TWI331201B - Combustion control system for stoker-type incinerator - Google Patents

Combustion control system for stoker-type incinerator Download PDF

Info

Publication number
TWI331201B
TWI331201B TW096105390A TW96105390A TWI331201B TW I331201 B TWI331201 B TW I331201B TW 096105390 A TW096105390 A TW 096105390A TW 96105390 A TW96105390 A TW 96105390A TW I331201 B TWI331201 B TW I331201B
Authority
TW
Taiwan
Prior art keywords
gas
air
combustion
concentration
recirculation
Prior art date
Application number
TW096105390A
Other languages
Chinese (zh)
Other versions
TW200817638A (en
Inventor
Masayuki Mawatari
Masao Takuma
Shinya Tsuneizumi
Hisaki Yamauchi
Original Assignee
Mitsubishi Heavy Ind Ltd
Martin Umwelt & Energietech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd, Martin Umwelt & Energietech filed Critical Mitsubishi Heavy Ind Ltd
Publication of TW200817638A publication Critical patent/TW200817638A/en
Application granted granted Critical
Publication of TWI331201B publication Critical patent/TWI331201B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories

Description

1^31201 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種爐床式焚化爐之燃燒控制裝置,其係 自投入有垃圾、產業廢棄物等被燃燒物之爐床下方導入一 次空氣,並於該爐床上方之燃燒室内進行一次燃燒後,於 該燃燒室之上方部位進行二次燃燒。 【先前技術】 爐床式焚化爐係構成方式如下之焚化爐:具備火格子以 固疋段及可動段交替配置而成之爐床,利用油壓裝置使可 動段往返移動,藉此對自進料斗投入之垃圾(被燃燒物)進 行攪袢並使之前進,並且在配置於該爐床上游側之乾燥帶 内使垃圾乾燥,繼而於其後之主燃燒帶内投入一次空氣並 且進行主燃燒,進而於最下游側之後燃燒帶内進行燃燒殘 餘部分之後燃燒。 關於如此之爐床式焚化爐,專利文獻丨(曰本專利第 3582710號公報)提供有下述技術:使抽出爐床上之燃燒室 内一部分燃燒排氣後所得的再循環氣體,經由再循環通道 回流至上述燃燒室内之二次燃燒部,與二次空氣一起供給 用於燃燒。 專利文獻1所提供之技術中,抽出爐床上方之燃燒室内 一部分燃燒排氣’料再循環氣體送入熱交肖器,於該熱 交換器中使該再循帛氣體與―次空氣及二次空氣進行熱交 換’以預熱該n氣及二次空氣並且冷卻該再循環氣 體’進而藉由配置於上述熱交換器尾側的風扇,將該已降 118513.doc 恤的再循環氣體投入上述燃燒室内之二次空氣供給口之上 游側部位’使二次空氣供給口上游侧之氣體環境成為弱還 原性氣體環境,並將二次空氣供給後燃燒室内之全部空氣 所占比率控制為1.3左右,使未燃燒氣體或未燃燒物完全 燃燒並且減少NOx。 專利文獻1:曰本專利第358271〇號公報 【發明内容】 [發明所欲解決之問題] 然而,如上所述專利文獻丨之先前技術中,存在以下問 題。 亦即,於上述先前技術中,抽出爐床上方之燃燒室内一 部分燃燒排氣,作為再循環氣體送入熱交換器,於該熱交 換器内藉由與一次空氣及二次空氣進行熱交換而冷卻該再 循環氣體後,藉由配置於上述熱交換器尾側之風扇,將該 已降溫的再循環氣體投入燃燒室内之二次空氣供給口之上 游側部位,因此,必須使用熱交換器,用以使該再循環氣 體與空氣(一次空氣及二次空氣)進行熱交換而降溫後再送 入風扇,從而燃燒排氣再循環系統之構造變得複雜,並且 部件數變多導致裝置成本提高β 又,雖藉由上述熱交換器而得以降溫但腐蝕成分較多的 燃燒排氣,直接送入上述風扇,故風扇容易受到腐蝕導 致該風扇之耐久性及壽命下降。 為解決上述先前技術之問題,本案發明人等已提供曰本 專利特願2005-059846號(2005年3月4日申請)之發明。 118513.doc1^31201 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a combustion control device for a hearth type incinerator, which is introduced once from a bed of a burned object such as garbage or industrial waste. After the air is burned once in the combustion chamber on the hearth, secondary combustion is performed on the upper portion of the combustion chamber. [Prior Art] The hearth type incinerator is an incinerator having the following configuration: a hearth with a fire lattice and a movable section alternately arranged, and a hydraulic device is used to move the movable section back and forth, thereby making self-advance The garbage (burned matter) put into the hopper is pulverized and advanced, and the garbage is dried in a drying belt disposed on the side of the hearth, and then the air is injected into the main combustion zone and the main combustion is performed. And burning after the combustion residual portion is carried out in the combustion zone after the most downstream side. With regard to such a hearth type incinerator, the patent document 曰 (曰本专利 No. 3582710) provides a technique of recirculating a portion of the combustion chamber extracted from the combustion chamber after exhausting the exhaust gas through the recirculation passage. The secondary combustion portion to the combustion chamber is supplied together with the secondary air for combustion. In the technique provided in Patent Document 1, a part of the combustion exhaust gas in the combustion chamber of the extraction furnace is sent to the heat exchange moder, and the recirculation gas and the secondary air and the second are arranged in the heat exchanger. The secondary air undergoes heat exchange 'to preheat the n gas and the secondary air and cools the recycle gas' and further puts the recycled gas of the 118513.doc-shirt into the tail by the fan disposed on the tail side of the heat exchanger The upstream side portion of the secondary air supply port in the combustion chamber makes the gas environment on the upstream side of the secondary air supply port a weakly reducing gas atmosphere, and the ratio of the total air in the combustion chamber after the secondary air is supplied is controlled to 1.3. Left and right, the unburned gas or unburnt is completely burned and NOx is reduced. [Patent Document 1: Japanese Patent No. 358271] [Disclosure] [Problems to be Solved by the Invention] However, in the prior art of the patent document as described above, there are the following problems. That is, in the above prior art, a part of the combustion exhaust gas in the combustion chamber on the hearth is extracted and sent as a recirculation gas to the heat exchanger, in which heat exchange is performed with the primary air and the secondary air. After cooling the recirculated gas, the cooled recirculated gas is introduced into the upstream side of the secondary air supply port in the combustion chamber by a fan disposed on the tail side of the heat exchanger. Therefore, a heat exchanger must be used. The heat is exchanged between the recirculating gas and the air (primary air and secondary air) to be cooled, and then sent to the fan, so that the structure of the combustion exhaust gas recirculation system becomes complicated, and the number of components increases, resulting in an increase in the cost of the device. Further, although the combustion exhaust gas which is cooled by the heat exchanger but has a large amount of corrosive components is directly supplied to the fan, the fan is easily corroded, and the durability and life of the fan are lowered. In order to solve the problems of the prior art described above, the inventors of the present invention have provided the invention of the Japanese Patent Application No. 2005-059846 (filed on March 4, 2005). 118513.doc

關於藉由風扇,使自爐床上方之燃燒室内抽出之—部分 燃燒排氣,經由再循環通道回流至燃燒室内,於該先前申 凊之發明中,係於上述再循環通道中風扇之上游部位,使 再循環氣體中直接混合由燃燒用一次空氣或二次空氣之任 一方所構成的空氣,並導入至再循環氣體回流用風扇,繼 而藉由該風扇使由該混合氣體構成之再循環氣體回流至燃 燒室内,藉此,可利用空氣使燃燒排氣降溫,並且藉由與 空氣混合而稀釋燃燒排氣後將其導入風扇,因此,無需如 上述先前技術之用以使再循環氣體冷卻降溫的熱交換器, 從而使燃燒排氣再循環系統之構造變簡單,並且減少構成 部件數而降低了焚化設備之裝置成本。With respect to the fan, the partially burned exhaust gas extracted from the combustion chamber of the furnace bed is returned to the combustion chamber via the recirculation passage, and in the previously claimed invention, the upstream portion of the fan in the recirculation passage is Directly mixing the air composed of one of the primary air or the secondary air for combustion into the recirculating gas, and introducing it to the recirculating gas returning fan, and then the recirculating gas composed of the mixed gas by the fan Refluxing into the combustion chamber, whereby the combustion exhaust gas can be cooled by the air, and the combustion exhaust gas is diluted and mixed with the air to be introduced into the fan, thereby eliminating the need to cool the recirculating gas as in the prior art described above. The heat exchanger, thereby simplifying the construction of the combustion exhaust gas recirculation system, and reducing the number of constituent parts reduces the cost of the apparatus of the incineration plant.

又,於該先前申請之發明中,再循環氣體回流用風扇中 所導入之再循環氣體,係藉由低溫空氣受到冷卻降溫、又 藉由該空氣而稀釋,;^而使得燃燒排氣濃度變低,進而藉 由上述冷卻使作為排氣中之腐蝕成分之鹽類固化而使得腐 蝕成分減少,因此,風扇溫度下降且該風扇之熱應力變 小,並且如上所述可藉由將已減少腐蝕成分之再循環氣體 導入風扇而抑制風扇腐μ ’藉此可獲得低成本之風扇而無 需使用高㈣熱材料,且所需耐久性及壽命得以維持。 然而’於上述先前申請之發明中,僅提出有上述爐床式 焚化爐中再循環氣體與空氣(燃燒用—次空氣及二次空氣) 之混合及向焚化爐側之回流方法、以及用以進行該混合及 向焚化爐側之回流的裝置,而上述先前巾請之發明中並未 揭示,向焚化爐側回流之再循環氣體與空氣的具體混合比 118513.doc 1331201 控制、及利用空氣混合再循環氣體之回流所進行之焚化爐 . 内的燃燒控制等。 本發明係鑒於如此之現狀而完成者,其目的在於提供一 種爐床式焚化爐之燃燒控制裝置’能以高精度對經由具備 再循環風扇之再循環通道向焚化爐側回流的空氣混合再循 環氣趙實施混合比控制、及實施焚化爐内之燃燒控制且 可藉由相對簡單且低成本之結構來抑制N〇x、c〇等有宝成 分之產生’並且以較高之燃燒效率實現完全燃燒。 [解決問題之技術手段] 為解決上述先則技術之課題’本發明中請求項1之發明 係一種爐床式焚化爐之燃燒控制裝置,其係構成為自投入 被焚化物之爐床下方導入一次空氣,於該爐床上方之燃燒 室内進行一次燃燒後,於該燃燒室上方進行二次燃燒,並 且混合抽出上述燃燒室内一部分燃燒排氣之再循環氣體與 經由空氣通道而供給之空氣,藉由風扇使該空氣混合再循 • 體經由再循環通道而供給至爐内,該爐床式焚化爐之 燃燒控制裝置的特徵在於:於上述空氣通道中設有調整空 氣流量之空氣流量調整機構’另一方面設有溫度檢測機構 及燃燒控制機構,上述溫度檢測機構係檢測上述空氣混合 再循環氣體之溫度,上述燃燒控制機構係輸入來自上述溫 度檢測機構之上述空氣混合再循環氣體之溫度檢測值根 據該溫度檢測值算出上述空氣混合再循環氣體之溫度成為 預先設定之目標溫度的上述空氣流量調整機構之通道面 積,並將上述空氣流量調整機構控制於上述通道面積算出 118513.doc -9- 1331201 值。 又,本發明中請求項2之發明係,於上述燃燒控制裝置 中’於上述空氣通道中設有調整空氣流量之空氣流量調整 機構,另一方面設有氣體濃度檢測機構及燃燒控制機構, 上述氣體濃度檢測機構係檢測上述空氣混合再循環氣體之 氣體濃度,上述燃燒控制機構係輸入來自上述氣體濃度檢 測機構的上述空氣混合再循環氣體之氣體濃度檢測值,根 據該氣體濃度檢測值算出上述空氣混合再循環氣體之氣體 濃度成為預先設定之目標氣體濃度的上述空氣流量調整機 構之通道面積,並將上述空氣流量調整機構控制於上述通 道面積算出值。 請求項2之發明以外,請求項3之發明中,設置檢測上述 燃燒排氣中NOx濃度之NOx濃度檢測機構、及檢測上述燃 燒排氣中CO濃度之CO濃度檢測機構,而上述燃燒控制機 構較好的是構成為根據自上述氣體濃度檢測機構輸入之該 氣體濃度檢測值、自上述ΝΟχ濃度檢測機構輸入之!^〇乂濃 度檢測值及自上述CO濃度檢測機構輪入之CO濃度檢測 值’算出上述空氣混合再循環氣體之氣體濃度成為預先設 定之目標氣體濃度、上述燃燒排氣中之Ν〇χ濃度成為預先 設定之目標ΝΟχ濃度以下及上述燃燒排氣中之c〇濃度成為 預先設定之目標C◦濃度以下的上述空氣流量調整機構之 通道面積’並將上述空氣流量調整機構控制於上述通道面 積算出值。 又’本發明中請求項4之發明係’於上述燃燒控制裝置 118513.doc • 10 - 1331201 中,於上述空氣通道中設置調整空氣流量之空氣流量調整 機構,另一方面設有溫度檢測機構、氣體濃度檢測機構及 燃燒控制機構,上述溫度檢測機構係檢測上述空氣混合再 循環氣體之溫度,上述氣體濃度檢測機構係檢測上述空氣 混合再循環氣體之氣體濃度,上述燃燒控制機構係輸入來 自上述溫度檢測機構的上述空氣混合再循環氣體之溫度檢 測值及來自上述氣體濃度檢測機構的上述空氣混合再循環 氣體之氣體濃度檢測值,根據該等溫度檢測值及氣體濃度 檢測值,算出上述空氣混合再循環氣體之溫度成為預先設 定之目標溫度且上述空氣混合再循環氣體之氣體濃度成為 預先設定之目標氣體濃度的上述空氣流量調整機構之通道 面積,並將上述空氣流量調整機構控制於上述通道面積算 出值。 進而,本發明中請求項5之發明係,於上述燃燒控制裝 置中,於空氣混合再循環氣體所流通的再循環氣體通道中 設置調整空氣混合再循環氣體流量之再循環氣體流量調整 機構,該空氣混合再循環氣體係將空氣混合至上述再循環 氣體中後供給至上述燃燒室者;並且設置氣體流量計及燃 燒控制機構,上述氣體流量計係檢測上述空氣混合再循環 氣體之流量,上述燃燒控制機構係根據自上述氣體流量計 輸入的再循環氣體之流量檢測值,算出該再循環氣體之流 量成為預先設定之目標流量的上述再循環氣體流量調整機 構之通道面積,並將上述再循環氣體流量調整機構控制於 上述通道面積算出值。 118513.doc 1331201 凊求項5之發明以外’請求項6之發明中,於上述舞燒室 之複數處設置再循環氣體吹“,並且設置複數個上述再 循核氣體料連接於上料再料氣體吹出口,於上述各 再循環氣體通道t設置調整空氣混合再循環氣體流量之再 循壞氣體流量調整機構,對應於再循環氣體流量調整機構 設置檢測上述燃燒室之壓力的上述燃燒室麗力檢測機構,Further, in the invention of the prior application, the recirculated gas introduced into the fan for recirculating gas recirculation is cooled by the low temperature air and diluted by the air, and the concentration of the combustion exhaust gas is changed. Low, and further, the salt which is a corrosive component in the exhaust gas is solidified by the above cooling to reduce the corrosion component, and therefore, the fan temperature is lowered and the thermal stress of the fan is reduced, and the corrosion can be reduced as described above. The recirculating gas of the component is introduced into the fan to suppress the fan sulphur', thereby obtaining a low-cost fan without using a high (four) thermal material, and the required durability and life are maintained. However, in the invention of the above-mentioned prior application, only the mixing of the recirculating gas and the air (combustion-primary air and secondary air) in the above-described hearth incinerator and the method of refluxing to the incinerator side, and The mixing and the recirculation to the incinerator side are carried out, and the invention of the prior invention does not disclose that the specific mixing ratio of the recirculating gas to the air recirculated to the incinerator side is controlled by 118513.doc 1331201, and mixed with air. The combustion control in the incinerator in which the return gas is recirculated. The present invention has been made in view of such a situation, and an object thereof is to provide a combustion control device for a hearth incinerator capable of recirculating air mixed back to the incinerator side via a recirculation passage having a recirculation fan with high precision. Qi Zhao implements mixing ratio control and implements combustion control in the incinerator and can suppress the generation of noble components such as N〇x, c〇 by a relatively simple and low-cost structure and achieve complete combustion efficiency with higher combustion efficiency. combustion. [Technical means for solving the problem] In order to solve the problem of the above-mentioned prior art, the invention of claim 1 is a combustion control device for a hearth type incinerator, which is configured to be introduced from below a hearth into which an incineration is introduced. After primary combustion is performed once in the combustion chamber on the hearth, secondary combustion is performed above the combustion chamber, and a part of the combustion gas in the combustion chamber is extracted and extracted, and the air supplied through the air passage is borrowed. The air mixing and recirculation body is supplied to the furnace through a recirculation passage, and the combustion control device of the hearth incinerator is characterized in that an air flow adjustment mechanism for adjusting an air flow is provided in the air passage. On the other hand, a temperature detecting means for detecting the temperature of the air mixed recirculating gas, and a combustion detecting means for inputting a temperature detecting value of the air mixed recirculating gas from the temperature detecting means is provided. Calculating the temperature of the air mixed recirculation gas based on the temperature detection value Passage area becomes a predetermined target temperature of the air flow rate adjustment mechanism, the adjustment means and said air flow rate control passage area to the calculated value 118513.doc -9- 1331201. Further, in the invention of claim 2, in the combustion control device, the air flow rate adjusting means for adjusting the air flow rate is provided in the air passage, and the gas concentration detecting means and the combustion control means are provided. The gas concentration detecting means detects the gas concentration of the air-mixed recirculation gas, and the combustion control means inputs a gas concentration detection value of the air-mixed recirculation gas from the gas concentration detecting means, and calculates the air based on the gas concentration detection value. The gas concentration of the mixed recycle gas is a passage area of the air flow rate adjusting mechanism that is a predetermined target gas concentration, and the air flow rate adjusting mechanism is controlled to the channel area calculated value. According to the invention of claim 2, in the invention of claim 3, the NOx concentration detecting means for detecting the NOx concentration in the combustion exhaust gas and the CO concentration detecting means for detecting the CO concentration in the combustion exhaust gas are provided, and the combustion control means is Preferably, the gas concentration detection value input from the gas concentration detecting means, the concentration detection value input from the enthalpy concentration detecting means, and the CO concentration detection value rounded from the CO concentration detecting means are configured. It is calculated that the gas concentration of the air-mixed recirculation gas is a predetermined target gas concentration, the enthalpy concentration in the combustion exhaust gas is equal to or lower than a predetermined target enthalpy concentration, and the c 〇 concentration in the combustion exhaust gas is set in advance. The channel area ' of the air flow rate adjusting means below the target C ◦ concentration and controlling the air flow rate adjusting means to the channel area calculated value. Further, in the invention of claim 4, in the above-described combustion control device 118513.doc • 10 - 1331201, an air flow rate adjusting mechanism for adjusting an air flow rate is provided in the air passage, and a temperature detecting mechanism is provided on the other hand. a gas concentration detecting means for detecting a temperature of the air mixed recirculating gas, wherein the gas concentration detecting means detects a gas concentration of the air mixed recirculating gas, and the combustion control means inputs the temperature from the temperature The temperature detection value of the air-mixed recirculation gas of the detection means and the gas concentration detection value of the air-mixed recirculation gas from the gas concentration detecting means are calculated based on the temperature detection value and the gas concentration detection value, and the air mixture is calculated. The temperature of the circulating gas is a predetermined target temperature, and the gas concentration of the air-mixing recirculation gas is a channel area of the air flow rate adjusting mechanism that is a predetermined target gas concentration, and the air flow rate adjusting mechanism is controlled to The value of the area calculated. Further, in the invention of claim 5, in the combustion control device, a recirculation gas flow rate adjusting mechanism that adjusts a flow rate of the air mixed recirculation gas is provided in a recirculation gas passage through which the air mixed recirculation gas flows, The air-mixed recirculation gas system supplies air to the above-mentioned recirculated gas and supplies it to the combustor; and provides a gas flow meter and a combustion control mechanism that detects a flow rate of the air-mixed recirculation gas, the combustion The control unit calculates a passage area of the recirculation gas flow rate adjustment mechanism that is a predetermined target flow rate based on a flow rate detection value of the recirculation gas input from the gas flow meter, and calculates the recirculation gas. The flow rate adjustment mechanism controls the channel area calculation value. 118513.doc 1331201 In addition to the invention of claim 5, in the invention of claim 6, the recirculation gas is blown at a plurality of points in the above-mentioned dance chamber, and a plurality of the above-mentioned re-nucleating gas materials are connected to the feed material. a gas blowing outlet, wherein the recirculating gas flow rate adjusting mechanism for adjusting the flow rate of the air mixed recirculation gas is provided in each of the recirculation gas passages t, and the combustion chamber Lili that detects the pressure of the combustion chamber is provided corresponding to the recirculation gas flow rate adjusting mechanism testing facility,

而上述燃燒控制機構較好的是構成為根據來自上述複數個 燃燒室壓力㈣機構的上述燃燒室壓力檢測值,算出上述 複數處燃燒至壓力成為預先設定之目標壓力的上述各再循 環,體流量調整機構之通道面積,並將上述各再循環氣體 流量調整機構控制於上述通道面積算出值。 [發明之效果]Preferably, the combustion control means is configured to calculate, in accordance with the combustion chamber pressure detection value from the plurality of combustion chamber pressure (four) means, the plurality of combustions to the respective pressures at which the pressure is a predetermined target pressure. The passage area of the adjustment mechanism is controlled, and each of the above-described recirculation gas flow rate adjustment mechanisms is controlled to the channel area calculation value. [Effects of the Invention]

請求項1之發明中,利用燃燒控制機構,根據運送空氣 混合再循環氣體的再循環風扇中所導入之空氣混合再循環 氣體之溫度檢測值,調整空氣流量調整機構之開度而控制 混入上述空氣混合再循環氣體中的空氣量,以使該空氣混 合再循環氣體之溫度變為預先設定之容許最高溫度以下, 因此,即便因某些原因造成上述再循環氣體之溫度上升 時,亦可藉由對應於該溫度上升使空氣量增加,而將上述 再循環風扇所吸入的空氣混合再循環氣體之溫度一直適當 保持於上述容許最高溫度以下。 藉此,可防止上述空氣混合再循環氣體所引起的再循環 風扇之過熱’且無須對該再循環風扇使用由特殊耐熱材料 構成之高成本風扇,即可保持較高之耐久性。 118513.doc -12- 1331201 請求項2之發明中,利用燃燒控制機構,根據再循環風 扇中所導入的空氣混合再循環氣體之氣體濃度檢測值(較 好的是氧濃度檢測值),調整空氣流量調整機構之開度(通 道面積)而控制混入上述空氣混合再循環氣體中的空氣 量,以使該空氣混合再循環氣體之氣體濃度變為預先設定 的容許氣體濃度,因此,例如,即便再循環氣體中之氧受 到消耗而導致氧濃度變得過小時,亦可藉由增大上述空氣 流量調整機構之開度使空氣量增加,而一直於上述容許最 小氧濃度以上之狀態下進行穩定燃燒。 又,若構成如請求項3之發明,則由於利用燃燒控制機 構調整空氣流量調整機構之開度,故可使燃燒排氣中之 NOx濃度一直保持於容許最大NOx濃度以下、且使燃燒排 氣中之CO濃度一直保持於容許最大CO濃度以下,從而可 促進排氣之淨化。 根據請求項4之發明,可獲得請求項1之發明與請求項2 之發明的相乘效果。 即,請求項4之發明中, (1)利用燃燒控制機構,根據再循環風扇中所導入之空氣 混合再循環氣體之溫度檢測值,調整空氣流量調整機構之 開度而控制混入上述空氣混合再循環氣體中的空氣量,以 使該空氣混合再循環氣體之溫度變為預先設定之容許最高 溫度以下,因此,即便因某些原因引起上述再循環氣體之 溫度上升時,亦可藉由對應於該溫度上升使空氣量增加, 而將上述再循環風扇所吸入的空氣混合再循環氣體之溫度 118513.doc -13- 1331201 一直適當保持於上述容許最高溫度以下。 藉此,可防止上述空氣混合再循環氣體所引起的再循環 風扇之過熱,無須對該再循環風扇使用由特殊耐熱材料構 成之高成本風扇,即可保持較高之对久性。 (2)利用燃燒控制機構,根據再循環風扇中所導入的空氣 混合再循環氣體之氣體濃度檢測值(較好的是氧濃度檢測 值),調整空氣流量調整機構之開度(通道面積)而控制混入 上述空氣混合再循環氣體的空氣量,以使該空氣混合再循 環氣體之氣體濃度變為預先設定的容許氣體濃度,因此, 例如,即便再循環氣體中之氧受到消耗而導致氧濃度變得 過小時,亦可藉由增大上述空氣流量調整機構之開度使空 氣量增加,而一直於上述容許最小氧濃度以上之狀態下進 行穩定燃燒。 請求項5之發明中,於空氣混合再循環氣體所流通的吸 入通道(再循環氣體通道)中設置用於調整空氣混合再循環 氣體流量的該再循環氣體流量調整機構,並且根據來自檢 測上述空氣混合再循環氣體之流量的氣體流量計之再循環 氣體之流量檢測值,控制再循環氣體流量調整機構,以使 該再循環氣體之流量變為預先設定之目標流量,因此,藉 由控制再循環氣體流量調整機構之開度以使再循環氣體之 流量變為目標流量,可將作為二次空氣的空氣混合再循環 氣體之量,穩定地保持於該空氣混合再循環氣體可完全燃 燒之量,從而可使燃燒狀態平均化而保持穩定燃燒。 又,若構成如請求項6之發明,則於燃燒室之複數處設 118513.doc 1331201 置再循環氣體吹出口’且對應於再循環氣體流量調整機構 設置燃燒室壓力檢測機構,該再循環氣體流量調整機構係 設置於與上述再循環氣體吹出口連接的各再循環氣體通道 中’並利用燃燒控制機構’檢測再循環氣體吹出口附近之 再循環氣體壓力,利用再循環氣體量與再循環氣體壓力成 比例此種關係’控制該再循環氣體壓力使之變為目標氣體 壓力,因此’可自由調整對設於燃燒室之複數處之再循環 氣體吹出口的空氣混入再循環氣體量之分配,從而可將空 氣混入再循環氣體均勻地供給於燃燒室之周方向上,由此 可使燃燒平均化。 【實施方式】 以下’根據圖示之實施形態,詳細說明本發明。 [第1實施形態] 圖1係本發明之第1實施形態之爐床式焚化爐之結構圖, 圖2係上述第1實施形態之燃燒控制機構之概略結構圖,圖 3係上述第1實施形態之燃燒控制區塊圖。 於圖1中,1為用於投入垃圾或產業廢棄物等被燃燒物之 垃圾進料斗,2為爐床式焚化爐《該爐床式焚化爐2中,自 垃圾進料斗1開始之投入口至爐内底部,鋪設有主要構成 乾燥帶之乾燥帶爐床21、主要構成燃燒帶之主燃燒帶爐床 22、及主要構成後燃燒帶之後燃燒帶爐床23。乾燥帶爐床 21位於最上游側,主燃燒帶爐床22位於乾燥帶爐床21之下 游側,後燃燒帶爐床23在主燃燒帶爐床22之下游位於最下 游側。此處,主燃燒帶係指於垃圾層上燃起火焰而燃燒的 H8513.doc -15- 1331201 區域。According to the invention of claim 1, the combustion control means adjusts the opening degree of the air flow rate adjusting means based on the temperature detection value of the air mixed recirculation gas introduced into the recirculation fan that carries the air mixed with the recirculation gas, and controls the mixing of the air. Mixing the amount of air in the recirculating gas so that the temperature of the air-mixed recirculating gas becomes below a predetermined allowable maximum temperature, so that even if the temperature of the recirculating gas rises for some reason, The amount of air is increased in response to the increase in temperature, and the temperature of the air-mixed recirculation gas sucked by the recirculation fan is appropriately maintained below the allowable maximum temperature. Thereby, the overheating of the recirculating fan caused by the above air mixed recirculation gas can be prevented, and high durability can be maintained without using a high cost fan composed of a special heat resistant material for the recirculating fan. 118513.doc -12- 1331201 In the invention of claim 2, the combustion control mechanism is used to adjust the air according to the gas concentration detection value (preferably the oxygen concentration detection value) of the recirculated gas mixed with the air introduced in the recirculation fan. The opening degree (channel area) of the flow rate adjusting mechanism controls the amount of air mixed into the air mixed recirculation gas so that the gas concentration of the air mixed recirculation gas becomes a predetermined allowable gas concentration, and thus, for example, even if When the oxygen in the circulating gas is consumed and the oxygen concentration becomes too small, the amount of air can be increased by increasing the opening degree of the air flow adjusting mechanism, and stable combustion can be performed under the above-described allowable minimum oxygen concentration. . Further, according to the invention of claim 3, since the opening degree of the air flow rate adjusting means is adjusted by the combustion control means, the NOx concentration in the combustion exhaust gas can be kept at or below the allowable maximum NOx concentration, and the combustion exhaust can be made. The concentration of CO in the medium is kept below the maximum allowable CO concentration, thereby promoting the purification of the exhaust gas. According to the invention of claim 4, the multiplication effect of the invention of claim 1 and the invention of claim 2 can be obtained. In other words, in the invention of claim 4, (1) the combustion control means adjusts the opening degree of the air flow rate adjusting means based on the temperature detection value of the air-mixed recirculation gas introduced in the recirculation fan, and controls the mixing of the air mixture. The amount of air in the circulating gas is such that the temperature of the air-mixed recirculating gas becomes equal to or lower than a predetermined allowable maximum temperature. Therefore, even if the temperature of the recirculating gas rises for some reason, it may correspond to This temperature rise increases the amount of air, and the temperature of the air mixed with the recirculating gas sucked by the recirculating fan 118513.doc -13 - 1331201 is suitably maintained below the allowable maximum temperature. Thereby, it is possible to prevent overheating of the recirculating fan caused by the above air mixed recirculation gas, and it is possible to maintain high durability without using a high cost fan composed of a special heat resistant material for the recirculating fan. (2) adjusting the opening degree (channel area) of the air flow rate adjusting mechanism based on the gas concentration detection value (preferably the oxygen concentration detection value) of the air mixed recirculation gas introduced into the recirculation fan by the combustion control mechanism Controlling the amount of air mixed into the air-mixed recirculation gas so that the gas concentration of the air-mixed recirculation gas becomes a predetermined allowable gas concentration, and thus, for example, even if oxygen in the recirculating gas is consumed, the oxygen concentration is changed. When it is too small, the amount of air may be increased by increasing the opening degree of the air flow rate adjusting means, and stable combustion may be performed in a state of being above the allowable minimum oxygen concentration. In the invention of claim 5, the recirculation gas flow rate adjusting mechanism for adjusting the flow rate of the air mixed recirculation gas is provided in a suction passage (recirculation gas passage) through which the air mixed recirculation gas flows, and based on the detection of the air a flow rate detection value of the recycle gas of the gas flow meter that mixes the flow rate of the recycle gas, and controls the recycle gas flow rate adjustment mechanism to change the flow rate of the recycle gas to a predetermined target flow rate, thereby controlling the recycle The opening degree of the gas flow rate adjusting mechanism is such that the flow rate of the recirculating gas becomes the target flow rate, and the amount of the air mixed recirculating gas as the secondary air can be stably maintained in an amount that the air mixed recirculating gas can be completely burned. Thereby, the combustion state can be averaged to maintain stable combustion. Further, if the invention of claim 6 is constructed, a recirculation gas outlet port is provided at a plurality of portions of the combustion chamber, and a combustion chamber pressure detecting mechanism is provided corresponding to the recirculation gas flow rate adjusting mechanism, the recirculation gas The flow rate adjustment mechanism is disposed in each of the recirculation gas passages connected to the recirculation gas outlet, and uses a combustion control mechanism to detect a recirculation gas pressure near the recirculation gas outlet, and utilizes a recirculation gas amount and a recirculation gas. The proportional relationship of the pressure 'controls the pressure of the recirculating gas to become the target gas pressure, so that the distribution of the amount of air mixed with the recirculated gas to the recirculation gas outlet of the plurality of combustion chambers can be freely adjusted, Thereby, the air mixed with the recirculating gas can be uniformly supplied to the circumferential direction of the combustion chamber, whereby the combustion can be averaged. [Embodiment] Hereinafter, the present invention will be described in detail based on the embodiments shown in the drawings. [First Embodiment] Fig. 1 is a configuration diagram of a hearth incinerator according to a first embodiment of the present invention, Fig. 2 is a schematic configuration diagram of a combustion control mechanism according to the first embodiment, and Fig. 3 is the first embodiment. Form of combustion control block diagram. In Fig. 1, 1 is a garbage feed hopper for inputting waste materials such as garbage or industrial waste, and 2 is a hearth type incinerator "in the hearth type incinerator 2, the input port from the garbage feed hopper 1 To the bottom of the furnace, a drying belt hearth 21 mainly constituting the drying belt, a main combustion belt hearth 22 mainly constituting the combustion belt, and a combustion belt hearth 23 mainly constituting the afterburning belt are laid. The drying belt hearth 21 is located on the most upstream side, the main combustion zone hearth 22 is located on the lower side of the drying belt hearth 21, and the rear combustion zone hearth 23 is located on the lowermost side downstream of the main combustion zone hearth 22. Here, the main combustion zone refers to the H8513.doc -15-1331201 region where the flame is burned on the garbage layer.

上述各爐床21、22、23具備配設於固定火格子之間的移 動火格子,投入垃圾(被燃燒物)後,藉由該移動火格子之 往返運動,使該垃圾於爐床21内乾燥,於爐床22内進行主 燃燒,最後於爐床23内進行後燃燒。再者,於本實施形態 中上述主燃燒帶爐床22為3個,然而亦可設為1個或複數 個。8為儲灰槽。 又於上述爐床21、22、23上方設有一次燃燒室3,進 而’於其上方設有二次燃燒室4。 19a、19b、19c、19d係面朝二次燃燒室4設置之再循環 氣體人出喷嘴。又,81係與二次燃燒室4之排氣出口連接 之鋼爐。 於乾燥帶爐床21、燃燒帶爐床22及後燃燒帶爐床23,配Each of the hearths 21, 22, and 23 includes a moving fire lattice disposed between the fixed fire lattices, and after the garbage (burned matter) is put into the garbage, the garbage is moved in the hearth 21 by the reciprocating movement of the moving fire lattice. Drying, main combustion is carried out in the hearth 22, and finally post-combustion is carried out in the hearth 23. Further, in the present embodiment, the number of the main combustion zone hearths 22 is three, but it may be one or plural. 8 is an ash storage tank. Further, a combustion chamber 3 is provided above the hearths 21, 22, and 23, and a secondary combustion chamber 4 is provided thereon. 19a, 19b, 19c, and 19d are recirculating gas outlet nozzles disposed facing the secondary combustion chamber 4. Further, the 81 series is a steel furnace connected to the exhaust outlet of the secondary combustion chamber 4. In the drying belt hearth 21, the burning belt hearth 22 and the post-combustion belt hearth 23,

。又有開口於各自下部之風箱的一次空氣管51、52(3個)、 53,一次空氣由該一次空氣管供給。6為一次空氣供給用 風羽,5為-人空氣主管,與該風扇6、及各一次空氣管 51、52(3個)、53連接;由風扇6壓送而來之一次空氣係, 自一次空氣主管5分配至一次空氣管51、52、53中。於一 次空氣管51、52、53中’設有分別開閉該等一次空氣管之 開閉阻尼器54、55、 56»又,於一次空氣主管5中 ,設有 開閉該一次空氣主管之開閉阻尼器7。 40為再循環氣體抽出口,用於抽出上述一次燃燒室3内 (亦可為二次燃燒室4内)之一部分燃燒排氣作為再循環氣 趙,自該再循環氣體抽出口40所抽出的再循環氣體,經由 118513.doc •16· 再循環通道16、混合氣體通道14及用於分離混合氣體中之 固體異物的旋風分離器12,導入至再循環風扇13之吸入通 t31亦即,使再循環氣體抽出口 40與吸入通道3i經由再 播環通道16而連接,於吸人通道31中,設有開閉再循環風 扇13之入口的氣體阻尼器〇13。 30為混入空氣通道,自一次空氣主管5分支且與作為再 循環風扇13之上游部位的吸入通道31連接,3〇a為空氣阻 尼器(開閉阻尼器)’用於開閉混入空氣通道3〇,若打開該 空氣阻尼器30a,則來自一次空氣主管5的一次空氣經由混 入空氣通道30而投入至吸入通道31之再循環風扇13之入 口 ’由此一次空氣混合至上述再循環氣體中,繼而經由混 合氣體通道14、旋風分離器12及吸入通道31而導入再循環 風扇13中。 上述空氣阻尼器3 0a係可接收來自後文將述的燃燒控制 機構60之控制信號而自動進行開度調整(流量調整),藉由 調整該空氣阻尼器30a之開度,對流過混入空氣通道30的 一次空氣之流量加以調整,從而調整空氣混合再循環氣體 中再循環氣體與一次空氣之混合比例,該空氣混合再循環 氣體係經由混合氣體通道14、旋風分離器12及吸入通道31 而導入再循環風扇13的再循環氣體與一次空氣之混合氣 體》 繼而,藉由再循環風扇13而壓送至再循環通道15的一次 空氣混合後之空氣混合再循環氣體,分流至2個再循環通 道17、18中,並由一側之再循環通道17送入一側之2行再 118513.doc •17- 循環氣體吹出噴嘴19a、19c,由另一側之再循環通道18送 入另一側之2行再循環氣體吹出喷嘴19b、19d,進而由再 循環氣體吹出噴嘴19a、19c及19b、19d喷出至二次燃燒室 4内。又’於再循環通道17中設有開閉該再循環通道17的 分支氣體阻尼器七33,於再循環通道18中設有開閉該再循 環通道18的分支氣體阻尼器A32。 35為溫度感測器,設於上述再循環通道15中、用於檢測 上述空氣混合再循環氣體之溫度(亦可於混合氣體通道14 中設置溫度感測器35a。以下就溫度感測器35進行說明)。 36為空氣阻尼器開度檢測器,用於檢測上述空氣阻尼器 30a之開度。 本發明之第1實施形態之爐床式焚化爐2具備燃燒控制機 構60 ’該燃燒控制機構60電性連接於溫度感測器35(包括 3 5a)、空氣阻尼器30a及空氣阻尼器開度檢測器36,自溫 度感測器35輸入上述空氣混合再循環氣體之溫度檢測值, 並且自空氣阻尼器開度檢測器36輸入空氣阻尼器30a之開 度檢測值’根據該等檢測值調整空氣阻尼器3〇a之開度, 將上述空氣混合再循環氣體中再循環氣鱧與一次空氣之混 合比例控制為目標混合比例,以使上述空氣混合再循環氣 體之溫度變為目標溫度。 於該爐床式焚化爐2運轉時,將經由再循環氣體抽出口 40自爐床上方之燃燒室(一次燃燒室3或者二次燃燒室4)内 抽出的一部分燃燒排氣作為再循環氣體,經由再循環通道 16 ’與來自混入空氣通道30的一次空氣混合,繼而經由混 118513.doc •18· 1331201 合氣體通道14、旋風分離器12及吸入通道31而導入再循環 風扇13中。 再者,藉由再循環風扇13壓送至再循環通道15的一次空 氣δ後之^氣混合再循環氣體,分流至2個再循環通道 17、18中’並分別送入一側之再循環氣體吹出噴嘴1、 19c及另一側之再循環氣體吹出喷嘴19b、19d,進而由再 循環氣體吹出噴嘴19a、19C及19b、19d喷出至二次燃燒室 4内。 如此般,可使由一部分燃燒排氣組成之再循環氣體,因 一次空氣而降溫,並且藉由與該一次空氣之混合使燃燒排 氣稀釋後’再導入再循環風扇13。 繼而,根據圖2及圖3,就第1實施形態之燃燒控制機構 及燃燒控制順序加以說明。 本實施形態之燃燒控制機構6〇,具備氣體溫度比較部 61、基準氣體溫度設定部62、氣體溫度/空氣量設定部 63、空氣量調整量算出部64、空氣阻尼器開度調整量算出 部65、及空氣阻尼器開度算出部66,由溫度感測器35檢測 出的空氣混合再循環氣體之溫度檢測值輸入至該燃燒控制 機構60之氣體溫度比較部61。於基準氣體溫度設定部Q 内,設定有送入上述再循環風扇13中的上述空氣混合再循 環氣體之容許最高溫度(較佳為3〇〇 左右)。 又,於氣體溫度比較部61中,算出溫度偏差,該溫度偏 差係來自溫度感測器35的空氣混合再循環氣體之溫度檢測 值與基準氣體溫度設定部62中所設定之容許最高溫度的溫 118513.doc -19· 1331201 度偏差。 繼而,按照以下順序,利用圖2所示的空氣阻尼器開度 算出機構600算出空氣阻尼器30a之開度。 於圖3中,來自氣體溫度比較部61的溫度偏差之算出 值,輸入至空氣量調整量算出部64。 於氣體溫度/空氣量設定部63中,藉由試驗結果或者模 擬計算,預先設定經由混入空氣通道30而供給的空氣之空 氣量、及上述空氣與來自再循環通道16的再循環氣體混合 後之上述空氣混合再循環氣體溫度的關係。 又,於空氣量調整量算出部64中,自上述氣體溫度/空 氣量設定部63算出(提取)與來自氣體溫度比較部61的上述 溫度偏差之算出值相對應的空氣量偏差,並輸出至空氣阻 尼器開度調整量算出部65。於空氣阻尼器開度調整量算出 部65中,設定有空氣量與空氣阻尼器開度之關係作為上述 空氣阻尼器30a之開度特性,於該空氣阻尼器開度調整量 算出部65中,算出與來自空氣量調整量算出部64的空氣量 偏差算出值相對應之空氣阻尼器開度調整量,並輸出至空 氣阻尼器開度算出部66。 於該空氣阻尼器開度算出部66中,對自上述空氣阻尼器 開度檢測器36輸入的空氣阻尼器30a之開度檢測值,加上 或減去來自上述空氣阻尼器開度調整量算出部65的空氣阻 尼器開度調整量,算出空氣阻尼器開度的目標值、即與上 述基準氣體溫度相對應的空氣阻尼器開度,並將上述空氣 阻尼器30a控制為該目標開度。 118513.doc •20- 1331201. Further, there are primary air pipes 51, 52 (three) which are opened in the bellows of the respective lower portions, and 53, primary air is supplied from the primary air pipe. 6 is a primary air supply wind feather, 5 is a human air main pipe, and is connected to the fan 6, and each of the primary air pipes 51, 52 (three), 53; and the primary air system that is pumped by the fan 6 The primary air main pipe 5 is distributed to the primary air pipes 51, 52, 53. The primary air tubes 51, 52, 53 are provided with opening and closing dampers 54, 55, 56 respectively for opening and closing the primary air tubes. Further, in the primary air main unit 5, an opening and closing damper for opening and closing the primary air main is provided. 7. 40 is a recirculation gas extraction port for extracting a portion of the combustion exhaust gas in the primary combustion chamber 3 (which may also be in the secondary combustion chamber 4) as a recirculation gas, extracted from the recirculation gas extraction port 40. The recirculating gas is introduced into the recirculation passage t31 of the recirculating fan 13 via the cyclone separator 12, the recirculation passage 16, the mixed gas passage 14, and the cyclone separator 12 for separating the solid foreign matter in the mixed gas, that is, The recirculation gas extraction port 40 and the suction passage 3i are connected via a replay ring passage 16, and a gas damper 13 for opening and closing the inlet of the recirculation fan 13 is provided in the suction passage 31. 30 is a mixed air passage branched from the primary air main pipe 5 and connected to the suction passage 31 which is an upstream portion of the recirculation fan 13, and 3〇a is an air damper (opening and closing damper)' for opening and closing the mixed air passage 3〇, When the air damper 30a is opened, the primary air from the primary air main pipe 5 is supplied to the inlet of the recirculation fan 13 of the suction passage 31 via the mixed air passage 30, whereby the primary air is mixed into the above-mentioned recirculation gas, and then via The mixed gas passage 14, the cyclone 12, and the suction passage 31 are introduced into the recirculation fan 13. The air damper 30a can automatically perform opening degree adjustment (flow rate adjustment) by receiving a control signal from a combustion control mechanism 60, which will be described later, by adjusting the opening degree of the air damper 30a to flow through the mixed air passage. The flow rate of the primary air of 30 is adjusted to adjust the mixing ratio of the recirculating gas and the primary air in the air mixed recirculation gas, and the air mixed recirculation gas system is introduced through the mixed gas passage 14, the cyclone 12, and the suction passage 31. The mixed gas of the recirculating gas of the recirculating fan 13 and the primary air. Then, the air mixed with the primary air mixed by the recirculating fan 13 to the recirculation passage 15 is mixed with the recirculating gas, and is branched to two recirculation passages. In 17, 18, and one side of the recirculation passage 17 is fed into one side of the two rows and then 118513.doc • 17-cycle gas blowing nozzles 19a, 19c, and the other side of the recirculation passage 18 is sent to the other side The two rows of recirculating gas blowing nozzles 19b and 19d are further ejected into the secondary combustion chamber 4 by the recirculating gas blowing nozzles 19a, 19c and 19b and 19d. Further, a branch gas damper VII 33 for opening and closing the recirculation passage 17 is provided in the recirculation passage 17, and a branch gas damper A32 for opening and closing the recirculation passage 18 is provided in the recirculation passage 18. 35 is a temperature sensor disposed in the recirculation passage 15 for detecting the temperature of the air mixed recirculation gas (the temperature sensor 35a may also be disposed in the mixed gas passage 14. Hereinafter, the temperature sensor 35) Be explained). 36 is an air damper opening detector for detecting the opening degree of the air damper 30a. The hearth incinerator 2 according to the first embodiment of the present invention includes a combustion control mechanism 60'. The combustion control mechanism 60 is electrically connected to the temperature sensor 35 (including 35a), the air damper 30a, and the air damper opening degree. The detector 36 inputs the temperature detection value of the air-mixed recirculation gas from the temperature sensor 35, and inputs the opening detection value of the air damper 30a from the air damper opening detector 36 to adjust the air according to the detection values. The opening degree of the damper 3〇a controls the mixing ratio of the recirculation gas and the primary air in the air mixed recirculation gas to a target mixing ratio so that the temperature of the air mixed recirculation gas becomes the target temperature. When the hearth incinerator 2 is operated, a part of the combustion exhaust gas extracted from the combustion chamber (the primary combustion chamber 3 or the secondary combustion chamber 4) on the furnace bed via the recirculation gas extraction port 40 is used as a recirculation gas. The recirculation passage 16' is mixed with the primary air from the mixed air passage 30, and then introduced into the recirculation fan 13 via the mixing 118513.doc • 18· 1331201 gas passage 14, the cyclone 12 and the suction passage 31. Further, the recirculating gas which is sent to the recirculation passage 15 by the recirculation fan 13 is mixed with the recirculated gas, and is branched into the two recirculation passages 17, 18' and recirculated to one side. The gas blowing nozzles 1 and 19c and the other side of the recirculating gas blowing nozzles 19b and 19d are further ejected into the secondary combustion chamber 4 by the recirculating gas blowing nozzles 19a, 19C and 19b and 19d. In this manner, the recirculating gas composed of a part of the combustion exhaust gas can be cooled by the primary air, and the combustion exhaust gas is diluted by the mixing with the primary air, and then recirculated to the recirculation fan 13. Next, the combustion control mechanism and the combustion control sequence of the first embodiment will be described with reference to Figs. 2 and 3 . The combustion control unit 6A of the present embodiment includes a gas temperature comparison unit 61, a reference gas temperature setting unit 62, a gas temperature/air amount setting unit 63, an air amount adjustment amount calculation unit 64, and an air damper opening degree adjustment amount calculation unit. 65. The air damper opening degree calculation unit 66 inputs the temperature detection value of the air-mixed recirculation gas detected by the temperature sensor 35 to the gas temperature comparison unit 61 of the combustion control unit 60. The allowable maximum temperature (preferably about 3 Torr) of the air-mixed recirculating gas fed into the recirculation fan 13 is set in the reference gas temperature setting unit Q. Further, the gas temperature comparison unit 61 calculates a temperature deviation which is the temperature detection value of the air-mixed recirculation gas from the temperature sensor 35 and the temperature of the allowable maximum temperature set in the reference gas temperature setting unit 62. 118513.doc -19· 1331201 Degree deviation. Then, the air damper opening degree calculating means 600 shown in Fig. 2 calculates the opening degree of the air damper 30a in the following order. In Fig. 3, the calculated value of the temperature deviation from the gas temperature comparing unit 61 is input to the air amount adjustment amount calculating unit 64. In the gas temperature/air amount setting unit 63, the amount of air supplied through the air passage 30 and the air and the recirculation gas from the recirculation passage 16 are mixed in advance by a test result or a simulation calculation. The relationship of the above air mixed recycle gas temperature. Further, the air amount adjustment amount calculation unit 64 calculates (extracts) the air amount deviation corresponding to the calculated value of the temperature deviation from the gas temperature comparison unit 61 from the gas temperature/air amount setting unit 63, and outputs it to the air amount/air amount setting unit 63. Air damper opening degree adjustment amount calculation unit 65. The air damper opening degree adjustment amount calculation unit 65 sets the relationship between the air amount and the air damper opening degree as the opening degree characteristic of the air damper 30a, and the air damper opening degree adjustment amount calculation unit 65 The air damper opening degree adjustment amount corresponding to the air amount deviation calculation value from the air amount adjustment amount calculation unit 64 is calculated and output to the air damper opening degree calculation unit 66. The air damper opening degree calculation unit 66 calculates or calculates the opening degree detection value of the air damper 30a input from the air damper opening degree detector 36 by adding or subtracting the air damper opening degree adjustment amount. The air damper opening degree adjustment amount of the portion 65 calculates a target value of the air damper opening degree, that is, an air damper opening degree corresponding to the reference gas temperature, and controls the air damper 30a to the target opening degree. 118513.doc •20- 1331201

如此於第1實施形態之爐床式焚化爐2之燃燒控制裝置 中,利用燃燒控制機構60,根據通過上述再循環風扇η的 空氣混合再循環氣體之溫度檢測值,調整空氣阻尼器3〇a 之開度而控制混入上述空氣混合再循環氣體的空氣量,以 使該空氣混合再循環氣體之溫度變為預先設定的容許最高 溫度以下,因此,即便因某些原因引起上述再循環氣體之 溫度上升時,亦可藉由對應於該溫度上升使空氣量增加, 而將上述再循環風扇13所吸入的空氣混合再循環氣體之溫 度一直適當地保持在上述容許最高溫度以下。 藉此,可防止上述空氣混合再循環氣體所引起的再循環 風扇13之過熱,故無須對再循環風扇13使用由特殊的耐熱 材料所構成之向成本風扇,即可保持較高的耐久性。 [第2實施形態]In the combustion control device of the hearth incinerator 2 according to the first embodiment, the combustion control unit 60 adjusts the air damper 3〇a based on the temperature detection value of the air-mixed recirculation gas passing through the recirculation fan η. Controlling the amount of air mixed into the air-mixed recirculation gas so that the temperature of the air-mixed recirculation gas becomes lower than a predetermined allowable maximum temperature, so that the temperature of the recirculating gas is caused even for some reason At the time of ascending, the amount of air may be increased in accordance with the increase in temperature, and the temperature of the air-mixed recirculation gas sucked by the recirculation fan 13 may be appropriately maintained at or below the allowable maximum temperature. Thereby, it is possible to prevent overheating of the recirculation fan 13 caused by the air-mixed recirculation gas. Therefore, it is not necessary to use a special heat-resistant material for the recirculation fan 13 to maintain the high durability. [Second Embodiment]

圖4係本發明第2實施形態之爐床式焚化爐之結構圖,圖 5係上述第2實施形態之燃燒控制機構之概略結構圖,圖6 係上述第2實施形態之燃燒控制區塊圖。 於本發明之第2實施形態中,在檢測上述空氣混合再猶 %氣體之氣體濃度並根據該氣體濃度控制空氣阻尼器 之開度的機構中,使用氧濃度作為氣體濃度。再者,亦可a 使用C〇2等空氣混合再循環氣體令其他成分之濃度,替代 亦即,於本發明第2實施形態之爐床式焚化爐2中,如圖 4所不,設有檢測m合再循環氣體中之氧濃度曲 度物(或者氧濃度計37a)、檢測上述二次燃燒室4出口: 118513.doc 1331201 之燃燒排氟中之ΝΟχ農度的NOx濃度感測器3 8、及檢測c〇 濃度的CO濃度感測器39。 再者’本實施形態之燃燒控制機構60,如圖5及圖6所 示’具備氧濃度比較部71'基準氧濃度設定部72、N〇x濃 度比較部73、基準ΝΟχ濃度設定部74、CO濃度比較部75、 基準CO濃度設定部76、空氣量調整量算出部77、氧濃度/ 空氣量設定部78、空氣量調整量算出部79、ΝΟχ濃度/空氣 量設定部80、空氣量調整量算出部81、CO濃度/空氣量設 定部82、空氣阻尼器開度調整量算出部65及空氣阻尼器開 度算出部66 ’根據來自氧濃度計37之氧濃度檢測值,算出 使上述空氣混合再循環氣體之氧濃度變為預先設定之目標 氧濃度的空氣阻尼器30a之開度’並將空氣阻尼器3〇a之開 度控制為該開度算出值》 又,燃燒控制機構60根據來自NOx濃度感測器38之NOx 濃度檢測值及來自CO濃度感測器39之CO濃度檢測值,算 出使上述燃燒排氣中之NOx濃度變為預先設定之目標n〇x 濃度以下、且燃燒排氣中CO濃度變為預先設定之目標CO 濃度以下的空氣阻尼器30a之開度,並將空氣阻尼器30a之 開度控制為該開度算出值》 以下,根據圖5及圖6,說明第2實施形態之燃燒控制機 構及燃燒控制順序。 圖5係摘選顯示該第2實施形態中之如下步驟,即,利用 空氣阻尼器開度算出機構600根據來自氧濃度計37(37a)的 氧濃度檢測值而算出空氣阻尼器30a之開度,而以下動作 118513.doc -22- 1331201 說明係參照圖6,就除上述氧濃度以外使用有燃燒排氣中 之NOx濃度及c〇濃度的燃燒控制加以說明的。 於圖ό中’由氧濃度計37(或氧濃度計37a)檢測出的上述 空氣混合再循環氣體之氧濃度檢測值,輸入至燃燒控制機 構60之氧濃度比較部71中。又,由Ν〇χ濃度感測器38檢測 出的燃燒排氣中2Ν〇χ濃度檢測值,輸入至燃燒控制機構 60之ΝΟχ濃度比較部73中。進而,由c〇濃度感測器39檢測 出的燃燒排氣中之C0濃度檢測值,輸入至燃燒控制機構 60之CO濃度比較部75中。 於基準氧濃度設定部72中,設定有送入再循環風扇13的 上述空氣混合再循環氣體之容許最小氧濃度。於基準Ν〇χ 濃度設定部74中,設定有上述燃燒排氣中之容許最大Ν〇χ 遭度。於基準CO濃度s定部76中,設定有上述燃燒排氣 中之容許最大CO濃度。 於氧濃度比較部71中,算出來自氧濃度計37的空氣混合 再循環氣體中之氧濃度檢測值與基準氧濃度設定部72中所 設定之容許最小氧冑度的氧濃度偏差,錄入至空氣量調 整量算出部77 ^ 又,於N〇x濃度比較部73中,算出來自Ν〇χ濃度感測器 38的燃燒排氣中之Ν〇χ濃度檢測值與基準Ν〇χ濃度設定部 74中所a又疋之容許最大1^(^濃度的Ν〇χ濃度偏差並輸入 至空氣量調整量算出部79。 進而’於CO濃度比較部75中,算出來自c〇濃度感測器 39的燃燒排氣中之C〇濃度檢測值與基準⑺濃度設定部% 118513.doc •23· 1331201 中所設定之容許最大CO濃度的CO濃度偏差,並輸入至空 氣量調整量算出部81。 繼而,於氧濃度/空氣量設定部78中,藉由試驗結果或 者模擬計算,預先設定有通過混入空氣通道30而供給的空 氣之空氣量、與混合上述空氣與來自再循環通道16的再循 環氣體後之上述空氣混合再循環氣體中氧濃度的關係。 又,於ΝΟχ濃度/空氣量設定部80中,藉由試驗結果或模 擬計算,預先設定有通過混入空氣通道30而供給的空氣之 空氣量與上述燃燒排氣中ΝΟχ濃度的關係。 進而,於CO濃度/空氣量設定部82中,藉由試驗結果或 模擬計算,預先設定有通過混入空氣通道30而供給的空氣 之空氣量與上述燃燒排氣中CO濃度的關係。 繼而,於空氣量調整量算出部77中,自氧濃度/空氣量 設定部78算出(提取)與來自氧濃度比較部71的上述氧濃度 偏差之算出值相對應的空氣量偏差,並輸入至空氣阻尼器 開度調整量算出部65。 又,於空氣量調整量算出部79中,自ΝΟχ濃度/空氣量設 定部80算出(提取)與來自ΝΟχ濃度比較部73的上述ΝΟχ濃 度偏差之算出值相對應的空氣量偏差,並輸入至空氣阻尼 器開度調整量算出部65。 進而,於空氣量調整量算出部81中,自CO濃度/空氣量 設定部82算出(提取)與來自CO濃度比較部75的上述CO濃 度偏差之算出值相對應的空氣量偏差,並輸入至空氣阻尼 器開度調整量算出部65。 118513.doc •24· 1331201 於空氣阻尼器開度調整量算出部65中’設定有空氣量與 空氣阻尼器開度的關係作為空氣阻尼器3〇a之開度特性, 於該空氣阻尼器開度調整量算出部65中,依序算出以與上 述氧濃度偏差相對應之空氣量偏差為根據的空氣阻尼器開 度調整量、以與上述NOx濃度偏差相對應之空氣量偏差為 根據的空氣阻尼器開度調整量、及以與上述C〇濃度偏差 相對應之空氣量偏差為根據的空氣阻尼器開度調整量,並 自上述空氣阻尼器開度調整量中選出最佳空氣阻尼器開度 調整量’輸入至空氣阻尼器開度算出部66。 繼而,於空氣阻尼器開度算出部66中,對自空氣阻尼器 開度檢測器36輸入的空氣阻尼器3〇a之開度檢測值,加上 或減去來自空氣阻尼器開度調整量算出部65之空氣阻尼器 開度調整量,算出空氣阻尼器開度之目標值、即與上述基 準氧農度或上述基準NOx濃度或者上述基準c〇濃度相適應 的空氣阻尼器30a之開度’並將空氣阻尼器3〇a控制為該目 標開度。 其他結構與上述第1實施形態相同,並使用相同符號表 示與上述第1實施形態相同之構件。 如此’於第2實施形態之爐床式焚化爐2之燃燒控制裝置 中,利用燃燒控制機構60,根據上述再循環風扇13中所導 入的空氣混合再循環氣體之氧濃度檢測值,調整空氣阻尼 器30a之開度而控制混入上述空氣混合再循環氣體的空氣 量’以使該空氣混合再循環氣體之氧濃度變為預先設定的 容許最小氧濃度以上’因此,即便再循環氣體中之氧受到 118513.doc -25- 1331201 消耗導致氧濃度變得過小時,亦可藉由增大空氣阻尼器 3〇a之開度使空氣量增加,而一直在上述容許最小氧濃度 以上之條件下進行穩定燃燒。 又’藉由利用燃燒控制機構60調整空氣阻尼器3〇a之開 度’可使燃燒排氣中之NOx濃度一直保持在容許最大Ν〇χ 濃度以下、又可使燃燒排氣中之c〇濃度一直保持在容許 最大CO濃度以下’從而可促進排氣之淨化。 [第3實施形態] 圖7係本發明第3實施形態之爐床式焚化爐之結構圓,圖 8係摘選出上述第3實施形態中根據氧濃度及空氣混合再循 環氣體之溫度所進行之燃燒控制的流程圖。 本發明第3實施形態係將圖1〜圖3所示之第!實施形態及 圖4〜圖6所示之第2實施形態組合而成者。 亦即,於該第3實施形態中,利用燃燒控制機構6〇,根 據來自溫度感測器35a(亦或圖1中之溫度感測器35)的空氣 犯合再循環氣體之溫度檢測值,調整空氣阻尼器3〇a之開 度而控制混入上述空氣混合再循環氣體的空氣量,以使該 二氣混合再循環氣體之溫度變為預先設定的容許最高溫度 以下,並且,根據檢測上述空氣混合再循環氣體中之氧濃 度的氧濃度計37之氧濃度檢測值,算出使上述空氣混合再 循環氣體之氧濃度變為預先設定之容許最小氧濃度以上的 空氣阻尼器30a之開度,並將空氣阻尼器3〇a之開度控制為 該開度算出值。 又,於第3實施形態中,與上述第2實施形態相同,於二 118513.doc -26- 1331201 次燃燒室4出口侧設有檢測燃燒排氣中Ν〇χ濃度之濃度 感測器38、及檢測CO濃度之c〇濃度感測器%,且根據來 自NOx濃度感測器382Ν〇χ濃度檢測值及來自c〇濃度感測 器39之CO濃度檢測值,算出使上述燃燒排氣中濃度 變為預先設定的目標ΝΟχ濃度以下、且使燃燒排氣中之c〇 濃度變為預先設定的目標C0濃度以下的空氣阻尼器3〇a之 開度,並將空氣阻尼器3〇a之開度控制為該開度算出值。 ,、他、.·α構與上述第1實施形態相同’並使用相同符號表 示與上述第1實施形態相同之構件。 圖8係表示摘選出如此之第3實施形態中根據氧濃度及空 氣混合再循環氣體之溫度所進行的燃燒控制之流程圖,該 燃燒控制按下述順序進行。 亦即,利用氧濃度計37檢測出空氣混合再循環氣體之氧 /辰度Cg(步驟(1)),將該氧濃度檢測值Cg與目標氧濃度cg〇 進行比較(步驟(2)),當氧濃度Cg大於目標氧濃度Cg〇時(Cg 〉Cgo)關閉空氣阻尼器30a以減少空氣量(步驟(3)),當氧 濃度Cg小於目標氧濃度Cgo時(Cg < Cg〇)打開空氣阻尼器 30a以增加空氣量(步驟(4))。 繼而’於根據該根據氧濃度而進行的空氣阻尼器3〇&之 開度控制之後,按下述順序根據空氣混合再循環氣體之溫 度而進行空氣阻尼器30a之開度控制。 亦即’於圖8中’利用溫度感測器35a(亦或圖1中之溫度 感測器35)檢測出空氣混合再循環氣體之溫度Tg(步驟 (5)) ’將該溫度檢測值Tg與目標溫度Tgo進行比較(步驟 118513.doc -27- (6)),當溫度檢測值Tg與目標溫度Tgo —致時將空氣阻尼 器3 0a之開度保持於現狀,當溫度檢測值Tg高於目標溫度 Tgo時(Tg>Tgo)打開.空氣阻尼器30a以增加空氣量,降低 空氣混合再循環氣體之溫度Tg(步驟(7)),當溫度檢測值Tg 低於目標溫度Tgo時(Tg < Tgo)關閉空氣阻尼器30a以減少 空氣量,提昇空氣混合再循環氣體之溫度Tg(步驟(8))。 根據本發明之第3實施形態,可獲得上述第1實施形態及 第2實施形態的相乘效果。 亦即,於第3實施形態之爐床式焚化爐2之燃燒控制裝置 中, (1) 利用燃燒控制機構60,根據再循環風扇13中所導入的 空氣混合再循環氣體之溫度檢測值,調整空氣阻尼器30a 之開度而控制混入上述空氣混合再循環氣體的空氣量,以 使該空氣混合再循環氣體之溫度變為預先設定的容許最高 溫度以下,因此,即便因某些原因使得上述再循環氣體之 溫度上升時,亦可藉由對應於該溫度上升使空氣量增加, 而一直使再循環風扇13所吸入的空氣混合再循環氣體之溫 度適當地保持在上述容許最高溫度以下。 藉此,可防止上述空氣混合再循環氣體所引起的再循環 風扇13之過熱,無須對再循環風扇13使用由特殊的耐熱材 料所構成之高成本風扇,即可保持較高之耐久性。 (2) 利用燃燒控制機構60,根據上述再循環風扇13中所導 入的空氣混合再循環氣體之氧濃度檢測值,調整空氣阻尼 器3 0a之開度而控制混入上述空氣混合再循環氣體的空氣 118513.doc -28 - 1331201 f ’:使該空氣混合再循環氣體之氧濃度變為預先設定的 二許最小氧濃度以上,因此,即便再循環氣體中之氧受到 消耗導致氧濃度變得過小時 叮处可碏由增大空氣阻尼器 3〇a之開度使空氣量增加,而一 直在上述容睁最小氧濃度 以上之條件下進行穩定燃燒。Fig. 4 is a structural view of a hearth incinerator according to a second embodiment of the present invention, Fig. 5 is a schematic configuration diagram of a combustion control mechanism according to the second embodiment, and Fig. 6 is a diagram showing a combustion control block of the second embodiment. . In the second embodiment of the present invention, the oxygen concentration is used as the gas concentration in the mechanism for detecting the gas concentration of the air-mixed gas and controlling the opening degree of the air damper based on the gas concentration. In addition, in the hearth type incinerator 2 according to the second embodiment of the present invention, the concentration of the other components may be mixed with air such as C〇2 or the like, as shown in FIG. Detecting the oxygen concentration curvature in the m-to-recycle gas (or the oxygen concentration meter 37a), and detecting the NOx concentration sensor 3 of the above-mentioned secondary combustion chamber 4 outlet: 118513.doc 1331201 8. A CO concentration sensor 39 for detecting c〇 concentration. Further, the combustion control mechanism 60 of the present embodiment includes the oxygen concentration comparison unit 71' reference oxygen concentration setting unit 72, the N〇x concentration comparison unit 73, and the reference enthalpy concentration setting unit 74, as shown in Figs. 5 and 6 . CO concentration comparison unit 75, reference CO concentration setting unit 76, air amount adjustment amount calculation unit 77, oxygen concentration/air amount setting unit 78, air amount adjustment amount calculation unit 79, krypton concentration/air amount setting unit 80, and air amount adjustment The calculation unit 81, the CO concentration/air amount setting unit 82, the air damper opening degree adjustment amount calculation unit 65, and the air damper opening degree calculation unit 66' calculate the air based on the oxygen concentration detection value from the oxygen concentration meter 37. The oxygen concentration of the mixed recycle gas becomes the opening degree of the air damper 30a of the predetermined target oxygen concentration and controls the opening degree of the air damper 3〇a to the calculated degree of opening degree. Further, the combustion control mechanism 60 is based on The NOx concentration detection value from the NOx concentration sensor 38 and the CO concentration detection value from the CO concentration sensor 39 are calculated such that the NOx concentration in the combustion exhaust gas is equal to or lower than a predetermined target n〇x concentration, and combustion is performed. exhaust The CO concentration is changed to the opening degree of the air damper 30a which is equal to or lower than the target CO concentration, and the opening degree of the air damper 30a is controlled to the opening degree calculated value. Hereinafter, the second embodiment will be described with reference to FIGS. 5 and 6 . Form combustion control mechanism and combustion control sequence. In the second embodiment, the air damper opening degree calculation means 600 calculates the opening degree of the air damper 30a based on the oxygen concentration detection value from the oxygen concentration meter 37 (37a). Further, the following operation 118513.doc -22-1331201 will be described with reference to Fig. 6 for combustion control using NOx concentration and c〇 concentration in the combustion exhaust gas in addition to the above oxygen concentration. In the figure, the oxygen concentration detection value of the air-mixed recirculation gas detected by the oxygen concentration meter 37 (or the oxygen concentration meter 37a) is input to the oxygen concentration comparison unit 71 of the combustion control mechanism 60. Further, the detected value of the enthalpy in the combustion exhaust gas detected by the enthalpy concentration sensor 38 is input to the enthalpy concentration comparing unit 73 of the combustion control unit 60. Further, the C0 concentration detection value in the combustion exhaust gas detected by the c〇 concentration sensor 39 is input to the CO concentration comparison unit 75 of the combustion control unit 60. The allowable minimum oxygen concentration of the air-mixed recirculation gas fed to the recirculation fan 13 is set in the reference oxygen concentration setting unit 72. In the reference enthalpy concentration setting unit 74, the maximum allowable susceptibility in the combustion exhaust gas is set. The allowable maximum CO concentration in the combustion exhaust gas is set in the reference CO concentration s setting unit 76. In the oxygen concentration comparison unit 71, the oxygen concentration detection value in the air-mixed recirculation gas from the oxygen concentration meter 37 is calculated as the oxygen concentration deviation of the allowable minimum oxygen concentration set in the reference oxygen concentration setting unit 72, and is input to the air. The amount adjustment amount calculation unit 77 ^ calculates the enthalpy concentration detection value and the reference enthalpy concentration setting unit 74 in the combustion exhaust gas from the enthalpy concentration sensor 38 in the N 〇 x concentration comparison unit 73 . In addition, the enthalpy concentration deviation of the maximum concentration is input to the air amount adjustment amount calculation unit 79. Further, the CO concentration comparison unit 75 calculates the concentration from the c concentration sensor 39. The C〇 concentration detection value in the combustion exhaust gas is deviated from the CO concentration of the allowable maximum CO concentration set in the reference (7) concentration setting unit % 118513.doc • 23· 1331201, and is input to the air amount adjustment amount calculation unit 81. Then, In the oxygen concentration/air amount setting unit 78, the amount of air supplied by the air passage 30 and the recirculation gas from the recirculation passage 16 are set in advance by test results or simulation calculations. In the enthalpy concentration/air amount setting unit 80, the amount of air supplied by the air passage 30 is set in advance by the test result or the simulation calculation. In the CO concentration/air amount setting unit 82, the amount of air supplied by the air passage 30 and the combustion exhaust gas are set in advance by the test result or the simulation calculation. In the air amount adjustment amount calculation unit 77, the oxygen concentration/air amount setting unit 78 calculates (extracts) the air corresponding to the calculated value of the oxygen concentration deviation from the oxygen concentration comparison unit 71. The amount of deviation is input to the air damper opening degree adjustment amount calculation unit 65. The air amount adjustment amount calculation unit 79 calculates (extracts) the enthalpy concentration/air amount setting unit 80 from the erbium concentration comparison unit 73. The amount of air corresponding to the calculated value of the enthalpy concentration deviation is input to the air damper opening degree adjustment amount calculation unit 65. Further, the amount of air In the entire amount calculation unit 81, the air amount deviation corresponding to the calculated value of the CO concentration deviation from the CO concentration comparison unit 75 is calculated (extracted) from the CO concentration/air amount setting unit 82, and is input to the air damper opening degree. 118513.doc • 24· 1331201 The air damper opening degree adjustment amount calculation unit 65 sets the relationship between the air amount and the air damper opening degree as the opening characteristic of the air damper 3〇a. The air damper opening degree adjustment amount calculation unit 65 sequentially calculates the air damper opening degree adjustment amount based on the air amount deviation corresponding to the oxygen concentration deviation, and the air corresponding to the NOx concentration deviation. The amount of deviation is based on the air damper opening adjustment amount and the air damper opening degree adjustment amount based on the air amount deviation corresponding to the above C 〇 concentration deviation, and is selected from the air damper opening degree adjustment amount The optimum air damper opening degree adjustment amount ' is input to the air damper opening degree calculation unit 66. Then, the air damper opening degree calculation unit 66 adds or subtracts the air damper opening degree adjustment amount to the opening degree detection value of the air damper 3〇a input from the air damper opening degree detector 36. The air damper opening degree adjustment amount of the calculation unit 65 calculates a target value of the air damper opening degree, that is, an opening degree of the air damper 30a that is adapted to the reference oxygen concentration, the reference NOx concentration, or the reference c 〇 concentration. 'Control the air damper 3〇a to the target opening degree. Other configurations are the same as those of the above-described first embodiment, and the same members as those of the first embodiment are denoted by the same reference numerals. In the combustion control device for the hearth incinerator 2 of the second embodiment, the combustion control unit 60 adjusts the air damping based on the oxygen concentration detection value of the air mixed with the recirculation gas introduced in the recirculation fan 13 The opening amount of the device 30a controls the amount of air mixed into the air-mixed recirculation gas so that the oxygen concentration of the air-mixed recirculation gas becomes equal to or higher than a predetermined allowable minimum oxygen concentration. Therefore, even if oxygen in the recirculating gas is received 118513.doc -25- 1331201 The consumption causes the oxygen concentration to become too small, and the amount of air can be increased by increasing the opening degree of the air damper 3〇a, and is stable under the above-mentioned allowable minimum oxygen concentration. combustion. Further, by adjusting the opening degree of the air damper 3〇a by the combustion control mechanism 60, the NOx concentration in the combustion exhaust gas can be kept below the allowable maximum enthalpy concentration, and the combustion exhaust gas can be c〇 The concentration is kept below the maximum allowable CO concentration to promote purification of the exhaust. [THIRD EMBODIMENT] Fig. 7 is a structural circle of a hearth type incinerator according to a third embodiment of the present invention, and Fig. 8 is a view showing selection of the oxygen concentration and the temperature of the air mixed recycle gas in the third embodiment. Flow chart of combustion control. The third embodiment of the present invention is the one shown in Figs. 1 to 3! The embodiment and the second embodiment shown in Figs. 4 to 6 are combined. That is, in the third embodiment, the combustion control means 6A is used to determine the temperature detection value of the recirculation gas based on the air from the temperature sensor 35a (or the temperature sensor 35 in Fig. 1). Adjusting the opening degree of the air damper 3〇a to control the amount of air mixed into the air mixed recirculation gas so that the temperature of the two-gas mixed recirculation gas becomes below a predetermined allowable maximum temperature, and according to detecting the air The oxygen concentration detection value of the oxygen concentration meter 37 of the oxygen concentration in the mixed gas is calculated, and the opening degree of the air damper 30a in which the oxygen concentration of the air-mixed recirculation gas is equal to or higher than a predetermined allowable minimum oxygen concentration is calculated. The opening degree of the air damper 3〇a is controlled to the opening degree calculated value. Further, in the third embodiment, as in the second embodiment, a concentration sensor 38 for detecting the concentration of germanium in the combustion exhaust gas is provided on the outlet side of the secondary combustion chamber 4 at a temperature of 118513.doc -26-1331201, And measuring the CO concentration c〇 concentration sensor %, and calculating the concentration in the combustion exhaust gas based on the NOx concentration sensor 382 Ν〇χ concentration detection value and the CO concentration detection value from the c 〇 concentration sensor 39 When the c〇 concentration in the combustion exhaust gas is equal to or lower than the preset target C0 concentration, the opening degree of the air damper 3〇a is set to be equal to or lower than the preset target enthalpy concentration, and the air damper 3〇a is opened. The degree control calculates a value for the opening degree. The other structures are the same as those in the first embodiment described above, and the same members as those in the first embodiment are denoted by the same reference numerals. Fig. 8 is a flow chart showing the combustion control performed in accordance with the oxygen concentration and the temperature of the air-mixed recirculation gas in the third embodiment, and the combustion control is performed in the following order. That is, the oxygen/density Cg of the air mixed recycle gas is detected by the oxygen concentration meter 37 (step (1)), and the oxygen concentration detected value Cg is compared with the target oxygen concentration cg ( (step (2)), When the oxygen concentration Cg is greater than the target oxygen concentration Cg〇 (Cg>Cgo), the air damper 30a is turned off to reduce the amount of air (step (3)), and when the oxygen concentration Cg is less than the target oxygen concentration Cgo (Cg < Cg〇) is turned on The air damper 30a increases the amount of air (step (4)). Then, after the opening control of the air damper 3 〇 & according to the oxygen concentration, the opening degree control of the air damper 30a is performed in accordance with the temperature of the air mixed recirculation gas in the following order. That is, 'the temperature Tg of the air mixed recirculation gas is detected by the temperature sensor 35a (or the temperature sensor 35 in FIG. 1) in FIG. 8 (step (5)) 'the temperature detection value Tg Compared with the target temperature Tgo (step 118513.doc -27-(6)), when the temperature detection value Tg is equal to the target temperature Tgo, the opening degree of the air damper 30a is maintained, and when the temperature detection value Tg is high At the target temperature Tgo (Tg > Tgo), the air damper 30a is opened to increase the amount of air, and the temperature Tg of the air mixed recirculation gas is lowered (step (7)), when the temperature detection value Tg is lower than the target temperature Tgo (Tg <Tgo) The air damper 30a is closed to reduce the amount of air, and the temperature Tg of the air mixed recirculation gas is raised (step (8)). According to the third embodiment of the present invention, the multiplication effect of the first embodiment and the second embodiment can be obtained. In the combustion control device of the hearth incinerator 2 of the third embodiment, (1) the combustion control unit 60 adjusts the temperature detection value of the recirculated gas according to the air introduced in the recirculation fan 13 The opening degree of the air damper 30a controls the amount of air mixed into the air mixed recirculation gas so that the temperature of the air mixed recirculation gas becomes equal to or lower than a predetermined allowable maximum temperature, and therefore, even for some reason When the temperature of the circulating gas rises, the amount of air may be increased in accordance with the increase in temperature, and the temperature of the air-mixed recirculating gas sucked by the recirculating fan 13 may be appropriately maintained below the allowable maximum temperature. Thereby, it is possible to prevent overheating of the recirculation fan 13 caused by the above-described air-mixed recirculation gas, and it is possible to maintain high durability without using a high-cost fan composed of a special heat-resistant material for the recirculation fan 13. (2) The combustion control mechanism 60 adjusts the opening degree of the air damper 30a based on the oxygen concentration detection value of the air-mixed recirculation gas introduced in the recirculation fan 13, and controls the air mixed in the air-mixed recirculation gas. 118513.doc -28 - 1331201 f ': The oxygen concentration of the air mixed recycle gas is changed to be equal to or higher than the preset minimum oxygen concentration, so that even if the oxygen in the recycle gas is consumed, the oxygen concentration becomes too small. The crucible can increase the amount of air by increasing the opening degree of the air damper 3〇a, and perform stable combustion under the conditions of the above-mentioned minimum oxygen concentration.

又,藉由利用燃燒控制機構6G調整空氣阻尼器術之開 度可使燃燒排氣中之叫濃度一直保持在容許最大 濃度以Τ、又Τ使燃燒排氣中之⑺濃度一直保持在容許 最大CO濃度以下,從而可促進排氣之淨化。 [第4實施形態] 圖9係本發明第4實施形態之爐床式焚化爐之結構圖,圖 10係上述第4實施形態之燃燒控制流程圖。 於本發明之第4實施形態中,除上述第3實施形態之外, 在空氣混合再循環氣體所流通之吸入通道(再循環氣體通 道)31中設有調整空氣混合再循環氣體流量之氣體阻尼器 013,該空氣混合再循環氣體係將空氣混合至再循環氣體 中而供給於二次燃燒室4的;並且藉由設於再循環通道15 中的混合氣體流量計90檢測空氣混合再循環氣體之流量’ 繼而利用燃燒控制機構60,根據來自上述氣體流量計的空 氣混合再循環氣體之流量檢測值,控制氣體阻尼器〇丨3之 開度’以使該再循環氣體之流量變為預先設定的目標流 量0 亦即’圖10中之步驟(1)〜(8)與圖8所示之上述第3實施形 遙的情形相同。 il8513.doc -29- 於圖10中,藉由燃燒控制機構60,比較來自混合氣體流 量計90的空氣混合再循環氣體之流量檢測值Qg與預先設定 之目標流量Qgo(步驟(9))。當上述流量檢測值(^大於目標 流量Qg〇時(Qg> Qgo),關閉氣體阻尼器〇13(嚴格地說,係 減小開度)(步驟(1 〇)) ’當上述流量檢測值Qg小於目標流量 Qg〇時(Qg< Qg〇) ’打開上述氣體阻尼器〇13(嚴格地說,係 增大開度)(步驟(11 )),以此控制空氣混合再循環氣體之流 量以使之變為目標流量》 因此,藉由控制氣體阻尼器013之開度以使再循環氣體 之流量Qg變為目標流量Qgo ’可將作為二次空氣的空氣混 合再循環氣體之量穩定地保持於可使該空氣混合再循環氣 體完全燃燒之量,從而可使燃燒狀態平均化而保持穩定燃 燒。 又’於本發明之第4實施形態中,於二次燃燒室4之左右 複數處相對向地設有再循環氣體吹出噴嘴19a、1 9c及再循 環氣體吹出噴嘴19b、19d,於與該等再循環氣體吹出噴嘴 19a、19c及再循環氣體吹出喷嘴19b、19d連接之各再循環 氣體通道17、18中設有調整空氣混合再循環氣體流量的分 支氣體阻尼器B33及分支氣體阻尼器A32,並且於二次燃 燒室4中空氣混合再循環氣體之再循環氣體吹出喷嘴i9a、 19c及再循環氣體吹出喷嘴19b、19d附近設有檢測其等之 壓力(以下,稱為再循環氣體壓力)的氣體壓力感測器 B42、及氣體壓力感測器A41。 如此之第4實施形態構成為,利用燃燒控制機構60,根 118513.doc •30· 1331201 據來自對向設置於二次燃燒室4之左右複數處(左側2處、 右側2處)的氣體壓力感測器B42、及氣·體壓力感測器A41的 上述氣體壓力之檢測值,算出使上述複數處之氣體壓力變 為預先設定之目標壓力的各分支氣體阻尼器B33及分支氣 體阻尼器A32之開度’並將各分支氣體阻尼器B33及分支 氣體阻尼器A32之開度控制為算出值。 亦即,於圖10中,藉由燃燒控制機構60,比較氣體壓力 感測器B42及氣體壓力感測器A41之氣體壓力檢測值pg與 預先設定之目標氣體壓力Pgo(圖1〇中步驟(12))。當上述氣 體壓力檢測值Pg大於目標氣體壓力Pgo時(pg> Pgo),關閉 分支氣體阻尼器B33及分支氣體阻尼器A32(嚴格地說,係 減小開度)(步驟(13)),由此減少朝向再循環氣體吹出喷嘴 19a、19c及再循環氣體吹出喷嘴191)、19d之空氣混入再循 環氣體量。 當上述氣體壓力檢測值Pg小於目標氣體壓力pg0時(Pg< Pg〇) ’打開分支氣體,阻尼器B33及分支氣體阻尼器八32(嚴 格地說’係增大開度)(步驟(14)),由此增加朝向再循環氣 體吹出喷嘴19a、19c及再循環氣體吹出喷嘴191)、i9d之空 氣混入再循環氣體量。 由於第4實施形態之爐床式焚化爐2之燃燒控制裝置係如 上述般構成的’因此,可利用再循環氣體量與再循環氣體 壓力成比例此種關係,檢測出再循環氣體吹出喷嘴附近之 再循環氣體壓力’並控制上述分支氣體阻尼器B33及分支 氣體阻尼器A32之開度’以使該再循環氣艎壓力pg變為目 118513.doc 31 1331201 標氣體壓力Pg〇’藉此’可將作為二次空氣的空氣混合再 循核氣體之量穩定地保持為該空氣混合再循環氣體可完全 燃燒之量,從而可使燃燒狀態平均化而保持穩定燃燒。 又’根據來自對向設置於二次燃燒室4之左右複數處(左 侧2處、右側2處)之氣體壓力感測器B42、及氣體廢力感測 器A41的上述氣體壓力之檢測值,算出各分支氣體阻尼器 B33及分支氣體阻尼器A32之開度而將各分支氣體阻尼器 B33及分支氣體阻尼器A32之開度控制於算出值,以使上 述複數處之氣體壓力變為預先設定之目標壓力,因此,可 自由地調整對設置在二次燃燒室4之複數處的再循環氣體 吹出喷嘴19a、19c及再循環氣體吹出噴嘴191)、i9d進行的 空氣混入再循環氣體望:之分配’可將空氣混入再循環氣體 均勻地供給於燃燒室之周方向上,從而可使燃燒平均化。 以上,就本發明之實施形態進行了詳細說明,然而本發 明並未限定於所述實施形態’可依據本發明之技術思想而 進行各種變形及改變。 【圖式簡單說明】 圖1係表示本發明第1實施形態之爐床式焚化爐之結構 圖。 圖2係表示上述第1實施形態中燃燒控制機構之概略結構 圖。 圖3係上述第1實施形態之燃燒控制區塊圖。 圖4係表示本發明第2實施形態之爐床式焚化爐之結構 圖。 -32· 118513.doc 1331201 圖5係表示上述第2實施形態中燃燒控制機構之概略結構 圖。 圖6係上述第2實施形態之燃燒控制區塊圖。 圖7係表示本發明第3實施形態之爐床式焚化爐之結構 圖。 圖8係上述第3實施形態之燃燒控制流程圖。 圖9係表示本發明第4實施形態之爐床式焚化爐之結構 圖。Further, by adjusting the opening degree of the air damper by the combustion control mechanism 6G, the concentration in the combustion exhaust gas can be kept at the maximum allowable concentration, and the concentration of the (7) in the combustion exhaust gas is always kept at the maximum. Below the CO concentration, the purification of the exhaust gas can be promoted. [Fourth Embodiment] Fig. 9 is a configuration diagram of a hearth incinerator according to a fourth embodiment of the present invention, and Fig. 10 is a flowchart of a combustion control in the fourth embodiment. According to the fourth embodiment of the present invention, in addition to the third embodiment, the suction passage (recirculation gas passage) 31 through which the air-mixed recirculation gas flows is provided with gas damping for adjusting the flow rate of the air-mixed recirculation gas. 013, the air mixed recycle gas system supplies air to the secondary combustion chamber 4 by mixing the air into the recycle gas; and detects the air mixed recycle gas by the mixed gas flow meter 90 provided in the recirculation passage 15. The flow rate' is then controlled by the combustion control mechanism 60 to control the opening degree of the gas damper 根据3 based on the flow rate detection value of the air mixed recirculation gas from the gas flow meter so that the flow rate of the recirculation gas becomes preset The target flow rate 0, that is, the steps (1) to (8) in Fig. 10 are the same as those in the above-described third embodiment shown in Fig. 8. Il8513.doc -29- In Fig. 10, the flow control value Qg of the air mixed recirculation gas from the mixed gas flow meter 90 is compared with the preset target flow rate Qgo by the combustion control means 60 (step (9)). When the flow rate detection value (^ is greater than the target flow rate Qg ( (Qg > Qgo), the gas damper 〇 13 is turned off (strictly speaking, the opening degree is decreased) (step (1 〇)) 'When the above-described flow rate detection value Qg When the target flow rate Qg 小于 is less than (Qg < Qg 〇) 'Open the gas damper 〇 13 (strictly speaking, increase the opening degree) (step (11)), thereby controlling the flow rate of the air mixed recirculation gas to make it Therefore, the amount of the air mixed recirculation gas as the secondary air can be stably maintained by controlling the opening degree of the gas damper 013 so that the flow rate Qg of the recirculation gas becomes the target flow rate Qgo ' When the air is mixed with the amount of the complete combustion of the recirculating gas, the combustion state can be averaged to maintain stable combustion. In the fourth embodiment of the present invention, the secondary combustion chamber 4 is disposed at a plurality of positions on the right and left sides. There are recirculating gas blowing nozzles 19a and 19c and recirculating gas blowing nozzles 19b and 19d, and respective recirculating gas passages 17 connected to the recirculating gas blowing nozzles 19a and 19c and the recirculating gas blowing nozzles 19b and 19d. 18 is provided with a branch gas damper B33 and a branch gas damper A32 for adjusting the flow rate of the air mixed recirculation gas, and the recirculating gas blowing nozzles i9a, 19c and the recirculating gas of the air mixed with the recirculating gas in the secondary combustion chamber 4 A gas pressure sensor B42 that detects a pressure (hereinafter referred to as a recirculation gas pressure) and a gas pressure sensor A41 are provided in the vicinity of the blowing nozzles 19b and 19d. In the fourth embodiment, the combustion is performed. Control mechanism 60, root 118513.doc • 30· 1331201 According to the gas pressure sensor B42 from the right and left of the secondary combustion chamber 4 (2 on the left side, 2 on the right side), and the sense of gas and body pressure The detected value of the gas pressure of the detector A41 is calculated as the opening degree of each of the branch gas dampers B33 and the branch gas dampers A32 that cause the gas pressure at the plurality of points to be a predetermined target pressure, and the branch gas dampers are The opening degree of B33 and the branch gas damper A32 is controlled to be a calculated value. That is, in Fig. 10, the gas pressure sensor B42 and the gas pressure sense are compared by the combustion control mechanism 60. The gas pressure detection value pg of the detector A41 and the preset target gas pressure Pgo (step (12) in Fig. 1). When the gas pressure detection value Pg is greater than the target gas pressure Pgo (pg > Pgo), the branch gas is turned off. The damper B33 and the branch gas damper A32 (strictly speaking, the opening degree is reduced) (step (13)), thereby reducing the toward the recirculation gas blowing nozzles 19a, 19c and the recirculating gas blowing nozzles 191), 19d Air is mixed with the amount of recycle gas. When the gas pressure detection value Pg is smaller than the target gas pressure pg0 (Pg < Pg 〇) 'open branch gas, the damper B33 and the branch gas damper 八32 (strictly speaking, the system is increased in opening degree) (step (14)) Thereby, the amount of the recirculated gas mixed into the air of the recirculation gas blowing nozzles 19a and 19c and the recirculation gas blowing nozzles 191) and i9d is increased. Since the combustion control device of the hearth type incinerator 2 of the fourth embodiment is configured as described above, it is possible to detect the vicinity of the recirculation gas blowing nozzle by using the relationship between the amount of the recirculated gas and the pressure of the recirculation gas. The recirculation gas pressure 'and controls the opening degree of the branch gas damper B33 and the branch gas damper A32' to change the recirculation gas pressure pg to the target 118513.doc 31 1331201 standard gas pressure Pg 〇 'by this' The amount of the air-recirculating nuclear gas as the secondary air can be stably maintained as the amount at which the air-mixed recirculating gas can be completely burned, so that the combustion state can be averaged to maintain stable combustion. Further, the detection value of the above gas pressure based on the gas pressure sensor B42 and the gas waste force sensor A41 from the right and left complex points (2 on the left side and 2 on the right side) disposed oppositely to the secondary combustion chamber 4 The opening degrees of the branch gas dampers B33 and the branch gas dampers A32 are calculated, and the opening degrees of the branch gas dampers B33 and the branch gas dampers A32 are controlled to a calculated value so that the gas pressure at the plurality of points becomes a predetermined value. Since the target pressure is set, it is possible to freely adjust the air mixed with the recirculation gas to the recirculated gas blowing nozzles 19a and 19c and the recirculating gas blowing nozzles 191) and i9d provided in the plurality of secondary combustion chambers 4: The distribution 'is uniformly mixed the air into the recirculating gas in the circumferential direction of the combustion chamber, so that the combustion can be averaged. The embodiment of the present invention has been described in detail above. However, the present invention is not limited to the embodiment, and various modifications and changes can be made in accordance with the technical idea of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of a hearth type incinerator according to a first embodiment of the present invention. Fig. 2 is a view showing a schematic configuration of a combustion control mechanism in the first embodiment. Fig. 3 is a view showing a combustion control block of the first embodiment. Fig. 4 is a structural view showing a hearth type incinerator according to a second embodiment of the present invention. -32. 118513.doc 1331201 Fig. 5 is a view showing a schematic configuration of a combustion control mechanism in the second embodiment. Fig. 6 is a view showing a combustion control block of the second embodiment. Fig. 7 is a structural view showing a hearth type incinerator according to a third embodiment of the present invention. Fig. 8 is a flow chart showing the combustion control of the third embodiment. Fig. 9 is a structural view showing a hearth type incinerator according to a fourth embodiment of the present invention.

圖1 〇係上述第4實施形態之燃燒控制流程圖。Fig. 1 is a flow chart showing the combustion control of the fourth embodiment.

【主要元件符號說明】 1 2 3 4 5 6 7、54、55、56 8 12 13 013 14 15 、 16 、 17 、 18 19a、19b、19c、19d 垃圾進料斗 爐床式焚化爐 一次燃燒室 二次燃燒室 一次空氣主管 風扇 開閉阻尼器 儲灰槽 旋風分離器 再循環風扇 氣體阻尼器 混合氣體通道 再循環通道 再循環氣體吹出喷嘴 118513.doc -33· 1331201[Main component symbol description] 1 2 3 4 5 6 7,54,55,56 8 12 13 013 14 15 , 16 , 17 , 18 19a , 19b , 19c , 19d Garbage feed hopper hearth incinerator primary combustion chamber 2 Secondary combustion chamber primary air main fan fan opening and closing damper ash storage tank cyclone recirculation fan gas damper mixed gas passage recirculation passage recirculation gas blowing nozzle 118513.doc -33· 1331201

21 乾燥帶爐床 22 主燃燒帶爐床 23 後燃燒帶爐床 30 混入空氣通道 30a 空氣阻尼器 31 吸入通道 32 分支氣體阻尼器A 33 分支氣體阻尼器B 35(35a) 溫度感測器 36 空氣阻尼器開度檢測器 37(37a) 氧濃度計 38 ΝΟχ濃度感測器 39 CO濃度感測器 40 再循環氣體抽出口 41 氣體壓力感測器A 42 氣體壓力感測器B 51 ' 52 ' 53 一次空氣管 60 燃料控制機構 61 溫度比較部 62 基準氣體溫度設定部 63 氣體溫度/空氣量設定部 64、 77 ' 79 、 81 空氣量調整量算出部 65 空氣阻尼器開度調整量算出部 66 空氣阻尼器開度算出部 118513.doc 34- 1331201 71 氧濃度比較部 72 基準氧濃度設定部 73 NOx濃度比較部 74 基準ΝΟχ濃度設定部 75 CO濃度比較部 76 基準CO濃度設定部 78 氧濃度/空氣量設定部 80 ΝΟχ濃度/空氣量設定部 82 CO濃度/空氣量設定部 90 混合氣體流量計 600 空氣阻尼器開度算出機構 118513.doc -35-21 Drying belt hearth 22 Main combustion belt hearth 23 Rear combustion belt hearth 30 Mixing air passage 30a Air damper 31 Suction channel 32 Branch gas damper A 33 Branch gas damper B 35 (35a) Temperature sensor 36 Air Damper opening detector 37 (37a) Oxygen concentration meter 38 ΝΟχ concentration sensor 39 CO concentration sensor 40 Recirculation gas extraction port 41 Gas pressure sensor A 42 Gas pressure sensor B 51 ' 52 ' 53 Primary air tube 60 Fuel control unit 61 Temperature comparison unit 62 Reference gas temperature setting unit 63 Gas temperature/air amount setting unit 64, 77' 79, 81 Air amount adjustment amount calculation unit 65 Air damper opening degree adjustment amount calculation unit 66 Air Damper opening degree calculation unit 118513.doc 34- 1331201 71 Oxygen concentration comparison unit 72 Reference oxygen concentration setting unit 73 NOx concentration comparison unit 74 Reference enthalpy concentration setting unit 75 CO concentration comparison unit 76 Reference CO concentration setting unit 78 Oxygen concentration/air Quantity setting unit 80 ΝΟχ concentration/air amount setting unit 82 CO concentration/air amount setting unit 90 Mixed gas flow meter 600 air Damper opening calculation mechanism 118513.doc -35-

Claims (1)

1331201 第096105390號專利申請案 f—-------------— , 中文申請專利範圍替換本("年7月) 丨月八日修(更)正立| • 十、申請專利範圍: 一·· ----—-----> - 1. 一種爐床式焚化爐之燃燒控制裝置,其係構成為自投入 被焚化物之爐床下方導入一次空氣,於該爐床上方之燃 ' 燒室内進行一次燃燒後,於該燃燒室之上方進行二次燃 燒,並且混合抽出上述燃燒室内一部分燃燒排氣之再循 環氣體與經由空氣通道而供給之空氣,藉由風扇使該空 氣混合再循環氣體經由再循環通道而供給至爐内,其特 徵在於:於上述空氣通道中設有調整空氣流量之空氣流 • 量調整機構,另一方面設有氣體濃度檢測機構及燃燒控 制機構,上述氣體濃度檢測機構係檢測上述空氣混合再 循環氣體之氣體濃度,上述燃燒控制機構係輸入來自上 述氣體濃度檢測機構的上述空氣混合再循環氣體之氣體 濃度檢測值,根據該氣體濃度檢測值算出上述空氣混合 再循環氣體之氣體濃度成為預先設定之目標氣體濃度的 上述空氣流量調整機構之通道面積,並將上述空氣流量 調整機構控制於上述通道面積算出值。 ® 2.如請求項1之爐床式焚化爐之燃燒控制裝置,其中設有 檢測上述燃燒排氣中NOx濃度之NOx濃度檢測機構及檢 測上述燃燒排氣中CO濃度之CO濃度檢測機構,而上述 燃燒控制機構構成為根據自上述氣體濃度檢測機構輸入 之該氣體濃度檢測值、自上述ΝΟχ濃度檢測機構輸入之 ΝΟχ濃度檢測值及自上述CO濃度檢測機構輸入之CO濃 度檢測值,算出上述空氣混合再循環氣體之氣體濃度成 為預先設定之目標氣體濃度、上述燃燒排氣中之ΝΟχ濃 118513-990714.doc 13312011331201 Patent Application No. 096105390 f--------------, Replacement of Chinese Patent Application ("July of July) Repair of Eight Days (More) Zhengli | • Ten Patent application scope: 1.···-----> - 1. A combustion control device for a hearth incinerator, which is configured to introduce air once from the bed of the incineration After performing one combustion in the combustion chamber on the hearth, secondary combustion is performed above the combustion chamber, and a part of the combustion gas in the combustion chamber is mixed and extracted, and the air supplied through the air passage is mixed. The air-mixed recirculation gas is supplied to the furnace via a recirculation passage by a fan, wherein the air passage is provided with an air flow/quantity adjustment mechanism for adjusting the air flow rate, and the gas concentration detection is provided on the other hand. a mechanism and a combustion control mechanism, wherein the gas concentration detecting means detects a gas concentration of the air-mixed recirculation gas, and the combustion control means inputs the air mixture from the gas concentration detecting means a gas concentration detection value of the circulating gas, and calculating, according to the gas concentration detection value, a channel area of the air flow rate adjusting mechanism in which a gas concentration of the air mixed recirculation gas is a predetermined target gas concentration, and controlling the air flow rate adjusting mechanism The above channel area is calculated. 2. The combustion control device for a hearth type incinerator according to claim 1, wherein a NOx concentration detecting mechanism for detecting a NOx concentration in the combustion exhaust gas and a CO concentration detecting mechanism for detecting a CO concentration in the combustion exhaust gas are provided, and The combustion control unit is configured to calculate the air based on the gas concentration detection value input from the gas concentration detecting means, the radon concentration detection value input from the radon concentration detecting means, and the CO concentration detection value input from the CO concentration detecting means. The gas concentration of the mixed recycle gas becomes a predetermined target gas concentration, and the concentration in the above-mentioned combustion exhaust gas is 118513-990714.doc 1331201 度成為預先設定的目標NOx濃度以下及上述燃燒排氣中 ' 之CO濃度成為預先設定的目標CO濃度以下的上述空氣 流量調整機構之通道面積,並將上述空氣流量調整機構 控制於上述通道面積算出值。 3. —種爐床式焚化爐之燃燒控制裝置,其係構成為自投入 被焚化物之爐床下方導入一次空氣,於該爐床上方之燃 燒室進行一次燃燒後,於該燃燒室之上方進行二次燃 燒,並且混合抽出上述燃燒室内一部分燃燒排氣之再循 環氣體與經由空氣通道而供給之空氣,藉由風扇使該空 · 氣混合再循環氣體經由再循環通道而供給至爐内,其特 徵在於:於上述空氣通道中設有調整空氣流量之空氣流 量調整機構,另一方面設有溫度檢測機構、氣體濃度檢 測機構及燃燒控制機構,上述溫度檢測機構係檢測上述 空氣混合再循環氣體之溫度,上述氣體濃度檢測機構係 檢測上述空氣混合再循環氣體之氣體濃度,上述燃燒控 制機構係輸入來自上述溫度檢測機構的上述空氣混合再 循環氣體之溫度檢測值及來自上述氣體濃度檢測機構的 ® 上述空氣混合再循環氣體之氣體濃度檢測值,根據該等 溫度檢測值及氣體濃度檢測值,算出上述空氣混合再循 環氣體之溫度成為預先設定的目標溫度且上述空氣混合 再循環氣體之氣體濃度成為預先設定的目標氣體濃度的 上述空氣流量調整機構之通道面積,並將上述空氣流量 調整機構控制於上述通道面積算出值。 4. 一種爐床式焚化爐之燃燒控制裝置,其係構成為自投入 118513-990714.doc 1331201 :7許?月令曰修(更}正木丨 I_ _ | 被焚化物之爐床下方導入一次空氣,於該爐床上方之燃 燒室内進行一次燃燒後,於該燃燒室之上方進行二次燃 燒,並且混合抽出上述燃燒室内一部分燃燒排氣之再循 環氣體與經由空氣通道而供給之空氣,藉由風扇使該空 氣混合再循環氣體經由再循環通道而供給至爐内,其特 徵在於:於空氣混合再循環氣體所流通之再循環氣體通 道中設有調整空氣混合再循環氣體流量之再循環氣體流 量調整機構,該空氣混合再循環氣體係將空氣混合至上 述再循環氣體中而供給於上述燃燒室者;並且設有氣體 流量計及燃燒控制機構,上述氣體流量計係檢測上述空 氣混合再循環氣體之流量,上述燃燒控制機構係根據自 上述氣體流量計輸入的再循環氣體之流量檢測值,算出 該再循環氣體之流量成為預先設定之目標流量的上述再 循環氣體流量調整機構之通道面積,並將上述再循環氣 體流量調整機構控制於上述通道面積算出值。 5.如請求項4之爐床式焚化爐之燃燒控制裝置,其中於上 述燃燒室之複數處設置再循環氣體吹出口,並且與上述 各再循環氣體吹出口連接設置複數個上述再循環氣體通 道,於上述各再循環氣體通道中設置調整空氣混合再循 環氣體流量的再循環氣體流量調整機構,對應於再循環 氣體流量調整機構設置檢測上述燃燒室之壓力的上述燃 燒室壓力檢測機構,而上述燃燒控制機構係構成為根據 來自上述複數個燃燒室壓力檢測機構之上述燃燒室壓力 檢測值,算出上述複數處燃燒室壓力成為預先設定之目 118513-990714.docThe degree of passage is equal to or smaller than a predetermined target NOx concentration, and the CO concentration of the combustion exhaust gas is equal to or lower than a predetermined target CO concentration, and the air flow rate adjustment mechanism is controlled by the channel area. value. 3. A combustion control device for a hearth type incinerator, which is configured to introduce primary air from below a hearth into which an incineration is introduced, and to perform combustion once on the combustion chamber of the hearth, above the combustion chamber Performing secondary combustion, and mixing and withdrawing a portion of the combustion gas in the combustion chamber and the air supplied through the air passage, and the air-mixed recirculation gas is supplied to the furnace through the recirculation passage by the fan. The air passage is provided with an air flow adjusting mechanism for adjusting an air flow rate, and a temperature detecting mechanism, a gas concentration detecting mechanism and a combustion control mechanism are provided, and the temperature detecting mechanism detects the air mixed recirculating gas. The gas concentration detecting means detects a gas concentration of the air-mixed recirculation gas, and the combustion control means inputs a temperature detection value of the air-mixed recirculation gas from the temperature detecting means and a gas concentration detecting means from the gas concentration detecting means. ® Gas of the above air mixed recycle gas The degree detection value is calculated based on the temperature detection value and the gas concentration detection value, and the temperature of the air-mixed recirculation gas is set to a predetermined target temperature, and the gas concentration of the air-mixed recirculation gas is a predetermined target gas concentration. The passage area of the air flow adjusting mechanism, and the air flow adjusting mechanism is controlled to the channel area calculated value. 4. A combustion control device for a hearth incinerator, which is constructed as a self-injection 118513-990714.doc 1331201:7?曰修曰(更}正木丨I_ _ | Introduced once under the hearth of the incinerator, after a combustion in the combustion chamber on the hearth, secondary combustion is carried out above the combustion chamber, and the mixture is extracted a part of the combustion gas in the combustion chamber and the air supplied through the air passage are supplied to the furnace through the recirculation passage by the fan, wherein the air is mixed with the recirculation gas. a recirculation gas flow regulating mechanism for adjusting an air mixed recirculation gas flow rate, wherein the air mixed recirculation gas system mixes air into the recirculation gas to supply to the combustion chamber; and a gas flow meter and a combustion control mechanism are provided, wherein the gas flow meter detects a flow rate of the air mixed recirculation gas, and the combustion control mechanism calculates the recirculation based on a flow rate detection value of the recirculation gas input from the gas flow meter. The flow of gas becomes the above-mentioned recirculated gas flow at a predetermined target flow rate The channel area of the volume adjustment mechanism is controlled, and the above-mentioned recirculation gas flow rate adjustment mechanism is controlled to the channel area calculation value. 5. The combustion control device of the hearth type incinerator according to claim 4, wherein the plurality of combustion chambers are disposed at a plurality of places a recirculation gas outlet, and a plurality of the recirculation gas passages connected to the respective recirculation gas outlets, and a recirculation gas flow adjustment mechanism for adjusting an air mixed recirculation gas flow rate in each of the recirculation gas passages, corresponding to The recirculating gas flow rate adjusting means is provided with the combustion chamber pressure detecting means for detecting the pressure of the combustion chamber, and the combustion control means is configured to calculate the combustion chamber pressure detecting value from the plurality of combustion chamber pressure detecting means. The combustion chamber pressure at a plurality of places becomes a preset target 118513-990714.doc 1331201 標壓力的上述各再循環氣體流量調整機構之通道面積, 並將上述各再循環氣體流量調整機構控制於上述通道面 積算出值。 118513-990714.doc1331201 The passage area of each of the above-described recirculation gas flow rate adjusting mechanisms of the standard pressure, and the respective recirculation gas flow rate adjusting means is controlled to the channel area calculated value. 118513-990714.doc
TW096105390A 2006-10-13 2007-02-14 Combustion control system for stoker-type incinerator TWI331201B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006279629A JP5013808B2 (en) 2006-10-13 2006-10-13 Combustion control device for stoker-type incinerator

Publications (2)

Publication Number Publication Date
TW200817638A TW200817638A (en) 2008-04-16
TWI331201B true TWI331201B (en) 2010-10-01

Family

ID=39282553

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096105390A TWI331201B (en) 2006-10-13 2007-02-14 Combustion control system for stoker-type incinerator

Country Status (5)

Country Link
JP (1) JP5013808B2 (en)
KR (1) KR101139045B1 (en)
CN (1) CN101501399B (en)
TW (1) TWI331201B (en)
WO (1) WO2008044341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697644B (en) * 2018-08-30 2020-07-01 日商三菱重工環境 化學工程股份有限公司 Stoker furnace

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358234B2 (en) * 2009-03-23 2013-12-04 三菱重工環境・化学エンジニアリング株式会社 Stoker-type incinerator and operation method thereof
US20110045422A1 (en) * 2009-08-21 2011-02-24 Alstom Technology Ltd Optical flue gas monitor and control
JP6791811B2 (en) * 2017-06-27 2020-11-25 川崎重工業株式会社 Gas supply structure for secondary combustion and waste incinerator
JP6887917B2 (en) * 2017-08-29 2021-06-16 川崎重工業株式会社 Incinerator plant
KR102516434B1 (en) * 2021-04-09 2023-04-03 주식회사 대경에스코 Combustion Device Improves FGR Efficiency

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349826A (en) * 2001-05-22 2002-12-04 Mitsubishi Heavy Ind Ltd Control method and controlling device for pressure in wide box in waste incinerator
JP3936884B2 (en) * 2002-05-15 2007-06-27 株式会社タクマ Control method of stoker type incinerator
WO2004092648A1 (en) * 2003-04-18 2004-10-28 Jfe Engineering Corporation Method of controlling combustion of waste incinerator and waste incinerator
JP4292126B2 (en) * 2004-08-27 2009-07-08 株式会社タクマ Combustion information monitoring and control system for stoker-type waste incinerator
JP4235651B2 (en) * 2005-03-04 2009-03-11 三菱重工環境エンジニアリング株式会社 Stoker-type incinerator and operation method thereof
JP4293998B2 (en) * 2005-03-08 2009-07-08 株式会社タクマ Incineration facility monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI697644B (en) * 2018-08-30 2020-07-01 日商三菱重工環境 化學工程股份有限公司 Stoker furnace

Also Published As

Publication number Publication date
JP5013808B2 (en) 2012-08-29
CN101501399A (en) 2009-08-05
JP2008096045A (en) 2008-04-24
CN101501399B (en) 2011-07-27
KR101139045B1 (en) 2012-04-30
TW200817638A (en) 2008-04-16
KR20090029804A (en) 2009-03-23
WO2008044341A1 (en) 2008-04-17

Similar Documents

Publication Publication Date Title
TWI331201B (en) Combustion control system for stoker-type incinerator
JP4701138B2 (en) Stoker-type incinerator and its combustion control method
JP6100994B2 (en) Combustion promotion method for incinerator in complex facility and complex facility
TWI298780B (en)
JP6653862B2 (en) Method and ignition device for combustion management in an ignition device
Wang et al. Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging
JP2008064361A (en) Stoker-type incinerator and combustion control method therefor
Huang et al. Effect of thermal input, excess air coefficient and combustion mode on natural gas MILD combustion in industrial-scale furnace
Mohammadpour et al. Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments
Luo et al. A mode transition strategy from air to oxyfuel combustion in a 35 MW coal-fired power plant boiler
JP4757596B2 (en) Thermal storage burner device and its operation method
CN104089299A (en) Low-nitrogen combustion method
CN113574320B (en) Incinerator with a heat exchanger
CN209558325U (en) A kind of heating furnace flue gas recirculation burner
JP2006226674A (en) Combustion control system of refuse incinerator without boiler facility
JP2007101129A (en) Heat storage type burner device and its operation method
JP4404259B2 (en) Exhaust heat recovery boiler with auxiliary burner and its operation method
JP5875720B1 (en) Waste incinerator boiler and control method thereof
CN111850211B (en) Off-line drying method of hot blast stove
JP2004020071A (en) Waste incinerator and its operation method
JP7093709B2 (en) Incinerator
KR101400602B1 (en) MILD Combustor Operating with a High-temperature Air Continuously Supplied from a Normal-temperature Air Combustor
TW200829835A (en) Stoker type incinerator and its combustion control method
JP6797083B2 (en) Primary combustion gas supply control method, evaporation amount stabilization method, power generation amount stabilization method, and grate-type waste incinerator
JP2004353944A (en) Combustion control method in refuse disposal facility and refuse disposal facility