JP2014024069A - Bead inspection method in laser welding - Google Patents

Bead inspection method in laser welding Download PDF

Info

Publication number
JP2014024069A
JP2014024069A JP2012163704A JP2012163704A JP2014024069A JP 2014024069 A JP2014024069 A JP 2014024069A JP 2012163704 A JP2012163704 A JP 2012163704A JP 2012163704 A JP2012163704 A JP 2012163704A JP 2014024069 A JP2014024069 A JP 2014024069A
Authority
JP
Japan
Prior art keywords
laser
irradiation
welding
weld bead
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012163704A
Other languages
Japanese (ja)
Inventor
Masaki Okajima
正樹 岡島
Sai Hagiwara
宰 萩原
Masahiro Takahashi
昌裕 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2012163704A priority Critical patent/JP2014024069A/en
Publication of JP2014024069A publication Critical patent/JP2014024069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bead inspection method capable of stably performing quality determination of the whole of a weld bead or a wide range thereof while avoiding influence of a plume.SOLUTION: In a bead inspection method, after laser welding for a prescribed section is finished, in a state where heat remains in a weld bead within a range of the prescribed section, the whole of the weld bead or a part thereof is re-irradiated with a laser beam at a low energy density, and then an image of the weld bead is obtained in a state where the weld bead is allowed to emit light by heat. From the obtained image, quality determination of the weld bead is performed.

Description

本発明は、レーザ溶接におけるビード検査方法に関する。   The present invention relates to a bead inspection method in laser welding.

レーザ溶接は高速処理が可能である反面、メッキ鋼板を対象とした重ね溶接などでは、気化した金属ガスなどによる穴欠陥や溶融金属の流動により溶接終端にヒケなどの溶接欠陥を生じる場合がある。そこで、従来、溶接条件を厳密に管理する一方で、溶接箇所を撮像手段で監視し画像解析などを通じて溶接欠陥の有無、溶接ビードの良否をリアルタイムで判定することが行われている(特許文献1参照)。 Laser welding is capable of high-speed processing, but in lap welding for plated steel sheets, hole defects due to vaporized metal gas or the like, and weld defects such as sink marks may occur at the end of welding due to the flow of molten metal. Therefore, conventionally, while strictly managing the welding conditions, it has been performed to monitor the welding location with an imaging means and determine in real time whether or not there is a welding defect and the quality of the weld bead through image analysis or the like (Patent Document 1). reference).

この場合、レーザ照射地点の近傍では高輝度のプルームやスパッタの影響で溶接ビードの良否を直接的に判定することが困難であるので、光学条件や画像処理によりプルーム等の影響を低減することが検討されてきた。しかし、三枚重ね溶接など、プルームの噴出量が多い場合には、プルームの影響を完全に排除することはできないばかりか、画像処理プロセスが複雑化する問題もある。   In this case, it is difficult to determine the quality of the weld bead directly in the vicinity of the laser irradiation point due to the high-luminance plume or spatter, so the effect of the plume or the like can be reduced by optical conditions or image processing. Has been studied. However, when the amount of plume ejection is large, such as three-ply welding, the influence of the plume cannot be completely eliminated, and there is a problem that the image processing process becomes complicated.

そこで、プルームの影響を回避するために、レーザ溶接中ではなく、レーザ溶接終了直後に金属からの熱発光が残っている状態で溶接ビードの画像を取得し、良否判定する方法が提案されている(特許文献2参照)。しかし、この方法では、熱発光が残っている溶接ビード終端部の良否判定に限られ、それ以外の部分に関しては温度低下とともに発光が終息しており、もしくは、終端部と始端側で大きな輝度差があり、溶接ビード全体を含めた判定は不可能である。   Therefore, in order to avoid the influence of the plume, a method has been proposed in which an image of the weld bead is acquired in a state in which heat emission from the metal remains immediately after the end of laser welding, not during laser welding, and the quality is determined. (See Patent Document 2). However, this method is limited to the quality determination of the weld bead end portion where thermoluminescence remains, and for other portions, the light emission ends with a decrease in temperature, or there is a large luminance difference between the end portion and the start end side. Therefore, it is impossible to make a judgment including the entire weld bead.

特開2006−43741号公報JP 2006-43741 A 特開2012−45610号公報JP 2012-45610 A

本発明は、従来技術のこのような実状に鑑みてなされたものであって、その目的は、プルームの影響を回避しつつ溶接ビードの全体または広範囲の良否判定を安定的に実施可能なビード検査方法を提供することにある。   The present invention has been made in view of such a situation of the prior art, and the object thereof is a bead inspection capable of stably performing pass / fail judgment of the entire weld bead or a wide range while avoiding the influence of the plume. It is to provide a method.

上記課題を解決するために、本発明に係る溶接ビード検査方法は、所定区間のレーザ溶接終了後、前記所定区間に亘る溶接ビードに残熱を有する状態で、前記溶接ビードの全区間または一部区間に低エネルギー密度でレーザを再照射し、前記溶接ビードを熱発光させた状態で撮像し、得られた画像から前記溶接ビードの良否判定を行うことを特徴とする。   In order to solve the above-described problem, a welding bead inspection method according to the present invention includes a whole or part of the weld bead in a state where residual heat is present in the weld bead over the predetermined section after completion of laser welding in the predetermined section. The section is irradiated again with a laser at a low energy density, and the weld bead is imaged in a state of thermal emission, and the quality of the weld bead is determined from the obtained image.

上記方法によれば、レーザ溶接終了後、残熱を有する状態で低エネルギー密度のレーザを再照射することにより、溶接ビードの残熱に再照射の入熱が加わって、検査対象区間の全区間に比較的均一な熱発光が得られ、複雑な画像処理等に依らずに広範囲に亘る溶接ビードの良否判定検査を実施可能となる。しかも、再照射するレーザは低エネルギー密度であるので、スパッタやプルームは生じず、良好な画像が安定的に得られることに加えて、可及的高速かつ短時間でレーザ走査でき、再照射工程の追加による全体的な処理時間への影響も殆どない。   According to the above method, after the laser welding is completed, by re-irradiating the laser having a low energy density with the residual heat, the heat input of the re-irradiation is added to the residual heat of the weld bead, and all the sections of the inspection target section In addition, relatively uniform thermoluminescence can be obtained, and it is possible to carry out a pass / fail judgment inspection of the weld bead over a wide range without depending on complicated image processing or the like. Moreover, since the laser to be re-irradiated has a low energy density, spatter and plume do not occur, and in addition to obtaining a stable and stable image, the laser can be scanned as quickly and as quickly as possible. There is almost no effect on the overall processing time due to the addition of.

なお、ここで言う「エネルギー密度」とは、従来のレーザ出力と焦点径から決定される設定上のエネルギー密度に加えて、レーザの走査速度を考慮して、単位時間当たりに照射スポットに入力されるエネルギーを意味する。したがって、低エネルギー密度のレーザ再照射は、これらのパラメータの1つまたは複数を組み合わせた調整によって実施可能であり、その選択または組合せに応じて、本願発明にはいくつかの態様が存在する。また、パラメータの組合せ如何では、何れかのパラメータがレーザ溶接時のそれよりも高エネルギー化の方向に調整される場合もある。   The “energy density” mentioned here is input to the irradiation spot per unit time in consideration of the scanning speed of the laser in addition to the setting energy density determined from the conventional laser output and focal spot diameter. Energy. Thus, low energy density laser re-irradiation can be implemented by a combination of one or more of these parameters, and there are several aspects of the present invention depending on the choice or combination. Further, depending on the combination of parameters, any parameter may be adjusted in the direction of higher energy than that during laser welding.

本発明において、前記レーザ再照射を、前記レーザ溶接時の光軸走査よりも高速で行うことが好適である。レーザ照射によるワークへの入熱はエネルギー密度と速度(時間)の関数であり、概ね、レーザ出力に比例し、焦点径および速度に反比例する。したがって、処理時間の短縮という点では、出力制御よりも速度制御によって所望するエネルギー密度を得ることが有利である。   In the present invention, it is preferable that the laser re-irradiation is performed at a higher speed than the optical axis scanning during the laser welding. The heat input to the workpiece by laser irradiation is a function of energy density and speed (time), and is generally proportional to the laser output and inversely proportional to the focal spot diameter and speed. Therefore, in terms of shortening the processing time, it is advantageous to obtain a desired energy density by speed control rather than output control.

また、本発明において、前記レーザ再照射を、前記溶接ビードの幅以内で前記レーザ溶接時の光軸走査とずらして行っても良い。レーザ溶接終了後における溶接ビードの温度低下は周辺部から進行し、幅方向中央部は相対的に高温に保たれているので、再照射を同じ走査線上に行うよりもずらした方が温度低下を補償する入熱を行う上で有利である。また、ずれた分だけ溶接ビードへの入熱が抑制されるので、例えば、溶接時と同条件でレーザ再照射を行っても実質的に低エネルギー密度のレーザを再照射したのと同じ結果が得られ、出力制御の代用とすることで、制御を簡素化できる。   In the present invention, the laser re-irradiation may be performed within the width of the welding bead and shifted from the optical axis scanning during the laser welding. Since the temperature drop of the weld bead after the laser welding has progressed from the peripheral part and the central part in the width direction is kept at a relatively high temperature, shifting the re-irradiation on the same scanning line will cause a temperature drop. This is advantageous in performing heat input for compensation. In addition, since heat input to the weld bead is suppressed by the amount of deviation, for example, even if laser re-irradiation is performed under the same conditions as during welding, the same result as re-irradiation with a laser having a substantially low energy density is obtained. As a result, the control can be simplified by substituting the output control.

上述した各場合と同様の理由で、前記レーザ再照射を、前記レーザ溶接時よりも大きなデフォーカス量で行うことが好適である。   For the same reason as described above, it is preferable that the laser re-irradiation is performed with a larger defocus amount than during the laser welding.

また、本発明において、前記所定区間が、前記レーザ走査の始点と終点が近接または一致したループ状の区間である場合に、前記所定区間のレーザ溶接終了後、前記始点側から一部区間に前記再照射を行うか、または、前記始点側から全区間に前記再照射を行った後にさらに続けて前記始点側から一部区間に前記再照射を行っても良い。このような再照射を行うことで、溶接ビードの全区間に同様に再照射しなくても、始点側と終点側で同程度の熱発光が得られ、特に、欠陥を生じやすい始点と終点で同程度の熱発光が得られれば、確度の高い良否判定を行うことができる。   Further, in the present invention, when the predetermined section is a loop-shaped section in which a start point and an end point of the laser scanning are close to or coincident with each other, after the laser welding of the predetermined section is completed, Re-irradiation may be performed, or the re-irradiation may be further performed from the start point side to a partial section after the re-irradiation is performed on the entire section from the start point side. By performing such re-irradiation, it is possible to obtain the same level of thermoluminescence on the start point side and the end point side without re-irradiating the entire section of the weld bead in the same manner. If the same level of thermoluminescence is obtained, it is possible to make a pass / fail judgment with high accuracy.

本発明に係る溶接ビード検査方法における「エネルギー密度」は、レーザ出力と焦点径から決定される設定上のエネルギー密度に加えて、レーザの走査速度を考慮した、単位時間当たりに照射スポットに入力されるエネルギーを意味することは既に述べたとおりである。
したがって、本発明に係る溶接ビード検査方法は、前記レーザ再照射のエネルギー密度が、レーザ出力Pと走査速度Vに基づく出力速度比(P/V)によって規定され、レーザ溶接時に比べて低減された出力速度比(P/V)にて前記レーザ再照射を行うことによっても特定される。
The “energy density” in the welding bead inspection method according to the present invention is input to the irradiation spot per unit time in consideration of the scanning speed of the laser in addition to the setting energy density determined from the laser output and the focal diameter. As mentioned above, it means energy.
Therefore, in the welding bead inspection method according to the present invention, the energy density of the laser re-irradiation is defined by the output speed ratio (P / V) based on the laser output P and the scanning speed V, and is reduced compared to the laser welding. It is also specified by performing the laser re-irradiation at the output speed ratio (P / V).

その場合、前記レーザ再照射の出力速度比(P/V)がレーザ溶接時の25〜50%の範囲から選定されていることが好適である。また、レーザ出力P(W)、走査速度V(mm/sec)、焦点径d(mm)としたとき、前記レーザ再照射のエネルギー密度P/dVが、25〜50(J/mm)の範囲から選定されていても良い。 In that case, it is preferable that the output speed ratio (P / V) of the laser re-irradiation is selected from a range of 25 to 50% at the time of laser welding. Further, when the laser output P (W), the scanning speed V (mm / sec), and the focal diameter d (mm), the energy density P / dV of the laser re-irradiation is 25 to 50 (J / mm 2 ). It may be selected from a range.

以上述べたように、本発明に係るビード検査方法によれば、プルームの影響を回避しつつ溶接ビードの全体または広範囲の良否判定を安定的に実施可能である。   As described above, according to the bead inspection method according to the present invention, it is possible to stably perform quality determination of the entire weld bead or a wide range while avoiding the influence of the plume.

本発明に係るビード検査方法を実施するレーザ溶接装置の概略図である。It is the schematic of the laser welding apparatus which enforces the bead inspection method concerning the present invention. 本発明に係るビード検査方法において撮像される(a)溶接ビード形成直後および(b)レーザ再照射後の溶接ビードの画像を示す模式図である。It is a schematic diagram which shows the image of the weld bead immediately after (a) weld bead formation and (b) laser reirradiation imaged in the bead inspection method which concerns on this invention. 再照射時のレーザ出力と速度の相関を示す分布図である。It is a distribution map which shows the correlation of the laser output at the time of re-irradiation, and speed.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
図1において、レーザ溶接装置1は、レーザ照射ヘッド11、レーザ照射制御部12、および、レーザ発振器13を含むレーザ照射部10と、溶接ビードBの撮像手段21および画像処理部22を含む検査部20とから構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In FIG. 1, a laser welding apparatus 1 includes a laser irradiation head 11, a laser irradiation control unit 12, a laser irradiation unit 10 including a laser oscillator 13, an imaging unit 21 of a weld bead B, and an inspection unit including an image processing unit 22. 20.

レーザ照射ヘッド11は、レーザ発振器13からファイバ光学系などを経由して伝送されるレーザをワークw1の表面の所定位置に所定のエネルギー密度で照射するために、前記表面上でレーザ光軸を2軸方向またはそれ以上の多軸方向に走査する手段(例えば、ガルバノスキャナまたはXYテーブル、あるいは多軸ヘッド)、および、レーザの焦点距離/デフォーカス量を制御する焦点制御手段(例えば、フォーカスレンズ)などで構成されている。   The laser irradiation head 11 irradiates a laser beam transmitted from the laser oscillator 13 via a fiber optical system or the like at a predetermined energy density at a predetermined position on the surface of the workpiece w1 with 2 laser optical axes on the surface. Means (for example, galvano scanner or XY table, or multi-axis head) for scanning in the axial direction or more in multiple axes, and focus control means (for example, focus lens) for controlling the focal length / defocus amount of the laser Etc.

レーザ照射制御部12は、予め設定されたプログラムに基づいて、レーザ照射ヘッド11を制御し、かつ、レーザ照射のON/OFFやレーザ出力制御を行うものである。特に、本発明では、溶接用レーザ照射と、低エネルギー密度(低出力および/または高速)の検査用レーザ再照射の切り替え手段としての機能を有する。   The laser irradiation control unit 12 controls the laser irradiation head 11 based on a preset program, and performs laser irradiation ON / OFF and laser output control. In particular, the present invention has a function as a switching means between laser irradiation for welding and laser reirradiation for inspection with low energy density (low output and / or high speed).

撮像手段21は、少なくとも1つの単位溶接ビードBの好ましくは全体を包含する領域を撮像可能な公知の撮像手段(例えばCCDカメラなど)を好適に利用可能である。撮像手段21に取得された画像は画像処理部22に送られ、溶接ビードBの不良検査、良否判定が行われる。なお、撮像手段としては、レーザ光軸上にハーフミラーなどの分光手段を設置し、レーザ出力光学系を通じて取得される画像を撮像するように構成しても良い。   As the image pickup means 21, a well-known image pickup means (for example, a CCD camera or the like) capable of picking up an area including preferably the whole of at least one unit weld bead B can be suitably used. The image acquired by the imaging means 21 is sent to the image processing unit 22 where defect inspection and quality determination of the weld bead B are performed. The imaging means may be configured to install a spectroscopic means such as a half mirror on the laser optical axis and take an image acquired through the laser output optical system.

次に、上記実施形態に基づき溶接ビードの不良検査、良否判定プロセスについて、図面を参照しながら詳細に説明する。   Next, the weld bead defect inspection and pass / fail judgment process based on the above embodiment will be described in detail with reference to the drawings.

(第1実施例)
図1では、2枚のワーク(鋼板)w1,w2を重ねた状態でその一方(w1)の表面側からレーザ照射を行い重ね溶接する場合を示しているが、実験では、3枚のワーク(上:厚さ0.65mm非めっき鋼板、中央:厚さ1.4mm非めっき鋼板、下:0.1mm間隙を介して厚さ0.8mmの亜鉛めっき鋼板)を重ね、先ず、図2(a)に示すように、従来のスポット溶接の代替溶接として、焦点径0.6mm、レーザ出力4000W、走査速度3.7m/minにて、始点Ssから終点Stまで、所定半径の円弧状(ループ状)にレーザ走査Saを行い、溶接ビードBを形成する。
(First embodiment)
FIG. 1 shows a case where two workpieces (steel plates) w1 and w2 are overlapped and laser welding is performed from the surface side of one of them (w1), but in the experiment, three workpieces ( Upper: 0.65 mm thick non-plated steel sheet, center: 1.4 mm thick non-plated steel sheet, bottom: 0.8 mm thick galvanized steel sheet through a 0.1 mm gap), first, FIG. ) As an alternative to conventional spot welding, an arc shape (loop shape) having a predetermined radius from the start point Ss to the end point St at a focal diameter of 0.6 mm, a laser output of 4000 W, and a scanning speed of 3.7 m / min. ) Is subjected to laser scanning Sa to form a weld bead B.

この時、レーザ光軸が終点Stに達した段階で、終端部B1は残熱発光しているが、他の始端側部分B0は温度が低下し、赤外放射は残存するものの、撮像手段21に取得される画像における輝度は閾値以下に低下しており、図2(a)において始端側部分B0の溶接ビード形状は確認できない。   At this time, when the laser optical axis reaches the end point St, the terminal end portion B1 emits residual heat, but the temperature of the other start end portion B0 decreases and infrared radiation remains, but the imaging means 21 The brightness in the image acquired at the end of the image is lower than the threshold value, and the weld bead shape of the start end side portion B0 cannot be confirmed in FIG.

次いで、図2(b)に示すように、レーザ光軸を再び始点Ssに移動し、同じレーザ出力4000Wで走査速度を13.7m/minに増速して終点Stまでレーザを再照射し(Sb)、ビードB全体(B2)を熱発光させる。この際、同じレーザ出力4000Wであっても、走査速度を3.7倍速に増速したことで、単位時間当たりに溶接ビードBに入力されるエネルギー、すなわちエネルギー密度は1/3.7となり、レーザ出力を1081W(約27%)程度まで低下させたのと同様である。   Next, as shown in FIG. 2B, the laser optical axis is moved again to the starting point Ss, the scanning speed is increased to 13.7 m / min with the same laser output 4000 W, and the laser is re-irradiated to the end point St ( Sb), the entire bead B (B2) is caused to emit light. At this time, even when the laser output is 4000 W, the energy input to the weld bead B per unit time, that is, the energy density becomes 1 / 3.7 by increasing the scanning speed to 3.7 times speed. This is similar to reducing the laser output to about 1081 W (about 27%).

そのため、レーザ再照射Sbでは、溶接ビードBにプルームやスパッタが生じないことに加えて、1/3.7の短時間で終了するので、レーザ再照射Sbの終了時にも温度低下は少なく、溶接ビード全体B2が比較的均一な輝度分布で熱発光している。したがって、レーザ再照射Sbの終了時に撮像手段21に撮像される画像(図2(b))は、複雑な画像処理を施さなくても穴欠陥などの溶接不良を検出可能である。   Therefore, in the laser re-irradiation Sb, in addition to the fact that no plume or spatter is generated in the weld bead B, it is completed in a short time of 1 / 3.7. The entire bead B2 emits heat with a relatively uniform luminance distribution. Therefore, an image captured by the imaging unit 21 at the end of the laser re-irradiation Sb (FIG. 2B) can detect a welding defect such as a hole defect without performing complicated image processing.

(第2実施例)
上記実施例では、レーザ再照射Sbでの出力をレーザ溶接Sa時と同等に保ちつつ走査速度を3.7倍に増速する場合を示したが、増速の程度を少なくしかつレーザ出力をも小さくして、実際にエネルギー密度を低下させてレーザ再照射Sbを行っても同様の熱発光が得られ、溶接ビードの良否検査を実施可能である。
(Second embodiment)
In the above embodiment, the case where the scanning speed is increased by 3.7 times while the output at the laser re-irradiation Sb is kept equal to that at the time of the laser welding Sa is shown, but the degree of the acceleration is reduced and the laser output is reduced. The same thermoluminescence can be obtained even when the laser re-irradiation Sb is performed by actually decreasing the energy density and performing the laser re-irradiation Sb.

そこで、レーザ再照射における速度と出力の相関および有効な組合せの範囲を検証するために、種々の走査速度とレーザ出力の組合せで再照射する実験を行い、結果を図3の分布図に示した。
図3において、(1)符号「○」は、良好な熱発光B2が得られ、かつ、プルームやスパッタも生じなかった組合せを、(2)符号「△」は、再照射中にはプルームやスパッタを生じたが再照射終了時には良好な熱発光B2が得られた組合せを、(3)符号「×」は、高速側で輝度不足、低速側でプルームやスパッタを生じ、を実施不可能であった組合せを示している。
Therefore, in order to verify the correlation between the speed and output in laser re-irradiation and the range of effective combinations, re-irradiation was performed at various combinations of scanning speed and laser output, and the results are shown in the distribution diagram of FIG. .
In FIG. 3, (1) symbol “◯” indicates a combination in which good thermoluminescence B2 was obtained and no plume or spatter occurred, and (2) symbol “Δ” indicates a plume or (3) The symbol “x” indicates that the brightness is insufficient on the high speed side, and plumes or spatters are generated on the low speed side. It shows the combinations that existed.

レーザ照射によるワークへの入熱は、概ねレーザ出力に比例し、焦点径および走査速度に反比例する。すなわち、レーザ出力P、走査速度V、焦点径dとしたとき、レーザ照射のエネルギー密度は、P/dVで表される。図3において、速度Vと出力Pの有効な組合せの範囲の左側の臨界値(上限値)は、(V,P)=(7,3500)〜(9,4500)より、直線P=500Vにあり、右側の臨界値(下限値)は、(V,P)=(14,3500)〜(18,4500)より、直線P=250Vにある。   The heat input to the workpiece by laser irradiation is generally proportional to the laser output and inversely proportional to the focal spot diameter and the scanning speed. That is, when the laser output P, the scanning speed V, and the focal diameter d are set, the energy density of laser irradiation is expressed by P / dV. In FIG. 3, the critical value (upper limit value) on the left side of the effective combination range of the speed V and the output P is a straight line P = 500 V from (V, P) = (7,3500) to (9,4500). Yes, the critical value (lower limit) on the right side is on the straight line P = 250 V from (V, P) = (14,3500) to (18,4500).

ここで、溶接用レーザ(4m/min,4000W)と再照射レーザの焦点径が同一であれば、エネルギー密度は、レーザ出力Pと走査速度Vに基づく出力速度比(P/V)によって規定でき、溶接用レーザの出力速度比(P/V)=1000(W・min/m)に対して、再照射レーザの出力速度比の上限値は(P/V)=500(W・min/m)、下限値は(P/V)=250(W・min/m)である。すなわち、再照射レーザの出力速度比(P/V)がレーザ溶接時の25〜50%の範囲で良否検査に適した熱発光が得られることが分かる。   Here, if the focal diameters of the welding laser (4 m / min, 4000 W) and the re-irradiation laser are the same, the energy density can be defined by the output speed ratio (P / V) based on the laser output P and the scanning speed V. For the welding laser output speed ratio (P / V) = 1000 (W · min / m), the upper limit value of the re-irradiation laser output speed ratio is (P / V) = 500 (W · min / m). ), The lower limit value is (P / V) = 250 (W · min / m). That is, it can be seen that thermoluminescence suitable for the pass / fail inspection can be obtained when the output speed ratio (P / V) of the re-irradiation laser is in the range of 25 to 50% during laser welding.

さらに、焦点径d=0.6mmに対して充分に大きい走査速度V(m/min)を(mm/sec)に換算し、出力Pをエネルギー(W・sec=J)に換算すると、単位時間当たりの照射面積に入力されるエネルギーP/dVは、レーザ溶接時の100(J/mm)に対してレーザ再照射時には25〜50(J/mm)ということになる。このように、走査速度Vとレーザ出力P、焦点径dの組合せに一定の相関関係があり、定性的に再照射の出力値および走査速度値を選定可能であることが分かる。 Furthermore, when a sufficiently high scanning speed V (m / min) with respect to the focal diameter d = 0.6 mm is converted into (mm / sec) and the output P is converted into energy (W · sec = J), unit time The energy P / dV input to the hit irradiation area is 25 to 50 (J / mm 2 ) at the time of laser re-irradiation with respect to 100 (J / mm 2 ) at the time of laser welding. Thus, it can be seen that there is a certain correlation between the combination of the scanning speed V, the laser output P, and the focal spot diameter d, and it is possible to qualitatively select the re-irradiation output value and scanning speed value.

本発明に係るレーザ溶接方法(溶接ビードの検査方法)は、溶接用レーザ照射Saの終了直後に、検査用レーザ再照射Sbを低エネルギー密度にて行うことを特徴としており、上記実施例では、低出力と高速化の2つの操作を中心に説明した。これらに準じた結果をもたらす操作としては、再照射Sbの位置を溶接ビードBの幅方向にずらす操作、および、デフォーカス量を大きくする操作がある。以下、各実施例について説明する。   The laser welding method (welding bead inspection method) according to the present invention is characterized in that the inspection laser re-irradiation Sb is performed at a low energy density immediately after the end of the welding laser irradiation Sa. The explanation was centered on two operations, low output and high speed. Operations that bring about results similar to these include operations for shifting the position of the re-irradiation Sb in the width direction of the weld bead B and operations for increasing the defocus amount. Each example will be described below.

(第3実施例)
溶接用レーザ照射Saの終了直後に、検査用レーザ再照射Sbを溶接ビードBの幅方向にずらして行うことで、溶接ビードBへの入熱が抑制され、溶接時と同条件でレーザ再照射Sbを行っても実質的に低エネルギー密度のレーザを再照射したのと同じ結果が得られる。この作用効果を検証するために、次のような実験を行った。
(Third embodiment)
Immediately after the end of the welding laser irradiation Sa, the inspection laser re-irradiation Sb is shifted in the width direction of the weld bead B, so that heat input to the weld bead B is suppressed, and laser re-irradiation is performed under the same conditions as during welding. Even if Sb is performed, the same result as that obtained when the laser having a substantially low energy density is re-irradiated can be obtained. In order to verify this effect, the following experiment was conducted.

先ず、第1実施例と同様に、焦点径0.6mm、レーザ出力4000W、走査速度3.7m/minにて、始点Ssから終点Stまで、所定半径の円弧状(ループ状)にレーザ走査Saを行い、溶接ビードBを形成する。次いで、第1実施例と同様に、レーザ光軸を再び始点Ssに移動し、走査速度13.7m/minに増速してレーザ再照射Sbを行うに際して、照射位置を、溶接時のレーザ走査Saに対して、径方向外周側および内周側にずらして再照射し(Sb)、ビードBを熱発光させて撮像した。   First, similarly to the first embodiment, laser scanning Sa is performed in a circular arc shape (loop shape) with a predetermined radius from the start point Ss to the end point St at a focal diameter of 0.6 mm, a laser output of 4000 W, and a scanning speed of 3.7 m / min. To form a weld bead B. Next, as in the first embodiment, the laser optical axis is moved again to the starting point Ss, and when the laser re-irradiation Sb is performed with the scanning speed increased to 13.7 m / min, the irradiation position is determined by laser scanning during welding. The Sa was re-irradiated by shifting to the radially outer peripheral side and the inner peripheral side (Sb), and the bead B was thermally emitted and imaged.

その結果、外周側、内周側共に、0.7mmまでは良好な画像が得られた。むしろ、溶接時のレーザ走査Saの場合に比べて、先に温度低下が進む周辺部が再加熱され、溶接ビードBの熱発光が均一化される傾向が見られた。しかし、ずれが0.8mm以上になると、反対側に暗部が生じその領域での欠陥検出精度が低下する問題を生じた。   As a result, good images were obtained up to 0.7 mm on both the outer peripheral side and the inner peripheral side. Rather, as compared with the case of laser scanning Sa at the time of welding, there was a tendency that the peripheral portion where the temperature decrease first was reheated and the thermoluminescence of the weld bead B was made uniform. However, when the deviation is 0.8 mm or more, a dark portion is generated on the opposite side, and the defect detection accuracy in that region is lowered.

この点について考察すると、レーザ照射の焦点径0.6mmに対して形成される溶接ビードBの幅は約1mmであるので、ずれが0.7mmまでは再照射Sbの焦点径0.6mmと溶接ビードBとの間に重なりがある。しかし、ずれが0.8mm以上では溶接ビードBとの重なりはなく、専ら固体熱伝導のみによる入熱となり、再照射したレーザのエネルギーが溶接ビードBに伝達され難くなるものと考えられる。いずれにしても、再照射にずれを許容できることは、実用上における安定性を確保する上で有利である。   Considering this point, the width of the weld bead B formed with respect to the laser irradiation focal diameter of 0.6 mm is about 1 mm. Therefore, until the deviation is 0.7 mm, the reirradiation Sb has a focal diameter of 0.6 mm and welding. There is an overlap with bead B. However, when the deviation is 0.8 mm or more, there is no overlap with the weld bead B, and the heat input is solely due to solid heat conduction, and it is considered that the energy of the re-irradiated laser is hardly transmitted to the weld bead B. In any case, the ability to allow deviation in re-irradiation is advantageous in securing practical stability.

(第4実施例)
溶接用レーザ照射Saの終了直後に、検査用レーザ再照射Sbを、デフォーカス量を大きくして実施することにより、再照射時のレーザのエネルギーが溶接ビードBの広範囲に分散されることで、低エネルギー密度のレーザを再照射したのと同じ結果が得られるものと考えられる。この作用効果を検証するために、デフォーカス量を変化させて再照射を行ったところ、同条件でデフォーカス量が溶接ビードBの幅と等しい焦点径1.0mmまでは良好な画像が得られたが、それ以上では、加熱が不充分となるためか、中間部分などに低輝度部が認められ、欠陥検出精度が低下すると判断された。
(Fourth embodiment)
Immediately after the end of the welding laser irradiation Sa, by carrying out the inspection laser re-irradiation Sb with a large defocus amount, the energy of the laser at the time of re-irradiation is dispersed over a wide area of the welding bead B. It is considered that the same result as that obtained by reirradiation with a laser having a low energy density can be obtained. In order to verify this effect, re-irradiation was performed while changing the defocus amount, and a good image was obtained up to a focal diameter of 1.0 mm where the defocus amount is equal to the width of the weld bead B under the same conditions. However, it has been determined that if it is more than that, a low-luminance part is observed in the intermediate part or the like because of insufficient heating, and the defect detection accuracy is lowered.

これは走査速度13.7m/minに増速した場合の結果であり、増速の度合いを小さくすれば、上記以上のデフォーカス量でも必要な熱発光を生じる加熱が可能と予測される。しかし、その分、処理時間が長くなるので、そのようなデフォーカス量を選択する意味はないと言える。この第4実施例は、むしろ再照射時のプルームやスパッタを抑制し、実用上における安定性を確保する上で有利なパラメータとなりうる。   This is a result when the scanning speed is increased to 13.7 m / min. If the degree of the acceleration is reduced, it is predicted that heating that generates the necessary thermoluminescence is possible even with the above defocus amount. However, since the processing time increases accordingly, it can be said that there is no point in selecting such a defocus amount. The fourth embodiment can be an advantageous parameter in terms of suppressing plume and spatter during re-irradiation and ensuring practical stability.

以上、本発明に係るビード検査方法のいくつかの実施例について述べたが、レーザ出力および走査速度に加えて、第3実施例の照射位置をずらす設定や第4実施例のデフォーカス量の設定を行うことによって、処理時間と安定性を両立して溶接ビードの良否判定を実施可能であることを付言する。   Although several embodiments of the bead inspection method according to the present invention have been described above, in addition to the laser output and the scanning speed, the setting of shifting the irradiation position of the third embodiment and the setting of the defocus amount of the fourth embodiment are described. By performing the above, it is added that the quality of the weld bead can be determined while achieving both processing time and stability.

1 レーザ溶接装置
10 レーザ照射部
11 レーザ照射ヘッド
12 レーザ照射制御部
13 レーザ発振器
20 検査部
21 撮像手段
22 画像処理部
B 溶接ビード
B0 始端側部分
B1 終端部
B2 溶接ビード全体
Sa レーザ照射(レーザ溶接)
Sb レーザ再照射
Ss 始点
St 終点
w1,w2 ワーク
DESCRIPTION OF SYMBOLS 1 Laser welding apparatus 10 Laser irradiation part 11 Laser irradiation head 12 Laser irradiation control part 13 Laser oscillator 20 Inspection part 21 Imaging means 22 Image processing part B Welding bead B0 Beginning end side part B1 Termination part B2 Welding bead whole Sa laser irradiation (laser welding )
Sb Laser re-irradiation Ss Start point St End point w1, w2 Workpiece

Claims (8)

所定区間のレーザ溶接終了後、前記所定区間に亘る溶接ビードに残熱を有する状態で、前記溶接ビードの全区間または一部区間に低エネルギー密度でレーザを再照射し、前記溶接ビードを熱発光させた状態で撮像し、得られた画像から前記溶接ビードの良否判定を行うことを特徴とする溶接ビード検査方法。   After completion of laser welding in a predetermined section, with a residual heat in the weld bead over the predetermined section, the whole or part of the weld bead is irradiated with laser at a low energy density, and the weld bead is thermally radiated. A weld bead inspection method, wherein the weld bead is picked up and picked up from the obtained image. 前記レーザ再照射を、前記レーザ溶接時の光軸走査よりも高速で行うことを特徴とする請求項1記載の溶接ビード検査方法。   The welding bead inspection method according to claim 1, wherein the laser re-irradiation is performed at a higher speed than optical axis scanning during the laser welding. 前記レーザ再照射を、前記溶接ビードの幅以内で前記レーザ溶接時の光軸走査とずらして行うことを特徴とする請求項1または2記載の溶接ビード検査方法。   The welding bead inspection method according to claim 1, wherein the laser re-irradiation is performed within a width of the welding bead and shifted from the optical axis scanning during the laser welding. 前記レーザ再照射を、前記レーザ溶接時よりも大きなデフォーカス量で行うことを特徴とする請求項1〜3の何れか一項記載の溶接ビード検査方法。   The welding bead inspection method according to claim 1, wherein the laser re-irradiation is performed with a larger defocus amount than that during the laser welding. 前記所定区間が、前記レーザ走査の始点と終点が近接または一致したループ状の区間である場合に、前記所定区間のレーザ溶接終了後、前記始点側から一部区間に前記再照射を行うか、または、前記始点側から全区間に前記再照射を行った後にさらに続けて前記始点側から一部区間に前記再照射を行うことを特徴とする請求項1〜4の何れか一項記載のレーザ溶接方法。   When the predetermined section is a loop-shaped section in which the start point and the end point of the laser scanning are close or coincident, after the laser welding of the predetermined section is completed, the re-irradiation is performed on a part of the section from the start point side, The laser according to any one of claims 1 to 4, wherein the re-irradiation is further performed from the start point side to a partial section after the re-irradiation is performed on the entire section from the start point side. Welding method. 前記レーザ再照射のエネルギー密度が、レーザ出力Pと走査速度Vに基づく出力速度比(P/V)によって規定され、レーザ溶接時に比べて低減された出力速度比(P/V)にて前記レーザ再照射を行うことを特徴とする請求項1〜4の何れか一項記載の溶接ビード検査方法。   The energy density of the laser re-irradiation is defined by an output speed ratio (P / V) based on the laser output P and the scanning speed V, and the laser is output at a reduced output speed ratio (P / V) as compared with laser welding. Re-irradiation is performed, The weld bead inspection method according to any one of claims 1 to 4. 前記レーザ再照射の出力速度比(P/V)がレーザ溶接時の25〜50%の範囲から選定されていることを特徴とする請求項6記載の溶接ビード検査方法。   The welding bead inspection method according to claim 6, wherein an output speed ratio (P / V) of the laser re-irradiation is selected from a range of 25 to 50% at the time of laser welding. レーザ出力P(W)、走査速度V(mm/sec)、焦点径d(mm)としたとき、前記レーザ再照射のエネルギー密度P/dVが、25〜50(J/mm)の範囲から選定されていることを特徴とする請求項6記載の溶接ビード検査方法。 When the laser output P (W), the scanning speed V (mm / sec), and the focal diameter d (mm), the energy density P / dV of the laser re-irradiation is within a range of 25 to 50 (J / mm 2 ). The weld bead inspection method according to claim 6, wherein the weld bead inspection method is selected.
JP2012163704A 2012-07-24 2012-07-24 Bead inspection method in laser welding Pending JP2014024069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012163704A JP2014024069A (en) 2012-07-24 2012-07-24 Bead inspection method in laser welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012163704A JP2014024069A (en) 2012-07-24 2012-07-24 Bead inspection method in laser welding

Publications (1)

Publication Number Publication Date
JP2014024069A true JP2014024069A (en) 2014-02-06

Family

ID=50198241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012163704A Pending JP2014024069A (en) 2012-07-24 2012-07-24 Bead inspection method in laser welding

Country Status (1)

Country Link
JP (1) JP2014024069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109523548A (en) * 2018-12-21 2019-03-26 哈尔滨工业大学 A kind of narrow gap weld seam Feature Points Extraction based on threshold limit value
CN115210033A (en) * 2020-03-05 2022-10-18 松下知识产权经营株式会社 Weld bead appearance inspection device, weld bead appearance inspection method, program, and weld bead appearance inspection system
JP7411991B2 (en) 2020-01-07 2024-01-12 株式会社キャンパスクリエイト Method for welding thermoplastic resin molded bodies

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109523548A (en) * 2018-12-21 2019-03-26 哈尔滨工业大学 A kind of narrow gap weld seam Feature Points Extraction based on threshold limit value
CN109523548B (en) * 2018-12-21 2023-05-05 哈尔滨工业大学 Narrow-gap weld characteristic point extraction method based on critical threshold
JP7411991B2 (en) 2020-01-07 2024-01-12 株式会社キャンパスクリエイト Method for welding thermoplastic resin molded bodies
CN115210033A (en) * 2020-03-05 2022-10-18 松下知识产权经营株式会社 Weld bead appearance inspection device, weld bead appearance inspection method, program, and weld bead appearance inspection system
CN115210033B (en) * 2020-03-05 2024-04-02 松下知识产权经营株式会社 Bead appearance inspection device, bead appearance inspection method, program, and bead appearance inspection system

Similar Documents

Publication Publication Date Title
KR101974252B1 (en) Laser weld method and weld structure
JP5947741B2 (en) Welded part inspection device and inspection method
US9457432B2 (en) Apparatus and method for laser cleaning of coated materials prior to welding
KR101715475B1 (en) Laser welding method
TW202037439A (en) Laser welding method
JP5875630B2 (en) Method and apparatus for identifying incomplete cuts
CN108778607B (en) Laser welding steel with power modulation to avoid hot cracking
JP5929935B2 (en) Quality control method and laser cladding processing apparatus in laser cladding processing
US20130087543A1 (en) Apparatus and method for post weld laser release of gas build up in a gmaw weld
JP6299136B2 (en) Laser welding method and laser welding apparatus for steel sheet
JP2014024069A (en) Bead inspection method in laser welding
JP2014024068A (en) Bead inspection method in laser welding and laser welding method
JP7189516B2 (en) Weld defect repair method
KR20210089750A (en) Method and apparatus for monitoring the welding process for welding glass workpieces
US9623513B2 (en) Laser welding inspection apparatus and laser welding inspection method
JP5967122B2 (en) Laser welding apparatus and laser welding method
JP2005246434A (en) Method and apparatus for preventing or repairing hole defect in laser spot welding
JP2010120023A (en) Laser welding method and laser welding device used for the same
JP2015136718A (en) Defect repair apparatus and defect repair method
JP2005138126A (en) Welding system
JP2016112607A (en) Laser beam welding apparatus and laser beam welding method
JP2017131918A (en) Laser welding method
US20180361515A1 (en) Method for detecting hole in laser-welded portion and laser welding device
JP5779877B2 (en) Device for capturing an image of a bead area in a welding material
JP2021171800A (en) Laser processing device and laser processing method