂成形体の溶着方法は、少なくとも2個の赤外線吸収性の熱可塑性樹脂成形体を互いに接触配置させ、さらに一方の外側の熱可塑性樹脂成形体の外表面に放熱材を接触配置させ、特定の条件で放熱材側から赤外線を走査させながら照射して熱可塑性樹脂成形体同士を溶着する方法である。 In the method of welding a thermoplastic resin molded body of the present invention, at least two infrared-absorbing thermoplastic resin molded bodies are arranged in contact with each other, and a heat radiating material is brought into contact with the outer surface of one of the outer thermoplastic resin molded bodies. This is a method in which the thermoplastic resin molded bodies are welded to each other by arranging them and irradiating them while scanning infrared rays from the heat radiating material side under specific conditions.

以下、本発明の熱可塑性樹脂成形体の溶着方法の実施形態の一例を示し、図面を参照して説明する。なお、以下の説明において例示される図の寸法等は一例であって、本発明はそれらに必ずしも限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, an example of an embodiment of the welding method for the thermoplastic resin molded product of the present invention will be shown and described with reference to the drawings. It should be noted that the dimensions and the like of the figures illustrated in the following description are examples, and the present invention is not necessarily limited thereto, and the present invention can be appropriately modified without changing the gist thereof. ..

本実施形態の溶着方法では、図1に示すように、フィルム状の赤外線吸収性の第1の熱可塑性樹脂成形体10(以下、「第1成形体10」と記す。)と、フィルム状の赤外線吸収性の第2の熱可塑性樹脂成形体20(以下、「第2成形体20」と記す。)とを、第1成形体10の第1面10aと第2成形体20の第1面20aとが接触するように配置する。さらに、第1成形体10の第1面10aと反対側の第2面10bに接触するように板状の放熱材30を配置する。 In the welding method of the present embodiment, as shown in FIG. 1, a film-shaped infrared-absorbing first thermoplastic resin molded body 10 (hereinafter, referred to as “first molded body 10”) and a film-shaped first thermoplastic resin molded body 10 (hereinafter referred to as “first molded body 10”) The infrared-absorbing second thermoplastic resin molded body 20 (hereinafter referred to as “second molded body 20”) is referred to as a first surface 10a of the first molded body 10 and a first surface of the second molded body 20. Arrange so that they come into contact with 20a. Further, the plate-shaped heat radiating material 30 is arranged so as to come into contact with the second surface 10b on the side opposite to the first surface 10a of the first molded body 10.

このように第2成形体20、第1成形体10及び放熱材30をこの順に積層した状態で、溶着装置100が備える光源110から発生させた赤外線Iを、放熱材30側から第1成形体10の第1面10aの面方向に走査させながら照射する。第1成形体10の第1面10aと第2成形体20の第1面20aが接触している溶着部分に赤外線Iが吸収され、溶着部分の温度が軟化温度まで上昇して溶融することで、第1成形体10と第2成形体20とが溶着される。第1成形体10の軟化温度と第2成形体20の軟化温度が異なる場合、赤外線Iの吸収によって、溶着部分の温度が少なくとも低い方の軟化温度まで加熱されることで溶着が起きる。 In the state where the second molded body 20, the first molded body 10, and the heat radiating material 30 are laminated in this order, infrared rays I generated from the light source 110 included in the welding device 100 are emitted from the heat radiating material 30 side to the first molded body. Irradiation is performed while scanning in the plane direction of the first plane 10a of 10. Infrared I is absorbed by the welded portion where the first surface 10a of the first molded body 10 and the first surface 20a of the second molded body 20 are in contact, and the temperature of the welded portion rises to the softening temperature to melt. , The first molded body 10 and the second molded body 20 are welded. When the softening temperature of the first molded body 10 and the softening temperature of the second molded body 20 are different, welding occurs by heating the welded portion to at least the lower softening temperature by absorption of infrared rays I.

軟化温度とは、樹脂が軟化もしくは溶融する温度であり、一般的に結晶性を有する熱可塑性樹脂の場合は融点、非晶性熱可塑性樹脂の場合はガラス転移温度である。融点及びガラス転移温度は、示差走査熱量測定装置(DSC)によって測定される。 The softening temperature is a temperature at which the resin softens or melts, and is generally a melting point in the case of a crystalline thermoplastic resin and a glass transition temperature in the case of an amorphous thermoplastic resin. The melting point and glass transition temperature are measured by a differential scanning calorimetry device (DSC).

本実施形態では、赤外線Iを照射する側、すなわち第1成形体10の第2面10b側に放熱材30が配置されていることで、第1成形体10の第2面10b側では赤外線Iの吸収によって発生した熱の一部が放熱材30に吸収されて放熱される。これにより、溶着時において、第1成形体10と第2成形体20の溶着部分の樹脂を溶融させながら、第1成形体10の第2面10b側の表層の過熱を抑えることができる。そのため、第1成形体10の第2面10b側の焼け等の熱損傷が抑制される。 In the present embodiment, the heat radiating material 30 is arranged on the side that irradiates the infrared ray I, that is, on the second surface 10b side of the first molded body 10, so that the infrared ray I is on the second surface 10b side of the first molded body 10. A part of the heat generated by the absorption of the heat is absorbed by the heat radiating material 30 and dissipated. Thereby, at the time of welding, it is possible to suppress overheating of the surface layer on the second surface 10b side of the first molded body 10 while melting the resin of the welded portion of the first molded body 10 and the second molded body 20. Therefore, thermal damage such as burning on the second surface 10b side of the first molded body 10 is suppressed.

第1成形体10及び第2成形体20に対して赤外線Iを走査する方法は、特に限定されず、例えば、第1成形体10及び第2成形体20を固定した状態で、光源110を移動させながら赤外線Iを照射する方法を例示できる。また、固定した光源110から赤外線Iを照射させながら、第1成形体10及び第2成形体20を移動させる方法であってもよい。光源110と、第1成形体10及び第2成形体20とを互いに移動させながら赤外線Iを照射する方法であってもよい。
溶着時の放熱材30は、第1成形体10の第2面10b上で動かないように接していてもよく、放熱材30と第1成形体10とが摺動するようになっていてもよい。
The method of scanning the infrared ray I with respect to the first molded body 10 and the second molded body 20 is not particularly limited, and for example, the light source 110 is moved while the first molded body 10 and the second molded body 20 are fixed. An example can be illustrated of a method of irradiating infrared rays I while allowing the members to irradiate the infrared rays I. Further, a method of moving the first molded body 10 and the second molded body 20 while irradiating infrared rays I from the fixed light source 110 may be used. A method of irradiating infrared rays I while moving the light source 110 and the first molded body 10 and the second molded body 20 with each other may be used.
The heat radiating material 30 at the time of welding may be in contact with the second surface 10b of the first molded body 10 so as not to move, or even if the heat radiating material 30 and the first molded body 10 are slidable. good.

積層された放熱材30、第1成形体10及び第2成形体20を保持する機構としては、特に限定されず、例えば、ネジ式クランプ、バネ、油圧、空気圧等を利用した機械的クランプ機構を例示できる。 The mechanism for holding the laminated heat radiating material 30, the first molded body 10, and the second molded body 20 is not particularly limited, and for example, a mechanical clamp mechanism using a screw type clamp, a spring, a hydraulic pressure, an air pressure, or the like is used. It can be exemplified.

以下、第1成形体10及び第2成形体20に照射する赤外線Iの送り速度と光子密度の制御方法について説明する。
第1成形体10の第2面10bの面方向に走査する赤外線Iの送り速度をv(mm/s)とし、赤外線Iの光子密度をP(photons/mm・s)として、下記の工程(a)〜(d)を事前に実施する。
Hereinafter, a method for controlling the feeding speed and photon density of infrared rays I irradiating the first molded body 10 and the second molded body 20 will be described.
The following steps, where the feed rate of infrared rays I scanned in the plane direction of the second surface 10b of the first molded body 10 is v (mm / s) and the photon density of infrared rays I is P (photons / mm 2 · s). (A) to (d) are carried out in advance.

(工程(a))
溶着しようとする第1成形体10及び第2成形体20(熱可塑性樹脂成形体同士)が互いに接触配置された試験体の第1成形体10の第2面10b(外表面)に放熱材30を接触配置し、放熱材30側から赤外線Iを面方向に走査させながら照射して溶着状態を確認する試験を、条件を変えながら繰り返す。そして、放熱材30と接する第1成形体10の赤外線Iを照射する側、すなわち第1成形体10の第2面10b側に焼け及び変形が生じずに、第1成形体10及び第2成形体20が溶着される送り速度vの最小値v及びそのときの最小光子密度Pと、送り速度vの最大値v及びそのときの最大光子密度Pとを求める。
(Step (a))
The heat radiating material 30 is placed on the second surface 10b (outer surface) of the first molded body 10 of the test body in which the first molded body 10 and the second molded body 20 (thermoplastic resin molded bodies) to be welded are arranged in contact with each other. Is arranged in contact with each other, and the test of irradiating the heat insulating material 30 while scanning the infrared ray I in the plane direction to confirm the welding state is repeated while changing the conditions. Then, the side of the first molded body 10 in contact with the heat radiating material 30 that is irradiated with infrared rays I, that is, the side of the second surface 10b of the first molded body 10 is not burnt or deformed, and the first molded body 10 and the second molded body 10 are molded. The minimum value v 1 of the feed rate v to which the body 20 is welded and the minimum photon density P 1 at that time, and the maximum value v 2 of the feed rate v and the maximum photon density P 2 at that time are obtained.

ここで、「熱可塑性樹脂成形体の赤外線を照射する側(第1成形体10の第2面10b側)に焼け及び変形を生じさせない」とは、第1成形体10の第2面10b(最表面)の外観及び形状がいずれも溶着前から変化していないことを意味する。 Here, "the side of the thermoplastic resin molded body to be irradiated with infrared rays (the second surface 10b side of the first molded body 10) is not burnt or deformed" means that the second surface 10b of the first molded body 10 ( It means that the appearance and shape of the outermost surface) have not changed since before welding.

「熱可塑性樹脂成形体同士(第1成形体10と第2成形体20)を溶着できる」とは、溶着後の熱可塑性樹脂成形体同士の溶着強度が、第1成形体10及び第2成形体20の各単体での引張強度と同等(N/16mm)以上であることを意味する。但し、溶着されたものの使用目的に応じて、第1成形体10及び第2成形体20の単体の引張強度以下でも使用可能な場合がある。
なお、熱可塑性樹脂成形体同士の溶着後に幅16mmの試験片を切り出し、引張試験機を用い、チャック間距離30mm、引張速度10mm/分、引張方向90°の条件で試験片の溶着部分を支点に引っ張ったときの破断に至るまでの最大荷重を溶着強度とするピーリング方法を採用する。
"The thermoplastic resin molded bodies (the first molded body 10 and the second molded body 20) can be welded to each other" means that the welding strength between the thermoplastic resin molded bodies after welding is the first molded body 10 and the second molded body. It means that it is equal to or more than the tensile strength of each unit of the body 20 (N / 16 mm). However, depending on the purpose of use of the welded product, it may be possible to use the first molded product 10 and the second molded product 20 even if they have a tensile strength or less.
After welding the thermoplastic resin molded bodies together, a test piece having a width of 16 mm was cut out, and a tensile tester was used to use the welded portion of the test piece as a fulcrum under the conditions of a distance between chucks of 30 mm, a tensile speed of 10 mm / min, and a tensile direction of 90 °. A peeling method is adopted in which the maximum load until breakage when pulled to is the welding strength.

本実施形態では、まず以下の試験を予め行う。
第1成形体10の第2面10b側に焼け及び変形を生じさせずに第1成形体10と第2成形体20を溶着できる範囲における、赤外線Iの送り速度vの最小値vと、送り速度vのときの最小光子密度Pとを求める。例えば、赤外線Iの送り速度vを固定して光子密度Pを4.823×1022photons/mm・s間隔で変動させて溶着する試験を行い、焼け及び変形の確認及び溶着強度の測定の結果から、第1成形体10の第2面10b側に焼け及び変形を生じさせずに第1成形体10と第2成形体20を溶着できる最小の光子密度Pを求める。これを10mm/s間隔で送り速度vを変化させて繰り返し、最表面の焼け及び変形を生じさせずに成形体同士を溶着できる赤外線Iの送り速度vの最小値vと最小光子密度Pを求める。
及びPを求める試験において光子密度Pの変動間隔は、4.823×1022photons/mm・sには限定されず、例えば、1.206×1022〜2.412×1023photons/mm・sとすることができる。また、送り速度vの変動間隔は、10mm/sには限定されず、例えば、1〜356mm/sとすることができる。
In the present embodiment, the following tests are first performed in advance.
The minimum value v 1 of the feeding speed v of the infrared ray I in the range where the first molded body 10 and the second molded body 20 can be welded without causing burning and deformation on the second surface 10b side of the first molded body 10. obtaining a minimum photon density P 1 at a feed rate v 1. For example, a test is conducted in which the feed rate v of the infrared ray I is fixed and the photon density P is changed at an interval of 4.823 × 10 22 feet / mm 2 · s to confirm welding and deformation, and to measure the welding strength. From the result, the minimum photon density P capable of welding the first molded body 10 and the second molded body 20 without causing burning and deformation on the second surface 10b side of the first molded body 10 is obtained. This is repeated by changing the feed rate v at intervals of 10 mm / s, and the minimum value v 1 and the minimum photon density P 1 of the feed rate v of the infrared ray I that can weld the molded bodies to each other without causing burning and deformation of the outermost surface. Ask for.
v 1 and variation interval of photon density P in tests to determine the P 1 is not limited to 4.823 × 10 22 photons / mm 2 · s, for example, 1.206 × 10 22 ~2.412 × 10 23 It can be photons / mm 2 · s. Further, the fluctuation interval of the feed rate v is not limited to 10 mm / s, and can be, for example, 1 to 356 mm / s.

また、第1成形体10の第2面10b側に焼け及び変形を生じさせずに第1成形体10と第2成形体20を溶着できる範囲における、赤外線Iの送り速度vの最大値vと、送り速度vのときの最大光子密度Pとを測定する。例えば、赤外線Iの送り速度vを固定して光子密度Pを4.823×1022photons/mm・s間隔で変動させて溶着する試験を行い、焼け及び変形の確認及び溶着強度の測定の結果から、第1成形体10の第2面10b側に焼け及び変形を生じさせずに第1成形体10と第2成形体20を溶着できる最大の光子密度Pを求める。これを10mm/s間隔で送り速度vを変化させて繰り返し、最表面に焼け及び変形を生じさせずに成形体同士を溶着できる赤外線Iの送り速度vの最大値vと最大光子密度Pを求める。
及びPを求める試験において光子密度Pの変動間隔は、4.823×1022photons/mm・sには限定されず、例えば、1.206×1022〜2.412×1023photons/mm・sとすることができる。また、送り速度vの変動間隔は、10mm/sには限定されず、例えば、1〜356mm/sとすることができる。
Further, the maximum value v 2 of the feeding speed v of the infrared ray I in the range in which the first molded body 10 and the second molded body 20 can be welded without causing burning or deformation on the second surface 10b side of the first molded body 10. And the maximum photon density P 2 when the feed rate v 2 is measured. For example, a test is conducted in which the feed rate v of the infrared ray I is fixed and the photon density P is changed at an interval of 4.823 × 10 22 feet / mm 2 · s to confirm welding and deformation, and to measure the welding strength. From the result, the maximum photon density P capable of welding the first molded body 10 and the second molded body 20 without causing burning and deformation on the second surface 10b side of the first molded body 10 is obtained. This is repeated by changing the feed rate v at 10 mm / s intervals, and the maximum value v 2 of the feed rate v and the maximum photon density P 2 of the infrared ray I that can weld the molded bodies to each other without causing burning or deformation on the outermost surface. Ask for.
v 2 and variation interval of the photon density P in tests to determine the P 2 is not limited to 4.823 × 10 22 photons / mm 2 · s, for example, 1.206 × 10 22 ~2.412 × 10 23 It can be photons / mm 2 · s. Further, the fluctuation interval of the feed rate v is not limited to 10 mm / s, and can be, for example, 1 to 356 mm / s.

工程(a)においては、以下に説明する赤外線吸収による温度上昇の予測を利用して条件を選択することで、送り速度の最小値v及び最小光子密度Pと、送り速度の最大値v及び最大光子密度Pを効率的に求めることができる。
赤外線の照射による熱可塑性樹脂成形体の温度上昇は、吸収される赤外線の量に比例する。赤外線の吸収量は、入射した赤外線の強度、及び熱可塑性樹脂成形体を構成する物質の吸光係数と相関があり、ランベルト・ベールの法則に従う。赤外線の吸収量は、赤外線が入射する表面で最も多く、内部にいくに従って少なくなる。
In the step (a), the minimum value v 1 of the feed rate, the minimum photon density P 1, and the maximum value v of the feed rate are selected by selecting the conditions using the prediction of the temperature rise due to infrared absorption described below. 2 and the maximum photon density P 2 can be efficiently obtained.
The temperature rise of the thermoplastic resin molded product due to the irradiation of infrared rays is proportional to the amount of infrared rays absorbed. The amount of infrared rays absorbed correlates with the intensity of the incident infrared rays and the extinction coefficient of the substance constituting the thermoplastic resin molded product, and follows Lambert-Beer's law. The amount of infrared rays absorbed is the largest on the surface where infrared rays are incident, and decreases as it goes inside.

赤外線を照射したときの成形体内部の温度の上昇速度は、下記式(1)及び下記式(2)から近似的に計算できる。 The rate of temperature rise inside the molded product when irradiated with infrared rays can be approximately calculated from the following equations (1) and (2).

Figure 2021109319
Figure 2021109319

ただし、前記式中、Tは成形体の赤外線が照射される表面から距離xの部分の温度であり、tは赤外線の照射時間であり、xは成形体の赤外線が照射される表面からの距離であり、kは成形体の熱伝導度であり、ρは成形体の密度であり、cは成形体の比熱であり、lは照射される赤外線の強度であり、βは成形体の吸収係数である。 However, in the above formula, T is the temperature of the portion of the distance x from the surface of the molded body irradiated with infrared rays, t is the irradiation time of infrared rays, and x is the distance from the surface of the molded body irradiated with infrared rays. , K is the thermal conductivity of the molded body, ρ is the density of the molded body, c is the specific heat of the molded body, l 0 is the intensity of the irradiated infrared rays, and β is the absorption of the molded body. It is a coefficient.

(工程(b))
図2に示すように、点A(v,P)と点B(v,P)とを、送り速度vと光子密度Pとの関係を示すグラフにプロットする。そして、これら点Aと点Bの2点を通る直線を直線kとする。
(Step (b))
As shown in FIG. 2, points A (v 1 , P 1 ) and points B (v 2 , P 2 ) are plotted on a graph showing the relationship between the feed rate v and the photon density P. Then, a straight line passing through these two points A and B is defined as a straight line k.

(工程(c))
図2のグラフにおいて、前記試験で第1成形体10及び第2成形体20が溶着されなかった点のうち、直線kよりも下側で、かつ直線kに最も距離が近い点C(v,P)(ただし、v>vである。)まで直線kを平行移動させた直線を直線pとする。
(Step (c))
In the graph of FIG. 2, among the points where the first molded body 10 and the second molded body 20 were not welded in the test, the points C (v 3) below the straight line k and closest to the straight line k. , P 3 ) (where v 3 > v 2 ), the straight line k is moved in parallel, and the straight line p is defined as the straight line p.

(工程(d))
図2のグラフにおいて、前記試験で第1成形体10及び第2成形体20の少なくとも一部が白化した点のうち、直線kよりも上側で、かつ直線kに最も距離が近い点D(v,P)(ただし、v<vである。)まで直線kを平行移動させた直線を直線qとする。
(Step (d))
In the graph of FIG. 2, among the points where at least a part of the first molded body 10 and the second molded body 20 was whitened in the test, the point D (v) above the straight line k and closest to the straight line k. 4 , P 4 ) (where v 4 <v 1 ), the straight line k is moved in parallel, and the straight line q is defined as the straight line q.

本実施形態では、第1成形体10と第2成形体20とを溶着する際、送り速度vと光子密度Pとの関係を示すグラフの直線pよりも上側、かつ直線qよりも下側の範囲内で、照射する赤外線Iの送り速度と光子密度を制御する。これにより、条件設定が容易になり、表面の焼け等の熱損傷を抑制しつつ、高い生産性かつ省エネルギーで第1成形体10と第2成形体20とを連続的に溶着することができる。 In the present embodiment, when the first molded body 10 and the second molded body 20 are welded, they are above the straight line p and below the straight line q in the graph showing the relationship between the feed rate v and the photon density P. Within the range, the feed rate and photon density of the infrared ray I to be irradiated are controlled. As a result, the conditions can be easily set, and the first molded body 10 and the second molded body 20 can be continuously welded with high productivity and energy saving while suppressing thermal damage such as surface burning.

本実施形態では、直線k上における、前記試験で第1成形体10及び第2成形体20中に気泡、白化及び黒化が生じない範囲で照射する赤外線Iの送り速度及び光子密度を制御することが好ましい。 In the present embodiment, the feeding speed and photon density of infrared rays I irradiated on the straight line k within a range in which bubbles, whitening and blackening do not occur in the first molded body 10 and the second molded body 20 in the test are controlled. Is preferable.

具体的には、直線k上において、前記試験で第1成形体10及び第2成形体20中に気泡、白化及び黒化を生じさせずに第1成形体10と第2成形体20とを溶着できる送り速度vの最大値vを求める。
なお、「熱可塑性樹脂成形体中に気泡が生じない」とは、5倍の拡大鏡では確認できず、200倍顕微鏡によって確認したときに、1cm中における直径50μm以上の気泡が1個以下であることを意味する。気泡の直径は、拡大画像における気泡に外接する外接円の直径を意味する。
Specifically, on the straight line k, the first molded body 10 and the second molded body 20 are formed in the first molded body 10 and the second molded body 20 without causing bubbles, whitening, and blackening in the test. The maximum value v 5 of the feed rate v that can be welded is obtained.
It should be noted that "no bubbles are generated in the thermoplastic resin molded body" cannot be confirmed with a 5x magnifying glass, and when confirmed with a 200x microscope, there is one or less bubbles with a diameter of 50 μm or more in 1 cm 3. Means that The diameter of the bubble means the diameter of the circumscribed circle that circumscribes the bubble in the enlarged image.

図3に示すように、送り速度vと光子密度Pとの関係を示すグラフの直線k上に点E(v,P)をプロットする。そして、図3のグラフの直線pよりも上側、かつ直線qよりも下側の範囲のうち、点Eの点B側(v≧v)の範囲で、第1成形体10及び第2成形体20に照射する赤外線Iの送り速度及び光子密度を制御することが好ましい。 As shown in FIG. 3, the point E (v 5 , P 5 ) is plotted on the straight line k of the graph showing the relationship between the feed rate v and the photon density P. Then, in the range above the straight line p and below the straight line q in the graph of FIG. 3, in the range of the point B side (v ≧ v 5 ) of the point E, the first molded body 10 and the second molded body 10 and the second molded body are formed. It is preferable to control the feeding speed and photon density of the infrared ray I irradiating the body 20.

また、この場合、光源110から照射される赤外線Iの送り速度がv以上であるときに、それが通知される通知手段120を備えた溶着装置100を用いて第1成形体10と第2成形体20を溶着することが好ましい。これにより、気泡がない高品質な溶着物が得られやすくなる。 In addition, when this case is the feed rate of the infrared I emitted from the light source 110 is v 3 or more, a notification unit 120 first molded body 10 with a welding apparatus 100 having the in which it is notified second It is preferable to weld the molded body 20. This makes it easy to obtain a high-quality welded product without bubbles.

通知手段120としては、赤外線Iの送り速度がv以上であることを通知できるものであればよく、例えば、ブザー、パトランプ等を例示できる。 The notification means 120, as long as it can notify the feeding speed of the infrared I is v 5 or more, for example, can be exemplified buzzer, the revolving lamp or the like.

本発明においては、特に優れた生産性で溶着物を連続的に製造できる点では、照射する赤外線Iの送り速度は、300mm/s以上とすることが好ましい。 In the present invention, the feeding speed of the infrared ray I to be irradiated is preferably 300 mm / s or more from the viewpoint that the welded product can be continuously produced with particularly excellent productivity.

光源110は、第1成形体10及び第2成形体20に用いる熱可塑性樹脂の種類、溶着温度、放熱材30の種類を考慮して適宜選択できる。
光源110としては、第1成形体10と第2成形体20の溶着部分を溶融温度まで加熱し得る波長の赤外線を充分な出力で発生させることができるものを選択すればよく、例えば、波長0.7μm以上1,000μm以下の赤外線を発生する光源を採用できる。
The light source 110 can be appropriately selected in consideration of the type of the thermoplastic resin used for the first molded body 10 and the second molded body 20, the welding temperature, and the type of the heat radiating material 30.
As the light source 110, a light source capable of generating infrared rays having a wavelength capable of heating the welded portions of the first molded body 10 and the second molded body 20 to the melting temperature with sufficient output may be selected. For example, the light source 110 may have a wavelength of 0. A light source that generates infrared rays of 7. μm or more and 1,000 μm or less can be adopted.

光源110としては、例えば、赤外線レーザーを用いる。
赤外線レーザーとしては、波長0.7μm以上の赤外線を発生する固体レーザー、半導体レーザー、気体レーザー、ファイバーレーザー、色素レーザーを例示できる。
As the light source 110, for example, an infrared laser is used.
Examples of the infrared laser include a solid-state laser, a semiconductor laser, a gas laser, a fiber laser, and a dye laser that generate infrared rays having a wavelength of 0.7 μm or more.

固体レーザーとしては、光源波長が0.94μm以上1.4μm以下の範囲にある、NdがドープされたYAGレーザー(以下、「Nd:YAGレーザー」と記す。)を例示できる。半導体レーザーとしては、光源波長が0.8μm以上0.96μm以下の範囲にあるAlGaAsレーザーを例示できる。Nd:YAGレーザー及び半導体レーザーはともに平均出力が高出力タイプのものが存在するため、広範囲の赤外線吸収性の熱可塑性樹脂成形体の溶着に適用できる。 As the solid-state laser, an Nd-doped YAG laser (hereinafter, referred to as “Nd: YAG laser”) having a light source wavelength in the range of 0.94 μm or more and 1.4 μm or less can be exemplified. As the semiconductor laser, an AlGaAs laser having a light source wavelength in the range of 0.8 μm or more and 0.96 μm or less can be exemplified. Since some Nd: YAG lasers and semiconductor lasers have a high average output, they can be applied to welding a wide range of infrared-absorbing thermoplastic resin molded products.

Ho、Er、又はTm(ツリウム)をドープした光源波長が1.9μm以上2.94μm以下のファイバーレーザー(以下、「Ho、Er、Tm:ファイバーレーザー」と記す。)や、気体レーザーである光源波長が9.1μm以上10.9μm以下、好ましくは9.3μm以上10.6μm以下の炭酸ガスレーザー(COレーザー)は、ポリカーボネート、ポリスチレン類、アクリル樹脂等の極めて可視光透過性の高い樹脂に対しても加熱作用を持つため、好ましく利用される。特に、COレーザーは全ての熱可塑性樹脂に対して強い加熱作用を持つうえ、発振器の平均出力が数Wから数十kWに及ぶ高出力化が可能であるため、赤外線光源として好適である。 A fiber laser (hereinafter referred to as "Ho, Er, Tm: fiber laser") having a wavelength of a light source doped with Ho, Er, or Tm (thulium) of 1.9 μm or more and 2.94 μm or less, or a light source that is a gas laser. A carbon dioxide gas laser (CO 2 laser) having a wavelength of 9.1 μm or more and 10.9 μm or less, preferably 9.3 μm or more and 10.6 μm or less, can be used as a resin having extremely high visible light transmission such as polycarbonate, polystyrene, and acrylic resin. On the other hand, it has a heating effect and is therefore preferably used. In particular, the CO 2 laser is suitable as an infrared light source because it has a strong heating action on all thermoplastic resins and can increase the average output of the oscillator from several watts to several tens of kW.

光源110から発生した赤外線Iの伝送及び照射には、光学ミラー、ファイバー、レンズ、マスク等を用いてもよい。 An optical mirror, fiber, lens, mask, or the like may be used for transmission and irradiation of infrared rays I generated from the light source 110.

第1成形体10及び第2成形体20を構成する熱可塑性樹脂は、赤外線吸収性を有していれば特に制限はない。具体的には、ポリオレフィン(ポリエチレン、ポリプロピレン、ポリブテン、ポリ−4−メチル−1−ペンテン、エチレン−環状オレフィン共重合体等)、ポリエステル(エチレン−酢酸ビニル共重合体及びそのけん化物、エチレン−アクリル酸共重合体、エチレンポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等)、ポリアミド(ナイロン9T、ナイロン6、ナイロン66、ナイロン46、ナイロン12、MXDナイロン等)、アクリル系重合体(ポリメチルメタアクリレート、ポリアクリル酸等)、ポリスチレン、ポリアクリロニトリル、アクリロニトリル−ブタジエン−スチレン共重合体、含ハロゲン重合体(塩化ビニル、ポリ塩化ビニリデンやポリフロロエチレン等)、合成ゴム(ポリブタジエン、ポリイソプレン等)及びその水素添加物、熱可塑性エラストマー(スチレン−ブタジエン−スチレンブロック共重合体等)及びその水素添加物、液晶ポリマー、ポリウレタン、ポリカーボネート、ポリスルホン、ポリエーテルエーテルケトンを例示できる。 The thermoplastic resin constituting the first molded body 10 and the second molded body 20 is not particularly limited as long as it has infrared absorption. Specifically, polyolefins (polyethylene, polypropylene, polybutene, poly-4-methyl-1-pentene, ethylene-cyclic olefin copolymers, etc.), polyesters (ethylene-vinyl acetate copolymers and saponified products thereof, ethylene-acrylics, etc.) Acid copolymers, ethylene polyethylene terephthalates, polybutylene terephthalates, polyethylene naphthalates, etc.), polyamides (nylon 9T, nylon 6, nylon 66, nylon 46, nylon 12, MXD nylon, etc.), acrylic polymers (polymethylmethacrylate, etc.) , Polyacrylic acid, etc.), Polystyrene, Polyacrylonitrile, Acrylonitrile-butadiene-styrene copolymer, Halogen-containing polymer (vinyl chloride, polyvinylidene chloride, polyfluoroethylene, etc.), synthetic rubber (polybutadiene, polyisoprene, etc.) and their Examples thereof include hydrogenated products, thermoplastic elastomers (styrene-butadiene-styrene block copolymers, etc.) and their hydrogenated products, liquid crystal polymers, polyurethanes, polycarbonates, polysulfones, and polyether ether ketones.

第1成形体10及び第2成形体20を構成する熱可塑性樹脂は、1種でもよく、2種以上でもよい。第1成形体10及び第2成形体20を構成する熱可塑性樹脂は、同じ種類の樹脂であってもよく、異なる種類の樹脂であってもよい。
第1成形体10及び第2成形体20は赤外線吸収性を有するが、溶着面に有効量の赤外線が届く必要があるため、ある程度の赤外線透過性が必要である。
The thermoplastic resin constituting the first molded body 10 and the second molded body 20 may be of one type or two or more types. The thermoplastic resin constituting the first molded body 10 and the second molded body 20 may be the same type of resin or different types of resin.
Although the first molded body 10 and the second molded body 20 have infrared absorption, a certain degree of infrared transmission is required because an effective amount of infrared rays must reach the welded surface.

第1成形体10及び第2成形体20に赤外線吸収体を均一に含有させることで、赤外線の吸光係数を調節できる。第1成形体10及び第2成形体20のいずれか一方又は両方が赤外線吸収体を含有する場合には、赤外線吸収体が赤外線を吸収して発熱する溶着条件を選択することが好ましい。
透明性、衛生性、強度の点では、第1成形体10及び第2成形体20は赤外線吸収体を含有しないことが好ましい。
The infrared absorption coefficient can be adjusted by uniformly containing the infrared absorber in the first molded body 10 and the second molded body 20. When either one or both of the first molded body 10 and the second molded body 20 contains an infrared absorber, it is preferable to select a welding condition in which the infrared absorber absorbs infrared rays and generates heat.
From the viewpoint of transparency, hygiene, and strength, it is preferable that the first molded product 10 and the second molded product 20 do not contain an infrared absorber.

第1成形体10及び第2成形体20のいずれか一方又は両方には、外観や意匠の改善等を目的で、成形体の一部又は全部に色素や顔料を含有させてもよい。成形体中の色素及び顔料の合計含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましい。 One or both of the first molded body 10 and the second molded body 20 may contain a dye or a pigment in a part or all of the molded body for the purpose of improving the appearance and design. The total content of the dye and the pigment in the molded product is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 2% by mass or less.

この例の第1成形体10及び第2成形体20は、フィルム状である。第1成形体10及び第2成形体20は、単層構造であってもよく、多層構造であってもよい。なお、第1成形体10及び第2成形体20の形状は、この例の形状には限定されず、例えば、シート状、筒状、チューブ状、部分球等の複雑な形状であってもよい。 The first molded body 10 and the second molded body 20 of this example are in the form of a film. The first molded body 10 and the second molded body 20 may have a single-layer structure or a multi-layer structure. The shapes of the first molded body 10 and the second molded body 20 are not limited to the shapes of this example, and may be complicated shapes such as a sheet shape, a tubular shape, a tube shape, and a partial sphere. ..

第1成形体10及び第2成形体20の厚さ、特に限定されない。溶着効率や生産性の点では、第1成形体10の赤外線照射部分の厚さは、例えば、1μm以上10mm以下とすることができ、10μm以上1mm以下が好ましい。 The thickness of the first molded body 10 and the second molded body 20 is not particularly limited. From the viewpoint of welding efficiency and productivity, the thickness of the infrared-irradiated portion of the first molded product 10 can be, for example, 1 μm or more and 10 mm or less, and preferably 10 μm or more and 1 mm or less.

第1成形体10及び第2成形体20を製造するための成形方法は、特に限定されず、例えば、射出成形法、ブロー成形法、チューブ成形法、異形押出成形法、発泡成形法、圧縮成形法、カレンダー成形法、押出成形法、キャスト成形法を例示できる。
第1成形体10及び第2成形体20が多層構造である場合は、例えば、押出ラミネート、ドライラミネート等を採用できる。
The molding method for producing the first molded body 10 and the second molded body 20 is not particularly limited, and for example, an injection molding method, a blow molding method, a tube molding method, a deformed extrusion molding method, a foam molding method, and compression molding. Examples thereof include a method, a calendar molding method, an extrusion molding method, and a cast molding method.
When the first molded body 10 and the second molded body 20 have a multi-layer structure, for example, extrusion laminating, dry laminating, or the like can be adopted.

放熱材30としては、赤外線透過性の固体材料が好ましい。放熱材30は、赤外線吸収によって発生した熱の一部を効率よく吸収するヒートシンク作用によって、第1成形体10の第2面10b側の表層の過熱を抑えて熱損傷を抑制する役割を果たす。 As the heat radiating material 30, an infrared-transparent solid material is preferable. The heat radiating material 30 plays a role of suppressing overheating of the surface layer on the second surface 10b side of the first molded body 10 and suppressing thermal damage by a heat sinking action that efficiently absorbs a part of the heat generated by infrared absorption.

固体状の放熱材30は、赤外線照射中、溶融や、熱衝撃による割れなどの破損が生じにくく、繰り返し使用しても容易に除熱可能な蓄熱性が低い性質を有していることが好ましい。そのため、放熱材30は、照射する赤外線に対して高い透過性をもち、さらに高い熱伝導性、機械的強度及び耐熱性を備えていることが好ましい。 It is preferable that the solid heat radiating material 30 has a property that it is less likely to be damaged such as melting or cracking due to thermal shock during infrared irradiation, and can easily remove heat even after repeated use and has a low heat storage property. .. Therefore, it is preferable that the heat radiating material 30 has high transparency to the infrared rays to be irradiated, and further has high thermal conductivity, mechanical strength and heat resistance.

放熱材30の熱伝導度は、1W/m・℃以上が好ましく、10W/m・℃以上がより好ましい。
放熱材30の厚さは、10μm以上100mm以下が好ましく、100μm以上100mm以下がより好ましい。
The thermal conductivity of the heat radiating material 30 is preferably 1 W / m · ° C. or higher, more preferably 10 W / m · ° C. or higher.
The thickness of the heat radiating material 30 is preferably 10 μm or more and 100 mm or less, and more preferably 100 μm or more and 100 mm or less.

放熱材30の材料としては、使用する光源に応じて赤外線を透過する材料を選択すればよい。例えば、半導体レーザー、Nd:YAGレーザー、Ho、Er、又はTm:ファイバーレーザーの場合、アルミナ(熱伝導度:36W/m・℃)、ベリリア(熱伝導度:270W/m・℃)、マグネシア(熱伝導度:48W/m・℃)、石英(熱伝導度:1〜10W/m・℃)、ダイヤモンド(熱伝導度:2000W/m・℃)を例示できる。熱伝導性に優れ、より効率的な除熱が可能な点では、アルミナ、ベリリア、マグネシア、ダイヤモンドが好ましい。 As the material of the heat radiating material 30, a material that transmits infrared rays may be selected according to the light source used. For example, in the case of a semiconductor laser, Nd: YAG laser, Ho, Er, or Tm: fiber laser, alumina (thermal conductivity: 36 W / m · ° C), beryllia (thermal conductivity: 270 W / m · ° C), magnesia ( Examples thereof include thermal conductivity: 48 W / m · ° C.), quartz (thermal conductivity: 1-10 W / m · ° C.), and diamond (thermal conductivity: 2000 W / m · ° C.). Alumina, beryllium, magnesia, and diamond are preferable in terms of excellent thermal conductivity and more efficient heat removal.

光源が炭酸ガスレーザーの場合、放熱材30の材料としては、セレン化亜鉛(熱伝導度:19W/m・℃)、硫化亜鉛(熱伝導度:27W/m・℃)、シリコン(熱伝導度:150W/m・℃)、砒素化ガリウム(熱伝導度:54W/m・℃)、ダイヤモンド(熱伝導度:2000W/m・℃)を例示できる。 When the light source is a carbon dioxide gas laser, the materials of the heat radiating material 30 are zinc selenium (thermal conductivity: 19 W / m · ° C.), zinc sulfide (thermal conductivity: 27 W / m · ° C.), and silicon (thermal conductivity: 27 W / m · ° C.). : 150 W / m · ° C.), gallium arsenide (thermal conductivity: 54 W / m · ° C.), diamond (thermal conductivity: 2000 W / m · ° C.) can be exemplified.

放熱材30の材料としては、使用する赤外線を透過させる性質、好ましくはさらに熱伝導性、機械的強度及び耐熱性を備えていれば、前記した材料に限らず、その他の赤外結晶材料、又は赤外ガラス材料を用いてもよい。「赤外結晶材料」とは、赤外線を透過する結晶性無機材料を意味する。「赤外ガラス材料」とは、赤外線を透過する非晶性無機材料を意味する。 The material of the heat radiating material 30 is not limited to the above-mentioned materials, but other infrared crystal materials or other infrared crystal materials, as long as they have the property of transmitting infrared rays to be used, preferably further thermal conductivity, mechanical strength and heat resistance. Infrared glass material may be used. The "infrared crystalline material" means a crystalline inorganic material that transmits infrared rays. The "infrared glass material" means an amorphous inorganic material that transmits infrared rays.

赤外結晶材料としては、セレン亜鉛(ZnSe)、硫化亜鉛(ZnS)、シリコン(Si)、ゲルマニウム(Ge)、サファイア(Al)、砒素化ガリウム(GaAs)およびマグネシア(MgO)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)を例示できる。
赤外ガラス材料としては、石英を主成分とする石英系ガラス材料、ゲルマニアを主成分とするゲルマネート系ガラス材料、アルミナを主成分とするアルミネート系ガラス材料の酸化物系ガラス材料の他に、硫化物系ガラス材料、カルコゲナイドガラス材料を例示できる。
Infrared crystal materials include zinc selenium (ZnSe), zinc sulfide (ZnS), silicon (Si), germanium (Ge), sapphire (Al 2 O 3 ), gallium arsenide (GaAs) and magnesia (MgO), and foot. Examples thereof include magnesium sulfide (MgF 2 ) and calcium fluoride (CaF 2).
Infrared glass materials include quartz-based glass materials containing quartz as the main component, germanate-based glass materials containing germania as the main component, and oxide-based glass materials containing aluminate-based glass materials containing alumina as the main component. , A sulfide-based glass material, and a chalcogenide glass material can be exemplified.

本発明の溶着方法を用いて製造する溶着物の形態としては、特に限定されず、例えば、袋、箱、チューブ、筒を例示できる。溶着物の具体例としては、例えば、2枚の熱可塑性樹脂フィルムの周縁部同士を溶着した袋状の容器を例示できる。このような袋状の容器は、例えば、輸液バッグ等に適用できる。 The form of the welded product produced by using the welding method of the present invention is not particularly limited, and examples thereof include a bag, a box, a tube, and a cylinder. As a specific example of the welded material, for example, a bag-shaped container in which the peripheral portions of two thermoplastic resin films are welded to each other can be exemplified. Such a bag-shaped container can be applied to, for example, an infusion bag or the like.

以上説明したように、本実施形態においては、事前に工程(a)〜(d)を実施して求めた送り速度vと光子密度Pとの関係を示すグラフにおける直線pよりも上側、かつ直線qよりも下側の範囲内で、第1成形体10と第2成形体20の溶着時に照射する赤外線Iの送り速度及び光子密度を制御する。これにより、条件設定が容易になり、最表面の焼け及び変形等の熱損傷を抑制しつつ、高い生産性かつ省エネルギーで第1成形体10と第2成形体20とを連続的に溶着することができる。 As described above, in the present embodiment, the line above and above the straight line p in the graph showing the relationship between the feed rate v and the photon density P obtained by performing the steps (a) to (d) in advance. Within the range below q, the feed rate and photon density of infrared rays I irradiated during welding of the first molded body 10 and the second molded body 20 are controlled. This facilitates the setting of conditions, and continuously welds the first molded body 10 and the second molded body 20 with high productivity and energy saving while suppressing thermal damage such as burning and deformation of the outermost surface. Can be done.

なお、本発明の技術的範囲は前記した実施形態例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、本発明において、溶着する熱可塑性樹脂成形体は、前記した実施形態のような2個には限定されず、3個以上の熱可塑性樹脂成形体を溶着させることもできる。
The technical scope of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the present invention, the thermoplastic resin molded product to be welded is not limited to two as in the above-described embodiment, and three or more thermoplastic resin molded products can be welded.

例えば第2成形体20の第1面20aと反対側の第2面20bの保護等を目的として、第2成形体20の第1成形体10の反対側に支持体を接触配置してもよい。
支持体の形態は、第2成形体20の形状に合わせて適宜選択すればよい。支持体の材質としては、特に限定されず、例えば、スチール、アルミニウム合金、銅合金等の金属、シリコンゴム、及びそれらの組み合わせを例示できる。
For example, a support may be contact-arranged on the opposite side of the first molded body 10 of the second molded body 20 for the purpose of protecting the second surface 20b on the opposite side of the first surface 20a of the second molded body 20. ..
The form of the support may be appropriately selected according to the shape of the second molded body 20. The material of the support is not particularly limited, and examples thereof include metals such as steel, aluminum alloys, and copper alloys, silicon rubber, and combinations thereof.

本発明の熱可塑性樹脂成形体の溶着方法は、図4に示すように、円筒状の赤外線吸収性の第1の熱可塑性樹脂成形体40(以下、「第1成形体40」と記す。)と、円筒状の赤外線吸収性の第2の熱可塑性樹脂成形体50(以下、「第2成形体50」と記す。)とを溶着する方法であってもよい。この場合、固定した光源110から第1成形体40及び第2成形体50に向けて赤外線Iを照射し、第1成形体40及び第2成形体50を回転させることで赤外線Iを走査させる態様が好ましい。 As shown in FIG. 4, the method for welding the thermoplastic resin molded product of the present invention is a cylindrical infrared-absorbing first thermoplastic resin molded product 40 (hereinafter, referred to as “first molded product 40”). And a second thermoplastic resin molded body 50 having a cylindrical shape and absorbing infrared rays (hereinafter, referred to as “second molded body 50”) may be welded. In this case, an aspect in which infrared rays I are irradiated from the fixed light source 110 toward the first molded body 40 and the second molded body 50, and the infrared rays I are scanned by rotating the first molded body 40 and the second molded body 50. Is preferable.

本発明では、放熱材として、液体を用いてもよい。液体状の放熱材としては、放熱性、コストの面から、水が好ましい。この場合の熱可塑性樹脂成形体は、吸水性の低い熱可塑性樹脂を用いた成形体が好ましい。 In the present invention, a liquid may be used as the heat radiating material. As the liquid heat radiating material, water is preferable from the viewpoint of heat radiating property and cost. In this case, the thermoplastic resin molded product is preferably a molded product using a thermoplastic resin having low water absorption.

本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。 It is possible to replace the components in the embodiment with well-known components as appropriate without departing from the spirit of the present invention, and the above-mentioned modifications may be appropriately combined.

以下、実施例によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following description.

[溶着強度の評価]
溶着物から幅16mmの試験片を切り出し、引張試験機を用いて、チャック間距離30mm、引張速度10mm/分、引張方向90°のピーリング条件で、溶着部分を支点に試験片を引っ張り、破断に至るまでの最大荷重を溶着強度とした。
[Evaluation of welding strength]
A test piece with a width of 16 mm is cut out from the welded material, and the test piece is pulled with the welded part as a fulcrum under peeling conditions of a chuck distance of 30 mm, a tensile speed of 10 mm / min, and a tensile direction of 90 ° using a tensile tester to break the test piece. The maximum load up to that point was defined as the welding strength.

[焼け、変形の評価]
溶着物の赤外線を照射した側の最表面の外観を目視で確認して焼けの有無を判断し、また当該最表面を指で触れて変形の有無を判断した。
[Evaluation of burning and deformation]
The appearance of the outermost surface of the welded material irradiated with infrared rays was visually confirmed to determine the presence or absence of burning, and the outermost surface was touched with a finger to determine the presence or absence of deformation.

[気泡、白化、黒化の評価]
溶着物を5倍拡大鏡で見たときに気泡が確認できず、かつ200倍顕微鏡で1cm中における直径50μmの気泡の数が1個以下の場合を気泡が生じていないと判断した。
また、溶着物を目視で確認し、白化及び黒化の有無を判断した。
[Evaluation of bubbles, whitening, and blackening]
When the welded material was viewed with a 5x magnifying glass, no bubbles could be confirmed, and when the number of bubbles with a diameter of 50 μm in 1 cm 3 was 1 or less with a 200x microscope, it was judged that no bubbles were generated.
In addition, the welded material was visually confirmed to determine the presence or absence of whitening and blackening.

[実施例1]
図1に例示した態様で、放熱材30を用いた第1成形体10と第2成形体20との溶着における点A(v,P)及び点B(v,P)を求めた。
第1成形体10として、ナイロン製の樹脂フィルム(クラレ社製、厚さ50μm)を用意した。第2成形体20として、ナイロン製の樹脂フィルム(クラレ社製、厚さ500μm)を用意した。放熱材30として、Ge板(厚さ4mm)を用意した。光源110としては、COレーザーを用いた。
第1成形体10及び第2成形体20が互いに接触配置された試験体の第1成形体10の第2面10bに放熱材30を接触配置した。放熱材30側から赤外線Iを走査させながら照射して溶着状態を確認する試験を、光子密度Pの変動間隔を4.823×1022photons/mm・s、送り速度vの変動間隔を10mm/sとして条件を変えながら繰り返し、点A(v,P)及び点B(v,P)を求めた。vは87.4mm/s、Pは2.19×1021photons/mm・s、最大値vは154.2mm/s、Pは5.31×1021photons/mm・sであった。
[Example 1]
In the embodiment illustrated in FIG. 1, points A (v 1 , P 1 ) and points B (v 2 , P 2 ) in the welding of the first molded body 10 and the second molded body 20 using the heat radiating material 30 are obtained. rice field.
As the first molded body 10, a nylon resin film (manufactured by Kuraray Co., Ltd., thickness 50 μm) was prepared. As the second molded body 20, a nylon resin film (manufactured by Kuraray Co., Ltd., thickness 500 μm) was prepared. A Ge plate (thickness 4 mm) was prepared as the heat radiating material 30. A CO 2 laser was used as the light source 110.
The heat radiating material 30 was contact-arranged on the second surface 10b of the first molded article 10 of the test body in which the first molded article 10 and the second molded article 20 were arranged in contact with each other. In a test to confirm the welding state by irradiating infrared rays I from the heat radiating material 30 side while scanning, the fluctuation interval of the photon density P was 4.823 × 10 22 feet / mm 2 · s, and the fluctuation interval of the feed rate v was 10 mm. The points A (v 1 , P 1 ) and the points B (v 2 , P 2 ) were obtained by repeating the process while changing the conditions as / s. v 1 is 87.4 mm / s, P 1 is 2.19 × 10 21 photons / mm 2 · s, maximum value v 2 is 154.2 mm / s, P 2 is 5.31 × 10 21 photos / mm 2 ·. It was s.

送り速度vと光子密度Pとの関係を示すグラフに点A及び点Bをプロットし、それらを通る直線を直線kとした。グラフにおいて、試験で第1成形体10と第2成形体20が溶着されなかった点のうち、直線kよりも下側で、かつ直線kに最も距離が近い点を点C(v,P)とし、直線kを平行移動させた直線を直線pとした。vは168.0mm/s、Pは5.31×1021photons/mm・sであった。また、前記試験で第1成形体10及び第2成形体20の少なくとも一部が白化した点のうち、直線kよりも上側で、かつ直線kに最も距離が近い点を点D(v,P)とし、直線kを平行移動させた直線を直線qとした。vは46.8mm/s、Pは1.33×1021photons/mm・sであった。 Points A and B were plotted on a graph showing the relationship between the feed rate v and the photon density P, and the straight line passing through them was defined as a straight line k. In the graph, among the points where the first molded body 10 and the second molded body 20 were not welded in the test, the points below the straight line k and the closest to the straight line k are the points C (v 3 , P). 3 ), and the straight line obtained by translating the straight line k was defined as the straight line p. v 3 was 168.0 mm / s, and P 3 was 5.31 × 10 21 photos / mm 2 · s. Further, among the points where at least a part of the first molded body 10 and the second molded body 20 are whitened in the test, the point above the straight line k and the closest to the straight line k is the point D (v 4 , and P 4), the straight line is moved parallel to the straight line k was linear q. v 4 was 46.8 mm / s and P 4 was 1.33 × 10 21 photos / mm 2 · s.

次いで、直線k上において、第1成形体10及び第2成形体20中に気泡、白化及び黒化を生じさせずに第1成形体10と第2成形体20とを溶着できる送り速度vの最大値vを求めた。vは136.9mm/s、Pは4.37×1021photons/mm・sであった。 Next, on the straight line k, the feed rate v capable of welding the first molded body 10 and the second molded body 20 without causing bubbles, whitening and blackening in the first molded body 10 and the second molded body 20. The maximum value v 5 was calculated. v 5 was 136.9 mm / s and P 5 was 4.37 × 10 21 photos / mm 2 · s.

10,40…赤外線吸収性の第1の熱可塑性樹脂成形体、20,50…赤外線吸収性の第2の熱可塑性樹脂成形体、30…放熱材、100…溶着装置、110…光源、120…通知手段。 10, 40 ... Infrared-absorbing first thermoplastic resin molded product, 20, 50 ... Infrared-absorbing second thermoplastic resin molded product, 30 ... Heat-dissipating material, 100 ... Welding device, 110 ... Light source, 120 ... Notification means.

Claims (3)

少なくとも2個の赤外線吸収性の熱可塑性樹脂成形体を互いに接触配置させ、さらに一方の外側の前記熱可塑性樹脂成形体の外表面に放熱材を接触配置させ、前記放熱材側から赤外線を走査させながら照射して前記熱可塑性樹脂成形体同士を溶着する方法であって、
走査する赤外線の送り速度をv(mm/s)とし、赤外線の光子密度をP(photons/mm・s)として、事前に実施する下記の工程(a)〜(d)で求められる、送り速度vと光子密度Pとの関係を示すグラフの直線pよりも上側、かつ直線qよりも下側の範囲内で、照射する赤外線の送り速度及び光子密度を制御する、熱可塑性樹脂成形体の溶着方法。
工程(a):溶着しようとする熱可塑性樹脂成形体同士が互いに接触配置された試験体の一方の外側の前記熱可塑性樹脂成形体の外表面に前記放熱材を接触配置し、前記放熱材側から赤外線を走査させながら照射して溶着状態を確認する試験を、条件を変えながら繰り返して、前記放熱材と接する前記熱可塑性樹脂成形体の赤外線を照射する側に焼け及び変形が生じずに前記熱可塑性樹脂成形体同士が溶着される前記送り速度vの最小値v及びそのときの最小光子密度Pと、前記送り速度vの最大値v及びそのときの最大光子密度Pとを求める。
工程(b):点A(v,P)と点B(v,P)を送り速度vと光子密度Pとの関係を示すグラフにプロットし、点Aと点Bを通る直線を直線kとする。
工程(c):前記グラフにおける前記試験で前記熱可塑性樹脂成形体が溶着されなかった点のうち、前記直線kよりも下側で、かつ前記直線kに最も距離が近い点C(v,P)(ただし、v>vである。)まで前記直線kを平行移動させた直線を直線pとする。
工程(d):前記グラフにおける前記試験で前記熱可塑性樹脂成形体が白化した点のうち、前記直線kよりも上側で、かつ前記直線kに最も距離が近い点D(v,P)(ただし、v<vである。)まで前記直線kを平行移動させた直線を直線qとする。
At least two infrared-absorbing thermoplastic resin molded bodies are placed in contact with each other, and a heat-dissipating material is placed in contact with the outer surface of the outer surface of the thermoplastic resin molded body on one side, and infrared rays are scanned from the heat-dissipating material side. It is a method of welding the thermoplastic resin molded bodies to each other by irradiating while irradiating.
The feed rate of the infrared rays to be scanned is v (mm / s), and the photon density of the infrared rays is P (photons / mm 2 · s). A thermoplastic resin molded body that controls the infrared ray feeding rate and photon density to be irradiated within the range above the straight line p and below the straight line q in the graph showing the relationship between the velocity v and the photon density P. Welding method.
Step (a): The heat-dissipating material is contact-arranged on the outer surface of the thermoplastic resin molded body on the outer side of one of the test pieces in which the thermoplastic resin molded bodies to be welded are arranged in contact with each other, and the heat-dissipating material side. The test of irradiating the thermoplastic resin molded body while scanning the infrared rays to confirm the welding state was repeated while changing the conditions, and the thermoplastic resin molded body in contact with the heat radiating material was not burnt or deformed on the side to be irradiated with the infrared rays. The minimum value v 1 of the feed rate v at which the thermoplastic resin molded bodies are welded to each other and the minimum photon density P 1 at that time, and the maximum value v 2 of the feed rate v and the maximum photon density P 2 at that time are set. Ask.
Step (b): Point A (v 1 , P 1 ) and point B (v 2 , P 2 ) are plotted on a graph showing the relationship between the feed rate v and the photon density P, and a straight line passing through the points A and B. Let be a straight line k.
Step (c): Among the point at which the thermoplastic resin molded article in the test of the graph has not been welded, the below side of the straight line k, and most distance point close C to the straight line k (v 3, Let the straight line p be a straight line obtained by moving the straight line k in parallel to P 3 ) (where v 3 > v 2).
Step (d): Of the points where the thermoplastic resin molded product was whitened in the test in the graph, points D (v 4 , P 4 ) above the straight line k and closest to the straight line k. (However, the straight line obtained by moving the straight line k in parallel up to v 4 <v 1) is defined as the straight line q.
前記直線k上において、前記試験で前記熱可塑性樹脂成形体中に気泡、白化及び黒化を生じさせずに前記熱可塑性樹脂成形体同士を溶着できる前記送り速度vの最大値vを求め、前記送り速度vがv以上v以下の範囲で照射する前記赤外線の送り速度及び光子密度を制御する、請求項1に記載の熱可塑性樹脂成形体の溶着方法。 On the straight line k, the maximum value v 5 of the feed rate v capable of welding the thermoplastic resin molded bodies to each other without causing bubbles, whitening and blackening in the thermoplastic resin molded body was obtained in the test. The method for welding a thermoplastic resin molded product according to claim 1, wherein the feed rate and photon density of the infrared rays irradiated in the range where the feed rate v is v 1 or more and v 5 or less are controlled. 前記赤外線の送り速度がv以上であるときにそれを通知する通知手段を備えた溶着装置を用いて前記熱可塑性樹脂成形体同士を溶着する、請求項2に記載の熱可塑性樹脂成形体の溶着方法。 Welding the said thermoplastic resin molded bodies using a welding apparatus provided with a notifying means for notifying it when the feed speed of the infrared is v 5 or more, the thermoplastic resin molded article according to claim 2 Welding method.
JP2020000786A 2020-01-07 2020-01-07 Method for welding thermoplastic resin molded bodies Active JP7411991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020000786A JP7411991B2 (en) 2020-01-07 2020-01-07 Method for welding thermoplastic resin molded bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020000786A JP7411991B2 (en) 2020-01-07 2020-01-07 Method for welding thermoplastic resin molded bodies

Publications (2)

Publication Number Publication Date
JP2021109319A true JP2021109319A (en) 2021-08-02
JP7411991B2 JP7411991B2 (en) 2024-01-12

Family

ID=77058753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020000786A Active JP7411991B2 (en) 2020-01-07 2020-01-07 Method for welding thermoplastic resin molded bodies

Country Status (1)

Country Link
JP (1) JP7411991B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009101560A (en) 2007-10-23 2009-05-14 Campus Create Co Ltd Method of welding thermoplastic resin member
JP5554629B2 (en) 2010-05-19 2014-07-23 ポリプラスチックス株式会社 Determination method of welding conditions
US10415390B2 (en) 2012-05-11 2019-09-17 Siemens Energy, Inc. Repair of directionally solidified alloys
JP2014024069A (en) 2012-07-24 2014-02-06 Suzuki Motor Corp Bead inspection method in laser welding

Also Published As

Publication number Publication date
JP7411991B2 (en) 2024-01-12

Similar Documents

Publication Publication Date Title
JP4279674B2 (en) Method of welding thermoplastic resin molded body
US3790744A (en) Method of forming a line of weakness in a multilayer laminate
CN107073653B (en) For riving or the laser processing of cutting substrate
US3909582A (en) Method of forming a line of weakness in a multilayer laminate
US3626143A (en) Scoring of materials with laser energy
JP5502082B2 (en) Method for producing composite materials by transmission laser welding
JP2008531355A (en) Laser welding apparatus and laser welding method
JPWO2017145269A1 (en) Laser welding apparatus and laser welding method
US20120181250A1 (en) Infrared laser welding of plastic parts with one or more of the parts having a modified surface providing increased absorbtivity to infrared laser light
JP2007111926A (en) Method and apparatus for laser beam welding of thermoplastic resin member
EP2087989B1 (en) Method for welding thermoplastic resin articles
JP2021109319A (en) Welding method of thermoplastic resin molded products
JP2010138220A (en) Method for producing foamed sheet and foamed sheet
JP5555613B2 (en) Laser bonding method of resin member and laser bonded body of resin member
JP6048464B2 (en) Method for imparting heat sealability to biaxially stretched polyester film
JP5912687B2 (en) Welding apparatus and welding method for thermoplastic resin tube
JP2006315313A (en) Transferring/joining method and transferring/joining apparatus
JP4267286B2 (en) Resin material welding method and resin material welding apparatus
JP2005246704A (en) Infrared processing method of resin material
US11945173B2 (en) Resin member machining method, resin member machining apparatus, and resin component manufacturing method
JP6776539B2 (en) Heat seal method
Kurosaki Radiative heat transfer in plastic welding processes
JP2009101560A (en) Method of welding thermoplastic resin member
US20200164594A1 (en) Method for welding a connection between a first joining surface of a first molded part and a second joining surface of a second molded part
JPH03259932A (en) Modification of surface of polymer molding with vacuum ultraviolet ray

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231219

R150 Certificate of patent or registration of utility model

Ref document number: 7411991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150