JPH03259932A - Modification of surface of polymer molding with vacuum ultraviolet ray - Google Patents

Modification of surface of polymer molding with vacuum ultraviolet ray

Info

Publication number
JPH03259932A
JPH03259932A JP5944590A JP5944590A JPH03259932A JP H03259932 A JPH03259932 A JP H03259932A JP 5944590 A JP5944590 A JP 5944590A JP 5944590 A JP5944590 A JP 5944590A JP H03259932 A JPH03259932 A JP H03259932A
Authority
JP
Japan
Prior art keywords
irradiated
vacuum ultraviolet
ultraviolet light
light source
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5944590A
Other languages
Japanese (ja)
Other versions
JPH0655846B2 (en
Inventor
Hiroyuki Niino
弘之 新納
Akihiko Oouchi
秋比古 大内
Akira Yabe
明 矢部
Youzou Kadotate
洋三 角舘
Masanori Yoshida
正典 吉田
Shiyuu Usuha
州 薄葉
Katsutoshi Aoki
青木 勝敏
Shuzo Fujiwara
修三 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2059445A priority Critical patent/JPH0655846B2/en
Publication of JPH03259932A publication Critical patent/JPH03259932A/en
Publication of JPH0655846B2 publication Critical patent/JPH0655846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To perform the title modification without detriment to the merits of the polymeric material even when it is made of a polymer free from aromatic rings and multiple bonds and entirely consisting of single bonds by irradiating the polymer molding with specified vacuum ultraviolet rays. CONSTITUTION:A polymer molding (e.g. polytetrafluoroethylene sheet) is irradiated with vacuum ultraviolet rays of a wavelength of 190nm or below from a light source, desirably a rare gas discharge plasma light source.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高分子成形品表面の改質方法に関し、より詳細
には真空紫外光を照射して高分子成形品の表面を改質す
る方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for modifying the surface of a polymer molded article, and more specifically, a method for modifying the surface of a polymer molded article by irradiating vacuum ultraviolet light. Regarding.

〔従来の技術〕[Conventional technology]

S、ラザレら(S、Lazare、 R,5riniv
asan、 J、Phys、chem、、Vol、90
,2124(1986) )は、高分子フィルムの表面
を、エキシマ−レーザーなどの高強度紫外レーザーで特
定部位を照射すると、照射直後に容易に照射部表面が改
質され、現像工程等の後処理を行なうことなく、直接に
形態学的な凹凸が形成されることを報告している。
S, Lazare et al.
asan, J, Phys, chem,, Vol, 90
, 2124 (1986)) found that when a specific part of the surface of a polymer film is irradiated with a high-intensity ultraviolet laser such as an excimer laser, the surface of the irradiated part is easily modified immediately after the irradiation, and post-processing such as the development process is carried out. It has been reported that morphological irregularities can be formed directly without any process.

このように、紫外レーザーを用いた高分子表面の加工法
は、精度良く、高速で行なうことができ、また、レーザ
ーの照射条件を制御することで、照射樹脂表面の構造特
性や機能性を向上することができるという特徴があり、
多彩な表面反応を制御良く行なうことが可能な手法であ
る。
In this way, polymer surface processing methods using ultraviolet lasers can be performed with high precision and high speed, and by controlling the laser irradiation conditions, the structural characteristics and functionality of the irradiated resin surface can be improved. It has the characteristic of being able to
This is a method that allows a variety of surface reactions to be carried out with good control.

また、S、クーパーら[S、Kuper and M、
5tuke。
Also, S. Kuper and M.
5tuke.

Appl、Phys、Lett、 、 Vol 、54
.4 (1989) )は、パルス幅が300xlO−
”秒の極短パルス紫外光(波長:248nm)を用いる
と、良好なエツチング特性が得られると報告している。
Appl, Phys, Lett, Vol. 54
.. 4 (1989)), the pulse width was 300xlO-
``It has been reported that good etching characteristics can be obtained by using second ultrashort pulse ultraviolet light (wavelength: 248 nm).

更に、P、E、ダイヤ−ら[P、E、Dyer and
 J。
Furthermore, P, E, Dyer et al. [P, E, Dyer and
J.

5idhu、J、Opt、Soc、Am、B、Vol、
3,792(1986)) 、K。
5idhu, J, Opt, Soc, Am, B, Vol.
3,792 (1986)), K.

A、ヴアリエフら(K、^、シaliev、L、V、V
elikov、S。
A, Vualiev et al. (K, ^, Sialev, L, V, V
elikov, S.

D、Dushenkov+and A、V、Mitro
fanov、Inatrwm Exp。
D.Dushenkov+and A.V.Mitro
fanov, Inatrwm Exp.

Tech、 、 Vol 、26. No、4. Pt
、 2.991 (1984) )は、F2エキシマレ
ーザ−(波長: 157nm)や重水素ランプを用いた
真空紫外光照射によって、ポリイミド、ポリエステル、
ポリエチレン、ポリプロピレン、ポリアクリレート等の
光加工を試みている。
Tech, Vol. 26. No, 4. Pt
, 2.991 (1984)), polyimide, polyester,
We are trying optical processing of polyethylene, polypropylene, polyacrylate, etc.

[発明が解決しようとする課R] しかしながら、上記ラザレらの紫外光を用いた方法では
、高分子内に芳香環、多重結合等の紫外光を吸収する部
位が必要であるため、単結合のみで槽底されている高分
子では効果的に表面反応を行なうことができなかった。
[Problem R to be solved by the invention] However, the method using ultraviolet light by Lazare et al. requires sites that absorb ultraviolet light, such as aromatic rings and multiple bonds, in the polymer, so only single bonds can be used. Surface reactions could not be carried out effectively with polymers placed at the bottom of the tank.

例えば、ポリ四フッ化エチレン(テフロン)の場合、パ
ルス幅が10−8秒程度の高強度パルス紫外光を照射す
ると、照射表面が黒化するという欠点があった。
For example, in the case of polytetrafluoroethylene (Teflon), when irradiated with high-intensity pulsed ultraviolet light having a pulse width of about 10 -8 seconds, the irradiated surface blackens.

またクーパーらの方法では、極短パルス光を発生させる
には、極めて高度なレーザー技術が必要であり、発振自
体も不安定であるという欠点があった。
Furthermore, Cooper et al.'s method required extremely sophisticated laser technology to generate ultrashort pulses of light, and the oscillation itself was unstable.

更にダイヤ−やヴアリエフらの方法では、Ftレーザー
の発振が不安定であることや、F2レーザーや重水素ラ
ンプでは光出力が小さいという欠点があるために迅速・
効果的な表面改質を行なうことができなかった。
Furthermore, the method of Diamond and Vuaryev et al. has the disadvantage that the oscillation of Ft laser is unstable, and that the light output of F2 laser and deuterium lamp is low.
Effective surface modification could not be carried out.

本発明は上記従来の欠点を解消し、芳香環や多重結合を
含まない高分子についても適用可能であり、高分子材質
の特長を損うことなく、残査等の不純物が完全に樹脂表
面から除去され、しかも簡便、かつ効果的に光ビームに
よりエツチングする方法を提供することを目的としてい
る。
The present invention solves the above-mentioned conventional drawbacks, and can be applied to polymers that do not contain aromatic rings or multiple bonds. Impurities such as residues can be completely removed from the resin surface without impairing the characteristics of the polymer material. The object of the present invention is to provide a simple and effective method for etching using a light beam.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明の改質方法において
は、波長190n*以下の真空紫外光を高分子成形品に
照射する。
In order to achieve the above object, in the modification method of the present invention, a polymer molded article is irradiated with vacuum ultraviolet light having a wavelength of 190n* or less.

本発明の方法において用いる真空紫外光の光源としては
、希ガス放電プラズマ光源が用いられる。
A rare gas discharge plasma light source is used as the vacuum ultraviolet light source used in the method of the present invention.

この光源は、例えばJ、ジローら(J、5hilo。This light source can be used, for example, in J. Giro et al.

A、Fisher and N、Rostoker+P
hys、Rev、Lett、、vat。
A, Fisher and N, Rostoker+P
hys, Rev, Lett,, vat.

40.5’15(1978) )によるガスバフ型Zピ
ンチ法などによれば、強いピンチ効果を利用して高温度
にした希ガス放電プラズマを利用するもので、波長19
0nm以下のパルス光を十分な強度で放射できる装置で
あり、シンクロトロン放射光装置のように巨大な設備を
必要とせず、F2エキシマレーザ−光を重水素ランプ光
と比較しても、効率、光強度の点で優れた特長を有する
光源である。
40.5'15 (1978)), the gas buff type Z-pinch method uses rare gas discharge plasma heated to high temperature by taking advantage of the strong pinch effect, and has a wavelength of 19.
It is a device that can emit pulsed light of 0 nm or less with sufficient intensity, does not require huge equipment like a synchrotron radiation device, and has a high efficiency when comparing F2 excimer laser light with deuterium lamp light. This is a light source that has an excellent feature in terms of light intensity.

また、真空紫外光領域には、炭素−炭素や、炭素−水素
等の単結合の吸収があるので、真空紫外光を用いること
によって、紫外光では十分に加工できなかった高分子材
料に対しても、効果的に加工を行なうことができる。
In addition, in the vacuum ultraviolet light region, there is absorption of single bonds such as carbon-carbon and carbon-hydrogen, so by using vacuum ultraviolet light, it is possible to process polymer materials that cannot be processed sufficiently with ultraviolet light. can also be processed effectively.

なお波長の下限は数n’sであり、また、190nsを
越える長波長の光を照射した場合、単結合のみで槽底さ
れている高分子はこの波長領域の光吸収が小さいために
、熱的現象による反応の割合が増大し、真空紫外光を照
射したときの光反応のような付加価値の高い改質を行な
うことが困難である。
Note that the lower limit of the wavelength is several n's, and when irradiated with light with a long wavelength exceeding 190 ns, polymers whose bottom is made up of only single bonds will not absorb heat in this wavelength range. The rate of reactions due to chemical phenomena increases, making it difficult to carry out high value-added modifications such as photoreactions when irradiated with vacuum ultraviolet light.

更に、本発明によれば、高分子成形品の改質したい部位
に相当するマスク(金属板製パターンなど)を通過させ
た光を照射することで、希望する照射部分のみに、加工
を行なうことも可能である。
Furthermore, according to the present invention, by irradiating light that has passed through a mask (metal plate pattern, etc.) corresponding to the part of the polymer molded product that is desired to be modified, processing can be performed only on the desired irradiated part. is also possible.

本発明における高分子成形品には、フィルム。The polymer molded article in the present invention includes a film.

シート、繊維、繊維強化樹脂、樹脂成形品等が含まれる
Includes sheets, fibers, fiber reinforced resins, resin molded products, etc.

また、これら成形品の材料は、非品性、結晶性のいづれ
であってもよく、例えば、ポリ四フッ化エチレン、ポリ
三フフ化塩化エチレン、ポリフッ化ビニリデン、ポリエ
チレン、ポリプロピレン、ポリエチレンテレフタレート
、ポリエチレンナフタレート、ポリオキシエチレン、ポ
リスチレン、ポリイミド、ポリ塩化ビニル、ポリメチル
メタクリレート、ポリビニルアルコール樹脂、これら樹
脂モノマーの共縮重合物、またはこれら樹脂の混合物を
挙げることができる。
In addition, the materials for these molded products may be either non-grade or crystalline, such as polytetrafluoroethylene, polytrifluorochloroethylene, polyvinylidene fluoride, polyethylene, polypropylene, polyethylene terephthalate, polyethylene Examples include naphthalate, polyoxyethylene, polystyrene, polyimide, polyvinyl chloride, polymethyl methacrylate, polyvinyl alcohol resin, cocondensation products of these resin monomers, and mixtures of these resins.

真空紫外光の照射は、照射試料室の雰囲気を真空、また
は不活性ガス雰囲気にして光源の窓近くに照射試料を置
くだけで良い。また、更に集光したい場合には、凹面反
射鏡やカルシウムフッ素リチウムフッ素の材質の凸レン
ズを用いる。
Irradiation with vacuum ultraviolet light can be accomplished by simply setting the irradiation sample chamber to a vacuum or inert gas atmosphere and placing the irradiation sample near the window of the light source. If it is desired to further condense the light, a concave reflecting mirror or a convex lens made of calcium fluorine lithium fluorine is used.

以下、本発明を実施例により、更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例] 実施例1 ポリ四フフ化エチレン(テフロン)シートに、希ガス放
電プラズマ光源の真空紫外光を100パルス照射した。
[Examples] Example 1 A polytetrafluoroethylene (Teflon) sheet was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source.

照射面は黒化することなく、良好なエツチング特性が得
られ、照射部の周囲には残金等の不純物は完全に除去さ
れていた。エツチング深さは、6μmであった。
Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 6 μm.

実施例2 ポリ四フフ化エチレン(テフロン)シートに、希ガス放
電プラズマ光源の真空紫外光を50パルス照射した。照
射面は黒化することなく、良好なエツチング特性が得ら
れ、照射部の周囲には残金等の不純物は完全に除去され
ていた。エツチング深さは、3μmであった。
Example 2 A polytetrafluoroethylene (Teflon) sheet was irradiated with 50 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 3 μm.

実施例3 ポリビニルアルコールフィルムに、希ガス放電プラズマ
光源の真空紫外光を100パルス照射した。照射面は黒
化することなく、良好なエツチング特性が得られ、照射
部の周囲には残金等の不純物は完全に除去されていた。
Example 3 A polyvinyl alcohol film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area.

エツチング深さは、6μmであった。The etching depth was 6 μm.

実施例4 ポリ三フフ化塩化エチレン(ダイフロン)シートに、希
ガス放電プラズマ光源の真空紫外光を100パルス照射
した。照射面は黒化することなく、良好なエツチング特
性が得られ、照射部の周囲には残金等の不純物は完全に
除去されていた。エツチング深さは、8μmであった。
Example 4 A polytrifluorochloroethylene (Daiflon) sheet was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 8 μm.

実施例5 ポリ三フフ化塩化エチレン(ダイフロン)シートに、希
ガス放電プラズマ光源の真空紫外光を50パルス照射し
た。照射面は黒化することなく、良好なエツチング特性
が得られ、照射部の周囲には残金等の不純物は完全に除
去されていた。エツチング深さは、4μmであった。
Example 5 A polytrifluorochloroethylene (Daiflon) sheet was irradiated with 50 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 4 μm.

実施例6 ポリエチレンフィルムに、希ガス放電プラズマ光源の真
空紫外光を100パルス照射した。照射面は黒化するこ
となく、良好なエツチング特性が得られ、照射部の周囲
には残金等の不純物は完全に除去されていた。エツチン
グ深さは、4μmであった・ 実施例7 ポリプロピレンフィルムに、希ガス放電プラズマ光源の
真空紫外光を100パルス照射した。
Example 6 A polyethylene film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 4 μm. Example 7 A polypropylene film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source.

照射面は黒化することなく、良好なエツチング特性が得
られ、照射部の周囲には残金等の不純物は完全に除去さ
れていた。エツチング深さは、3.8μmであった。更
に、照射面に微細構造が形成された。
Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 3.8 μm. Furthermore, fine structures were formed on the irradiated surface.

実施例8 ポリエチレンテレフタレートフィルムに、希ガス放電プ
ラズマ光源の真空紫外光を100パルス照射した。良好
なエツチング特性が得られ、照射部の周囲には残金等の
不純物は完全に除去されていた。エツチング深さは、5
μmであった。更に、照射面に微細構造が形成された。
Example 8 A polyethylene terephthalate film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained, and impurities such as residual metal were completely removed around the irradiated area. The etching depth is 5
It was μm. Furthermore, fine structures were formed on the irradiated surface.

実施例9 ポリエチレンナフタレートフィルムに、希ガス放電プラ
ズマ光源の真空紫外光を100パルス照射した。良好な
エツチング特性が得られ、照射部の周囲には残金等の不
純物は完全に除去されていた。エツチング深さは、3μ
mであった。
Example 9 A polyethylene naphthalate film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained, and impurities such as residual metal were completely removed around the irradiated area. Etching depth is 3μ
It was m.

更に、照射面に微細構造が形成された。Furthermore, fine structures were formed on the irradiated surface.

実施例10 ポリオキシエチレンフィルムに、希ガス放電プラズマ光
源の真空紫外光を100パルス照射した。照射面は黒化
することなく、良好なエツチング特性が得られ、照射部
の周囲には残金等の不純物は完全に除去されていた。エ
ツチング深さは、4μmであった。更に、照射面に微細
構造が形成された。
Example 10 A polyoxyethylene film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 4 μm. Furthermore, fine structures were formed on the irradiated surface.

実施例11 ポリスチレンフィルムに、希ガス放電プラズマ光源の真
空紫外光を100パルス照射した。照射面は黒化するこ
となく、良好なエツチング特性が得られ、照射部の周囲
には残金等の不純物は完全に除去されていた。エツチン
グ深さは、3μmであった。更に、照射面に微細構造が
形成された。
Example 11 A polystyrene film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 3 μm. Furthermore, fine structures were formed on the irradiated surface.

実施例12 ポリイミドフィルムに、希ガス放電プラズマ光源の真空
紫外光を100パルス照射した。照射面は黒化すること
なく、良好なエツチング特性が得られ、照射部の周囲に
は残金等の不純物は完全に除去されていた。エツチング
深さは、0.8μmであった。
Example 12 A polyimide film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 0.8 μm.

実施例13 ポリ塩化ビニルフィルムに、希ガス放電プラズマ光源の
真空紫外光を100パルス照射した。
Example 13 A polyvinyl chloride film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source.

照射面は黒化することなく、良好なエツチング特性が得
られ、照射部の周囲には残金等の不純物は完全に除去さ
れていた。エツチング深さは、12μmであった。
Good etching characteristics were obtained without blackening of the irradiated surface, and impurities such as residual metal were completely removed around the irradiated area. The etching depth was 12 μm.

実施例14 ポリメチルメタクリレートフィルムに、希ガス放電プラ
ズマ光源の真空紫外光を100パルス照射した。照射面
は黒化することなく、良好なエツチング特性が得られ、
照射部の周囲には残金等の不純物は完全に除去されてい
た。エツチング深さは、6.4 μmであった。
Example 14 A polymethyl methacrylate film was irradiated with 100 pulses of vacuum ultraviolet light from a rare gas discharge plasma light source. Good etching properties are obtained without blackening the irradiated surface.
Impurities such as residual gold around the irradiated area were completely removed. The etching depth was 6.4 μm.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、真空紫外光による非熱的な光化学反応
によって高分子化合物が反応する。
According to the present invention, a polymer compound reacts by a non-thermal photochemical reaction using vacuum ultraviolet light.

従って、本発明の方法は照射部位以外の周辺には何らの
熱的損傷を伴わず、かつ真空紫外光により切削された断
片は、周囲には付着しておらず、極めて効果的な処理方
法である。
Therefore, the method of the present invention does not cause any thermal damage to the surrounding area other than the irradiated area, and the fragments cut by vacuum ultraviolet light do not adhere to the surrounding area, making it an extremely effective processing method. be.

更に本発明は、極短パルス光の場合と比べて真空紫外光
の光源が性能やコストの点で有利である。
Furthermore, in the present invention, a vacuum ultraviolet light source is advantageous in terms of performance and cost compared to the case of ultrashort pulsed light.

また、真空紫外光の照射によって形成される模様の形状
、大きさ、及び除去されるフィルムの量、すなわち切削
される深さは、照射する真空紫外光の波長、単位面積当
りの強度、パルス数(照射時間)により制御できる。
In addition, the shape and size of the pattern formed by vacuum ultraviolet light irradiation, and the amount of film removed, that is, the cutting depth, are determined by the wavelength of the vacuum ultraviolet light to be irradiated, the intensity per unit area, and the number of pulses. It can be controlled by (irradiation time).

更に本発明の方法は、非照射体が、薄膜状であろうと、
厚膜状であろうと、凹凸があるような表面であろうとも
、光が照射された表面部分のみが改質されるため、非照
射体の形状は問わない方法である。
Furthermore, the method of the present invention can be applied even if the non-irradiated object is in the form of a thin film.
This method does not care about the shape of the non-irradiated object, since only the surface portion irradiated with light is modified, whether it is a thick film or an uneven surface.

このように、真空紫外光照射によって高分子表面上に、
物理的、化学的に安定した加工を行なうことができる。
In this way, on the polymer surface by vacuum ultraviolet light irradiation,
Physically and chemically stable processing can be performed.

Claims (1)

【特許請求の範囲】 1、波長190nm以下の真空紫外光を高分子成形品に
照射することを特徴とする高分子成形品表面の改質方法
。 2、前記真空紫外光の光源が希ガス放電プラズマ光源で
ある請求項1記載の方法。
[Scope of Claims] 1. A method for modifying the surface of a polymer molded article, which comprises irradiating the polymer molded article with vacuum ultraviolet light having a wavelength of 190 nm or less. 2. The method according to claim 1, wherein the vacuum ultraviolet light source is a rare gas discharge plasma light source.
JP2059445A 1990-03-09 1990-03-09 Etching method for polymer moldings Expired - Lifetime JPH0655846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059445A JPH0655846B2 (en) 1990-03-09 1990-03-09 Etching method for polymer moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059445A JPH0655846B2 (en) 1990-03-09 1990-03-09 Etching method for polymer moldings

Publications (2)

Publication Number Publication Date
JPH03259932A true JPH03259932A (en) 1991-11-20
JPH0655846B2 JPH0655846B2 (en) 1994-07-27

Family

ID=13113497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059445A Expired - Lifetime JPH0655846B2 (en) 1990-03-09 1990-03-09 Etching method for polymer moldings

Country Status (1)

Country Link
JP (1) JPH0655846B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318037A (en) * 1990-12-27 1992-11-09 Abb Patent Gmbh Method of surface treatment
EP0673751A2 (en) * 1994-03-11 1995-09-27 Sumitomo Electric Industries, Ltd. Process for modifying surface of fluororesin product
JPH0959404A (en) * 1995-08-28 1997-03-04 Internatl Business Mach Corp <Ibm> Modifying method for photosensitive chemical substance film
JP2000273226A (en) * 1999-03-24 2000-10-03 Matsushita Electric Works Ltd Formation of metal film on resin substrate surface
JP2007070427A (en) * 2005-09-06 2007-03-22 Institute Of Physical & Chemical Research Method for etching ultraviolet light-transmitting polymer material
US20110159442A1 (en) * 2009-12-31 2011-06-30 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223731A (en) * 1983-06-02 1984-12-15 Susumu Kumagai Formation of thin metallic film on surface of synthetic resin molding and product obtained thereby
JPS607936A (en) * 1983-06-24 1985-01-16 Anelva Corp Photochemical surface treatment device
JPH03128947A (en) * 1989-10-14 1991-05-31 I S I:Kk Surface modification of material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59223731A (en) * 1983-06-02 1984-12-15 Susumu Kumagai Formation of thin metallic film on surface of synthetic resin molding and product obtained thereby
JPS607936A (en) * 1983-06-24 1985-01-16 Anelva Corp Photochemical surface treatment device
JPH03128947A (en) * 1989-10-14 1991-05-31 I S I:Kk Surface modification of material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318037A (en) * 1990-12-27 1992-11-09 Abb Patent Gmbh Method of surface treatment
EP0673751A2 (en) * 1994-03-11 1995-09-27 Sumitomo Electric Industries, Ltd. Process for modifying surface of fluororesin product
US5555549A (en) * 1994-03-11 1996-09-10 Sumitomo Electric Industries, Ltd. Process for modifying a surface of a fluororesin product
EP0673751A3 (en) * 1994-03-11 1997-07-23 Sumitomo Electric Industries Process for modifying surface of fluororesin product.
JPH0959404A (en) * 1995-08-28 1997-03-04 Internatl Business Mach Corp <Ibm> Modifying method for photosensitive chemical substance film
JP2000273226A (en) * 1999-03-24 2000-10-03 Matsushita Electric Works Ltd Formation of metal film on resin substrate surface
JP2007070427A (en) * 2005-09-06 2007-03-22 Institute Of Physical & Chemical Research Method for etching ultraviolet light-transmitting polymer material
US20110159442A1 (en) * 2009-12-31 2011-06-30 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor device
US8318412B2 (en) * 2009-12-31 2012-11-27 Samsung Electronics Co., Ltd. Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JPH0655846B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
EP0233755B1 (en) Ultraviolet laser treating of molded surfaces
EP0447169B1 (en) Laser curing of contact lens
US4568632A (en) Patterning of polyimide films with far ultraviolet light
JPS5912945A (en) Polyester etching process
US4824699A (en) Process for improved adhesion to semicrystalline polymer film
Cole et al. Dependence of photoetching rates of polymers at 193 nm on optical absorption depth
US5862163A (en) Apparatus for generating ultraviolet laser radiation
JPH03259932A (en) Modification of surface of polymer molding with vacuum ultraviolet ray
JP2740764B2 (en) Selective electroless plating method for polymer molded product surface
EP0108189B1 (en) A method for etching polyimides
Niino et al. Excimer laser ablation of polymers and carbon fiber composites
JP4706010B2 (en) Method for forming diamond-like carbon thin film
US20060144319A1 (en) Gelated colloid crystal precursor and gelated colloid crystal, and method and apparatus for preparing gelated colloid crystal
KR100504314B1 (en) Surface Treatment Method and Material Treated by the Method
JP3864211B2 (en) Surface modification method of fluoropolymer moldings using vacuum ultraviolet laser
JPH04353529A (en) Method for modifying surface of polyester
JPH0811772B2 (en) Surface processing method of polymer moldings using laser
Kameyama et al. Identification of defects associated with second-order optical nonlinearity in thermally poled high-purity silica glasses
JPH0796097B2 (en) Method of forming conductive thin film
JP3194010B2 (en) Modified solid surface with highly reactive active species immobilized on the surface
JP2003236928A (en) Method for forming plastic structure
Parts et al. Laser radiation-induced, residue-free, localized decomposition of some plastics
JP2003236929A (en) Method for forming plastic structure
JPH07118421A (en) Hydrophilic fluororesin molding
Dunn et al. Laser‐induced refractive index change in polymers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term