JP5554629B2 - Determination method of welding conditions - Google Patents

Determination method of welding conditions Download PDF

Info

Publication number
JP5554629B2
JP5554629B2 JP2010115480A JP2010115480A JP5554629B2 JP 5554629 B2 JP5554629 B2 JP 5554629B2 JP 2010115480 A JP2010115480 A JP 2010115480A JP 2010115480 A JP2010115480 A JP 2010115480A JP 5554629 B2 JP5554629 B2 JP 5554629B2
Authority
JP
Japan
Prior art keywords
light
molded body
resin molded
welding
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010115480A
Other languages
Japanese (ja)
Other versions
JP2011240626A (en
Inventor
晋一 廣田
雅博 加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2010115480A priority Critical patent/JP5554629B2/en
Priority to CN201110127854.2A priority patent/CN102310562B/en
Publication of JP2011240626A publication Critical patent/JP2011240626A/en
Application granted granted Critical
Publication of JP5554629B2 publication Critical patent/JP5554629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9131Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • B29C66/9392Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges in explicit relation to another variable, e.g. speed diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、溶着条件の決定方法に関する。   The present invention relates to a method for determining welding conditions.

熱可塑性樹脂からなる樹脂成形体同士を相互に接合する方法としては、締結用部品(ボルト、ビス、クリップ等)や接着剤を使用する方法の他に、熱板溶着法(例えば、特許文献1参照)、振動溶着法(例えば、特許文献2参照)、超音波溶着法(例えば、特許文献3参照)、レーザー溶着法(例えば、特許文献4参照)等の溶着法が知られている。   As a method for joining resin molded bodies made of thermoplastic resin to each other, in addition to a method of using fastening parts (bolts, screws, clips, etc.) and an adhesive, a hot plate welding method (for example, Patent Document 1). For example, a welding method such as a vibration welding method (see, for example, Patent Literature 2), an ultrasonic welding method (see, for example, Patent Literature 3), or a laser welding method (see, for example, Patent Literature 4) is known.

熱板溶着法は、一対の樹脂成形体の接合部を高温の熱型に接触させて溶融し、冷えて固まる前に接合部を押し付けて接合する方法である。振動溶着法及び超音波溶着法は、一方の樹脂成形体を固定し他方の樹脂成形体を加圧しながら振動又は超音波波動を加えることにより、摩擦エネルギーによって接合部を溶融させて接合する方法である。レーザー溶着法は、接合する一対の樹脂成形体の一方をレーザー光吸収性材料で構成し、他方をレーザー光透過性材料で構成し、これらを重ねた後、透過性材料の側からレーザー光を照射することにより、透過性材料を通過したレーザー光が吸収性材料の表面を加熱して該材料を溶融させると同時に、熱伝達により透過性材料も溶融させ、一対の樹脂成形体を接合する方法である。   The hot plate welding method is a method in which a joint portion between a pair of resin molded bodies is brought into contact with a high-temperature heat mold and melted, and the joint portion is pressed and joined before being cooled and solidified. The vibration welding method and the ultrasonic welding method are methods in which one resin molded body is fixed and the other resin molded body is pressurized and vibration or ultrasonic wave is applied to melt the joint by friction energy and join. is there. In the laser welding method, one of a pair of resin moldings to be joined is composed of a laser light-absorbing material, the other is composed of a laser light-transmitting material, and after laminating them, laser light is emitted from the side of the transparent material. A method in which a laser beam that has passed through a transparent material is heated to melt the material by heating the surface of the absorbent material, and at the same time, the transparent material is also melted by heat transfer to join a pair of resin molded bodies It is.

上記のような一対の樹脂成形体を溶着する方法は、一対の樹脂成形体の一方又は双方を溶融して接合する点で共通する。溶融させるための条件等(溶着条件)により、接合部の強度が異なるため、好適な溶着条件で一対の樹脂成形体を接合することが求められる。   The method of welding the pair of resin molded bodies as described above is common in that one or both of the pair of resin molded bodies are melted and joined. Since the strength of the joint varies depending on the conditions for melting and the like (welding conditions), it is required to join a pair of resin molded bodies under suitable welding conditions.

しかしながら、一対の樹脂成形体を溶着させるための好適な溶着条件は、樹脂の種類、加熱条件等の様々な因子の影響を受けるため、経験的に決定されるのが現状である。   However, suitable welding conditions for welding the pair of resin molded bodies are influenced by various factors such as the type of resin and heating conditions, and are currently determined empirically.

特開2002−028977号公報JP 2002-028977 A 特開2005−319613号公報JP 2005-319613 A 特開2006−264699号公報JP 2006-264699 A 特開2001−071384号公報JP 2001-071384 A

本発明は上記課題を解決するためになされたものであり、その目的は、好適な溶着条件を決定する方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for determining suitable welding conditions.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、樹脂成形体の接合部が溶融する際に吸収する熱を考慮することで、好適な溶着条件を決定できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that suitable welding conditions can be determined by considering the heat absorbed when the joint of the resin molded body melts, and the present invention has been completed. More specifically, the present invention provides the following.

(1) 光に対して透過性を有する光透過性樹脂成形体と、光に対して吸収性を有する光吸収性樹脂成形体とを重ね合わせて重ね合わせ部を形成し、前記光透過性樹脂成形体側から前記重ね合わせ部に向けて前記光を所定の走査速度、所定の出力エネルギーで照射して、前記光透過性樹脂成形体と前記光吸収性樹脂成形体との溶着体を製造する第一工程と、前記光透過性樹脂成形体の前記光に対する透過率をT、前記光の照射中心から距離rの位置の出力エネルギー流束をガウス関数q(r)、前記光のビーム径をd、としたときに、前記重ね合わせ部中の前記距離rの位置に供給される前記光の供給エネルギーEsを下記数式(I)から算出する第二工程と、

Figure 0005554629
前記光吸収性樹脂成形体の熱拡散係数をD、単位長さ当たりの前記光の走査時間をt、としたときに、前記重ね合わせ部の前記距離rの位置において前記光吸収性樹脂成形体側で吸収される吸収エネルギーEaを下記数式(II)から算出する第三工程と、
Figure 0005554629
(数式(II)中、aは係数、Dは前記光吸収性樹脂成形体の熱拡散係数、tは単位長さ当たりの前記光の走査時間、Eは吸収エネルギー)
前記溶着体において、前記光透過性樹脂成形体と前記光吸収性樹脂成形体との溶着部の溶着強度を測定する第四工程と、前記所定の出力エネルギーを変更して、前記第一工程から前記第四工程を繰り返す工程を一回以上行う第五工程と、前記第一工程から前記第五工程の結果に基づいて、前記吸収エネルギーEaと前記溶着強度との関係を導出する第六工程と、前記第六工程の結果に基づいて、前記光透過性樹脂成形体と前記光吸収性樹脂成形体とを溶着する際の前記光の照射条件を決定する第七工程と、を有する溶着条件の決定方法。 (1) A light-transmitting resin molded body having light permeability and a light-absorbing resin molded body having light-absorbing property are overlapped to form an overlapped portion, and the light-transmitting resin is formed. A process for producing a welded body of the light-transmitting resin molded body and the light-absorbing resin molded body by irradiating the light from the molded body side toward the overlapping portion with a predetermined scanning speed and a predetermined output energy. In one step, the light transmittance of the light-transmitting resin molding is T, the output energy flux at a distance r from the light irradiation center is a Gaussian function q (r), and the beam diameter of the light is d. , And the second step of calculating the supply energy Es of the light supplied to the position of the distance r in the overlapping portion from the following formula (I):
Figure 0005554629
When the thermal diffusion coefficient of the light-absorbing resin molded body is D and the light scanning time per unit length is t, the light-absorbing resin molded body side at the position of the distance r of the overlapping portion. A third step of calculating the absorbed energy Ea absorbed by the following formula (II):
Figure 0005554629
(In Formula (II), a is a coefficient, D is a thermal diffusion coefficient of the light-absorbing resin molding, t is a scanning time of the light per unit length, and E a is absorption energy).
In the welded body, a fourth step of measuring the welding strength of the welded portion between the light-transmitting resin molded body and the light-absorbing resin molded body, and changing the predetermined output energy, from the first step A fifth step of performing the step of repeating the fourth step one or more times, and a sixth step of deriving a relationship between the absorbed energy Ea and the welding strength based on the result of the fifth step from the first step; A seventh step of determining the irradiation condition of the light when welding the light-transmitting resin molded body and the light-absorbing resin molded body based on the result of the sixth step. Decision method.

(2) 前記第六工程は、前記吸収エネルギーEaと前記溶着強度とをプロットしたグラフに基づいて前記関係を導出する工程であり、前記関係は溶着強度の極大値を有する(1)に記載の溶着条件決定方法。   (2) The sixth step is a step of deriving the relationship based on a graph plotting the absorbed energy Ea and the welding strength, and the relationship has a maximum value of the welding strength. Method for determining welding conditions.

(3) 前記出力エネルギー流速が、下記数式(III)で表す平均化した出力エネルギー流束qである(1)又は(2)に記載の溶着条件決定方法。

Figure 0005554629
(3) The welding condition determination method according to (1) or (2), wherein the output energy flow velocity is an averaged output energy flux q a represented by the following formula (III).
Figure 0005554629

(4) 前記吸収エネルギーEaと溶着強度との関係に基づいて、溶着強度が大きくなる吸収エネルギーの範囲(ΔE(EaLからEaHの範囲))を設定する工程と、EaLの定数倍EaL×a’、前記光吸収性樹脂成形体を構成する樹脂材料の密度、比熱から下記式(c)を用いて算出される昇温幅から導出される、溶融時の重ね合わせ部における前記樹脂材料の温度が融点になるようなa’を算出する工程と、

Figure 0005554629

(式(IV)中の、比熱、密度は樹脂成形体の比熱と密度である。)
aHの定数倍EaH×a”、前記光吸収性樹脂成形体を構成する樹脂材料の密度、比熱から上記式(c)を用いて算出される昇温幅から導出される、溶融時の重ね合わせ部における前記樹脂材料の温度が熱分解点になるようなa”を算出する工程と、導出されたa’からa”の範囲で任意の定数を選択工程より求められることを特徴とする、(1)から(3)のいずれかに記載の溶着条件決定方法。 (4) Based on the relationship between the absorbed energy Ea and the welding strength, a step of setting an absorption energy range (ΔE a (a range from E aL to E aH )) in which the welding strength is increased, and a constant multiple of E aL E aL × a ′, the density of the resin material constituting the light-absorbing resin molding, and the temperature rise calculated from the specific heat using the following formula (c), the overlapping portion at the time of melting Calculating a ′ such that the temperature of the resin material becomes the melting point;
Figure 0005554629

(The specific heat and density in the formula (IV) are specific heat and density of the resin molded body.)
E aH constant times E aH × a ″, the density of the resin material constituting the light-absorbing resin molded body, and the specific heat, derived from the temperature rise calculated using the above formula (c), A step of calculating a ″ such that the temperature of the resin material in the overlapping portion becomes a thermal decomposition point, and an arbitrary constant in the range of derived a ′ to a ″ is obtained by the selection step. (1) The welding condition determination method according to any one of (3).

(5) 前記係数aは、0.18以上0.21以下である(1)から(4)のいずれかに記載の溶着条件決定方法。   (5) The welding condition determination method according to any one of (1) to (4), wherein the coefficient a is 0.18 or more and 0.21 or less.

(6) 前記光吸収性樹脂成形体が、ポリブチレンテレフタレート系樹脂組成物を成形してなる成形体である(5)に記載の溶着条件決定方法。   (6) The welding condition determination method according to (5), wherein the light-absorbing resin molded body is a molded body formed by molding a polybutylene terephthalate-based resin composition.

(7) 少なくとも一方の樹脂成形体を熱により溶融させて、一対の樹脂成形体を溶着するための溶着条件を決定する方法であって、前記熱による溶融の際に樹脂成形体が吸収する吸収エネルギーと、溶着体の溶着強度との関係を導出し、前記吸収エネルギーと溶着強度との関係に基づいて、溶着条件を決定する方法。   (7) A method of determining a welding condition for fusing at least one resin molded body by heat and welding a pair of resin molded bodies, wherein the resin molded body absorbs at the time of melting by the heat A method of deriving a relationship between energy and the welding strength of the welded body and determining welding conditions based on the relationship between the absorbed energy and the welding strength.

本発明によれば、樹脂成形体の接合部が溶融する際に吸収する熱を考慮することで、好適な溶着条件を容易に決定することができる。   According to the present invention, it is possible to easily determine suitable welding conditions by considering the heat absorbed when the joint portion of the resin molded body melts.

(a)は、吸収エネルギーと溶着強度との関係を示す図であり、(b)は吸収エネルギーと溶着強度との関係を示し、溶着強度が極大値を有する場合を示す図である。(A) is a figure which shows the relationship between absorbed energy and welding strength, (b) is a figure which shows the relationship between absorbed energy and welding strength, and shows the case where welding strength has a maximum value. 走査速度V、V、Vのそれぞれの条件での、吸収エネルギーと溶着強度との関係を示す図である。In each condition of the scan speed V 1, V 2, V 3 , it is a diagram showing the relationship between the absorbed energy and the welding strength. aL、EaHでの光の出力エネルギーと光の走査速度との関係を示す図である。E aL, is a diagram showing the relationship between the output energy and the optical scanning speed of light in the E aH. (a)は溶着体を模式的に示した斜視図であり、(b)は溶着前の光透過性樹脂成形体と光吸収性樹脂成形体の端面を模式的に表した図である。(A) is the perspective view which showed the welded body typically, (b) is the figure which represented typically the end surface of the light transmissive resin molding before welding and a light absorptive resin molding. 実施例の溶着強度の測定方法を示す図である。It is a figure which shows the measuring method of the welding strength of an Example. (a)は実施例、走査速度変更評価の溶着強度と吸収エネルギーとの関係を示す図である。(b)は実施例、走査速度変更評価、厚み変更評価の溶着強度と吸収エネルギーとの関係を示す図である。(A) is a figure which shows the relationship between the welding intensity | strength of an Example and scanning speed change evaluation, and absorbed energy. (B) is a figure which shows the relationship between the welding intensity | strength and absorbed energy of an Example, scanning speed change evaluation, and thickness change evaluation. 実施例、走査速度変更評価、厚み変更評価の光の出力エネルギーと光の走査速度との関係を示す図である。It is a figure which shows the relationship between the output energy of the light of an Example, scanning speed change evaluation, and thickness change evaluation, and the scanning speed of light. 形状変更評価の溶着体を示す模式図である。It is a schematic diagram which shows the welded body of shape change evaluation. 形状変更評価の溶着強度と吸収エネルギーとの関係を示す図である。It is a figure which shows the relationship between the welding intensity | strength and absorption energy of shape change evaluation. (a)は評価2−1の溶着強度と出力エネルギーとの関係を示す図であり、(b)は評価2−2の溶着強度と供給エネルギーとの関係を示す図である。(A) is a figure which shows the relationship between the welding strength of evaluation 2-1, and output energy, (b) is a figure which shows the relationship between the welding strength of evaluation 2-2, and supply energy.

以下、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, although embodiment of this invention is described, this invention is not limited to the following embodiment.

本発明の溶着条件の決定方法は、樹脂成形体の接合部が溶融する際に吸収する熱を考慮する。熱板溶着法、振動溶着法、超音波溶着法、レーザー溶着法等のいずれの溶着法であっても、樹脂成形体の接合部には熱が与えられ、接合部は熱を吸収して溶融する。この接合部が吸収する熱に着目して溶着条件を決定すれば、好適な溶着条件を容易に決定できる。以下、レーザー溶着法等の光による溶着法を例に、本発明の溶着条件の決定方法を説明する。   The method for determining the welding conditions of the present invention takes into account the heat absorbed when the joint of the resin molded body melts. Regardless of the welding method such as hot plate welding method, vibration welding method, ultrasonic welding method, laser welding method, etc., heat is applied to the joint part of the resin molded body, and the joint part absorbs heat and melts. To do. If the welding conditions are determined by paying attention to the heat absorbed by the joint, suitable welding conditions can be easily determined. Hereinafter, the method for determining welding conditions according to the present invention will be described with reference to a welding method using light such as a laser welding method.

本実施形態の溶着条件の決定方法は、第一工程から第七工程を備える。
第一工程では光に対して透過性を有する光透過性樹脂成形体と、光に対して吸収性を有する光吸収性樹脂成形体とを準備し、所定の走査速度、所定の出力エネルギーの光を用いて、これらの樹脂成形体を溶着により接合する。
第二工程では第一工程で用いた光が、その光の照射中心から距離rの位置に供給する供給エネルギーを算出する。
第三工程では第一工程で用いた光の照射中心から距離rの位置で、光吸収性樹脂成形体に吸収される吸収エネルギーを算出する。
第四工程では第一工程で接合した溶着体の溶着強度を測定する。
第五工程では使用する光の出力エネルギーを変更し、第一工程から第四工程を繰り返し行う手順を少なくとも一回行う。
第六工程では第四工程及び第五工程の結果に基づいて、吸収エネルギーと溶着強度との関係を導出する。
第七工程では、溶着強度の大きい吸収エネルギーになるように出力等の溶着条件を決定する。
The method for determining welding conditions according to this embodiment includes the first to seventh steps.
In the first step, a light-transmitting resin molded body that is transmissive to light and a light-absorbing resin molded body that is light-absorbing are prepared, and light having a predetermined scanning speed and a predetermined output energy is prepared. These resin molded bodies are joined by welding.
In the second step, the supply energy supplied from the light used in the first step to the position at a distance r from the irradiation center of the light is calculated.
In the third step, the absorbed energy absorbed by the light-absorbing resin molding is calculated at a position r from the light irradiation center used in the first step.
In the fourth step, the welding strength of the welded body joined in the first step is measured.
In the fifth step, the output energy of light to be used is changed, and the procedure of repeating the first step to the fourth step is performed at least once.
In the sixth step, the relationship between the absorbed energy and the welding strength is derived based on the results of the fourth and fifth steps.
In the seventh step, welding conditions such as output are determined so that the absorbed energy has a high welding strength.

本実施形態によれば、第二工程で光のビーム径、光の透過率等を考慮して供給エネルギーを算出し、第三工程で光吸収性樹脂成形体の熱拡散係数D、光の走査速度等を考慮して吸収エネルギーを算出する。その結果、溶着強度が大きくなる吸収エネルギーは、溶着される樹脂成形体の形状、光の走査速度等によらない。したがって、接合する樹脂成形体の形状を変化させたり、光の走査速度を変更したりしても、本発明の方法により決定された溶着条件を好適な条件として採用することができる。以下、各工程について詳細に説明する。   According to the present embodiment, the supply energy is calculated in consideration of the light beam diameter, the light transmittance, etc. in the second step, and the thermal diffusion coefficient D of the light-absorbing resin molded body, the light scanning is calculated in the third step. The absorbed energy is calculated in consideration of speed and the like. As a result, the absorbed energy that increases the welding strength does not depend on the shape of the resin molded body to be welded, the scanning speed of light, or the like. Therefore, the welding conditions determined by the method of the present invention can be adopted as suitable conditions even if the shape of the resin molded body to be joined is changed or the light scanning speed is changed. Hereinafter, each step will be described in detail.

[第一工程]
第一工程では、光に対して透過性を有する光透過性樹脂成形体と、光に対して吸収性を有する光吸収性樹脂成形体とを重ね合わせて重ね合わせ部を形成し、上記光透過性樹脂成形体側から上記重ね合わせ部に向けて光を所定の走査速度、所定の出力エネルギーで照射して、上記光透過性樹脂成形体と上記光吸収性樹脂成形体との溶着体を製造する。
[First step]
In the first step, a light-transmitting resin molded body having a light-transmitting property and a light-absorbing resin molded body having a light-absorbing property are overlapped to form an overlapping portion, and the light transmitting The light-transmitting resin molded body and the light-absorbing resin molded body are manufactured by irradiating light from the transparent resin molded body side toward the overlapping portion with a predetermined scanning speed and a predetermined output energy. .

先ず、光透過性樹脂成形体について説明する。光透過性樹脂成形体に含まれる樹脂は、所望の光を透過させる性質を成形体に付与することができればよい。例えば、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m―PPE)、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)、ポリエチレン、ポリプロピレン、ポリブデン、6ナイロン、66ナイロン、11ナイロン、12ナイロン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリビニリデンフルオライド等のフッ素樹脂、ポリウレタン樹脂等が挙げられる。   First, the light transmissive resin molded body will be described. The resin contained in the light-transmitting resin molded body only needs to give the molded body the property of transmitting desired light. For example, polyacetal (POM), polyamide (PA), polycarbonate (PC), modified polyphenylene ether (m-PPE), polyphenylene sulfide (PPS), polybutylene terephthalate (PBT), polyethylene, polypropylene, polybutene, 6 nylon, 66 nylon , 11 nylon, 12 nylon, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polyvinylidene fluoride and other fluorine resins, polyurethane resin Etc.

光透過性樹脂成形体には、本発明の効果を害さない範囲で、上記のような光透過性を有する樹脂以外の樹脂を含むものであってもよく、また、核剤、着色剤、酸化防止剤、安定剤、可塑剤、滑剤、離型剤及び難燃剤等の添加剤を添加してもよい。   The light-transmitting resin molded body may contain a resin other than the resin having the above light-transmitting properties as long as the effects of the present invention are not impaired. Additives such as inhibitors, stabilizers, plasticizers, lubricants, mold release agents and flame retardants may be added.

光透過性樹脂成形体は、従来公知の方法で成形することができる。従来公知の成形方法としては、例えば、圧縮成形、トランスファー成形、射出成形、押出成形、ブロー成形等種々の成形方法を挙げることができる。   The light-transmitting resin molded body can be molded by a conventionally known method. Examples of conventionally known molding methods include various molding methods such as compression molding, transfer molding, injection molding, extrusion molding, and blow molding.

上記のような成形方法で成形された光透過性樹脂成形体は、光吸収性樹脂成形体と接合するための接合予定部を有する。   The light-transmitting resin molded body molded by the molding method as described above has a joint portion to be bonded to the light-absorbing resin molded body.

次いで、光吸収性樹脂成形体について説明する。光吸収性樹脂成形体に含まれる樹脂としては、例えば、光透過性樹脂成形体の原料となる樹脂と同様のものを挙げることができ、さらに光の透過率を減少させるためにカーボンブラック、染料や顔料等の所定の着色剤を混入させたり、炭素繊維、カーボンブラック等の光を吸収する材料を含有させたりすることで、光吸収性樹脂成形体にすることができる。   Next, the light absorbing resin molded body will be described. Examples of the resin contained in the light-absorbing resin molding include the same resins as the raw material of the light-transmitting resin molding, and carbon black and dyes are used to reduce the light transmittance. A light-absorbing resin molded body can be obtained by mixing a predetermined colorant such as a pigment or a pigment, or by containing a light-absorbing material such as carbon fiber or carbon black.

光吸収性樹脂成形体についても、光透過性樹脂成形体と同様に、従来公知の樹脂、添加剤を含有することができ、また、従来公知の成形方法で成形することができる。また、従来公知の方法で成形された光吸収性樹脂成形体は光透過性樹脂成形体と接合するための接合予定部を有する。   Similarly to the light-transmitting resin molded body, the light-absorbing resin molded body can contain conventionally known resins and additives, and can be molded by a conventionally known molding method. Moreover, the light absorptive resin molded object shape | molded by the conventionally well-known method has a joining plan part for joining with a light transmissive resin molded object.

次いで、溶着体の製造について説明する。光透過性樹脂成形体と光吸収性樹脂成形体とを溶着により接合することで得られる溶着体は、従来公知のレーザー溶着装置、フラッシュランプを備えた溶着装置等を使用して製造することができる。例えば以下のようにして、溶着体が製造される。   Next, production of the welded body will be described. A welded body obtained by joining a light-transmitting resin molded body and a light-absorbing resin molded body by welding can be manufactured using a conventionally known laser welding apparatus, a welding apparatus equipped with a flash lamp, or the like. it can. For example, a welded body is manufactured as follows.

光透過性樹脂成形体の接合予定部と光吸収性樹脂成形体の接合予定部とを重ね合わせ、重ね合わせ部を形成する。重ね合わせ部では、光透過性樹脂成形体の接合予定部の少なくとも一部と光吸収性樹脂成形体の接合予定部の少なくとも一部が接する。
光透過性樹脂成形体側から上記重ね合わせ部に向けて、光軸に垂直な方向の断面が円形の光が、所定の走査速度、所定の出力エネルギーで照射される。したがって、照射領域は円形になる。
光透過性樹脂成形体を透過した光は、光吸収性樹脂成形体に吸収され熱に変換される。この熱は、光吸収性樹脂成形体の重ね合わせ部付近を溶融する。また、この熱は重ね合わせ部を介して光透過性樹脂成形体に伝達される。この伝達された熱は光透過性樹脂成形体を溶融する。
溶融した光吸収性樹脂成形体の接合予定部と、溶融した光透過性樹脂成形体の接合予定部とが重なり合うことで、光吸収性樹脂成形体と光透過性樹脂成形体とが溶着により接合され、溶着体が製造される。
The joining portion of the light-transmitting resin molded body and the joining portion of the light-absorbing resin molded body are overlapped to form an overlapping portion. In the overlapping portion, at least a part of the planned joining portion of the light-transmitting resin molded body is in contact with at least a part of the planned joining portion of the light-absorbing resin molded body.
Light having a circular cross section in the direction perpendicular to the optical axis is irradiated from the light-transmitting resin molded body side toward the overlapping portion at a predetermined scanning speed and a predetermined output energy. Therefore, the irradiation area is circular.
The light transmitted through the light-transmitting resin molded body is absorbed by the light-absorbing resin molded body and converted into heat. This heat melts the vicinity of the overlapping portion of the light-absorbing resin molding. Further, this heat is transmitted to the light transmissive resin molded body through the overlapping portion. The transmitted heat melts the light-transmitting resin molded body.
The bonded portion of the melted light-absorbing resin molded body and the planned bonding portion of the melted light-transmitting resin molded body overlap so that the light-absorbing resin molded body and the light-transmitting resin molded body are bonded by welding. The welded body is manufactured.

[第二工程]
第二工程では、上記光透過性樹脂成形体の第一工程で用いた光に対する透過率をT、この光の照射中心から距離rの位置の出力エネルギー流束をガウス関数q(r)、この光のビーム径をd、としたときに、重ね合わせ部中の距離rの位置に供給される光の供給エネルギーEsを下記数式(I)から算出する。

Figure 0005554629
[Second step]
In the second step, T is the transmittance for the light used in the first step of the light-transmitting resin molding, and the output energy flux at a distance r from the irradiation center of this light is the Gaussian function q (r), When the light beam diameter is d, the light supply energy Es supplied to the position of the distance r in the overlapping portion is calculated from the following formula (I).
Figure 0005554629

供給エネルギーEsとは、重ね合わせ部中の上記距離rの位置に供給される光の供給エネルギーである。即ち、第一工程で照射される光の出力エネルギーから光透過性樹脂成形体を透過する際に消失するエネルギーを差し引いたものである。以下、透過率T、出力エネルギー流束q(r)、ビーム径dについて説明する。   The supply energy Es is the supply energy of light supplied to the position of the distance r in the overlapping portion. That is, it is obtained by subtracting the energy that disappears when passing through the light-transmitting resin molding from the output energy of the light irradiated in the first step. Hereinafter, the transmittance T, the output energy flux q (r), and the beam diameter d will be described.

透過率Tは、第一工程で用いた光が上記光透過性樹脂成形体を実際に透過する率を表す。実際に透過する率を使用するため、同じ材料からなる成形体を光が透過する場合であっても、透過する経路の長さによって使用する透過率は異なる。透過率Tを考慮した式(I)は、光が光透過性樹脂成形体を透過することによるエネルギー消失を考慮することができる。透過率は所定厚みの板状サンプルの片側からレーザー光を照射し、反対側から透過光強度をパワーメーターで測定した結果である。   The transmittance T represents the rate at which the light used in the first step actually transmits through the light transmissive resin molded body. Since the actual transmission rate is used, even if light is transmitted through a molded body made of the same material, the transmission rate used varies depending on the length of the transmission path. The formula (I) considering the transmittance T can take into account energy loss due to light passing through the light-transmitting resin molded body. The transmittance is the result of irradiating laser light from one side of a plate-like sample having a predetermined thickness and measuring the transmitted light intensity with a power meter from the opposite side.

光の照射中心から距離rの位置の光の出力エネルギー流束q(r)は、以下の式(a)で表すようなガウス型の分布を示す。本工程は、光が光透過性樹脂成形体内を透過することにより、この出力エネルギー流速がどの程度減少するかを考慮する工程である。rの位置は特に限定されないが、rの位置の決め方によって供給エネルギーEsの値は異なる。本発明では、透過率、ビーム径を考慮することで、rをどのように設定しても好適な溶着条件を決定することができる。
また、重ね合わせ部の所定の単位面積に着目すると、光が走査されることで、その単位面積の位置と光の照射中心との間の距離は変化し、その単位面積に供給されるエネルギーも変化するが、本発明では透過率、ビーム径を考慮するため、このような変化があっても、好適な溶着条件を決定することができる。

Figure 0005554629
(式(a)中のPは光の出力、πは円周率である) The light output energy flux q (r) at a position r from the light irradiation center shows a Gaussian distribution as represented by the following equation (a). This step is a step of considering how much the output energy flow rate is reduced when light passes through the light-transmitting resin molded body. The position of r is not particularly limited, but the value of the supply energy Es varies depending on how the position of r is determined. In the present invention, by considering the transmittance and the beam diameter, a suitable welding condition can be determined no matter how r is set.
Also, focusing on the predetermined unit area of the overlapping portion, the distance between the position of the unit area and the irradiation center of the light changes as the light is scanned, and the energy supplied to the unit area is also However, since the transmittance and the beam diameter are taken into consideration in the present invention, suitable welding conditions can be determined even with such a change.
Figure 0005554629
(P in the formula (a) is the output of light, and π is the circumference)

本発明において、出力エネルギー流束として下記式(III)で表される平均化した出力エネルギー流速を用いることが好ましい。平均化した出力エネルギー流速qを用いることで、より容易な方法で接合部の全体を考慮して好適な溶着条件を決定することができる。

Figure 0005554629
In the present invention, it is preferable to use an averaged output energy flow rate represented by the following formula (III) as the output energy flux. It is possible to determine suitable welding conditions in consideration of the entire joint with by using the output energy flow rate q a averaged, more easy way.
Figure 0005554629

光の照射領域は上記の通り円形になり、ビーム径dは、重ね合わせ部での光の光軸方向の断面の直径である。ビーム径が広がるほど、光が単位面積を通過する時間が長くなる。このため、重ね合わせ部に供給されるエネルギーを求めるためには、ビーム径を考慮する必要がある。ビーム径の測定方法は、例えば、実施例で示すように溶着体を接合部から破壊し、溶着跡から溶着幅を実測することで求めることができる。   The light irradiation area is circular as described above, and the beam diameter d is the diameter of the cross section in the optical axis direction of the light at the overlapping portion. The wider the beam diameter, the longer the time for light to pass through the unit area. For this reason, in order to obtain | require the energy supplied to a superimposition part, it is necessary to consider a beam diameter. The method for measuring the beam diameter can be obtained, for example, by destroying the welded body from the joint as shown in the examples and actually measuring the weld width from the weld mark.

[第三工程]
第三工程では、光吸収性樹脂成形体の熱拡散係数をD、単位長さ当たりの光の走査時間をt、としたときに、重ね合わせ部の上記距離rの位置において光吸収性樹脂成形体側で吸収される吸収エネルギーEaを下記数式(II)から算出する。

Figure 0005554629
(数式(II)中、aは係数、Dは前記光吸収性樹脂成形体の熱拡散係数、tは単位長さ当たりの前記光の走査時間、Eは吸収エネルギー) [Third step]
In the third step, when the thermal diffusion coefficient of the light-absorbing resin molding is D and the light scanning time per unit length is t, the light-absorbing resin molding is performed at the position of the distance r of the overlapping portion. Absorption energy Ea absorbed on the body side is calculated from the following mathematical formula (II).
Figure 0005554629
(In Formula (II), a is a coefficient, D is a thermal diffusion coefficient of the light-absorbing resin molding, t is a scanning time of the light per unit length, and E a is absorption energy).

吸収エネルギーEaとは、重ね合わせ部の上記距離rの位置において光吸収性樹脂成形体側で吸収されるエネルギーを指す。上記重ね合わせ部に供給される供給エネルギーEsから反射等により吸収されないエネルギーを除いたエネルギーを指す。   Absorption energy Ea refers to the energy absorbed on the light-absorbing resin molded body side at the position of the distance r of the overlapping portion. This refers to energy obtained by removing energy that is not absorbed by reflection or the like from the supply energy Es supplied to the overlapping portion.

光吸収性樹脂成形体に吸収された光により発生する熱は、光吸収性樹脂成形体の内部へ拡散する。したがって、光吸収性樹脂成形体で吸収されるエネルギーを考慮するためには熱の拡散を考慮する必要がある。上記式(II)で表されるようにして拡散係数を考慮することで、光吸収性樹脂成形体に吸収されるエネルギーを適切に評価でき、その結果、好適な溶着条件を容易に決定することができる。なお、熱拡散係数Dは例えばホットディスク法により測定することが出来るが、樹脂材料の特性データを用いれば計算(熱拡散率D=熱伝導率κ/(密度ρ×比熱C))で求めることができる。   The heat generated by the light absorbed by the light-absorbing resin molded body diffuses into the light-absorbing resin molded body. Therefore, in order to consider the energy absorbed by the light-absorbing resin molding, it is necessary to consider the diffusion of heat. By considering the diffusion coefficient as represented by the above formula (II), it is possible to appropriately evaluate the energy absorbed by the light-absorbing resin molding, and as a result, it is possible to easily determine suitable welding conditions. Can do. The thermal diffusion coefficient D can be measured by, for example, the hot disk method, but can be obtained by calculation (thermal diffusivity D = thermal conductivity κ / (density ρ × specific heat C)) using characteristic data of the resin material. Can do.

単位長さ当たりの光の走査時間が短ければ、上記重ね合わせ部内の所定の単位面積に光が照射される時間が短くなるため、光吸収性樹脂成形体が吸収するエネルギーが小さくなる。一方、単位長さ当たりの光の走査時間が長い場合、上記重ね合わせ部内の所定の単位面積に光が照射される時間が長くなるため、光吸収性樹脂成形体が吸収するエネルギーが大きくなる。以上より、光吸収性樹脂成形体に吸収されるエネルギーを考慮するためには、単位長さ当たりの光の走査時間を考慮する必要がある。   If the scanning time of light per unit length is short, the time for which light is irradiated to the predetermined unit area in the overlapping portion is shortened, so that the energy absorbed by the light-absorbing resin molding is reduced. On the other hand, when the scanning time of light per unit length is long, the time for irradiating the predetermined unit area in the overlapped portion becomes long, so that the energy absorbed by the light-absorbing resin molded body becomes large. As mentioned above, in order to consider the energy absorbed by the light absorptive resin molding, it is necessary to consider the scanning time of light per unit length.

係数aは、発生した熱の内、光吸収性樹脂成形体側で吸収されずに消失するエネルギーを考慮するためのものである。後述する通り、本発明では、係数aのおよその範囲を決定することができる。なお、後述する通り、係数aの値は、溶着条件を決定する際には重要ではなく、溶着条件を決定する際には任意の定数を使用することができる。   The coefficient a is for taking into account the energy that is lost without being absorbed on the light-absorbing resin molding side in the generated heat. As will be described later, in the present invention, an approximate range of the coefficient a can be determined. As will be described later, the value of the coefficient a is not important when determining the welding conditions, and an arbitrary constant can be used when determining the welding conditions.

[第四工程]
第四工程では、第一工程で作製した溶着体において、光透過性樹脂成形体と光吸収性樹脂成形体との溶着部の溶着強度を測定する。溶着強度の測定方法は特に限定されないが、光透過性樹脂成形体と光吸収性樹脂成形体とが重なる面に対して、垂直な方向に力を加えて、溶着強度を測定する方法等が挙げられる。
[Fourth process]
In the fourth step, the welding strength of the welded portion between the light-transmitting resin molded body and the light-absorbing resin molded body is measured in the welded body produced in the first step. The method for measuring the welding strength is not particularly limited, and examples thereof include a method for measuring the welding strength by applying a force in a direction perpendicular to the surface where the light-transmitting resin molded body and the light-absorbing resin molded body overlap. It is done.

[第五工程]
第五工程では、第一工程で用いた光の所定の出力エネルギーを変更して、上記第一工程から上記第四工程を繰り返す工程を一回以上行う。回数は特に限定されないが、複数回行うことでより好適な溶着条件を決定できる。
[Fifth step]
In the fifth process, the predetermined output energy of the light used in the first process is changed, and the process of repeating the fourth process from the first process is performed once or more. The number of times is not particularly limited, but more suitable welding conditions can be determined by performing the number of times.

[第六工程]
第六工程では、上記第一工程から上記第五工程の結果に基づいて、上記吸収エネルギーEaと上記溶着強度との関係を導出する。上記吸収エネルギーと上記溶着強度との関係の導出方法は、特に限定されないが、例えば、図1(a)に示すようなグラフ上で吸収エネルギーと溶着強度との関係を求める方法が簡易で好ましい。そして、図1(b)に示すように、溶着強度の極大値を有するグラフを得ることが好ましい。後述する、第七工程でこの極大値の付近のデータに基づいて溶着条件を決定することでより好適な溶着条件が得られる。なお、極大値の位置は図1(b)に示すように、およその位置が分かる程度でよい。なお、吸収エネルギーがEa1の時に溶着強度がFであり、Ea2の時に溶着強度がFであり、Ea3の時に溶着強度がFであるとする。
[Sixth step]
In the sixth step, the relationship between the absorbed energy Ea and the welding strength is derived based on the results from the first step to the fifth step. The method for deriving the relationship between the absorbed energy and the welding strength is not particularly limited. For example, a method for obtaining the relationship between the absorbed energy and the welding strength on a graph as shown in FIG. And as shown in FIG.1 (b), it is preferable to obtain the graph which has the maximum value of welding strength. More preferable welding conditions can be obtained by determining the welding conditions based on data in the vicinity of the maximum value in a seventh step, which will be described later. The position of the maximum value may be such that the approximate position can be understood as shown in FIG. Note that weld strength when the absorbed energy E a1 is F 1, weld strength when E a2 is F 2, weld strength when E a3 is assumed to be F 3.

ここで、本発明の第六工程で得られる上記吸収エネルギーEと上記溶着強度との関係についてさらに説明する。図1のグラフは、第一工程で設定した所定の走査速度の条件のデータである。この第一工程での光の走査速度をVとして、さらに、走査速度を変更した場合の(V、Vの場合)上記吸収エネルギーEと上記溶着強度との関係を図2に示した。なお、走査速度Vの場合、吸収エネルギーがEa1の時に溶着強度がF’であり、Ea2の時に溶着強度がF’であり、Ea3の時に溶着強度がF’であるとする。走査速度Vの場合、吸収エネルギーがEa1の時に溶着強度がF”であり、Ea2の時に溶着強度がF”であり、Ea3の時に溶着強度がF”であるとする。 Here it will be further described relationship between the absorbed energy E a and the welding strength obtained in the sixth step of the present invention. The graph of FIG. 1 is data of a predetermined scanning speed condition set in the first step. The scanning speed of the light in the first step as V 1, further in the case of changing the scanning speed (in the case of V 2, V 3) shows the relationship between the absorbed energy E a and the welding strength in FIG. 2 It was. In the case of the scanning speed V 2, weld strength when the absorbed energy E a1 is' a, weld strength when E a2 is F 2 'F 1 is, the welding strength is F 3' when E a3 And In the case of the scanning speed V 3 , the welding strength is F 1 ″ when the absorbed energy is E a1 , the welding strength is F 2 ″ when E a2 , and the welding strength is F 3 ″ when E a3. .

図2に示す通り、上記吸収エネルギーを基準とすることで、光の走査速度によらず、溶着強度が極大値を示す吸収エネルギーの位置が非常に近くなる。このような結果が得られることについて、さらに以下で説明する。   As shown in FIG. 2, by using the absorption energy as a reference, the position of the absorption energy at which the welding strength has a maximum value becomes very close regardless of the scanning speed of light. It will be further described below that such a result is obtained.

上記の通り、光により発生する熱が光吸収性樹脂成形体の接合予定部を溶融し、また、その熱が光透過性樹脂成形体の接合予定部にも伝達して光透過性樹脂を溶融し、溶融した部分同士が重なることにより、光透過性樹脂成形体と光吸収性樹脂成形体とが接合する。溶着強度は、溶融の程度で決まると考えられ、溶融の程度は、光により発生する熱で決まると考えられる。光により発生する熱は、光吸収性樹脂成形体が吸収する熱で決まるため、光吸収性樹脂成形体の吸収する熱を適切に評価できていれば、光の走査速度によらず、溶着強度が極大値を示す吸収エネルギーの位置が非常に近くなると考えられる。本発明によれば、吸収エネルギーを上述のようにして適切に評価することができるため、図2に示すような結果になる。   As described above, the heat generated by light melts the part to be bonded of the light-absorbing resin molded body, and the heat is also transmitted to the part to be bonded of the light-transmitting resin molded body to melt the light-transmitting resin. Then, when the melted portions overlap, the light-transmitting resin molded body and the light-absorbing resin molded body are joined. The welding strength is considered to be determined by the degree of melting, and the degree of melting is considered to be determined by the heat generated by light. Since the heat generated by light is determined by the heat absorbed by the light-absorbing resin molding, if the heat absorbed by the light-absorbing resin molding can be properly evaluated, the welding strength does not depend on the light scanning speed. Is considered to be very close to the position of the absorbed energy showing the maximum value. According to the present invention, the absorbed energy can be appropriately evaluated as described above, and the result shown in FIG. 2 is obtained.

なお、係数aがずれることは、図2の全てのグラフが同じように+X方向又は−X方向に平行移動することを意味する。このような平行移動が生じても、光の走査速度によらず、溶着強度が極大値を示す吸収エネルギーの位置が非常に近くなる関係が得られる。したがって、aがどのような値になっても好適な溶着条件を決定することができる。詳細は後述する。   Note that the deviation of the coefficient a means that all the graphs in FIG. 2 are translated in the + X direction or the −X direction in the same manner. Even if such parallel movement occurs, a relationship is obtained in which the position of the absorbed energy at which the welding strength has a maximum value is very close regardless of the scanning speed of light. Therefore, suitable welding conditions can be determined regardless of the value of a. Details will be described later.

[第七工程]
第七工程では、上記第六工程の結果に基づいて、光透過性樹脂成形体と光吸収性樹脂成形体とを溶着する際の光の照射条件を決定する。光の照射条件とは、光の出力エネルギーの条件、光の走査速度の条件である。光の出力エネルギーと光の走査速度との関係は、式(I)、(II)から以下の式(b)で表すことができる。以下、溶着条件を決定する手順について、図1(b)の結果を用いて、さらに詳細に説明する。

Figure 0005554629
(式(b)中のlは単位長さ、Vは光の走査速度とする。その他は上記の通りである。) [Seventh step]
In the seventh step, light irradiation conditions for welding the light-transmitting resin molded body and the light-absorbing resin molded body are determined based on the result of the sixth step. The light irradiation conditions are a condition of light output energy and a condition of light scanning speed. The relationship between the light output energy and the light scanning speed can be expressed by the following equation (b) from equations (I) and (II). Hereinafter, the procedure for determining the welding conditions will be described in more detail using the results shown in FIG.
Figure 0005554629
(In the formula (b), l is a unit length, V is a light scanning speed, and others are as described above.)

先ず、図1(b)から溶着強度が大きい吸収エネルギーの範囲を決定する。ここでは、EaLからEaHの範囲(ΔEの範囲)が、溶着強度の高い範囲とする。 First, the range of absorbed energy having a high welding strength is determined from FIG. Here, the range from E aL to E aH (the range of ΔE a ) is a range with high welding strength.

にEaLを代入し、VにVを代入し、r、d、D、l、T、については、上述の工程で使用した数字を代入する。その結果、図3の破線で示されるような関係が得られる。EにEaHを代入し上記と同様の方法でPとVとの関係を求めると、図3の実線で示されるような関係が得られる。図3に示すような、実線と破線で挟まれる領域(図3中の斜線部分)に含まれる光の出力エネルギー、光の走査速度を照射条件とすることで、得られる溶着体の溶着強度は大きくなる。 E aL is substituted for E a , V 1 is substituted for V, and the numbers used in the above-described steps are substituted for r, d, D, l, and T. As a result, the relationship shown by the broken line in FIG. 3 is obtained. When E aH is substituted for E a and the relationship between P and V is obtained by the same method as described above, the relationship shown by the solid line in FIG. 3 is obtained. As shown in FIG. 3, the welding strength of the welded body obtained by setting the light output energy and the light scanning speed included in the region between the solid line and the broken line (the hatched portion in FIG. 3) as the irradiation condition is growing.

なお、aの値を任意の定数とし、実際のaの値と異なっていた場合、例えば、aを2倍大きく見積もった場合、Eの値は、2倍大きい値が式(b)に代入されることになる。しかし、式(b)は1/aを含むため、任意に決めた定数aが実際の係数aの値とずれていたとしても、この1/aで補正することができる。したがって、任意に決めた定数aが実際のaの値からずれていることは、好適な溶着条件の決定に問題を生じない。 When the value of a is an arbitrary constant and is different from the actual value of a, for example, when a is estimated to be twice as large, the value of E a is twice as large as the value assigned to equation (b). Will be. However, since the expression (b) includes 1 / a, even if the arbitrarily determined constant a deviates from the actual value of the coefficient a, it can be corrected with 1 / a. Therefore, the arbitrarily determined constant a deviates from the actual value of a does not cause a problem in determining suitable welding conditions.

なお、出力エネルギー流速として、上記数式(III)で表す平均化した出力エネルギー流速qを用いた場合、Pはq/Pで表される定数αを用いて、Pを式中に導入する。即ち、q=P×αを式(I)のq(r)に代入する。平均化した出力エネルギー流速を用いた場合、式(b)は式(b’)のように変形される。

Figure 0005554629
When the averaged output energy flow rate q a represented by the above formula (III) is used as the output energy flow rate, P is introduced into the equation using a constant α represented by q a / P. . That is, q a = P × α is substituted into q (r) in the formula (I). When the averaged output energy flow rate is used, equation (b) is transformed into equation (b ′).
Figure 0005554629

[定数aの確認、導出方法]
定数aの確認、導出方法について、図1(b)の結果を用いて説明する。溶着強度の大きいΔEの範囲では、溶着による接合時、光吸収性樹脂成形体が充分に溶融する程度に樹脂の温度が高まり、且つ樹脂が熱分解しない程度に樹脂の温度が高まっていると考えられる。ここで、充分に溶融する程度に樹脂の温度を高めるために必要な吸収エネルギーがEaL以上であり、樹脂が熱分解しない程度に樹脂成形体に熱を与えるために必要な吸収エネルギーがEaH以下であると考えられる。所定の吸収エネルギーの場合に、光により発生する熱の影響を受けて、どの程度樹脂の温度が上昇するか(昇温幅)を、下記の式(c)から求めることができる。

Figure 0005554629
(式(c)中の、比熱、密度は樹脂成形体の比熱と密度である。) [Confirmation and Derivation Method of Constant a]
A method for confirming and deriving the constant a will be described with reference to the result of FIG. In the range of larger Delta] E a weld strength, when joining by welding, to the extent that the light-absorbing resin molded article is melt sufficiently increase the temperature of the resin, and the resin is increasing the temperature of the resin so as not to thermally decompose Conceivable. Here, the absorbed energy necessary for raising the temperature of the resin to a degree sufficient to melt is E aL or more, and the absorbed energy necessary for applying heat to the resin molded body to such an extent that the resin is not thermally decomposed is E aH The following is considered. In the case of a predetermined absorbed energy, the extent to which the temperature of the resin increases due to the influence of heat generated by light (temperature increase range) can be obtained from the following equation (c).
Figure 0005554629
(The specific heat and density in the formula (c) are the specific heat and density of the resin molded body.)

aL、光吸収性樹脂成形体を構成する樹脂(以下、単に「樹脂」という場合がある)の比熱、密度を代入すると(c)から昇温幅が導出される。ΔTaLとする。同様に吸収エネルギーEaHの場合の昇温幅も導出できΔTaHとする。室温23℃で光吸収性樹脂成形体と光透過性樹脂成形体との溶着を行ったとすると、吸収エネルギーがEaLの場合、溶着による接合時の樹脂材料の温度は(23℃+ΔTaL)になると考えられる。一方、吸収エネルギーがEaHの場合には(23℃+ΔTaH)になると考えられる。 Substituting E aL and the specific heat and density of the resin constituting the light-absorbing resin molding (hereinafter sometimes simply referred to as “resin”), the temperature rise width is derived from (c). Let ΔT aL . Similarly, the temperature rise width in the case of the absorbed energy E aH can also be derived and is set to ΔT aH . Assuming that the light-absorbing resin molded body and the light-transmitting resin molded body are welded at room temperature of 23 ° C., when the absorption energy is E aL , the temperature of the resin material at the time of joining by welding is (23 ° C. + ΔT aL ). It is considered to be. On the other hand, when the absorbed energy is E aH , it is considered to be (23 ° C. + ΔT aH ).

(23℃+ΔTaL)が、光吸収性樹脂成形体が充分に溶融する程度の温度でなければならない。充分に溶融する温度とは、およそ、光吸収性樹脂成形体を構成する樹脂材料の融点以上であると考えられる。また、(23℃+ΔTaH)は、およそ、樹脂材料が熱分解しない温度でなければならない。したがって、(23℃+ΔTaL)が上記樹脂材料の融点以上であり、(23℃+ΔTaH)が上記樹脂材料の熱分解点以下であれば、係数aは適切であったことになる。 (23 ° C. + ΔT aL ) must be a temperature at which the light-absorbing resin molding is sufficiently melted. The sufficient melting temperature is considered to be approximately equal to or higher than the melting point of the resin material constituting the light-absorbing resin molding. Further, (23 ° C. + ΔT aH ) should be approximately a temperature at which the resin material is not thermally decomposed. Therefore, if (23 ° C. + ΔT aL ) is equal to or higher than the melting point of the resin material and (23 ° C. + ΔT aH ) is equal to or lower than the thermal decomposition point of the resin material, the coefficient a is appropriate.

仮に、いずれかが上記の条件を満たさない場合には次のようにして適切なaを導出することができる。先ず、EaL×a’を吸収エネルギーとしたときに、(23℃+ΔTaL)が融点になるa’を導出する。次いで、EaL×a”を吸収エネルギーとしたときに、(23℃+ΔTaH)が熱分解点になるa”を導出する。a’以上a”以下が適切なaの範囲であるから。この範囲でaを決定することで適切な係数aの値が得られる。例えばa’、a”の平均を算出して係数aの値とする方法で、適切なaの値を求めることができる。なお、融点、熱分解点については、融点付近、熱分解点付近の温度を使用しても、適切な係数aを決定することができる。なお、aの値は、およそ0.18以上0.21以下になると予測される。 If any of the above conditions is not satisfied, an appropriate a can be derived as follows. First, when E aL × a ′ is taken as the absorbed energy, a ′ that (23 ° C. + ΔT aL ) becomes a melting point is derived. Next, a ″ where (23 ° C. + ΔT aH ) becomes the thermal decomposition point when E aL × a ″ is taken as the absorbed energy is derived. Since the range of a ′ to a ″ is an appropriate range of a. By determining a in this range, an appropriate value of the coefficient a can be obtained. For example, the average of a ′ and a ″ is calculated to calculate the coefficient a. An appropriate value of a can be obtained by the value method. As for the melting point and the thermal decomposition point, an appropriate coefficient a can be determined by using the temperature near the melting point and the temperature near the thermal decomposition point. Note that the value of a is predicted to be about 0.18 to 0.21.

以上、レーザー溶着法等の光による溶着法を例に本発明を説明したが、少なくとも一方の樹脂成形体を熱により溶融させて、一対の樹脂成形体を溶着するための溶着条件を決定する場合においては、熱による溶融の際に樹脂成形体が吸収する吸収エネルギーと、溶着体の溶着強度との関係を導出し、吸収エネルギーと溶着強度との関係に基づいて、適切な溶着条件を決定することができる。   As described above, the present invention has been described by taking the welding method using light such as the laser welding method as an example. However, when at least one of the resin molded bodies is melted by heat, the welding conditions for welding the pair of resin molded bodies are determined. In, the relationship between the absorbed energy absorbed by the resin molded body during melting by heat and the welding strength of the welded body is derived, and the appropriate welding conditions are determined based on the relationship between the absorbed energy and the welding strength. be able to.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to these Examples.

<実施例1>
実施例1では、図4に示すような鍋型(底無し)の溶着体を製造する際の好適な溶着条件を決定した。図4(a)は溶着体を模式的に示した斜視図であり、図4(b)は溶着前の光透過性樹脂成形体と光吸収性樹脂成形体の端面を模式的に表した図である。本体が光吸収性樹脂成形体であり、蓋が光透過性樹脂成形体である。図4(b)に示されるように、本体は筒状であり、溶着体は底の無い鍋型になる。光吸収性樹脂成形体はポリブチレンテレフタレート樹脂(商品名「ジュラネックス(登録商標)711SA」、ウィンテックポリマー社製、比熱1.01Jg−1−1、密度1.43g/cm、熱拡散係数D=0.222×10−6mm/s)からなり、光透過性樹脂成形体はポリブチレンテレフタレート樹脂(商品名「ジュラネックス(登録商標)730LW」、ウィンテックポリマー社製、比熱1.14Jg−1−1、密度1.49g/cm、熱拡散係数D=0.200×10−6mm/s)からなる。
<Example 1>
In Example 1, suitable welding conditions for producing a pan-shaped (bottomless) welded body as shown in FIG. 4 were determined. FIG. 4A is a perspective view schematically showing the welded body, and FIG. 4B is a diagram schematically showing the end faces of the light-transmitting resin molded body and the light-absorbing resin molded body before welding. It is. The main body is a light-absorbing resin molded body, and the lid is a light-transmitting resin molded body. As shown in FIG. 4B, the main body has a cylindrical shape, and the welded body has a pan shape without a bottom. The light-absorbing resin molded product is a polybutylene terephthalate resin (trade name “Duranex (registered trademark) 711SA”, manufactured by Wintech Polymer Co., Ltd., specific heat 1.01 Jg −1 K −1 , density 1.43 g / cm 3 , thermal diffusion. Coefficient D = 0.222 × 10 −6 mm 2 / s), and the light-transmitting resin molded product is a polybutylene terephthalate resin (trade name “DURANEX (registered trademark) 730LW”, manufactured by Wintech Polymer Co., Ltd., specific heat 1 .14 Jg −1 K −1 , density 1.49 g / cm 3 , thermal diffusion coefficient D = 0.200 × 10 −6 mm 2 / s).

[第一工程]
図4に示す光吸収性樹脂成形体と光透過性樹脂成形体との溶着体をレーザー溶着で製造した。レーザー溶着装置としては、ライスター社製のレーザー溶接システム(商品名「NOVOLAS C」)を使用した。レーザー光の条件は、出力8W、波長940nm、焦点径0.6mmであった。走査速度5mm/secの条件で、環状の重ね合わせ部を一周させることで溶着体を製造した。
[First step]
A welded body of the light-absorbing resin molded body and the light-transmitting resin molded body shown in FIG. 4 was produced by laser welding. As the laser welding apparatus, a laser welding system manufactured by Leister (trade name “NOVOLAS C”) was used. The laser light conditions were an output of 8 W, a wavelength of 940 nm, and a focal diameter of 0.6 mm. A welded body was manufactured by making one round of the annular overlapping portion under the condition of a scanning speed of 5 mm / sec.

[第二工程]
上記式(III)を用いて平均化エネルギー流速を算出した。平均化エネルギー流束は4.3W・mm−2であり、出力が8Wであるから、出力の0.54倍が平均化エネルギー流束である(0.54は上述のαにあたる。)。また、光吸収性樹脂成形体の原料である樹脂材料の透過率は0.27(成形体の厚み1.5mmを透過する場合)であり、レーザー径は1.43mmであった(後述する第四工程の溶着強度測定後に溶着跡から導出(輪状の溶着跡の半径方向の幅))。式(I)から重ね合わせ部に供給される平均の供給エネルギーEsは1.7W・mm−2となった。
[Second step]
The averaged energy flow rate was calculated using the above formula (III). Since the average energy flux is 4.3 W · mm −2 and the output is 8 W, 0.54 times the output is the average energy flux (0.54 corresponds to α described above). Further, the transmittance of the resin material that is the raw material of the light-absorbing resin molded body was 0.27 (when the thickness of the molded body was transmitted through 1.5 mm), and the laser diameter was 1.43 mm (described later). Derived from the welding trace after measuring the welding strength in the four steps (the radial width of the ring-shaped welding trace). The average supply energy Es supplied to the overlapping portion from the formula (I) was 1.7 W · mm −2 .

[第三工程]
上記式(II)を用いて吸収エネルギーを算出した。計算に用いる熱拡散係数Dは、光吸収性樹脂成形体の原料である樹脂材料の熱拡散係数と光透過性樹脂成形体の原料である樹脂材料の熱拡散係数との平均値0.211とした。単位長さは1mmとし、aは1/2とした。aを1/2とした理由は、供給された熱の半分が光吸収性樹脂成形体側に、そしてもう半分が輻射により、光透過性樹脂成形体側に吸収されると考えたためである。Eは0.83J・mm−3と算出された。
[Third step]
Absorption energy was calculated using the above formula (II). The thermal diffusion coefficient D used for the calculation is an average value 0.211 of the thermal diffusion coefficient of the resin material that is the raw material of the light-absorbing resin molded body and the thermal diffusion coefficient of the resin material that is the raw material of the light-transmitting resin molded body. did. The unit length was 1 mm, and a was 1/2. The reason why a is ½ is that half of the supplied heat is considered to be absorbed by the light-absorbing resin molding, and the other half is absorbed by the light-transmitting resin molding by radiation. E a was calculated as 0.83 J · mm −3 .

[第四工程]
溶着体の溶着強度は、オリエンテック社製の万能試験機(商品名「テンシロンUTA50KN」)を用いて、図5に示すように溶着体を固定治具に固定し、テストスピード5mm/minの条件で矢印方向に蓋の中心に力Fを加えて、溶着強度を測定した。溶着強度は126Nであった。
[Fourth process]
The welding strength of the welded body was determined by using a universal testing machine (trade name “Tensilon UTA50KN”) manufactured by Orientec Co., as shown in FIG. The force F was applied to the center of the lid in the direction of the arrow to measure the welding strength. The welding strength was 126N.

[第五工程]
6つの異なる出力エネルギーにおけるそれぞれの上記吸収エネルギー、溶着強度を、上記と同様にして測定した。
[Fifth step]
The above absorption energy and welding strength at six different output energies were measured in the same manner as described above.

[第六工程]
第四工程、第五工程の結果から、7組の溶着強度、吸収エネルギーが得られ、これらをグラフ上にプロットした(菱形のプロット)。このグラフを図6に示した。なお、図6に示す他の曲線は以下の評価で導出したものである。また、本実施例においてグラフは市販の表計算ソフトを用いて作製した。
[Sixth step]
Seven sets of welding strength and absorbed energy were obtained from the results of the fourth step and the fifth step, and these were plotted on the graph (diamond plot). This graph is shown in FIG. The other curves shown in FIG. 6 are derived by the following evaluation. In this example, the graph was prepared using commercially available spreadsheet software.

[第七工程]
図6のグラフから、吸収エネルギーが0.95〜1.35J/mmの範囲を溶着強度が高い範囲であると設定した。上記式(b’)を用いて、吸収エネルギーが0.95J/mmの場合、1.35J/mmの場合それぞれについて、P(光の出力エネルギー)と、V(光の走査速度)との関係を導出した。これらの関係を式(V)、(VI)に表した。吸収エネルギーが0.95J/mmの場合の式(V)、吸収エネルギーが1.35J/mmの場合の式(VI)をグラフにして、図7に示した。式(V)を表す直線(白抜き四角を繋いだ直線)と式(VI)を表す直線(黒四角を繋いだ直線)とに挟まれる領域に溶着条件を設定すれば、溶着強度の大きい溶着体が得られる。

Figure 0005554629
Figure 0005554629
[Seventh step]
From the graph of FIG. 6, the range where the absorbed energy is 0.95 to 1.35 J / mm 3 is set as the range where the welding strength is high. Using the above formula (b ′), when the absorbed energy is 0.95 J / mm 3 and 1.35 J / mm 3 respectively, P (light output energy), V (light scanning speed) and The relationship was derived. These relationships are represented by formulas (V) and (VI). Expression when absorbed energy of 0.95J / mm 3 (V), the absorption energy by the formula (VI) in the case of 1.35J / mm 3 in the graph shown in FIG. Welding with high welding strength can be achieved by setting welding conditions in the area between the straight line representing the formula (V) (straight line connecting the white squares) and the straight line representing the formula (VI) (straight line connecting the black squares). The body is obtained.
Figure 0005554629
Figure 0005554629

<係数aの導出>
先ず、上記数式(c)を用いて、昇温幅を導出する。ここで、比熱、密度については、光吸収性樹脂成形体に含まれるポリブチレンテレフタレート樹脂と光透過性樹脂成形体に含まれるポリブチレンテレフタレート樹脂の平均を使用した。
<Derivation of coefficient a>
First, the temperature increase width is derived using the above formula (c). Here, for the specific heat and density, the average of the polybutylene terephthalate resin contained in the light-absorbing resin molding and the polybutylene terephthalate resin contained in the light-transmitting resin molding was used.

吸収エネルギーが0.95J/mmでは昇温幅が605℃であり、1.35J/mmでは昇温幅が860℃であった。吸収エネルギーが0.95J/mmでの昇温幅が、230℃(ポリブチレンテレフタレートの融点)−測定時の樹脂の温度、となる係数aは0.18である。また、1.35J/mmでの昇温幅が、375℃(ポリブチレンテレフタレート樹脂の熱分解点)−測定時の樹脂の温度、となる係数aは0.21である。0.18〜0.21の範囲で係数aを決定すればよいことが確認された。 When the absorbed energy was 0.95 J / mm 3 , the temperature rise range was 605 ° C., and at 1.35 J / mm 3 the temperature rise range was 860 ° C. The coefficient a for which the temperature rise width when the absorbed energy is 0.95 J / mm 3 is 230 ° C. (melting point of polybutylene terephthalate) −the temperature of the resin at the measurement is 0.18. Moreover, the coefficient a that the temperature increase width at 1.35 J / mm 3 is 375 ° C. (pyrolysis point of polybutylene terephthalate resin) −the temperature of the resin at the measurement is 0.21. It was confirmed that the coefficient a should be determined in the range of 0.18 to 0.21.

<評価1>
上記の実施例のようにして決定した溶着条件の汎用性について評価を行った。具体的には、走査速度を変更した評価(走査速度変更評価)、蓋側の光透過性樹脂成形体の厚みを変更した評価(厚み変更評価)、光透過性樹脂成形体及び光透過性樹脂成形体の形状を変更した評価(形状変更評価)を行った。
<Evaluation 1>
The versatility of the welding conditions determined as in the above example was evaluated. Specifically, evaluation (scanning speed change evaluation) in which the scanning speed is changed, evaluation (thickness change evaluation) in which the thickness of the light-transmitting resin molded body on the lid side is changed, light-transmitting resin molded body, and light-transmitting resin Evaluation (shape change evaluation) was performed by changing the shape of the molded body.

[走査速度変更評価]
走査速度の条件を10mm/sに変更し、第五工程で7組の吸収エネルギーと溶着強度とを導出した以外は上記の実施例と同様にして、溶着強度と吸収エネルギーとの関係を導出した(図6の四角(内部がドット模様)を繋いだ曲線)。また、走査速度の条件を20mm/sに変更し、第五工程で7組の吸収エネルギーと溶着強度とを導出した以外は上記の実施例と同様にして、溶着強度と吸収エネルギーとの関係を導出した(図6の白抜き三角を繋いだ曲線)。走査速度の条件によらず、溶着強度が極大になる吸収エネルギーはほぼ同じ値である。したがって、走査速度が異なる条件になっても、実施例の方法で決定した溶着条件を採用することができる。
[Scanning speed change evaluation]
The relationship between the welding strength and the absorption energy was derived in the same manner as in the above example except that the scanning speed condition was changed to 10 mm / s and seven sets of absorption energy and welding strength were derived in the fifth step. (Curve connecting the squares in FIG. 6 (dots inside)). Further, the relationship between the welding strength and the absorption energy was changed in the same manner as in the above example except that the scanning speed condition was changed to 20 mm / s and seven sets of absorption energy and welding strength were derived in the fifth step. Derived (curve connecting white triangles in FIG. 6). Regardless of the scanning speed condition, the absorbed energy at which the welding strength is maximized is almost the same value. Therefore, the welding conditions determined by the method of the embodiment can be employed even when the scanning speed is different.

[厚み変更評価]
光透過性樹脂成形体の厚みを1.5mmから1.0mmに変更し、走査速度の条件を20mm/sに変更した以外は実施例と同様にして溶着強度と吸収エネルギーとの関係を導出し、さらに走査速度の条件を30mm/s、50mm/sに変更し、吸収エネルギーと溶着強度との関係を導出した。結果は図6(b)上に示した(プロットと結果の関係については表1参照)。ここで、厚みが1.0mmの場合、透過率Tは0.41であり、レーザー径は0.77であり、αが1.86であった。
[Thickness change evaluation]
The relationship between the welding strength and the absorbed energy was derived in the same manner as in the example except that the thickness of the light transmissive resin molding was changed from 1.5 mm to 1.0 mm and the scanning speed condition was changed to 20 mm / s. Further, the scanning speed conditions were changed to 30 mm / s and 50 mm / s, and the relationship between the absorbed energy and the welding strength was derived. The results are shown on FIG. 6B (see Table 1 for the relationship between plots and results). Here, when the thickness was 1.0 mm, the transmittance T was 0.41, the laser diameter was 0.77, and α was 1.86.

光透過性樹脂成形体の厚みを1.5mmから2.0mmに変更した以外は実施例と同様にして溶着強度と吸収エネルギーとの関係を導出し、さらに走査速度の条件を7.5mm/s、10mm/sに変更し、吸収エネルギーと溶着強度との関係を導出した。結果を図6(b)にしめした。(プロットと条件との関係は表1参照)。ここで、厚みが2.0mmの場合、透過率Tは0.19であり、レーザー径は2.43であり、αが0.19であった。
なお、本評価結果を示した図6(b)には、図6(a)の結果も併せて示した(プロットと条件との関係は表1参照)。

Figure 0005554629
The relationship between the welding strength and the absorbed energy was derived in the same manner as in the example except that the thickness of the light transmissive resin molding was changed from 1.5 mm to 2.0 mm, and the scanning speed condition was 7.5 mm / s. By changing to 10 mm / s, the relationship between absorbed energy and welding strength was derived. The result is shown in FIG. (See Table 1 for the relationship between plots and conditions). Here, when the thickness was 2.0 mm, the transmittance T was 0.19, the laser diameter was 2.43, and α was 0.19.
In addition, in FIG.6 (b) which showed this evaluation result, the result of Fig.6 (a) was also shown together (refer Table 1 for the relationship between a plot and conditions).
Figure 0005554629

上記「走査速度変更評価」の結果から確認されるように、走査速度が異なっても、吸収エネルギーと溶着強度との関係は、ほぼ同じ曲線で表すことができる。そこで、厚みごとに分けて、溶着強度と吸収エネルギーとの関係を図6(b)に曲線で示した。上記厚みによらず、溶着強度が極大になる吸収エネルギーはほぼ同じ値である。したがって、上記厚みの条件が異なる条件になっても、実施例の方法で決定された溶着条件を採用することができる。なお、図7には、厚みごとに、P(光の出力エネルギー)とV(光の走査速度)との関係を導出し、グラフ化したものを図示した(蓋厚みが1mmtの場合は白抜き丸、黒丸、蓋厚みが2mmtの場合は白抜き三角、黒三角で表し、それぞれ各点を繋いで直線で表した。)。   As confirmed from the result of the “scanning speed change evaluation”, the relationship between the absorbed energy and the welding strength can be expressed by substantially the same curve even if the scanning speed is different. Therefore, for each thickness, the relationship between the welding strength and the absorbed energy is shown by a curve in FIG. Regardless of the thickness, the absorbed energy at which the welding strength is maximized is substantially the same value. Therefore, even if the thickness conditions are different, the welding conditions determined by the method of the embodiment can be employed. In FIG. 7, the relationship between P (light output energy) and V (light scanning speed) is derived for each thickness, and a graph is shown (when the lid thickness is 1 mmt, white). When the circle, black circle, and lid thickness are 2 mmt, they are represented by white triangles and black triangles, and are represented by straight lines connecting each point).

[形状変更評価]
光透過性樹脂成形体の形状、光吸収性樹脂成形体の形状を図8に示すような、板状に変更し、図8に示すように重ね合わせ、図8に示す5.5mmの部分にレーザーを走査して溶着した。レーザーの照射条件は焦点径を1.2mmに変更した以外は実施例と同様である。
また、第四工程を、チャック間距離50mm、テストスピード5mm/minの条件の引っ張りせん断強度評価に変更し、実施例と同様に溶着強度と吸収エネルギーとの関係を導出した。導出結果は上述の実施例、評価と同様にしてグラフ化した。グラフを図9に示し、各プロットと条件との関係は表2に示した。

Figure 0005554629
[Shape change evaluation]
The shape of the light-transmitting resin molded body and the shape of the light-absorbing resin molded body are changed to a plate shape as shown in FIG. 8 and are overlapped as shown in FIG. 8 to the 5.5 mm portion shown in FIG. Laser welding was performed. Laser irradiation conditions were the same as in the example except that the focal diameter was changed to 1.2 mm.
In addition, the fourth step was changed to tensile shear strength evaluation under conditions of a distance between chucks of 50 mm and a test speed of 5 mm / min, and the relationship between welding strength and absorbed energy was derived in the same manner as in the examples. The derivation results were graphed in the same manner as in the above examples and evaluations. The graph is shown in FIG. 9, and the relationship between each plot and the conditions is shown in Table 2.
Figure 0005554629

図9の結果から確認されるように、形状を変更しても、吸収エネルギー0.95〜1.35J/mmの範囲は、溶着強度が高い範囲といえることが確認された。したがって、光透過性樹脂成形体の形状が異なる形状に変更されても、実施例の方法で決定された溶着条件を採用することができる。 As confirmed from the results of FIG. 9, it was confirmed that even when the shape was changed, the range of absorbed energy 0.95 to 1.35 J / mm 3 could be said to be a range with high welding strength. Therefore, even if the shape of the light-transmitting resin molded body is changed to a different shape, the welding conditions determined by the method of the embodiment can be employed.

<評価2>
評価2では、溶着強度と吸収エネルギーとの関係の導出に変えて、溶着強度と出力エネルギーとの関係を導出する評価(評価2−1)、溶着強度と下記式(VII)で表す供給エネルギーとの関係を導出する評価(評価2−2)を行った。
<Evaluation 2>
In Evaluation 2, instead of deriving the relationship between the welding strength and the absorbed energy, the evaluation for deriving the relationship between the welding strength and the output energy (Evaluation 2-1), the welding strength and the supply energy represented by the following formula (VII) An evaluation (Evaluation 2-2) for deriving the relationship was performed.

[評価2−1]
実施例の結果を溶着強度と出力エネルギーとの関係に変更した。変更後のグラフを図10(a)に示した(条件とプロットとの関係は表3に示した)。

Figure 0005554629
[Evaluation 2-1]
The result of the example was changed to the relationship between the welding strength and the output energy. The graph after the change is shown in FIG. 10A (relationship between conditions and plots is shown in Table 3).
Figure 0005554629

[評価2−2]
実施例の結果を溶着強度と上記供給エネルギーとの関係に変更した。変更後のグラフを図10(b)に示した(条件とプロットとの関係を表3と同様である)。

Figure 0005554629
[Evaluation 2-2]
The result of the example was changed to the relationship between the welding strength and the supplied energy. The graph after the change is shown in FIG. 10B (the relationship between the conditions and the plot is the same as in Table 3).
Figure 0005554629

図10の結果から明らかなように、本発明のようにして導出する吸収エネルギーを考慮しなければ、溶着強度の極大値の横軸方向の位置がずれてしまい、本発明のように好適な溶着条件を容易に決定することができない。   As is apparent from the results of FIG. 10, unless the absorbed energy derived as in the present invention is taken into consideration, the position of the maximum value of the welding strength in the horizontal axis direction shifts, and a suitable welding as in the present invention. Conditions cannot be easily determined.

Claims (6)

光に対して透過性を有する光透過性樹脂成形体と、光に対して吸収性を有する光吸収性樹脂成形体とを重ね合わせて重ね合わせ部を形成し、前記光透過性樹脂成形体側から前記重ね合わせ部に向けて前記光を所定の走査速度、所定の出力エネルギーで照射して、前記光透過性樹脂成形体と前記光吸収性樹脂成形体との溶着体を製造する第一工程と、
前記光透過性樹脂成形体の前記光に対する透過率をT、前記光の照射中心から距離rの位置の出力エネルギー流束をガウス関数q(r)、前記光のビーム径をd、としたときに、前記重ね合わせ部中の前記距離rの位置に供給される前記光の供給エネルギーEsを下記数式(I)から算出する第二工程と、
Figure 0005554629
前記光吸収性樹脂成形体の熱拡散係数をD、単位長さ当たりの前記光の走査時間をt、としたときに、前記重ね合わせ部の前記距離rの位置において前記光吸収性樹脂成形体側で吸収される吸収エネルギーEaを下記数式(II)から算出する第三工程と、
Figure 0005554629
(数式(II)中、aは係数、Dは前記光吸収性樹脂成形体の熱拡散係数、tは単位長さ当たりの前記光の走査時間、Eは吸収エネルギー)

前記溶着体において、前記光透過性樹脂成形体と前記光吸収性樹脂成形体との溶着部の溶着強度を測定する第四工程と、
前記所定の出力エネルギーを変更して、前記第一工程から前記第四工程を繰り返す工程を一回以上行う第五工程と、
前記第一工程から前記第五工程の結果に基づいて、前記吸収エネルギーEaと前記溶着強度との関係を導出する第六工程と、
前記第六工程の結果に基づいて、前記光透過性樹脂成形体と前記光吸収性樹脂成形体とを溶着する際の前記光の照射条件を決定する第七工程と、を有する溶着条件の決定方法。
A light-transmitting resin molded body having light permeability and a light-absorbing resin molded body having light-absorbing property are overlapped to form an overlapping portion, and from the light-transmitting resin molded body side A first step of manufacturing a welded body of the light-transmitting resin molded body and the light-absorbing resin molded body by irradiating the overlapping portion with the light at a predetermined scanning speed and a predetermined output energy; ,
When the light transmittance of the light-transmitting resin molding is T, the output energy flux at a distance r from the light irradiation center is a Gaussian function q (r), and the light beam diameter is d. And a second step of calculating a supply energy Es of the light supplied to the position of the distance r in the overlapping portion from the following formula (I):
Figure 0005554629
When the thermal diffusion coefficient of the light-absorbing resin molded body is D and the light scanning time per unit length is t, the light-absorbing resin molded body side at the position of the distance r of the overlapping portion. A third step of calculating the absorbed energy Ea absorbed by the following formula (II):
Figure 0005554629
(In Formula (II), a is a coefficient, D is a thermal diffusion coefficient of the light-absorbing resin molding, t is a scanning time of the light per unit length, and E a is absorption energy).

In the welded body, a fourth step of measuring the welding strength of the welded portion between the light-transmitting resin molded body and the light-absorbing resin molded body,
A fifth step of changing the predetermined output energy and performing the step of repeating the fourth step from the first step one or more times;
A sixth step of deriving a relationship between the absorbed energy Ea and the welding strength based on the result of the fifth step from the first step;
Based on the result of the sixth step, the seventh step of determining the irradiation condition of the light when welding the light-transmitting resin molded body and the light-absorbing resin molded body is determined. Method.
前記第六工程は、前記吸収エネルギーEaと前記溶着強度とをプロットしたグラフに基づいて前記関係を導出する工程であり、前記関係は溶着強度の極大値を有する請求項1に記載の溶着条件決定方法。   6. The sixth step is a step of deriving the relationship based on a graph plotting the absorbed energy Ea and the welding strength, and the relationship has a maximum value of the welding strength. Method. 前記出力エネルギー流速が、下記数式(III)で表す平均化した出力エネルギー流束qである請求項1又は2に記載の溶着条件決定方法。
Figure 0005554629
The welding condition determination method according to claim 1 or 2, wherein the output energy flow velocity is an averaged output energy flux q a expressed by the following mathematical formula (III).
Figure 0005554629
前記吸収エネルギーEaと溶着強度との関係に基づいて、溶着強度が大きくなる吸収エネルギーの範囲(ΔE(EaLからEaHの範囲))を設定する工程と、
aLの定数倍EaL×a’、前記光吸収性樹脂成形体を構成する樹脂材料の密度、比熱から下記式(c)を用いて算出される昇温幅から導出される、溶融時の重ね合わせ部における前記樹脂材料の温度が融点になるようなa’を算出する工程と、
Figure 0005554629
(式(IV)中の、比熱、密度は樹脂成形体の比熱と密度である。)

aHの定数倍EaH×a”、前記光吸収性樹脂成形体を構成する樹脂材料の密度、比熱から上記式(c)を用いて算出される昇温幅から導出される、溶融時の重ね合わせ部における前記樹脂材料の温度が熱分解点になるようなa”を算出する工程と、
導出されたa’からa”の範囲で任意の定数を選択工程より求められることを特徴とする、請求項1から3のいずれかに記載の溶着条件決定方法。
Based on the relationship between the absorbed energy Ea and the welding strength, a step of setting an absorption energy range (ΔE a (a range from E aL to E aH )) in which the welding strength increases;
E aL constant times E aL × a ′, derived from the temperature rise calculated from the density and specific heat of the resin material constituting the light-absorbing resin molded body using the following formula (c), at the time of melting Calculating a ′ such that the temperature of the resin material at the overlapping portion becomes a melting point;
Figure 0005554629
(The specific heat and density in the formula (IV) are specific heat and density of the resin molded body.)

E aH constant times E aH × a ″, the density of the resin material constituting the light-absorbing resin molded body, and the specific heat, derived from the temperature rise calculated using the above formula (c), Calculating a ″ such that the temperature of the resin material in the overlapping portion becomes a thermal decomposition point;
The welding condition determination method according to any one of claims 1 to 3, wherein an arbitrary constant within a range of derived a 'to a "is obtained by the selection step.
前記係数aは、0.18以上0.21以下である請求項1から4のいずれかに記載の溶着条件決定方法。   The welding condition determination method according to claim 1, wherein the coefficient a is 0.18 or more and 0.21 or less. 前記光吸収性樹脂成形体が、ポリブチレンテレフタレート系樹脂組成物を成形してなる成形体である請求項5に記載の溶着条件決定方法。   The welding condition determination method according to claim 5, wherein the light-absorbing resin molded body is a molded body formed by molding a polybutylene terephthalate-based resin composition.
JP2010115480A 2010-05-19 2010-05-19 Determination method of welding conditions Active JP5554629B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010115480A JP5554629B2 (en) 2010-05-19 2010-05-19 Determination method of welding conditions
CN201110127854.2A CN102310562B (en) 2010-05-19 2011-05-17 Fusion welding condition determining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115480A JP5554629B2 (en) 2010-05-19 2010-05-19 Determination method of welding conditions

Publications (2)

Publication Number Publication Date
JP2011240626A JP2011240626A (en) 2011-12-01
JP5554629B2 true JP5554629B2 (en) 2014-07-23

Family

ID=45407764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115480A Active JP5554629B2 (en) 2010-05-19 2010-05-19 Determination method of welding conditions

Country Status (2)

Country Link
JP (1) JP5554629B2 (en)
CN (1) CN102310562B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024152B2 (en) * 2012-03-29 2016-11-09 東洋製罐株式会社 Sealing method of container and lid by laser welding
KR101636247B1 (en) * 2016-02-05 2016-07-06 모니텍주식회사 Device and method for measuring quality of ultrasonic welding
CN111565939A (en) * 2017-12-18 2020-08-21 株式会社普利司通 Tire and method of fixing porous body
JP7191365B2 (en) * 2018-10-31 2022-12-19 タカハタプレシジョン株式会社 Method for joining resin molded products
JP7411991B2 (en) 2020-01-07 2024-01-12 株式会社キャンパスクリエイト Method for welding thermoplastic resin molded bodies

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3630293B2 (en) * 1999-10-06 2005-03-16 トヨタ自動車株式会社 Laser welding method of resin material
JP3827071B2 (en) * 2001-11-02 2006-09-27 本田技研工業株式会社 Laser bonding method for resin members
JP3771208B2 (en) * 2002-10-08 2006-04-26 東海興業株式会社 Manufacturing method and manufacturing apparatus for sealing material
US6952959B2 (en) * 2003-06-20 2005-10-11 Kazuo Hishinuma Method of designing a heat seal width
CN1839031A (en) * 2003-08-22 2006-09-27 E.I.内穆尔杜邦公司 Methods for laser welding articles molded from polyolefins to those molded from other thermoplastic resins, and welded articles prepared therefrom
JP4633384B2 (en) * 2004-05-24 2011-02-16 ポリプラスチックス株式会社 Laser-bonded polyarylene sulfide resin composition and molded article
EP1909366A4 (en) * 2005-07-13 2009-07-08 Furukawa Electric Co Ltd Light irradiating device and welding method
JP5481049B2 (en) * 2008-09-10 2014-04-23 公益財団法人名古屋産業科学研究所 Method of joining members using laser

Also Published As

Publication number Publication date
CN102310562A (en) 2012-01-11
CN102310562B (en) 2014-12-10
JP2011240626A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5554629B2 (en) Determination method of welding conditions
Acherjee Laser transmission welding of polymers–a review on welding parameters, quality attributes, process monitoring, and applications
Coelho et al. High-speed laser welding of plastic films
JP4771371B2 (en) Dissimilar member joining method and dissimilar member joined product
JP2013203052A5 (en)
US20120181250A1 (en) Infrared laser welding of plastic parts with one or more of the parts having a modified surface providing increased absorbtivity to infrared laser light
JP2006341563A (en) Method for determining acceptability of laser weld, and its device
Wippo et al. Advanced laser transmission welding strategies for fibre reinforced thermoplastics
Wippo et al. Evaluation of a pyrometric-based temperature measuring process for the laser transmission welding
Chen et al. Experimental study on gap bridging in contour laser transmission welding of polycarbonate and polyamide
JP5481049B2 (en) Method of joining members using laser
US20060283543A1 (en) Pseudo-transmission method of forming and joining articles
JP6025629B2 (en) Method of welding resin parts
JP4267286B2 (en) Resin material welding method and resin material welding apparatus
Haberstroh et al. Influence of carbon black pigmentation on the laser beam welding of plastics micro parts
Brodhun et al. Laser transmission welding of thermoplastic fasteners: Influence of temperature distribution in a scanning based process
KR20140057205A (en) Welded body manufacturing method
JP2007210203A (en) Laser welding method and laser-welded resin member
Kagan et al. Advantages and limitations of laser welding technology for semi-crystalline reinforced plastics
JP5412265B2 (en) Laser welding method for resin parts
JP2007260937A (en) Saddle-shaped member for laser welding and laser welding method of saddle-shaped member and pipe shaped product
Jankus et al. Effect of the meltdown on thermoplastic joint produced by quasi-simultaneous laser transmission welding
Horn Strategies for polymer welding with high-power diode lasers
Visco et al. Polyethylene film welding induced by a 532 nm pulsed laser
Lee et al. Basic study of laser direct joining for CFRTP and metals using high power diode laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent or registration of utility model

Ref document number: 5554629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250