JP2021103074A - Continuous steel material heating furnace, air ratio control method thereof, and manufacturing method of steel material - Google Patents

Continuous steel material heating furnace, air ratio control method thereof, and manufacturing method of steel material Download PDF

Info

Publication number
JP2021103074A
JP2021103074A JP2020182143A JP2020182143A JP2021103074A JP 2021103074 A JP2021103074 A JP 2021103074A JP 2020182143 A JP2020182143 A JP 2020182143A JP 2020182143 A JP2020182143 A JP 2020182143A JP 2021103074 A JP2021103074 A JP 2021103074A
Authority
JP
Japan
Prior art keywords
exhaust gas
air ratio
flow rate
combustion
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020182143A
Other languages
Japanese (ja)
Other versions
JP7354988B2 (en
Inventor
貴大 赤澤
Takahiro Akazawa
貴大 赤澤
西村 隆
Takashi Nishimura
隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021103074A publication Critical patent/JP2021103074A/en
Application granted granted Critical
Publication of JP7354988B2 publication Critical patent/JP7354988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Regulation And Control Of Combustion (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

To provide a continuous steel material heating furnace provided with heat accumulation type switching combustion burners in a combustion control band, capable of controlling an air ratio for every combustion control band at an appropriate air ratio with high accuracy, an air ratio control method of the heating furnace, and a manufacturing method of steel material.SOLUTION: A continuous steel material heating furnace 1 has: an oxygen concentration detector 28 for suction exhaust gas and a flow rate detector 35 for suction exhaust gas provided at a suction exhaust gas main duct 27 for collecting the suction exhaust gases of combustion control bands 3, 4 and 5 and 6 provided with heat accumulating type switching combustion burners 10; an oxygen concentration detector 9 for furnace tail exhaust gas and a flow rate detector 34 for furnace tail exhaust gas provided at a downstream part from the combustion control band 3 being the most downstream side in the exhaust gas flow of a furnace body 2; and an air ratio control section 30 controlling the air ratio for every combustion control band, on the basis of a detection value of the oxygen concentration detector 28 for suction exhaust gas, a detection value of the flow rate detector 35 for suction exhaust gas, a detection value of the oxygen concentration detector 9 for furnace tail exhaust gas, and a detection value of the flow rate detector 34 for furnace tail exhaust gas.SELECTED DRAWING: Figure 1

Description

本発明は、少なくとも1つの燃焼制御帯に蓄熱式切替燃焼バーナを設けた連続式鋼材加熱炉において、空気比を制御する連続式鋼材加熱炉、連続式鋼材加熱炉の空気比制御方法及び鋼材の製造方法に関する。 The present invention relates to a continuous steel heating furnace in which a heat storage type switching combustion burner is provided in at least one combustion control band, a continuous steel heating furnace for controlling the air ratio, an air ratio control method for the continuous steel heating furnace, and a method for controlling the air ratio of the steel material. Regarding the manufacturing method.

一般に、加熱炉において加熱対象物に対して熱を効率よく与えるためには、加熱対象物への加熱以外に損失する熱量を低下させる必要がある。連続式鋼材加熱炉において損失する熱量は、1)排ガス損失熱、2)冷却水損失熱、3)鉄皮放散熱に分類することができる。
このうち、1)排ガス損失熱は、燃料ガスを燃焼させるときに発生するガスを排出することで発生する。排ガス損失熱は、以下の式によって表される。
Qgloss=Vg×Tg×Cpg
Generally, in order to efficiently apply heat to an object to be heated in a heating furnace, it is necessary to reduce the amount of heat lost in addition to heating the object to be heated. The amount of heat lost in a continuous steel heating furnace can be classified into 1) heat loss of exhaust gas, 2) heat loss of cooling water, and 3) heat dissipation of iron skin.
Of these, 1) heat loss of exhaust gas is generated by discharging the gas generated when the fuel gas is burned. The heat loss of exhaust gas is expressed by the following formula.
Qgloss = Vg x Tg x Cpg

ここで、Qglossは排ガス損失熱、Vgは排ガス量、Tgは排ガス温度、Cpgは排ガス比熱である。排ガス損失熱Qglossを低下させるためには、前式より排ガス量Vgを低下させるか、あるいは排ガス温度Tgを低下させる必要がある。一般に鋼材の加熱すべき温度は決まっているため、排ガス温度Tgを低下させることはできない。従って、排ガス損失熱Qglossを低下させるためには、排ガス量Vgを低下させる。
排ガス量Vgは、以下の式で表される。
Vg=Vm×(G0+(1−m)A0)
Here, Qgloss is the heat loss of the exhaust gas, Vg is the amount of the exhaust gas, Tg is the exhaust gas temperature, and Cpg is the specific heat of the exhaust gas. In order to reduce the exhaust gas loss heat Qgloss, it is necessary to reduce the exhaust gas amount Vg or the exhaust gas temperature Tg from the previous equation. Since the temperature at which the steel material should be heated is generally fixed, the exhaust gas temperature Tg cannot be lowered. Therefore, in order to reduce the heat loss heat Qgloss of exhaust gas, the amount of exhaust gas Vg is reduced.
The exhaust gas amount Vg is expressed by the following formula.
Vg = Vm × (G0 + (1-m) A0)

ここで、Vmは燃料ガス量、G0はガスの理論排ガス量、A0はガスの理論空気量、mは空気比である。燃料ガス量Vmは鋼材を加熱するために炉内温度を一定に制御して結果として定まるものであり、基本的には省エネのために操作することはできない。また、理論排ガス量G0及び理論空気量A0は燃料の組成によって定まるものであり、これらも操作することはできない。従って、積極的に制御できるのは空気比mであり、これをなるべく1.0に近づけることによって排ガス量Vgを低下させることができ、排ガス損失熱Qglossを値化させることができる。 Here, Vm is the amount of fuel gas, G0 is the theoretical exhaust gas amount of gas, A0 is the theoretical air amount of gas, and m is the air ratio. The amount of fuel gas Vm is determined as a result of controlling the temperature inside the furnace to heat the steel material, and basically cannot be operated for energy saving. Further, the theoretical exhaust gas amount G0 and the theoretical air amount A0 are determined by the composition of the fuel, and these cannot be manipulated either. Therefore, it is the air ratio m that can be positively controlled, and by making this as close to 1.0 as possible, the exhaust gas amount Vg can be reduced and the exhaust gas loss heat Qgloss can be quantified.

また、排ガス中の酸素濃度Oはガス中の組成により定まるG0及びA0により以下の式によって表される。
=(m−1)A0×0.21/(G0+(m−1)A0)
この式において、分子は空気比mが1.0を超え燃焼に寄与しない空気量のうちの酸素量を示しており、分母は空気比mで発生する排ガス量を示している。この式によれば、排ガス中の酸素濃度Oは、ガスの組成が一定であれば空気比を定めることによって一義的に定まることを意味している。
The oxygen concentration O 2 in the exhaust gas is represented by the following formula by G0 and A0 determined by the composition in the gas.
O 2 = (m-1) A0 × 0.21 / (G0 + (m-1) A0)
In this formula, the molecule indicates the amount of oxygen in the amount of air in which the air ratio m exceeds 1.0 and does not contribute to combustion, and the denominator indicates the amount of exhaust gas generated at the air ratio m. According to this equation, it means that the oxygen concentration O 2 in the exhaust gas is uniquely determined by determining the air ratio if the composition of the gas is constant.

実際の連続式鋼材加熱炉においては、装入扉、抽出扉を連続的に鋼材が通過するため、装入扉及び抽出扉を常に閉の状態にしておくことができないため、装入扉あるいは抽出扉が開いた際に不可避的に炉内に空気が侵入する。そのため、バーナに供給する燃料ガス流量と燃焼用空気流量とを精密に制御して空気比を一定にしたとしても酸素濃度Oが変化することがある。また、副生ガスを加熱炉の燃料ガスとして用いた場合、成分が時間により変化するため、燃料ガス流量と燃焼用空気流量とを一定の比率に制御したとしても空気比が一定になるとは限らない。このため、連続式鋼材加熱炉においては、従来より、加熱炉内の酸素濃度を一定にするための制御が行われている。
連続式鋼材加熱炉において、鋼材を加熱するバーナとして、蓄熱式切替燃焼バーナを用いる場合と、通常の燃焼バーナを用いる場合とがある。
In an actual continuous steel heating furnace, since the steel material continuously passes through the charging door and the extraction door, the charging door and the extraction door cannot be kept closed at all times, so that the charging door or the extraction door cannot be kept closed. Air inevitably enters the furnace when the door opens. Therefore, even if the flow rate of the fuel gas supplied to the burner and the flow rate of the combustion air are precisely controlled to keep the air ratio constant, the oxygen concentration O 2 may change. In addition, when the by-product gas is used as the fuel gas of the heating furnace, the composition changes with time, so even if the fuel gas flow rate and the combustion air flow rate are controlled to a constant ratio, the air ratio is not always constant. Absent. For this reason, in the continuous steel heating furnace, control for keeping the oxygen concentration in the heating furnace constant has been conventionally performed.
In a continuous steel heating furnace, a heat storage type switching combustion burner may be used as a burner for heating the steel material, or a normal combustion burner may be used.

蓄熱式切替燃焼バーナを用いずに通常の燃焼バーナを用いる連続式鋼材加熱炉において、加熱炉内の酸素濃度を一定にするための制御をするものとして、従来、例えば、特許文献1に示すものが知られている。
特許文献1に示す燃焼設備の燃焼制御方法は、外気が侵入し得る燃焼設備の燃焼制御方法において、火口に供給される燃料流量が設定値以上のときは一定の範囲で空燃比(空気比)を操作して排ガス中の酸素濃度を制御する。また、火口に供給される燃料流量が設定値未満のとき、または空燃比が前記一定の範囲を超えるときは、空燃比を前記一定の範囲を保ちながら燃焼設備の内圧を操作して侵入空気量を調節することにより排ガス中の酸素濃度を制御するようにしている。そして、この特許文献1に示す燃焼設備の燃焼制御方法における排ガス中の酸素濃度の制御に際しては、加熱炉からの排ガス通路中に設けられた酸素濃度計からの出力値をもとに排ガス中の酸素濃度を制御するようにしている。
In a continuous steel heating furnace using a normal combustion burner without using a heat storage type switching combustion burner, control for keeping the oxygen concentration in the heating furnace constant is conventionally shown in, for example, Patent Document 1. It has been known.
The combustion control method for combustion equipment shown in Patent Document 1 is a combustion control method for combustion equipment in which outside air can enter. When the fuel flow rate supplied to the crater is equal to or higher than a set value, the air-fuel ratio (air ratio) is within a certain range. To control the oxygen concentration in the exhaust gas. When the flow rate of fuel supplied to the crater is less than the set value, or when the air-fuel ratio exceeds the certain range, the internal pressure of the combustion equipment is operated while maintaining the air-fuel ratio within the certain range to reduce the amount of invading air. The oxygen concentration in the exhaust gas is controlled by adjusting. When controlling the oxygen concentration in the exhaust gas in the combustion control method of the combustion equipment shown in Patent Document 1, the oxygen concentration in the exhaust gas is based on the output value from the oxygen concentration meter provided in the exhaust gas passage from the heating furnace. I try to control the oxygen concentration.

また、蓄熱式切替燃焼バーナを用いる連続式鋼材加熱炉において、加熱炉内の酸素濃度を一定にするための制御をするものとして、従来、例えば特許文献2に示すものが知られている。
特許文献2に示す連続式鋼材加熱炉は、少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有し、燃焼制御帯の排ガス誘引系に排ガス中の酸素濃度を検出する検出器を備えた、連続熱間圧延用鋼材を所定の温度に加熱する連続多帯式のウォーキングビームを用いた連続式鋼材加熱炉である。そして、かかる連続式鋼材加熱炉は、蓄熱式切替燃焼バーナを有する燃焼制御帯の誘引排ガスが集合する誘引排ガス本管の、蓄熱式切替燃焼バーナを有する燃焼制御帯毎の誘引排ガスヘッダ管との合流部の下流側に、少なくとも2箇所以上の排ガス中の酸素濃度を検出する前記酸素濃度検出器と、当該検出器の検出値に基づいて炉内の空気比を制御する制御手段を設置している。
Further, in a continuous steel heating furnace using a heat storage type switching combustion burner, conventionally, for example, the one shown in Patent Document 2 is known as a control for keeping the oxygen concentration in the heating furnace constant.
The continuous steel heating furnace shown in Patent Document 2 has a heat storage type switching combustion burner in at least two combustion control bands, and has a detector for detecting the oxygen concentration in the exhaust gas in the exhaust gas attraction system in the combustion control band. This is a continuous steel material heating furnace using a continuous multi-band walking beam that heats a steel material for continuous hot rolling to a predetermined temperature. Then, such a continuous steel heating furnace is connected to the attracted exhaust gas main which collects the attracted exhaust gas of the combustion control band having the heat storage type switching combustion burner, and the attracted exhaust gas header pipe for each combustion control band having the heat storage type switching combustion burner. On the downstream side of the confluence, the oxygen concentration detector that detects the oxygen concentration in the exhaust gas at least two places and the control means that controls the air ratio in the furnace based on the detection value of the detector are installed. There is.

特開昭55−33529号公報Japanese Unexamined Patent Publication No. 55-33529 特許第4653689号公報Japanese Patent No. 4653689

しかしながら、これら特許文献1に示す燃焼設備の燃焼制御方法及び特許文献2に示す連続式鋼材加熱炉にあっては、以下の問題点があった。
即ち、特許文献1に示す燃焼設備の燃焼制御方法の場合、蓄熱式切替燃焼バーナを用いずに通常の燃焼バーナを用いる連続式鋼材加熱炉において、加熱炉内の酸素濃度を一定にするための制御をするものであり、蓄熱式切替燃焼バーナを用いる連続式鋼材加熱炉において、加熱炉内の酸素濃度を一定にするための制御をするものとして適していない。蓄熱式切替燃焼バーナを用いずに通常の燃焼バーナを用いて燃焼した場合、排ガスは、加熱炉から排ガス通路を通って外部に放出されるため、特許文献1のように、加熱炉からの排ガス通路中に設けられた酸素濃度計からの出力値をもとに排ガス中の酸素濃度を制御することができる。しかし、蓄熱式切替燃焼バーナを用いて燃焼した場合、発生した排ガスの多く(発生した排ガスの約80%程度)は蓄熱式切替燃焼バーナで吸引され、残りの排ガス(発生した排ガスの20%程度)は加熱炉内を通過して排ガス通路を通り、この排ガス通路を通る排ガス量は少ない。このため、特許文献1では、蓄熱式切替燃焼バーナを用いる連続式鋼材加熱炉において、加熱炉内の酸素濃度を一定にするための制御、即ち空気比の制御をするものとして適していない。
However, the combustion control method of the combustion equipment shown in Patent Document 1 and the continuous steel heating furnace shown in Patent Document 2 have the following problems.
That is, in the case of the combustion control method of the combustion equipment shown in Patent Document 1, in a continuous steel heating furnace using a normal combustion burner without using a heat storage type switching combustion burner, in order to keep the oxygen concentration in the heating furnace constant. It controls, and is not suitable for controlling to keep the oxygen concentration in the heating furnace constant in a continuous steel heating furnace using a heat storage type switching combustion burner. When burning using a normal combustion burner without using a heat storage type switching combustion burner, the exhaust gas is discharged from the heating furnace to the outside through the exhaust gas passage, so that the exhaust gas from the heating furnace is discharged as in Patent Document 1. The oxygen concentration in the exhaust gas can be controlled based on the output value from the oxygen concentration meter provided in the passage. However, when burned using the heat storage type switching combustion burner, most of the generated exhaust gas (about 80% of the generated exhaust gas) is sucked by the heat storage type switching combustion burner, and the remaining exhaust gas (about 20% of the generated exhaust gas). ) Passes through the heating furnace and passes through the exhaust gas passage, and the amount of exhaust gas passing through this exhaust gas passage is small. Therefore, in Patent Document 1, in a continuous steel heating furnace using a heat storage type switching combustion burner, it is not suitable for controlling the oxygen concentration in the heating furnace to be constant, that is, controlling the air ratio.

一方、特許文献2に示す連続式鋼材加熱炉の場合、少なくとも二つの燃焼制御帯に蓄熱式切替燃焼バーナを有する連続式鋼材加熱炉において、加熱炉内の酸素濃度を一定にするための制御をするものである。ここで、かかる連続式鋼材加熱炉は、蓄熱式切替燃焼バーナを有する燃焼制御帯の誘引排ガスが集合する誘引排ガス本管の、蓄熱式切替燃焼バーナを有する燃焼制御帯毎の誘引排ガスヘッダ管との合流部の下流側に、少なくとも2箇所以上の排ガス中の酸素濃度を検出する酸素濃度検出器を備えている。そして、この酸素濃度検出器から検出された検出値のみを用いて空気比の制御を行っている。 On the other hand, in the case of the continuous steel heating furnace shown in Patent Document 2, in the continuous steel heating furnace having a heat storage type switching combustion burner in at least two combustion control bands, control for keeping the oxygen concentration in the heating furnace constant is performed. To do. Here, the continuous steel heating furnace is a head of the attracted exhaust gas where the attracted exhaust gas of the combustion control band having the heat storage type switching combustion burner is collected, and the attracted exhaust gas header pipe of each combustion control band having the heat storage type switching combustion burner. An oxygen concentration detector for detecting the oxygen concentration in the exhaust gas at at least two places is provided on the downstream side of the confluence of the two. Then, the air ratio is controlled using only the detected value detected from this oxygen concentration detector.

しかしながら、蓄熱式切替燃焼バーナを用いて燃焼した場合、前述したように、加熱炉内で発生した排ガスは、その多く(発生した排ガスの約80%程度)は蓄熱式切替燃焼バーナで吸引され、残りの排ガス(発生した排ガスの20%程度)は当該蓄熱式切替燃焼バーナが設けられた燃焼制御帯から下流側の燃焼制御帯に流れ、加熱炉内を通過して排ガス通路を通る。
従って、特許文献2のように、蓄熱式切替燃焼バーナを有する燃焼制御帯の誘引排ガスが集合する誘引排ガス本管に設けられた酸素濃度検出器から検出された排ガス中の酸素濃度の検出値のみを用いて空気比の制御を行ったとしても、燃焼制御帯毎の空気比を適切に制御することができない。
However, when the combustion is performed using the heat storage type switching combustion burner, as described above, most of the exhaust gas generated in the heating furnace (about 80% of the generated exhaust gas) is sucked by the heat storage type switching combustion burner. The remaining exhaust gas (about 20% of the generated exhaust gas) flows from the combustion control zone provided with the heat storage type switching combustion burner to the combustion control zone on the downstream side, passes through the heating furnace, and passes through the exhaust gas passage.
Therefore, as in Patent Document 2, only the detected value of the oxygen concentration in the exhaust gas detected from the oxygen concentration detector provided in the attracted exhaust gas main where the attracted exhaust gas of the combustion control band having the heat storage type switching combustion burner gathers. Even if the air ratio is controlled by using the above, the air ratio for each combustion control band cannot be appropriately controlled.

よって、本発明はこれら従来の問題点を解決するためになされたものであり、その目的は、少なくとも1つの燃焼制御帯に蓄熱式切替燃焼バーナを設けた連続式鋼材加熱炉において、燃焼制御帯毎の空気比を高い精度で適正空気比に制御することができる、連続式鋼材加熱炉、連続式鋼材加熱炉の空気比制御方法及び鋼材の製造方法を提供することにある。 Therefore, the present invention has been made to solve these conventional problems, and an object thereof is a combustion control band in a continuous steel heating furnace provided with a heat storage type switching combustion burner in at least one combustion control band. It is an object of the present invention to provide a continuous steel heating furnace, a continuous steel heating furnace air ratio control method, and a steel manufacturing method capable of controlling each air ratio to an appropriate air ratio with high accuracy.

上記目的を達成するために、本発明の一態様に係る連続式鋼材加熱炉は、炉長方向に沿って複数の燃焼制御帯を有する炉体と、少なくとも1つの前記燃焼制御帯に設けられた蓄熱式切替燃焼バーナとを備えた連続式鋼材加熱炉であって、前記蓄熱式切替燃焼バーナを設けた燃焼制御帯毎の吸引排ガスが集合する吸引排ガス本管に設けられた、吸引排ガス中の酸素濃度を検出する吸引排ガス用酸素濃度検出器及び吸引排ガスの流量を検出する吸引排ガス用流量検出器と、前記炉体の、排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の箇所に設けられた、炉尻排ガス中の酸素濃度を検出する炉尻排ガス用酸素濃度検出器及び炉尻排ガスの流量を検出する炉尻排ガス用流量検出器と、前記吸引排ガス用酸素濃度検出器の検出値、前記吸引排ガス用流量検出器の検出値、前記炉尻排ガス用酸素濃度検出器の検出値、及び前記炉尻排ガス用流量検出器の検出値に基づいて、前記燃焼制御帯毎の空気比を制御する空気比制御部とを備えていることを要旨とする。 In order to achieve the above object, the continuous steel heating furnace according to one aspect of the present invention is provided in a furnace body having a plurality of combustion control zones along the direction of the furnace length and at least one of the combustion control zones. A continuous steel heating furnace equipped with a heat storage type switching combustion burner, in which the suction exhaust gas is provided in the suction exhaust gas main where the suction exhaust gas for each combustion control band provided with the heat storage type switching combustion burner is collected. An oxygen concentration detector for suction exhaust gas that detects the oxygen concentration, a flow rate detector for suction exhaust gas that detects the flow rate of the suction exhaust gas, and a location on the downstream side of the combustion control zone on the most downstream side of the exhaust gas flow. Detection of the provided oxygen concentration detector for exhaust gas, a flow detector for exhaust gas, and an oxygen concentration detector for suction exhaust gas, which detect the oxygen concentration in the exhaust gas. Air ratio for each combustion control band based on the value, the detection value of the suction exhaust gas flow rate detector, the detection value of the furnace tail exhaust gas oxygen concentration detector, and the detection value of the furnace tail exhaust gas flow rate detector. The gist is that it is equipped with an air ratio control unit that controls.

また、本発明の別の態様に係る連続式鋼材加熱炉の空気比制御方法は、炉長方向に沿って複数の燃焼制御帯を有する炉体と、少なくとも1つの前記燃焼制御帯に設けられた蓄熱式切替燃焼バーナとを備えた連続式鋼材加熱炉の空気比制御方法であって、前記蓄熱式切替燃焼バーナを設けた燃焼制御帯毎の吸引排ガスが集合する吸引排ガス本管に設けられた吸引排ガス用酸素濃度検出器により、吸引排ガス中の酸素濃度を検出する吸引排ガス酸素濃度検出ステップと、前記吸引排ガス本管に設けられた吸引排ガス用流量検出器により、吸引排ガスの流量を検出する吸引排ガス流量検出ステップと、前記炉体の、排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の設置箇所に設けられた炉尻排ガス用酸素濃度検出器により、炉尻排ガス中の酸素濃度を検出する炉尻排ガス酸素濃度検出ステップと、前記設置箇所に設けられた炉尻排ガス用流量検出器により、炉尻排ガスの流量を検出する炉尻排ガス流量検出ステップと、前記吸引排ガス用酸素濃度検出器の検出値、前記吸引排ガス用流量検出器の検出値、前記炉尻排ガス用酸素濃度検出器の検出値、及び前記炉尻排ガス用流量検出器の検出値に基づいて、前記燃焼制御帯毎の空気比を制御する空気比制御ステップとを含むことを要旨とする。 Further, the method for controlling the air ratio of the continuous steel heating furnace according to another aspect of the present invention is provided in a furnace body having a plurality of combustion control zones along the direction of the furnace length and at least one of the combustion control zones. It is an air ratio control method of a continuous steel heating furnace equipped with a heat storage type switching combustion burner, and is provided in a suction exhaust gas main where suction exhaust gas for each combustion control band provided with the heat storage type switching combustion burner gathers. The suction exhaust gas oxygen concentration detection step for detecting the oxygen concentration in the suction exhaust gas by the suction exhaust gas oxygen concentration detector, and the suction exhaust gas flow rate detector provided in the suction exhaust gas main pipe detect the flow rate of the suction exhaust gas. Oxygen concentration in the furnace butt exhaust gas by the suction exhaust gas flow rate detection step and the oxygen concentration detector for the furnace butt exhaust gas provided at the installation location on the downstream side of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body. Combustion exhaust gas oxygen concentration detection step for detecting, a combustion tail exhaust gas flow rate detection step for detecting the flow rate of the furnace tail exhaust gas by the combustion tail exhaust gas flow rate detector provided at the installation location, and the oxygen concentration for suction exhaust gas. The combustion control band is based on the detection value of the detector, the detection value of the suction exhaust gas flow rate detector, the detection value of the furnace tail exhaust gas oxygen concentration detector, and the detection value of the furnace tail exhaust gas flow rate detector. The gist is to include an air ratio control step for controlling each air ratio.

また、本発明の別の態様に係る鋼材の製造方法は、前述の連続式鋼材加熱炉の空気比制御方法により鋼材を加熱することを要旨とする。 The gist of the method for producing a steel material according to another aspect of the present invention is that the steel material is heated by the above-mentioned air ratio control method for a continuous steel material heating furnace.

本発明に係る連続式鋼材加熱炉、連続式鋼材加熱炉の空気比制御方法及び鋼材の製造方法によれば、少なくとも1つの燃焼制御帯に蓄熱式切替燃焼バーナを設けた連続式鋼材加熱炉において、燃焼制御帯毎の空気比を高い精度で適正空気比に制御することができる、連続式鋼材加熱炉、連続式鋼材加熱炉の空気比制御方法及び鋼材の製造方法を提供できる。 According to the air ratio control method and the steel material manufacturing method of the continuous steel material heating furnace and the continuous steel material heating furnace according to the present invention, in the continuous steel material heating furnace provided with a heat storage type switching combustion burner in at least one combustion control band. It is possible to provide a continuous steel heating furnace, a continuous steel heating furnace air ratio control method, and a steel manufacturing method capable of controlling the air ratio for each combustion control band to an appropriate air ratio with high accuracy.

本発明の一実施形態に係る連続式鋼材加熱炉の概略構成を示す図である。It is a figure which shows the schematic structure of the continuous steel material heating furnace which concerns on one Embodiment of this invention. 図1に示す連続式鋼材加熱炉における空気比制御の処理の流れを説明するためのフローチャートである。It is a flowchart for demonstrating the flow of the process of air ratio control in the continuous steel heating furnace shown in FIG. 図2に示すステップS5(空気比制御ステップ)における処理の流れの詳細を示すフローチャートである。It is a flowchart which shows the detail of the processing flow in step S5 (air ratio control step) shown in FIG. 本発明例による燃料原単位と比較例による燃料原単位とを比較して示すグラフである。It is a graph which shows the fuel intensity by the example of this invention and the fuel intensity by the comparative example by comparison.

以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。
また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, arrangement, etc. of the components. It is not specified in the following embodiments.
The drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the plane dimension are different from the actual ones, and there are parts where the relationship and ratio of the dimensions are different between the drawings.

図1には、本発明の一実施形態に係る連続式鋼材加熱炉の概略構成が示されている。
図1に示す連続式鋼材加熱炉1は、被加熱材としての鋼材Sを加熱するものであり、鋼材Sの搬送方向である炉長方法に延びる炉体2を備えている。この炉体2は、鋼材Sの装入側から抽出側に向けて炉長方向に沿って燃焼制御帯としての予熱帯3、第1加熱帯4、第2加熱帯5及び均熱帯6をこの順に備えている。
FIG. 1 shows a schematic configuration of a continuous steel heating furnace according to an embodiment of the present invention.
The continuous steel material heating furnace 1 shown in FIG. 1 heats a steel material S as a material to be heated, and includes a furnace body 2 extending in a furnace length method which is a transport direction of the steel material S. The furnace body 2 includes a pre-tropical 3, a first heating zone 4, a second heating zone 5, and an average tropical 6 as combustion control zones along the furnace length direction from the charging side to the extraction side of the steel material S. Prepared in order.

また、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々には、複数(本実施形態にあっては6つ、上部に3つ、下部に3つ)の蓄熱式切替燃焼バーナ10が設けられている。各蓄熱式切替燃焼バーナ10は、各予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の炉壁に対向して設置された一対の蓄熱式バーナ10a,10bで構成される。各蓄熱式バーナ10a,10bは、それぞれセラミックボール等で構成される蓄熱体11a,11bを備えている。そして、蓄熱式バーナ10a及び10bで交互に燃焼を行うと共に、非燃焼状態の蓄熱式バーナ10aあるいは10bを介して炉体2内、即ち各予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6から吸引放出し、このとき燃焼に伴う排ガスを蓄熱体11aあるいは11bを介して排出する。これによって、この吸引排ガスの熱を蓄熱体11aあるいは11bに蓄えておき、次回の燃焼時には燃焼用空気を蓄熱体11aあるいは11bを介して蓄熱式バーナ10aあるいは10bに供給することによって、排ガス熱を燃料ガスの予熱に利用するようになっている。 Further, each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 has a plurality (6 in the present embodiment, 3 in the upper part, 3 in the lower part). A heat storage type switching combustion burner 10 is provided. Each heat storage type switching combustion burner 10 is composed of a pair of heat storage type burners 10a and 10b installed facing the furnace walls of each pre-tropical 3, first heating zone 4, second heating zone 5, and even tropical 6. Will be done. Each of the heat storage type burners 10a and 10b includes heat storage bodies 11a and 11b made of ceramic balls or the like, respectively. Then, the heat storage type burners 10a and 10b are alternately burned, and the inside of the furnace body 2 through the non-combustion type heat storage type burners 10a or 10b, that is, each pre-tropical 3, first heating zone 4, second heating zone. The exhaust gas from combustion is discharged from the heat storage body 11a or 11b by suction and discharge from the heat storage body 11a or 11b. As a result, the heat of the sucked exhaust gas is stored in the heat storage body 11a or 11b, and the combustion air is supplied to the heat storage type burner 10a or 10b via the heat storage body 11a or 11b at the time of the next combustion, thereby supplying the exhaust gas heat. It is designed to be used for preheating fuel gas.

そして、一方側の蓄熱式バーナ10aは、燃料ガス切替弁12aを設置した燃料ガスヘッダ管13aに接続され、他方側の蓄熱式バーナ10bは、燃料ガス切替弁12bを設置した燃料ガスヘッダ管13bに接続されている。そして、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての燃料ガスヘッダ管13aは燃料ガス集合管14aに集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての燃料ガスヘッダ管13bは燃料ガス集合管14bに集合している。そして、燃料ガス集合管14a及び燃料ガス集合管14bは共通の燃料ガス集合管14に集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々の燃料ガス集合管14は共通の燃料ガス供給ライン16に接続されている。
そして、各燃料ガス集合管14a及び各燃料ガス集合管14bには、それぞれの管内を流れる燃料ガスの流量を測定する燃料ガス流量測定器32が設置されるとともに、各燃料ガス集合管14には、燃料ガス流量調節弁15が設置されている。
The heat storage type burner 10a on one side is connected to the fuel gas header pipe 13a in which the fuel gas switching valve 12a is installed, and the heat storage type burner 10b on the other side is connected to the fuel gas header pipe 13b in which the fuel gas switching valve 12b is installed. Has been done. Then, all the fuel gas header pipes 13a in each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 are gathered in the fuel gas collecting pipe 14a, and the pre-tropical 3, the first heating zone 4 , The second heating zone 5, and all the fuel gas header pipes 13b in each of the tropics 6 are gathered in the fuel gas collecting pipe 14b. Then, the fuel gas collecting pipe 14a and the fuel gas collecting pipe 14b are gathered in the common fuel gas collecting pipe 14, and each fuel gas of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 is collected. The collecting pipe 14 is connected to a common fuel gas supply line 16.
A fuel gas flow rate measuring device 32 for measuring the flow rate of the fuel gas flowing in each pipe is installed in each fuel gas collecting pipe 14a and each fuel gas collecting pipe 14b, and each fuel gas collecting pipe 14 is provided with a fuel gas flow measuring device 32. , The fuel gas flow rate control valve 15 is installed.

また、一方側の蓄熱式バーナ10aの蓄熱体11aは、燃焼用空気切替弁17aを設置した燃焼用空気ヘッダ管18aに接続され、他方側の蓄熱式バーナ10bの蓄熱体11bは、燃焼用空気切替弁17bを設置した燃焼用空気ヘッダ管18bに接続されている。そして、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての燃焼用空気ヘッダ管18aは燃焼用空気集合管19aに集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての燃焼用空気ヘッダ管18bは燃焼用空気集合管19bに集合している。そして、燃焼用空気集合管19a及び燃焼用空気集合管19bは共通の燃焼用空気集合管19に集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々の燃焼用空気集合管19は共通の燃焼用空気供給本管21に接続されている。
そして、各燃焼用空気集合管19a及び各燃焼用空気集合管19bには、それぞれの管内を流れる燃焼用空気の流量を測定する燃焼用空気流量測定器33が設置されるとともに、各燃焼用空気集合管19には、燃焼用空気流量調節弁20が設置されている。なお、燃焼用空気供給本管21は燃焼用空気ブロワ22に接続されている。
Further, the heat storage body 11a of the heat storage type burner 10a on one side is connected to the combustion air header pipe 18a in which the combustion air switching valve 17a is installed, and the heat storage body 11b of the heat storage type burner 10b on the other side is the combustion air. It is connected to the combustion air header pipe 18b in which the switching valve 17b is installed. Then, all the combustion air header pipes 18a in each of the pre-tropics 3, the first heating zone 4, the second heating zone 5, and the average tropics 6 are gathered in the combustion air collecting pipe 19a, and the pre-tropics 3, the first All the combustion air header pipes 18b in each of the heating zone 4, the second heating zone 5, and the solitary tropics 6 are gathered in the combustion air collecting pipe 19b. Then, the combustion air collecting pipe 19a and the combustion air collecting pipe 19b are gathered in the common combustion air collecting pipe 19, and each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 The combustion air collecting pipe 19 is connected to a common combustion air supply main 21.
A combustion air flow rate measuring device 33 for measuring the flow rate of the combustion air flowing in each of the combustion air collecting pipes 19a and each combustion air collecting pipe 19b is installed, and each combustion air is installed. A combustion air flow control valve 20 is installed in the collecting pipe 19. The combustion air supply main 21 is connected to the combustion air blower 22.

また、一方側の蓄熱式バーナ10aの蓄熱体11aは、排ガス切替弁23aを設置した排ガスヘッダ管24aに接続され、他方側の蓄熱式バーナ10bの蓄熱体11bは、排ガス切替弁23bを設置した排ガスヘッダ管24bに接続されている。そして、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての排ガスヘッダ管24aは排ガス集合管25aに集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての排ガスヘッダ管24bは排ガス集合管25bに集合している。そして、排ガス集合管25a及び排ガス集合管25bは共通の排ガス集合管25に集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々の排ガス集合管25は、共通の吸引排ガス本管27に接続されている。そして、各排ガス集合管25には、排ガス流量調節弁26が設置されている。また、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々毎の吸引排ガスが集合する吸引排ガス本管27には、吸引排ガス中の酸素濃度を検出する吸引排ガス用酸素濃度検出器28が1つ設けられている。また、この吸引排ガス本管27には、管内を流れる吸引排ガスの流量を検出する吸引排ガス用流量検出器35が1つ設けられている。吸引排ガス本管27は、吸引排ガスファン29に接続されている。 Further, the heat storage body 11a of the heat storage type burner 10a on one side is connected to the exhaust gas header pipe 24a in which the exhaust gas switching valve 23a is installed, and the heat storage body 11b of the heat storage type burner 10b on the other side is provided with the exhaust gas switching valve 23b. It is connected to the exhaust gas header pipe 24b. Then, all the exhaust gas header pipes 24a in each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 are gathered in the exhaust gas collecting pipe 25a, and the pre-tropical 3, the first heating zone 4, All the exhaust gas header pipes 24b in each of the second heating zone 5 and the solitary tropics 6 are gathered in the exhaust gas collecting pipe 25b. Then, the exhaust gas collecting pipe 25a and the exhaust gas collecting pipe 25b are gathered in the common exhaust gas collecting pipe 25, and the exhaust gas collecting pipes 25 of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the soaking tropical 6 are respectively. , It is connected to the common suction exhaust gas main 27. An exhaust gas flow rate control valve 26 is installed in each exhaust gas collecting pipe 25. Further, in the suction exhaust gas main 27 where the suction exhaust gas for each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 is collected, the suction exhaust gas for detecting the oxygen concentration in the suction exhaust gas is detected. One oxygen concentration detector 28 is provided. Further, the suction exhaust gas main 27 is provided with one suction exhaust gas flow rate detector 35 for detecting the flow rate of the suction exhaust gas flowing in the pipe. The suction exhaust gas main 27 is connected to the suction exhaust gas fan 29.

蓄熱式バーナ10aあるいは10bから吸引された吸引排ガスは、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々毎に排ガス集合管25に集合し、排ガス流量調節弁26で流量が調節された後、全体が吸引排ガス本管27で集合し、吸引排ガスファン29を通過後、煙突8に導かれる。
この吸引排ガスは、炉体2内で発生した排ガスの約80%であり、残りの約20%の排ガス(以後、炉尻排ガスと称する)は、炉体2内を通過することになる。通常、連続式鋼材加熱炉1においては、鋼材Sの流れと炉体2内の炉尻排ガスの流れは向流状態となっており、炉尻排ガスは、鋼材Sの抽出側から装入側へと鋼材Sと同じ空間を流れる。その後、この炉尻排ガスは、装入扉(図示せず)前で鋼材Sと分離され、炉体2の、排ガス流れにおいて最も下流側の予熱帯3よりも下流側に設置された煙道7を介して煙突8へと導かれる。
The sucked exhaust gas sucked from the heat storage type burner 10a or 10b collects in the exhaust gas collecting pipe 25 for each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6, and the exhaust gas flow control valve. After the flow rate is adjusted by 26, the whole is assembled by the suction exhaust gas main 27, passes through the suction exhaust gas fan 29, and is guided to the chimney 8.
This suction exhaust gas is about 80% of the exhaust gas generated in the furnace body 2, and the remaining about 20% of the exhaust gas (hereinafter referred to as the furnace butt exhaust gas) passes through the furnace body 2. Normally, in the continuous steel heating furnace 1, the flow of the steel material S and the flow of the furnace butt exhaust gas in the furnace body 2 are in a countercurrent state, and the furnace butt exhaust gas flows from the extraction side of the steel material S to the charging side. And flows in the same space as the steel material S. After that, the exhaust gas from the furnace butt is separated from the steel material S in front of the charging door (not shown), and the flue 7 installed in the furnace body 2 on the downstream side of the pre-tropical 3 on the most downstream side in the exhaust gas flow. It is led to the chimney 8 through.

そして、煙道7には、炉尻排ガス中の酸素濃度を検出する炉尻排ガス用酸素濃度検出器9が1つ設置されている。また、煙道7には、煙道7内を流れる炉尻排ガスの流量を検出する炉尻排ガス用流量検出器34が1つ設置されている。
また、連続式鋼材加熱炉1は、吸引排ガス用酸素濃度検出器28の検出値、吸引排ガス用流量検出器35の検出値、炉尻排ガス用酸素濃度検出器9の検出値、及び炉尻排ガス用流量検出器34の検出値に基づいて、各燃焼制御帯(予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々)毎の空気比を制御する空気比制御部30を備えている。
The flue 7 is provided with one oxygen concentration detector 9 for the exhaust gas of the furnace butt, which detects the oxygen concentration in the exhaust gas of the furnace butt. Further, one flue gas flow rate detector 34 for detecting the flow rate of the fire butt exhaust gas flowing in the flue 7 is installed in the flue 7.
Further, in the continuous steel heating furnace 1, the detection value of the oxygen concentration detector 28 for suction exhaust gas, the detection value of the flow rate detector 35 for suction exhaust gas, the detection value of the oxygen concentration detector 9 for furnace butt exhaust gas, and the furnace butt exhaust gas Air ratio control that controls the air ratio for each combustion control zone (pre-tropical 3, first heating zone 4, second heating zone 5, and average tropical 6) based on the detection value of the flow detector 34. The part 30 is provided.

空気比制御部30は、吸引排ガス用酸素濃度検出器28及び炉尻排ガス用酸素濃度検出器9に接続されるとともに、図示はしないが各燃料ガス流量測定器32、各燃焼用空気流量測定器33、炉尻排ガス用流量検出器34、及び吸引排ガス用流量検出器35に接続されている。また、空気比制御部30は、上位計算機31に接続されている。
空気比制御部30は、演算処理機能を有するコンピュータシステムであり、ハードウェアに予め記憶された各種専用のコンピュータプログラムを実行することにより、空気比制御機能(ステップS5)をソフトウェア上で実現できるようになっている。
The air ratio control unit 30 is connected to the suction exhaust gas oxygen concentration detector 28 and the furnace butt exhaust gas oxygen concentration detector 9, and although not shown, each fuel gas flow rate measuring device 32 and each combustion air flow rate measuring device. It is connected to 33, a flow rate detector 34 for exhaust gas from the furnace butt, and a flow rate detector 35 for suction exhaust gas. Further, the air ratio control unit 30 is connected to the host computer 31.
The air ratio control unit 30 is a computer system having an arithmetic processing function, and the air ratio control function (step S5) can be realized on software by executing various dedicated computer programs stored in advance in the hardware. It has become.

次に、連続式鋼材加熱炉1における空気比制御方法について、図2及び図3を参照して説明する。
先ず、連続式鋼材加熱炉の空気比制御に際しては、図2に示すように、ステップS1で、吸引排ガス用酸素濃度検出器28が吸引排ガス中の酸素濃度を検出する(吸引排ガス用酸素濃度検出ステップ)。
次いで、ステップS2で、吸引排ガス用流量検出器35が吸引排ガス本管27内を流れる吸引排ガスの流量を検出する(吸引排ガス流量検出ステップ)。
Next, the air ratio control method in the continuous steel heating furnace 1 will be described with reference to FIGS. 2 and 3.
First, when controlling the air ratio of the continuous steel heating furnace, as shown in FIG. 2, in step S1, the oxygen concentration detector 28 for suction exhaust gas detects the oxygen concentration in the suction exhaust gas (oxygen concentration detection for suction exhaust gas). Step).
Next, in step S2, the suction exhaust gas flow rate detector 35 detects the flow rate of the suction exhaust gas flowing in the suction exhaust gas main 27 (suction exhaust gas flow rate detection step).

次いで、ステップS3で、炉尻排ガス用酸素濃度検出器9が炉尻排ガス中の酸素濃度を検出する(炉尻排ガス酸素濃度検出ステップ)。
その後、ステップS4で、炉尻排ガス用流量検出器34が炉尻排ガスの流量を検出する(炉尻排ガス流量検出ステップ)。
そして、ステップS5で、空気比制御部30が、ステップS1で検出した吸引排ガス用酸素濃度検出器28の検出値O2I(%)、ステップS2で検出した吸引排ガス用流量検出器35の検出値FGI(Nm/H)、ステップS3で検出した炉尻排ガス用酸素濃度検出器9の検出値O2E(%)、及びステップS4で検出した炉尻排ガス用流量検出器34の検出値FGE(Nm/H)に基づいて、各燃焼制御帯(予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々毎の空気比を制御する(空気比制御ステップ)。
Next, in step S3, the furnace butt exhaust gas oxygen concentration detector 9 detects the oxygen concentration in the furnace butt exhaust gas (fire butt exhaust gas oxygen concentration detection step).
Then, in step S4, the furnace butt exhaust gas flow rate detector 34 detects the flow rate of the furnace butt exhaust gas (fire butt exhaust gas flow rate detection step).
Then, in step S5, the air ratio control unit 30 detects the suction exhaust gas oxygen concentration detector 28 detected in step S1 O2I (%), and the suction exhaust gas flow rate detector 35 detected in step S2 FGI. (Nm 3 / H), the detection value O2E (%) of the furnace butt exhaust gas oxygen concentration detector 9 detected in step S3, and the detection value FGE (Nm 3) of the furnace butt exhaust gas flow rate detector 34 detected in step S4. Based on / H), the air ratio of each combustion control zone (pre-tropical 3, first heating zone 4, second heating zone 5, and average tropical 6) is controlled (air ratio control step).

ここで、このステップS5(空気比制御ステップ)について説明すると、図3に示すように、先ず、空気比制御部30は、ステップS51において、炉尻排ガス用酸素濃度検出器9の検出値O2E(%)、吸引排ガス用流量検出器35の検出値FGI(Nm/H)と炉尻排ガス用流量検出器34の検出値FGE(Nm/H)とから算出される炉尻排ガスの流量の比率Y、吸引排ガス用酸素濃度検出器28の検出値O2I(%)、及び吸引排ガス用流量検出器35の検出値FGI(Nm/H)と炉尻排ガス用流量検出器34の検出値FGE(Nm/H)とから算出される吸引排ガスの流量の比率Xに基づいて、次の(1)式に基づき、炉体2から排出される排ガス全体の酸素濃度O2J(%)を算出する(排ガス全体酸素濃度算出ステップ)。
O2J=O2E×Y+O2I×X ・・・(1)
X=FGI/(FGI+FGE)
Y=FGE/(FGI+FGE)
Here, the step S5 (air ratio control step) will be described. As shown in FIG. 3, the air ratio control unit 30 first, in step S51, detects the value O2E (detection value O2E) of the furnace butt exhaust gas oxygen concentration detector 9. %), The flow rate of the furnace butt exhaust gas calculated from the detection value FGI (Nm 3 / H) of the suction exhaust gas flow rate detector 35 and the detection value FGE (Nm 3 / H) of the furnace butt exhaust gas flow rate detector 34. Ratio Y, detection value O2I (%) of oxygen concentration detector 28 for suction exhaust gas, detection value FGI (Nm 3 / H) of flow rate detector 35 for suction exhaust gas, and detection value FGE of flow rate detector 34 for furnace butt exhaust gas Based on the ratio X of the flow rate of the sucked exhaust gas calculated from (Nm 3 / H), the oxygen concentration O2J (%) of the entire exhaust gas discharged from the furnace body 2 is calculated based on the following equation (1). (Exhaust gas total oxygen concentration calculation step).
O2J = O2E × Y + O2I × X ・ ・ ・ (1)
X = FGI / (FGI + FGE)
Y = FGE / (FGI + FGE)

次いで、空気比制御部30は、ステップS52において、燃焼制御帯(均熱帯6(i=1)、第2加熱帯5(i=2)、第1加熱帯4(i=3)、予熱帯3(i=4))毎の燃焼空気流量の検出値FAi(Nm/H)、燃焼制御帯毎の空気比の検出値μi、理論空気量A0(Nm/kg)、及び燃焼制御帯毎の燃料ガス流量の検出値FFi(Nm/H)に基づいて、次の(2)式に基づいて、当該燃焼制御帯毎の寄与率|Ai|/Σ|Ai|を算出する(寄与率算出ステップ)。
|Ai|/Σ|Ai|=|FAi−μi×A0×FFi|/Σ|FAi−μi×A0×FFi ・・・(2)
Next, in step S52, the air ratio control unit 30 sets the combustion control zone (equal tropical 6 (i = 1), second heating zone 5 (i = 2), first heating zone 4 (i = 3), pre-tropical). Detected value FAi (Nm 3 / H) of combustion air flow rate for each 3 (i = 4)), detected value μi of air ratio for each combustion control band, theoretical air volume A0 (Nm 3 / kg), and combustion control band Based on the detected value FFi (Nm 3 / H) of the fuel gas flow rate for each, the contribution rate | Ai | / Σ | Ai | for each combustion control band is calculated (contribution) based on the following equation (2). Rate calculation step).
| Ai | / Σ | Ai | = | FAi-μi × A0 × FFi | / Σ | FAi-μi × A0 × FFi ・ ・ ・ (2)

ここで、燃焼制御帯毎の燃焼空気流量の検出値FAi(Nm/H)は、各燃焼制御帯に設置された燃焼用空気流量測定器33の検出値であり、その検出値が空気比制御部30に入力される。また、燃焼制御帯毎の空気比の検出値μiは、燃焼制御帯毎の燃焼空気流量の検出値FAi(Nm/H)を理論空気量A0で除して求められる。また、理論空気量A0(Nm/kg)は、上位計算機31から空気比制御部30に入力される。更に、燃焼制御帯毎の燃料ガス流量の検出値FFi(Nm/H)は、各燃焼制御帯に設置された燃料ガス流量測定器32の検出値であり、その検出値が空気比制御部30に入力される。 Here, the detection value FAi (Nm 3 / H) of the combustion air flow rate for each combustion control band is the detection value of the combustion air flow rate measuring device 33 installed in each combustion control band, and the detected value is the air ratio. It is input to the control unit 30. Further, the detected value μi of the air ratio for each combustion control band is obtained by dividing the detected value FAi (Nm 3 / H) of the combustion air flow rate for each combustion control band by the theoretical air amount A0. Further, the theoretical air amount A0 (Nm 3 / kg) is input from the host computer 31 to the air ratio control unit 30. Further, the detection value FFi (Nm 3 / H) of the fuel gas flow rate for each combustion control band is the detection value of the fuel gas flow rate measuring device 32 installed in each combustion control band, and the detected value is the air ratio control unit. It is input to 30.

次いで、空気比制御部30は、ステップS53において、予め設定された燃焼制御帯毎の空気比μ0iと、ステップS51で算出された炉体2から排出される排ガス全体の酸素濃度O2J(%)、炉体2から排出される排ガス全体の酸素濃度の目標値O2M(%)、及びステップS52で算出された燃焼制御帯毎の寄与率|Ai|/Σ|Ai|に基づいて次の(3)式で算出される燃焼制御帯毎の空気比の補正値ΔO2μiとから、次の(4)式に基づいて燃焼制御帯毎の適正空気比μCiを算出する(適正空気比算出ステップ)
ΔO2μi=((|Ai|/Σ|Ai|)×αi×βi)×((O2J−O2M)/γi) ・・・(3)
Next, in step S53, the air ratio control unit 30 determines the preset air ratio μ0i for each combustion control band and the oxygen concentration O2J (%) of the entire exhaust gas discharged from the furnace body 2 calculated in step S51. Based on the target value O2M (%) of the oxygen concentration of the entire exhaust gas discharged from the furnace body 2 and the contribution rate for each combustion control band calculated in step S52 | Ai | / Σ | Ai |, the following (3) From the correction value ΔO2μi of the air ratio for each combustion control band calculated by the formula, the appropriate air ratio μCi for each combustion control band is calculated based on the following equation (4) (appropriate air ratio calculation step).
ΔO2μi = ((| Ai | / Σ | Ai |) x αi x βi) x ((O2J-O2M) / γi) ... (3)

ここで、αiはレシオであり、上位計算機31から空気比制御部30に入力される。また、βiはバイアスであり、上位計算機31から空気比制御部30に入力される。また、O2M(%)は、前述したとおり、炉体2から排出される排ガス全体の酸素濃度の目標値であり、上位計算機31から空気比制御部30に入力される。更に、γiは補正係数であり、上位計算機31から空気比制御部30に入力される。
μCi=μ0i+ΔO2μi ・・・(4)
ここで、μ0iは、前述したとおり、予め設定された燃焼制御帯毎の空気比であり、上位計算機31から空気比制御部30に入力される。つまり、(4)式で示すように、空気比制御部30は、ステップS53において、燃焼制御帯毎の適正空気比μCiを、予め設定した燃焼制御帯毎の空気比μ0iに対して焼制御帯毎の空気比の補正値ΔO2μiを付加することで、算出している。
Here, αi is a ratio, which is input from the host computer 31 to the air ratio control unit 30. Further, βi is a bias and is input from the host computer 31 to the air ratio control unit 30. Further, O2M (%) is a target value of the oxygen concentration of the entire exhaust gas discharged from the furnace body 2 as described above, and is input to the air ratio control unit 30 from the host computer 31. Further, γi is a correction coefficient, which is input to the air ratio control unit 30 from the host computer 31.
μCi = μ0i + ΔO2μi ・ ・ ・ (4)
Here, μ0i is an air ratio for each combustion control band set in advance as described above, and is input to the air ratio control unit 30 from the host computer 31. That is, as shown in the equation (4), in step S53, the air ratio control unit 30 sets the appropriate air ratio μCi for each combustion control band to the preset air ratio μ0i for each combustion control band. It is calculated by adding the correction value ΔO2μi of each air ratio.

本実施形態において、燃焼制御帯毎の適正空気比μCiは0.9〜1.05に制御され、より好適には0.9〜1.0に制御される。この制御された燃焼制御帯毎の空気比μCiを0.9〜1.05に設定することで、後述するよう炉体2から排出される排ガス全体の酸素濃度を2.0%以下に低減できる。また、この空気比μCiを、0.9〜1.0に設定することで、より適切に炉体2から排出される排ガス全体の酸素濃度を1.0%以下に低減することができる。 In the present embodiment, the appropriate air ratio μCi for each combustion control band is controlled to 0.9 to 1.05, and more preferably 0.9 to 1.0. By setting the air ratio μCi for each controlled combustion control band to 0.9 to 1.05, the oxygen concentration of the entire exhaust gas discharged from the furnace body 2 can be reduced to 2.0% or less as described later. .. Further, by setting this air ratio μCi to 0.9 to 1.0, the oxygen concentration of the entire exhaust gas discharged from the furnace body 2 can be reduced to 1.0% or less more appropriately.

最後に、空気比制御部30は、ステップS54において、燃焼制御帯(均熱帯6(i=1)、第2加熱帯5(i=2)、第1加熱帯4(i=3)、予熱帯3(i=4))毎の空気比が、ステップS53で算出された燃焼制御帯毎の適正空気比μCiとなるように、燃焼制御帯に供給する燃焼用空気流量(Nm/H)を調整する(燃焼用空気流量調整ステップ)。
ステップ54では、具体的には、空気比制御部30は、燃焼制御帯毎の空気比が、ステップS53で算出された燃焼制御帯毎の適正空気比μCiとなるように、各燃焼制御帯における燃焼用空気流量調節弁20を調節して燃焼制御帯に供給する燃焼用空気流量を調整する。
Finally, in step S54, the air ratio control unit 30 predicts that the combustion control zone (equal tropical 6 (i = 1), second heating zone 5 (i = 2), first heating zone 4 (i = 3), preliminary). Combustion air flow rate (Nm 3 / H) supplied to the combustion control zone so that the air ratio for each tropical 3 (i = 4)) becomes the appropriate air ratio μCi for each combustion control zone calculated in step S53. (Combustion air flow rate adjustment step).
In step 54, specifically, the air ratio control unit 30 in each combustion control band so that the air ratio for each combustion control band becomes the appropriate air ratio μCi for each combustion control band calculated in step S53. The combustion air flow rate adjusting valve 20 is adjusted to adjust the combustion air flow rate supplied to the combustion control band.

このように、本実施形態に係る連続式鋼材加熱炉1及び連続式鋼材加熱炉1における空気比制御方法によれば、蓄熱式切替燃焼バーナ10を設けた燃焼制御帯(均熱帯6、第2加熱帯5、第1加熱帯4、予熱帯3)毎の吸引排ガスが集合する吸引排ガス本管27に設けられた吸引排ガス用酸素濃度検出器28により、吸引排ガス中の酸素濃度を検出する(吸引排ガス用酸素濃度検出ステップ:ステップS1)。そして、前述の吸引排ガス本管27に設けられた吸引排ガス用流量検出器35により、吸引排ガスの流量を検出する(吸引排ガス流量検出ステップ:ステップS2)。また、炉体2の、排ガス流れにおいて最も下流側の燃焼制御帯(予熱帯3)よりも下流側の設置箇所に設けられた炉尻排ガス用酸素濃度検出器9により、炉尻排ガス中の酸素濃度を検出する(炉尻排ガス酸素濃度検出ステップ:ステップS3)。また、前述の設置箇所に設けられた炉尻排ガス用流量検出器34により、炉尻排ガスの流量を検出する(炉尻排ガス流量検出ステップ:ステップS5)。そして、空気比制御部30が、吸引排ガス用酸素濃度検出器28の検出値、吸引排ガス用流量検出器35の検出値、炉尻排ガス用酸素濃度検出器9の検出値、及び炉尻排ガス用流量検出器34の検出値に基づいて、燃焼制御帯毎の空気比を制御する(空気比制御ステップ:ステップS5)。 As described above, according to the air ratio control method in the continuous steel heating furnace 1 and the continuous steel heating furnace 1 according to the present embodiment, the combustion control zone (equal tropical 6, second) provided with the heat storage type switching combustion burner 10. The oxygen concentration in the suction exhaust gas is detected by the oxygen concentration detector 28 for the suction exhaust gas provided in the suction exhaust gas main 27 where the suction exhaust gas for each heating zone 5, the first heating zone 4, and the pre-tropical zone 3) gathers (the oxygen concentration in the suction exhaust gas). Oxygen concentration detection step for suction exhaust gas: Step S1). Then, the flow rate of the suction exhaust gas is detected by the suction exhaust gas flow rate detector 35 provided in the suction exhaust gas main 27 (suction exhaust gas flow rate detection step: step S2). Further, oxygen in the furnace butt exhaust gas is provided by the furnace butt exhaust gas oxygen concentration detector 9 provided at the installation location on the downstream side of the combustion control zone (pre-tropical 3) on the most downstream side in the exhaust gas flow of the furnace body 2. The concentration is detected (furnace exhaust gas oxygen concentration detection step: step S3). Further, the flow rate of the furnace butt exhaust gas is detected by the furnace butt exhaust gas flow rate detector 34 provided at the above-mentioned installation location (furnace exhaust gas flow rate detection step: step S5). Then, the air ratio control unit 30 determines the detection value of the oxygen concentration detector 28 for the suction exhaust gas, the detection value of the flow rate detector 35 for the suction exhaust gas, the detection value of the oxygen concentration detector 9 for the furnace butt exhaust gas, and the furnace butt exhaust gas. The air ratio for each combustion control band is controlled based on the detection value of the flow rate detector 34 (air ratio control step: step S5).

これにより、蓄熱式切替燃焼バーナ10で吸引される吸引排ガス中の酸素濃度及び吸引排ガスの流量と、吸引されない残りの炉尻排ガス中の酸素濃度及び吸引排ガスの流量とを検出することにより、少なくとも1つの燃焼制御帯に蓄熱式切替燃焼バーナ10を設けた連続式鋼材加熱炉1において、燃焼制御帯毎の空気比を高い精度で適正空気比に制御することができる。燃焼制御帯毎の空気比を高い精度で適正空気比に制御できることで、排ガス中の過剰な空気量が減少し、排ガス損失熱を小さくでき、燃料消費量を抑制できることになる。 As a result, at least the oxygen concentration in the suction exhaust gas and the flow rate of the suction exhaust gas sucked by the heat storage type switching combustion burner 10 and the oxygen concentration in the remaining furnace butt exhaust gas not sucked and the flow rate of the suction exhaust gas are detected. In the continuous steel heating furnace 1 provided with the heat storage type switching combustion burner 10 in one combustion control band, the air ratio for each combustion control band can be controlled to an appropriate air ratio with high accuracy. By controlling the air ratio for each combustion control band to an appropriate air ratio with high accuracy, the excess air amount in the exhaust gas can be reduced, the heat loss of the exhaust gas can be reduced, and the fuel consumption can be suppressed.

また、空気比制御部30(空気比制御ステップ:ステップS5)は、燃焼制御帯毎の空気比を制御するに際し、炉尻排ガス用酸素濃度検出器9の検出値O2E、吸引排ガス用流量検出器35の検出値FGI、吸引排ガス用酸素濃度検出器28の検出値O2I、及び炉尻排ガス用流量検出器34の検出値FGEに基づいて、炉体2から排出される排ガス全体の酸素濃度O2Jを算出する(排ガス全体酸素濃度算出ステップ:ステップS51)。
そして、空気比制御部30(空気比制御ステップ:ステップS5)は、燃焼制御帯(均熱帯6(i=1)、第2加熱帯5(i=2)、第1加熱帯4(i=3)、予熱帯3(i=4))毎の燃焼空気流量の検出値FAi、燃焼制御帯毎の空気比の検出値μi、理論空気量A0、及び燃焼制御帯毎の燃料ガス流量の検出値FFiに基づいて、当該燃焼制御帯毎の寄与率|Ai|/Σ|Ai|を算出する(寄与率算出ステップ:ステップS52)。
Further, the air ratio control unit 30 (air ratio control step: step S5) has a detection value O2E of the furnace butt exhaust gas oxygen concentration detector 9 and a flow rate detector for suction exhaust gas when controlling the air ratio for each combustion control band. Based on the detection value FGI of 35, the detection value O2I of the oxygen concentration detector 28 for suction exhaust gas, and the detection value FGE of the flow rate detector 34 for exhaust gas at the furnace butt, the oxygen concentration O2J of the entire exhaust gas discharged from the furnace body 2 is determined. Calculate (step of calculating the total oxygen concentration of exhaust gas: step S51).
Then, the air ratio control unit 30 (air ratio control step: step S5) has a combustion control zone (equal tropical 6 (i = 1), second heating zone 5 (i = 2), first heating zone 4 (i =). 3), Detection value FAi of combustion air flow rate for each pre-tropical 3 (i = 4)), detection value μi of air ratio for each combustion control band, theoretical air volume A0, and detection of fuel gas flow rate for each combustion control band Based on the value FFi, the contribution rate | Ai | / Σ | Ai | for each combustion control band is calculated (contribution rate calculation step: step S52).

また、空気比制御部30(空気比制御ステップ:ステップS5)は、予め設定された燃焼制御帯毎の空気比μ0iと、算出された炉体2から排出される排ガス全体の酸素濃度O2J、炉体2から排出される排ガス全体の酸素濃度の目標値O2M、及び算出された燃焼制御帯毎の寄与率|Ai|/Σ|Ai|に基づいて算出される燃焼制御帯毎の空気比の補正値ΔO2μiとから、燃焼制御帯毎の適正空気比μCiを算出する(適正空気比算出ステップ:ステップS53)。 Further, the air ratio control unit 30 (air ratio control step: step S5) has a preset air ratio μ0i for each combustion control band, a calculated oxygen concentration O2J of the entire exhaust gas discharged from the furnace body 2, and a furnace. Correction of the air ratio for each combustion control band calculated based on the target value O2M of the oxygen concentration of the entire exhaust gas discharged from the body 2 and the calculated contribution rate for each combustion control band | Ai | / Σ | Ai | From the value ΔO2 μi, the appropriate air ratio μCi for each combustion control band is calculated (appropriate air ratio calculation step: step S53).

更に、空気比制御部30(空気比制御ステップ:ステップS5)は、燃焼制御帯(均熱帯6(i=1)、第2加熱帯5(i=2)、第1加熱帯4(i=3)、予熱帯3(i=4))毎の空気比が、ステップS53で算出された燃焼制御帯毎の適正空気比μCiとなるように、燃焼制御帯に供給する燃焼用空気流量を調整する(燃焼用空気流量調整ステップ:ステップS54)。
これにより、燃焼制御帯毎の空気比をより高い精度で適正空気比に制御することができ、排ガス中の過剰な空気量をより減少させるとともに、排ガス損失熱をより小さくでき、燃料消費量を一層抑制することができる。
Further, the air ratio control unit 30 (air ratio control step: step S5) includes a combustion control zone (equal tropical 6 (i = 1), second heating zone 5 (i = 2), first heating zone 4 (i =). 3) Adjust the flow rate of combustion air supplied to the combustion control zone so that the air ratio for each pre-tropical 3 (i = 4)) becomes the appropriate air ratio μCi for each combustion control zone calculated in step S53. (Combustion air flow rate adjusting step: step S54).
As a result, the air ratio for each combustion control band can be controlled to an appropriate air ratio with higher accuracy, the excess air amount in the exhaust gas can be further reduced, the heat loss of the exhaust gas can be made smaller, and the fuel consumption can be reduced. It can be further suppressed.

そして、空気比制御部30が、燃焼制御帯(均熱帯6(i=1)、第2加熱帯5(i=2)、第1加熱帯4(i=3)、予熱帯3(i=4))毎の空気比が、ステップS53で算出された燃焼制御帯毎の適正空気比μCiとなるように、燃焼制御帯に供給する燃焼用空気流量を調整することで、炉体2から排出される排ガス全体の酸素濃度を、炉尻排ガス用酸素濃度検出器9の検出値O2E(%)の検出値のみを用いて排ガス中の酸素濃度を制御する場合に比べて、低減することができる。 Then, the air ratio control unit 30 sets the combustion control zone (equal tropical 6 (i = 1), second heating zone 5 (i = 2), first heating zone 4 (i = 3), pre-tropical 3 (i = 3). 4) Discharge from the combustion body 2 by adjusting the flow rate of combustion air supplied to the combustion control band so that the air ratio for each) becomes the appropriate air ratio μCi for each combustion control band calculated in step S53. The oxygen concentration of the entire exhaust gas is reduced as compared with the case where the oxygen concentration in the exhaust gas is controlled by using only the detection value O2E (%) of the oxygen concentration detector 9 for combustion tail exhaust gas. ..

具体的には、ステップS1〜ステップS5を行わずに、燃焼制御帯毎の空気比が予め設定された燃焼制御帯毎の空気比μOiとなるように、燃焼制御帯に供給する燃焼用空気流量を調整した場合、炉体2から排出される排ガス全体の酸素濃度は3.8%程度であった。これに対して、空気比制御部30が、燃焼制御帯毎の空気比が、ステップS53で算出された燃焼制御帯毎の適正空気比μCiとなるように、燃焼制御帯に供給する燃焼用空気流量を調整することで、炉体2から排出される排ガス全体の酸素濃度は2.0%以下となる。
また、当該炉体2から排出される排ガス全体の酸素濃度を低減、2.0%以下とすることで、炉体2から排出される排ガス量(Nm/H)が低減され、これにより炉体2から排出されるCOの排出量を削減することができる。
Specifically, the combustion air flow rate supplied to the combustion control band so that the air ratio for each combustion control band becomes the preset air ratio μOi for each combustion control band without performing steps S1 to S5. When the above was adjusted, the oxygen concentration of the entire exhaust gas discharged from the furnace body 2 was about 3.8%. On the other hand, the air ratio control unit 30 supplies the combustion air to the combustion control band so that the air ratio for each combustion control band becomes the appropriate air ratio μCi for each combustion control band calculated in step S53. By adjusting the flow rate, the oxygen concentration of the entire exhaust gas discharged from the furnace body 2 becomes 2.0% or less.
Further, by reducing the oxygen concentration of the entire exhaust gas discharged from the furnace body 2 to 2.0% or less, the amount of exhaust gas (Nm 3 / H) discharged from the furnace body 2 is reduced, thereby reducing the furnace body 2. It is possible to reduce the amount of CO 2 emitted from the body 2.

以上、本発明の実施形態について説明してきたが、本発明はこれに限定されずに種々の変更、改良を行うことができる。
例えば、蓄熱式切替燃焼バーナ10が設置される燃焼制御帯は、本実施形態にあっては、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の4つの燃焼制御帯であるが、4つに限らず1つ以上の燃焼制御帯であればよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and various modifications and improvements can be made.
For example, in the present embodiment, the combustion control zone in which the heat storage type switching combustion burner 10 is installed has four combustion controls of pre-tropical 3, first heating zone 4, second heating zone 5, and average tropical 6. Although it is a band, it is not limited to four, and any one or more combustion control bands may be used.

また、各燃焼制御帯に設置される蓄熱式切替燃焼バーナ10の数は、本実施形態にあっては、3個であるが、3個に限らず任意の数でよい。
また、吸引排ガス本管27に設置される吸引排ガス用酸素濃度検出器28及び吸引排ガス用流量検出器35の数は、本実施形態にあっては、それぞれ1つであるが、1つに限らず複数であってもよい。
また、炉体2の、排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の箇所に設置される炉尻排ガス用酸素濃度検出器9及び炉尻排ガス用流量検出器34の数は、本実施形態にあっては、それぞれ1つであるが、1つに限らず複数であってもよい。
Further, the number of the heat storage type switching combustion burners 10 installed in each combustion control band is 3 in the present embodiment, but is not limited to 3 and may be any number.
Further, the number of the suction exhaust gas oxygen concentration detector 28 and the suction exhaust gas flow rate detector 35 installed in the suction exhaust gas main 27 is one each in the present embodiment, but is limited to one. There may be more than one.
In addition, the number of the oxygen concentration detector 9 for the exhaust gas at the furnace butt and the flow detector 34 for the exhaust gas at the furnace butt installed at a position downstream of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body 2 is the present. In the embodiment, there is one for each, but the number is not limited to one and may be plural.

本発明の効果を検証すべく、本発明例1、2の方法と比較例の方法とで空気比制御を行い、制御結果としての本発明例1の方法と比較例の方法における燃料原単位の変化、本発明例1、2の方法と比較例の方法における排ガス全体の酸素濃度の変化及び炉尻排ガス量の変化を調査した。
本発明例1では、前述のステップS1〜ステップS5(ステップS51〜ステップS54)を実行した。本発明例1では、燃焼制御帯毎の空気比が、ステップS53で算出された燃焼制御帯毎の適正空気比μCi=1.0(以上)〜1.05(以下)となるように、燃焼制御帯に供給する燃焼用空気流量を調整した。
本発明例2では、燃焼制御帯毎の空気比が、ステップS53で算出された燃焼制御帯毎の適正空気比μCi=0.9(以上)〜1.0(未満)となるように、燃焼制御帯に供給する燃焼用空気流量を調整した。
In order to verify the effect of the present invention, the air ratio is controlled by the methods of Examples 1 and 2 of the present invention and the method of Comparative Example, and the fuel intensity in the method of Example 1 of the present invention and the method of Comparative Example as the control result is used. Changes, changes in the oxygen concentration of the entire exhaust gas and changes in the amount of exhaust gas at the furnace butt in the methods of Examples 1 and 2 of the present invention and the methods of Comparative Examples were investigated.
In Example 1 of the present invention, the above-mentioned steps S1 to S5 (steps S51 to S54) were executed. In Example 1 of the present invention, combustion is performed so that the air ratio for each combustion control band is the appropriate air ratio μCi = 1.0 (or more) to 1.05 (or less) for each combustion control band calculated in step S53. The flow rate of combustion air supplied to the control band was adjusted.
In Example 2 of the present invention, combustion is performed so that the air ratio for each combustion control band is the appropriate air ratio μCi = 0.9 (or more) to 1.0 (less than) for each combustion control band calculated in step S53. The flow rate of combustion air supplied to the control band was adjusted.

また、比較例では、前述のステップS1〜ステップS5(ステップS51〜ステップS54)を行うことなく、各燃焼制御帯における空気比を予め設定したμ0i=1.05(より多く)〜1.20(以下)(頂いた資料では現状の空気比が1.05〜1.20となっていたので)として制御した。
燃料原単位の変化の調査結果を図4に、排ガス全体の酸素濃度の変化及び炉尻排ガス量の変化の調査結果を表1に示す。
図4を参照すると、本発明例1の方法で空気比制御を行う方が、比較例の方法で空気比制御を行うよりも、燃料原単位が1tonあたり8Mcal減少していることが分かった。
Further, in the comparative example, the air ratio in each combustion control band is set in advance from μ0i = 1.05 (more) to 1.20 (more) without performing the above-mentioned steps S1 to S5 (steps S51 to S54). (Because the current air ratio was 1.05 to 1.20 in the data received).
FIG. 4 shows the survey results of changes in fuel intensity, and Table 1 shows the survey results of changes in the oxygen concentration of the entire exhaust gas and changes in the amount of exhaust gas at the furnace butt.
With reference to FIG. 4, it was found that the fuel intensity of the method of controlling the air ratio by the method of Example 1 of the present invention was reduced by 8 Mcal per ton as compared with the method of controlling the air ratio by the method of Comparative Example.

Figure 2021103074
Figure 2021103074

表1からわかるように、本発明例1の方法で空気比制御を行った場合、排ガス全体の酸素濃度は1.1%であり、比較例の方法で空気制御を行った場合の排ガス全体の酸素濃度3.8%に対し減少していることが分かった。また、本発明例1の方法で空気比制御を行った場合、炉尻排ガス量は7000Nm/Hであり、比較例の方法で空気制御を行った場合の炉尻排ガス量13900Nm/Hに対し減少していることが分かった。
また、本発明例2の方法で空気比制御を行った場合、排ガス全体の酸素濃度は1.0%であり、本発明例1の方法で空気制御を行った場合よりも排ガス全体の酸素濃度が減少していることがわかった。また、本発明例2の方法で空気比制御を行った場合、炉尻排ガス量は6130Nm/Hであり、本発明例1の方法で空気制御を行った場合よりも炉尻排ガス量が減少していることがわかった。
As can be seen from Table 1, when the air ratio is controlled by the method of Example 1 of the present invention, the oxygen concentration of the entire exhaust gas is 1.1%, and the oxygen concentration of the entire exhaust gas is 1.1% when the air is controlled by the method of the comparative example. It was found that the oxygen concentration decreased with respect to 3.8%. Also, if in the method of the present invention Example 1 was subjected to air ratio control, the furnace butt exhaust gas amount is 7000 nm 3 / H, the furnace butt exhaust gas amount 13900Nm 3 / H when the air control was performed by the method of Comparative Example On the other hand, it turned out to be decreasing.
Further, when the air ratio is controlled by the method of Example 2 of the present invention, the oxygen concentration of the entire exhaust gas is 1.0%, which is higher than that of the case where the air is controlled by the method of Example 1 of the present invention. Was found to be decreasing. Further, when the air ratio is controlled by the method of Example 2 of the present invention, the amount of exhaust gas from the furnace butt is 6130 Nm 3 / H, which is smaller than that when the air is controlled by the method of Example 1 of the present invention. I found out that I was doing it.

前記の本発明例1、2により、製造される鋼材(厚板、薄板、棒鋼)は所要の表面品質、材料特性を有し、本発明に係る連続式鋼材加熱炉の空気比制御方法により、エネルギー原単位が低い低コストな鋼材の製造が可能になることが分かった。 The steel materials (thick plate, thin plate, steel bar) produced according to Examples 1 and 2 of the present invention have required surface quality and material characteristics, and are according to the method for controlling the air ratio of the continuous steel material heating furnace according to the present invention. It has been found that low-cost steel products with low energy intensity can be produced.

1 連続式鋼材加熱炉
2 炉体
3 予熱帯(燃焼制御帯)
4 第1加熱帯(燃焼制御帯)
5 第2加熱帯(燃焼制御帯)
6 均熱帯(燃焼制御帯)
7 煙道
8 煙突
9 炉尻排ガス用酸素濃度検出器
10 蓄熱式切替燃焼バーナ
10a,10b 蓄熱式バーナ
11a,11b 蓄熱体
12a,12b 燃料ガス切替弁
13a,13b 燃料ガスヘッダ管
14 燃料ガス集合管
14a,14b 燃料ガス集合管
15 燃料ガス流量調節弁
16 燃料ガス供給ライン
17a,17b 燃焼用空気切替弁
18a,18b 燃焼用空気ヘッダ管
19 燃焼用空気集合管
19a,19b 燃焼用空気集合管
20 燃焼用空気流量調節弁
21 燃焼用空気供給本管
22 燃焼用空気ブロワ
23a,23b 排ガス切替弁
24a,24b 排ガスヘッダ管
25 排ガス集合管
25a,25b 排ガス集合管
26 排ガス流量調節弁
27 吸引排ガス本管
28 吸引排ガス用酸素濃度検出器
29 吸引排ガスファン
30 空気比制御部
31 上位計算機
32 燃料ガス流量測定器
33 燃焼用空気流量測定器
34 炉尻排ガス用流量検出器
35 吸引排ガス用流量検出器
S 鋼材
1 Continuous steel heating furnace 2 Furnace body 3 Pre-tropical (combustion control zone)
4 First heating zone (combustion control zone)
5 Second heating zone (combustion control zone)
6 Even tropics (combustion control zone)
7 Smoke path 8 Chimney 9 Oxygen concentration detector for exhaust gas from the furnace butt 10 Heat storage type switching combustion burner 10a, 10b Heat storage type burner 11a, 11b Heat storage body 12a, 12b Fuel gas switching valve 13a, 13b Fuel gas header pipe 14 Fuel gas collecting pipe 14a , 14b Fuel gas collecting pipe 15 Fuel gas flow control valve 16 Fuel gas supply line 17a, 17b Combustion air switching valve 18a, 18b Combustion air header pipe 19 Combustion air collecting pipe 19a, 19b Combustion air collecting pipe 20 For combustion Air flow control valve 21 Combustion air supply main 22 Combustion air blower 23a, 23b Exhaust gas switching valve 24a, 24b Exhaust gas header pipe 25 Exhaust gas collecting pipe 25a, 25b Exhaust gas collecting pipe 26 Exhaust gas flow control valve 27 Suction exhaust gas main Oxygen concentration detector for exhaust gas 29 Suction exhaust gas fan 30 Air ratio control unit 31 High-end computer 32 Fuel gas flow meter 33 Combustion air flow meter 34 Combustion air flow meter 34 Furnace exhaust gas flow detector 35 Suction exhaust gas flow detector S Steel

Claims (8)

炉長方向に沿って複数の燃焼制御帯を有する炉体と、少なくとも1つの前記燃焼制御帯に設けられた蓄熱式切替燃焼バーナとを備えた連続式鋼材加熱炉であって、
前記蓄熱式切替燃焼バーナを設けた燃焼制御帯毎の吸引排ガスが集合する吸引排ガス本管に設けられた、吸引排ガス中の酸素濃度を検出する吸引排ガス用酸素濃度検出器及び吸引排ガスの流量を検出する吸引排ガス用流量検出器と、
前記炉体の、排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の設置箇所に設けられた、炉尻排ガス中の酸素濃度を検出する炉尻排ガス用酸素濃度検出器及び炉尻排ガスの流量を検出する炉尻排ガス用流量検出器と、
前記吸引排ガス用酸素濃度検出器の検出値、前記吸引排ガス用流量検出器の検出値、前記炉尻排ガス用酸素濃度検出器の検出値、及び前記炉尻排ガス用流量検出器の検出値に基づいて、前記燃焼制御帯毎の空気比を制御する空気比制御部とを備えていることを特徴とする連続式鋼材加熱炉。
A continuous steel heating furnace including a furnace body having a plurality of combustion control zones along the furnace length direction and a heat storage type switching combustion burner provided in at least one of the combustion control zones.
The oxygen concentration detector for suction exhaust gas and the flow rate of the suction exhaust gas provided in the suction exhaust gas main where the suction exhaust gas for each combustion control band provided with the heat storage type switching combustion burner is collected. Flow detector for suction exhaust gas to detect and
Oxygen concentration detector for furnace butt exhaust gas and furnace butt exhaust gas, which are provided at the installation location on the downstream side of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body, to detect the oxygen concentration in the furnace butt exhaust gas. A flow detector for exhaust gas from the furnace butt that detects the flow rate,
Based on the detection value of the suction exhaust gas oxygen concentration detector, the detection value of the suction exhaust gas flow rate detector, the detection value of the furnace tail exhaust gas oxygen concentration detector, and the detection value of the furnace tail exhaust gas flow rate detector. The continuous steel heating furnace is provided with an air ratio control unit for controlling the air ratio for each combustion control band.
前記空気比制御部は、
前記炉尻排ガス用酸素濃度検出器の検出値、前記吸引排ガス用流量検出器の検出値、前記吸引排ガス用酸素濃度検出器の検出値、及び前記炉尻排ガス用流量検出器の検出値に基づいて、前記炉体から排出される排ガス全体の酸素濃度を算出し、
燃焼制御帯毎の燃焼空気流量の検出値、燃焼制御帯毎の空気比の検出値、理論空気量、及び燃焼制御帯毎の燃料ガス流量の検出値に基づいて、当該燃焼制御帯毎の寄与率を算出し、
予め設定された燃焼制御帯毎の空気比と、算出された前記炉体から排出される排ガス全体の酸素濃度、前記炉体から排出される排ガス全体の酸素濃度の目標値、及び算出された燃焼制御帯毎の寄与率に基づいて算出される燃焼制御帯毎の空気比の補正値とから燃焼制御帯毎の適正空気比を算出し、
燃焼制御帯の空気比が、算出された燃焼制御帯毎の適正空気比となるように、燃焼制御帯に供給する燃焼用空気流量を調整することを特徴とする請求項1に記載の連続式鋼材加熱炉。
The air ratio control unit
Based on the detection value of the oxygen concentration detector for fire butt exhaust gas, the detection value of the flow rate detector for suction exhaust gas, the detection value of the oxygen concentration detector for suction exhaust gas, and the detection value of the flow rate detector for fire butt exhaust gas. Then, the oxygen concentration of the entire exhaust gas discharged from the furnace body was calculated.
Contribution for each combustion control band based on the detected value of the combustion air flow rate for each combustion control band, the detected value for the air ratio for each combustion control band, the theoretical amount of air, and the detected value for the fuel gas flow rate for each combustion control band. Calculate the rate,
The preset air ratio for each combustion control band, the calculated oxygen concentration of the entire exhaust gas discharged from the furnace body, the target value of the oxygen concentration of the entire exhaust gas discharged from the furnace body, and the calculated combustion. The appropriate air ratio for each combustion control band is calculated from the correction value of the air ratio for each combustion control band calculated based on the contribution rate for each control band.
The continuous formula according to claim 1, wherein the flow rate of combustion air supplied to the combustion control band is adjusted so that the air ratio of the combustion control band becomes the calculated appropriate air ratio for each combustion control band. Steel heating furnace.
前記空気比制御部によって、燃焼制御帯の空気比が、算出された燃焼制御帯毎の適正空気比となるように、燃焼制御帯に供給する燃焼用空気流量を調整することで、前記炉体から排出される排ガス全体の酸素濃度が2.0%以下となることを特徴とする請求項2に記載の連続式鋼材加熱炉。 The furnace body is adjusted by adjusting the flow rate of combustion air supplied to the combustion control band so that the air ratio of the combustion control band becomes the calculated appropriate air ratio for each combustion control band by the air ratio control unit. The continuous steel heating furnace according to claim 2, wherein the oxygen concentration of the entire exhaust gas discharged from the furnace is 2.0% or less. 炉長方向に沿って複数の燃焼制御帯を有する炉体と、少なくとも1つの前記燃焼制御帯に設けられた蓄熱式切替燃焼バーナとを備えた連続式鋼材加熱炉の空気比制御方法であって、
前記蓄熱式切替燃焼バーナを設けた燃焼制御帯毎の吸引排ガスが集合する吸引排ガス本管に設けられた吸引排ガス用酸素濃度検出器により、吸引排ガス中の酸素濃度を検出する吸引排ガス酸素濃度検出ステップと、
前記吸引排ガス本管に設けられた吸引排ガス用流量検出器により、吸引排ガスの流量を検出する吸引排ガス流量検出ステップと、
前記炉体の、排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の設置箇所に設けられた炉尻排ガス用酸素濃度検出器により、炉尻排ガス中の酸素濃度を検出する炉尻排ガス酸素濃度検出ステップと、
前記設置箇所に設けられた炉尻排ガス用流量検出器により、炉尻排ガスの流量を検出する炉尻排ガス流量検出ステップと、
前記吸引排ガス用酸素濃度検出器の検出値、前記吸引排ガス用流量検出器の検出値、前記炉尻排ガス用酸素濃度検出器の検出値、及び前記炉尻排ガス用流量検出器の検出値に基づいて、前記燃焼制御帯毎の空気比を制御する空気比制御ステップとを含むことを特徴とする連続式鋼材加熱炉の空気比制御方法。
A method for controlling the air ratio of a continuous steel heating furnace including a furnace body having a plurality of combustion control zones along the furnace length direction and a heat storage type switching combustion burner provided in at least one of the combustion control zones. ,
Suction exhaust gas oxygen concentration detection that detects the oxygen concentration in the suction exhaust gas by the suction exhaust gas oxygen concentration detector provided in the suction exhaust gas main where the suction exhaust gas for each combustion control band provided with the heat storage type switching combustion burner is collected. Steps and
A suction exhaust gas flow rate detection step for detecting the flow rate of the suction exhaust gas by a flow rate detector for the suction exhaust gas provided in the suction exhaust gas main, and a suction exhaust gas flow rate detection step.
Furnace exhaust gas oxygen that detects the oxygen concentration in the furnace butt exhaust gas by the furnace butt exhaust gas oxygen concentration detector provided at the installation location on the downstream side of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body. Concentration detection step and
The furnace butt exhaust gas flow rate detection step for detecting the flow rate of the furnace butt exhaust gas by the flow rate detector for the furnace butt exhaust gas provided at the installation location, and
Based on the detection value of the suction exhaust gas oxygen concentration detector, the detection value of the suction exhaust gas flow rate detector, the detection value of the furnace tail exhaust gas oxygen concentration detector, and the detection value of the furnace tail exhaust gas flow rate detector. A method for controlling the air ratio of a continuous steel heating furnace, which comprises an air ratio control step for controlling the air ratio for each combustion control zone.
前記空気比制御ステップは、
前記炉尻排ガス用酸素濃度検出器の検出値、前記吸引排ガス用酸素濃度検出器の検出値、前記吸引排ガス用流量検出器の検出値、及び前記炉尻排ガス用流量検出器の検出値に基づいて、前記炉体から排出される排ガス全体の酸素濃度を算出する排ガス全体酸素濃度算出ステップと、
燃焼制御帯毎の燃焼空気流量の検出値、燃焼制御帯毎の空気比の検出値、理論空気量、及び燃焼制御帯毎の燃料ガス流量の検出値に基づいて、当該燃焼制御帯毎の寄与率を算出する寄与率算出ステップと、
予め設定された燃焼制御帯毎の空気比と、前記排ガス全体酸素濃度算出ステップで算出された前記炉体から排出される排ガス全体の酸素濃度、前記炉体から排出される排ガス全体の酸素濃度の目標値、及び前記寄与率算出ステップで算出された燃焼制御帯毎の寄与率に基づいて算出される燃焼制御帯毎の空気比の補正値とから燃焼制御帯毎の適正空気比を算出する適正空気比算出ステップと、
燃焼制御帯の空気比が、前記適正空気比算出ステップで算出された燃焼制御帯毎の適正空気比となるように、燃焼制御帯に供給する燃焼用空気流量を調整する燃焼用空気流量調整ステップとを含むことを特徴とする請求項4に記載の連続式鋼材加熱炉の空気比制御方法。
The air ratio control step
Based on the detection value of the oxygen concentration detector for the furnace butt exhaust gas, the detection value of the oxygen concentration detector for the suction exhaust gas, the detection value of the flow rate detector for the suction exhaust gas, and the detection value of the flow rate detector for the furnace butt exhaust gas. Then, the step of calculating the oxygen concentration of the entire exhaust gas discharged from the furnace body and the step of calculating the oxygen concentration of the entire exhaust gas
Contribution for each combustion control band based on the detected value of the combustion air flow rate for each combustion control band, the detected value for the air ratio for each combustion control band, the theoretical amount of air, and the detected value for the fuel gas flow rate for each combustion control band. Contribution rate calculation step to calculate the rate and
The air ratio for each combustion control band set in advance, the oxygen concentration of the entire exhaust gas discharged from the furnace body calculated in the step of calculating the oxygen concentration of the entire exhaust gas, and the oxygen concentration of the entire exhaust gas discharged from the furnace body. Appropriateness to calculate the appropriate air ratio for each combustion control band from the target value and the correction value of the air ratio for each combustion control band calculated based on the contribution rate for each combustion control band calculated in the contribution rate calculation step. Air ratio calculation step and
Combustion air flow rate adjustment step that adjusts the combustion air flow rate supplied to the combustion control band so that the air ratio of the combustion control band becomes the appropriate air ratio for each combustion control band calculated in the appropriate air ratio calculation step. The air ratio control method for a continuous steel heating furnace according to claim 4, wherein the method includes.
前記空気比制御ステップは、
前記炉尻排ガス用酸素濃度検出器の検出値、前記吸引排ガス用流量検出器の検出値と前記炉尻排ガス用流量検出器の検出値とから算出される炉尻排ガスの流量の比率、前記吸引排ガス用酸素濃度検出器の検出値、及び前記吸引排ガス用流量検出器の検出値と前記炉尻排ガス用流量検出器の検出値とから算出される吸引排ガスの流量の比率に基づいて、前記炉体から排出される排ガス全体の酸素濃度を算出する排ガス全体酸素濃度算出ステップと、
燃焼制御帯毎の燃焼空気流量の検出値、燃焼制御帯毎の空気比の検出値、理論空気量、及び燃焼制御帯毎の燃料ガス流量の検出値に基づいて、当該燃焼制御帯毎の寄与率を算出する寄与率算出ステップと、
予め設定された燃焼制御帯毎の空気比と、前記排ガス全体酸素濃度算出ステップで算出された前記炉体から排出される排ガス全体の酸素濃度、前記炉体から排出される排ガス全体の酸素濃度の目標値、及び前記寄与率算出ステップで算出された燃焼制御帯毎の寄与率に基づいて算出される燃焼制御帯毎の空気比の補正値とから燃焼制御帯毎の適正空気比を算出する適正空気比算出ステップと、
燃焼制御帯の空気比が、前記適正空気比算出ステップで算出された燃焼制御帯毎の適正空気比となるように、燃焼制御帯に供給する燃焼用空気流量を調整する燃焼用空気流量調整ステップとを含むことを特徴とする請求項4に記載の連続式鋼材加熱炉の空気比制御方法。
The air ratio control step
The ratio of the flow rate of the furnace butt exhaust gas calculated from the detection value of the oxygen concentration detector for the furnace butt exhaust gas, the detection value of the flow rate detector for the suction exhaust gas and the detection value of the flow rate detector for the furnace butt exhaust gas, and the suction. The furnace based on the detection value of the exhaust gas oxygen concentration detector and the ratio of the flow rate of the suction exhaust gas calculated from the detection value of the suction exhaust gas flow rate detector and the detection value of the furnace tail exhaust gas flow rate detector. The step of calculating the oxygen concentration of the entire exhaust gas emitted from the body and the step of calculating the oxygen concentration of the entire exhaust gas
Contribution for each combustion control band based on the detected value of the combustion air flow rate for each combustion control band, the detected value for the air ratio for each combustion control band, the theoretical amount of air, and the detected value for the fuel gas flow rate for each combustion control band. Contribution rate calculation step to calculate the rate and
The air ratio for each combustion control band set in advance, the oxygen concentration of the entire exhaust gas discharged from the furnace body calculated in the step of calculating the oxygen concentration of the entire exhaust gas, and the oxygen concentration of the entire exhaust gas discharged from the furnace body. Appropriateness to calculate the appropriate air ratio for each combustion control band from the target value and the correction value of the air ratio for each combustion control band calculated based on the contribution rate for each combustion control band calculated in the contribution rate calculation step. Air ratio calculation step and
Combustion air flow rate adjustment step that adjusts the combustion air flow rate supplied to the combustion control band so that the air ratio of the combustion control band becomes the appropriate air ratio for each combustion control band calculated in the appropriate air ratio calculation step. The air ratio control method for a continuous steel heating furnace according to claim 4, wherein the method includes.
前記燃焼用空気流量調整ステップによって、燃焼制御帯の空気比が、前記適正空気比算出ステップで算出された燃焼制御帯毎の適正空気比となるように、燃焼制御帯に供給する燃焼用空気流量を調整することで、前記炉体から排出される排ガス全体の酸素濃度が2.0%以下となることを特徴とする請求項5又は6に記載の連続式鋼材加熱炉の空気比制御方法。 The combustion air flow rate supplied to the combustion control band by the combustion air flow rate adjusting step so that the air ratio of the combustion control band becomes the appropriate air ratio for each combustion control band calculated in the appropriate air ratio calculation step. The air ratio control method for a continuous steel heating furnace according to claim 5 or 6, wherein the oxygen concentration of the entire exhaust gas discharged from the furnace body becomes 2.0% or less by adjusting the above. 請求項4乃至7のうちいずれか一項に記載の連続式鋼材加熱炉の空気比制御方法により鋼材を加熱することを特徴とする鋼材の製造方法。 A method for producing a steel material, which comprises heating the steel material by the air ratio control method of the continuous steel material heating furnace according to any one of claims 4 to 7.
JP2020182143A 2019-12-25 2020-10-30 Continuous steel heating furnace, air ratio control method for continuous steel heating furnace, and steel manufacturing method Active JP7354988B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019234332 2019-12-25
JP2019234332 2019-12-25

Publications (2)

Publication Number Publication Date
JP2021103074A true JP2021103074A (en) 2021-07-15
JP7354988B2 JP7354988B2 (en) 2023-10-03

Family

ID=76755017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020182143A Active JP7354988B2 (en) 2019-12-25 2020-10-30 Continuous steel heating furnace, air ratio control method for continuous steel heating furnace, and steel manufacturing method

Country Status (1)

Country Link
JP (1) JP7354988B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164925A (en) * 1982-03-26 1983-09-29 Sumitomo Metal Ind Ltd Control method for combustion of multi-belt type combustion furnace
JP2007285564A (en) * 2006-04-14 2007-11-01 Nippon Steel Corp Continuous steel material heating furnace and heating method of steel material using the same
JP2019158268A (en) * 2018-03-14 2019-09-19 Jfeスチール株式会社 Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58164925A (en) * 1982-03-26 1983-09-29 Sumitomo Metal Ind Ltd Control method for combustion of multi-belt type combustion furnace
JP2007285564A (en) * 2006-04-14 2007-11-01 Nippon Steel Corp Continuous steel material heating furnace and heating method of steel material using the same
JP2019158268A (en) * 2018-03-14 2019-09-19 Jfeスチール株式会社 Abnormality determination method and abnormality determination device for oximeter installed in consecutive type heating furnace

Also Published As

Publication number Publication date
JP7354988B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
KR101500595B1 (en) Method and apparatus for controlling a furnace pressure of a continuous annealing furnace
WO2010007849A1 (en) Method for producing iron ore pellets
JPH0147688B2 (en)
JP4653689B2 (en) Continuous steel heating furnace and method of heating steel using the same
JP6543390B1 (en) Furnace internal condition judging method and evaporation control method
JP2021103074A (en) Continuous steel material heating furnace, air ratio control method thereof, and manufacturing method of steel material
JP6146701B2 (en) Evaluation apparatus and evaluation method for combustion control device of waste incinerator
TWI331201B (en) Combustion control system for stoker-type incinerator
JP6323286B2 (en) Exhaust heat recovery equipment for heating furnace and exhaust heat recovery method for heating furnace
JP7126215B2 (en) System controller and control method
US8814561B2 (en) Method and apparatus for controlling operation of oxyfuel combustion boiler
JP2019178848A (en) Waste incinerator and waste incineration method
JP2020148426A (en) Continuous steel material heating furnace and air ratio control method thereof
JPWO2013136487A1 (en) Humidity control method for tobacco materials
JP2001343104A (en) Heating equipment and method for operating heating furnace
JP7156227B2 (en) Furnace pressure control device and furnace pressure control method for continuous heating furnace
JP2021004387A (en) Apparatus and method for manufacturing pulverized coal
JPH07190627A (en) Tunnel type continuous baking furnace
JP7093709B2 (en) Incinerator
TWI413554B (en) Furnace pressure control method
JPS61119987A (en) Method of controlling furnace pressure of continuous type heating furnace
JP2002327918A (en) Method for controlling pressure of parentage damper
JPS61272509A (en) Catalytic burning apparatus
JP2005300068A (en) Method for control of oxygen concentration and temperature of exhaust gas from rotary hearth reducing furnace
JP2017101841A (en) Furnace temperature control method for heating furnace and furnace temperature control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7354988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150