JP2021096934A - プラズマ処理装置及びプラズマ処理方法 - Google Patents

プラズマ処理装置及びプラズマ処理方法 Download PDF

Info

Publication number
JP2021096934A
JP2021096934A JP2019226625A JP2019226625A JP2021096934A JP 2021096934 A JP2021096934 A JP 2021096934A JP 2019226625 A JP2019226625 A JP 2019226625A JP 2019226625 A JP2019226625 A JP 2019226625A JP 2021096934 A JP2021096934 A JP 2021096934A
Authority
JP
Japan
Prior art keywords
plasma
groove
plasma processing
processing apparatus
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019226625A
Other languages
English (en)
Other versions
JP7336378B2 (ja
Inventor
泰明 谷池
Yasuaki Taniike
泰明 谷池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2019226625A priority Critical patent/JP7336378B2/ja
Priority to PCT/JP2020/044903 priority patent/WO2021124898A1/ja
Priority to US17/756,980 priority patent/US20230005722A1/en
Priority to KR1020227022996A priority patent/KR20220110812A/ko
Publication of JP2021096934A publication Critical patent/JP2021096934A/ja
Application granted granted Critical
Publication of JP7336378B2 publication Critical patent/JP7336378B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】 プラズマの面内均一性を向上可能なプラズマ処理装置及びプラズマ処理方法が期待されている。【解決手段】一つの例示的実施形態において、プラズマ処理装置が提供される。このプラズマ処理装置は、上部電極と、下部電極と、電磁波放射口とを備えている。上部電極は、処理容器内へ処理ガスを吐出可能に設けられている。下部電極は、処理容器内において被処理体を保持可能に設けられている。電磁波放射口は、上部電極の高さ位置と、下部電極の高さ位置との間の高さ位置に設けられ、処理容器の中心方向へ向けて開口している。【選択図】 図1

Description

本開示の例示的実施形態は、プラズマ処理装置及びプラズマ処理方法に関するものである。
特許文献1は、絶縁体を介して、下方向へ電磁波を出射するプラズマ処理装置を開示している。特許文献2は、半導体からなる外側部分と誘電体からなる中心部を有した上部電極の構造を開示している。
特開2007−214589号公報 特開2000−323456号公報
プラズマの面内均一性を向上可能なプラズマ処理装置及びプラズマ処理方法が期待されている。
一つの例示的実施形態において、プラズマ処理装置が提供される。このプラズマ処理装置は、上部電極と、下部電極と、電磁波放射口とを備えている。上部電極は、処理容器内へ処理ガスを吐出可能に設けられている。下部電極は、処理容器内において被処理体を保持可能に設けられている。電磁波放射口は、上部電極の高さ位置と、下部電極の高さ位置との間の高さ位置に設けられ、処理容器の中心方向へ向けて開口している。
一つの例示的実施形態に係るプラズマ処理装置及びプラズマ処理方法によれば、プラズマの面内均一性を向上させることができる。
図1は、一つの例示的実施形態に係るプラズマ処理装置の縦断面構成を示す図である。 図2は、電磁波放射口近傍の部位の縦断面構成を示す図である。 図3は、比較例に係るプラズマ処理装置の縦断面構成を示す図である。 図4は、距離rと正規化したプラズマの電力Pとの関係を示すグラフである。 図5は、距離rと正規化したプラズマの電力Pとの関係を示すグラフである。 図6は、L/Dと正規化したプラズマの電力Pとの関係を示すグラフである。 図7は、一つの例示的実施形態に係るプラズマ処理装置の誘電体リング周辺の縦断面構成を示す図である。 図8は、一つの例示的実施形態に係るプラズマ処理装置の誘電体リング周辺の縦断面構成を示す図である。 図9は、一つの例示的実施形態に係るプラズマ処理装置の誘電体リング周辺の縦断面構成を示す図である。 図10は、下部電極への例示的なバイアス印加の構造を示す図である。
以下、種々の例示的実施形態について説明する。
一つの例示的実施形態において、プラズマ処理装置が提供される。このプラズマ処理装置は、上部電極と、下部電極と、電磁波放射口とを備えている。上部電極は、処理容器内へ処理ガスを吐出可能に設けられている。下部電極は、処理容器内において被処理体を保持可能に設けられている。電磁波放射口は、上部電極の高さ位置と、下部電極の高さ位置との間の高さ位置に設けられ、処理容器の中心方向へ向けて開口している。
電磁波放射口からは電磁波が放射され、電磁波は処理容器の中心方向へと進行する。この電磁波のエネルギーを吸収して、処理容器内の処理ガスはプラズマ化する。電磁波が水平方向に伝播するので、鉛直方向の伝播と比較して、水平面内のプラズマ強度が均一化しやすいという傾向がある。
電磁波放射口が、処理容器の周方向に沿って延びている場合には、周方向のプラズマ強度が均一化するが、電磁波は中心方向へと進行するので、中心において複数の電磁波の重畳が生じ、プラズマ強度が高くなる。そこで、中央の電磁波強度を低下させることが望まれる。
一つの例示的実施形態において、上部電極の外周部の下面には、電磁波反射用の溝が形成されている。外周部の下面に溝を設けると、電磁波は水平方向に進行するばかりでなく、溝の内部にも進行し、溝の深部で反射する。この場合、溝の直下において、電磁波が吸収される比率が高くなり、外周部のプラズマ強度が増加すると共に、外周部におけるエネルギー消費によって、中央におけるプラズマ強度が低下する。したがって、処理容器の径方向のプラズマ強度の均一性が増加する。
一つの例示的実施形態において、溝は、内側内周面と、内側内周面に対向する外側内周面と、溝の深部に位置し内側内周面と外側内周面とを接続する底面とを備えている。溝の内部に進行した電磁波は、内側内周面及び底面よって反射される。
一つの例示的実施形態において、外側内周面は、処理容器の側壁の内周面と面一である。面一でなく段差が存在する場合には、かかる段差部に電磁波による電界が集中する。電界集中により、意図しない放電やプラズマ強度の増加が生じる場合がある。面一である場合には、このような現象を抑制することができる。
一つの例示的実施形態において、溝の内側内周面と溝の下部開口端面との間には、角部が形成されており、この角部は、処理容器の径方向に沿った縦断面内において、丸みを有している。電磁波が処理容器の中心方向に沿って伝播する際、溝の角部が電磁波のスムーズな進行を阻害する傾向がある。角部が丸み(アール)を有している場合には、角部による電磁波進行阻害を抑制し、プラズマ強度の面内均一性を向上させることができる。
一つの例示的実施形態において、溝は、下部電極における被処理体配置領域の外側領域の上方に配置されている。すなわち、溝の直下においては、プラズマ強度が高くなる傾向があるため、溝の位置を、被処理体から遠ざけることで、被処理体上のプラズマ強度の均一性を高めることができる。
一つの例示的実施形態において、溝の深さLと、溝の幅Dは、0.3≦L/D≦1.0を満たすことが好ましい。この条件を満たす場合には、プラズマ強度の面内均一性が高くなる。
一つの例示的実施形態において、溝の深さLと、溝の幅Dは、0.4≦L/D≦0.9を満たすことが好ましい。この条件を満たす場合には、プラズマ強度の面内均一性が更に高くなる。
一つの例示的実施形態において、プラズマ処理装置は、溝の内面にガス導入口を備える。溝の存在する場所においても、処理ガスを導入することができ、処理容器内の処理ガスの濃度分布や対流を制御することができる。したがって、これらのパラメータを制御することができるので、プラズマの分布をより精密に制御することができる。
一つの例示的実施形態において、円筒形の上部誘電体と、上部誘電体の下部に連続したリング形状の下部誘電体と、を備える誘電体リングを備え、電磁波放射口は、リング形状の下部誘電体の内側面から構成される。誘電体リングから放射される電磁波は、周方向の均一性が高く、プラズマ強度の周方向の均一性が高くなる。上部誘電体から導入された電磁波は、リング形状の下部誘電体内を、その内側面(内側の先端面)に向けて進行する。下部誘電体内における進行の過程で、電磁波による電界の方向が揃ってくる。
一つの例示的実施形態において、誘電体リングの下部誘電体の径方向の幅から、上部誘電体の径方向の幅を減じた寸法は、5mm〜30mmである。すなわち、5mm以上の寸法があれば、電磁波による電界の方向が揃ってくる。30mmを超えると、電界の方向は揃ってくるが、電磁波強度の減衰や装置の大型化が生じる。
一つの例示的実施形態において、誘電体リングの下部誘電体の外側面と、下面との間には、角部が形成されており、この角部は、処理容器の径方向に沿った縦断面内において、丸みを有している。角部に丸み(アール)がある場合、上部誘電体から下部誘電体に電磁波が移動する場合に、丸みが無い場合よりも、スムーズに電磁波が進行することできる。
一つの例示的実施形態において、上部電極の下面と誘電体リングの下部誘電体の上面とは、同一高さである。すなわち、誘電体リングの下部誘電体の上面より下側から電磁波が放射されるが、上部電極の下面と下部誘電体の上面とは、同一高さであるため、これらの間の高さの違いによる段差部がなく、意図しない放電やプラズマ強度の増加を抑制することができる。
一つの例示的実施形態において、プラズマ処理方法が提供される。プラズマ処理方法は、上述のいずれか一つのプラズマ処理装置内の下部電極上に、被処理体を配置する工程と、上部電極から処理ガスを処理容器の内部に供給する工程と、電磁波放射口から処理容器の内部に電磁波を導入する工程とを備える。
この方法によれば、上述のプラズマ処理装置を用いることにより、プラズマの面内均一性を向上させることができるので、面内均一性の高いプラズマ処理を被処理体に施すことができる。
以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附することとし、重複する説明は省略する。
図1は、一つの例示的実施形態に係るプラズマ処理装置の縦断面構成を示す図である。
プラズマ処理装置100は、上部開口を有する処理容器1と、処理容器1の上部開口を封止する蓋1Lと、処理容器1内に配置された載置台2(下部電極、ステージ)と、載置台2の上方に位置するプラズマ発生源とを備えている。プラズマ発生源は、載置台2に対向して配置された上部電極5と、電磁波放射口(高周波放射口)を有する誘電体リング7とを備えている。誘電体リング7の下部の側方端面から、処理容器1の中心方向に向かって、電磁波RFが放射される。誘電体リング7は、電磁波(高周波)の導入部であり、処理容器1の内壁面上には、環状上面を有する段差(リップ)が形成されている。誘電体リング7は、この段差に係合し、この上面上に配置され、この上面によって支持されている。誘電体リング7は、処理容器1の全周に沿って嵌め込まれている。誘電体リング7の内側の先端面に規定される電磁波の放射口は、処理容器1の周方向の全周に亘って設けられている。
載置台2上には、被処理体(基板3)が配置される。基板3としては、プラズマ処理が施されるものであれば、特に限定されないが、半導体基板、ガラスやアルミナ(Al)などの絶縁体基板、又は、金属基板などが挙げられる。
処理容器1の内部のガスは、ガス排気口19を介して、排気装置20によって外部に排気することができる。処理容器1の内部には、ガス供給源18から、供給管17を介して、処理ガスが供給される。具体的には、上部電極5は、処理ガス分散部(内部空間16)を有するシャワー構造を有しており、供給管17は、蓋1Lを貫通し、導波路9を横切り、内部空間16内に連通し接続されている。内部空間16内に導入された処理ガスは、上部電極5の下部領域に設けられた複数の処理ガス吹き出し口(ガス孔14)を介して、処理容器1の内部に供給される。本例の上部電極5は、金属製のシャワープレート構造を有しており、処理ガスが導入される内部空間16と、内部空間16と処理容器1内の空間とを連通させる複数のガス孔14とを備えている。上部電極5は、下面に凹部を備えた上部金属部材5Aと、複数のガス孔14を備えた下部金属部材5Bとからなり、これらの金属部材間の凹部の位置に内部空間16が形成されている。
上部電極5と、蓋1Lの下面、及び処理容器1の内面との間には、導波路9が形成されている。第1高周波電源11から、第1高周波整合器10及びアンテナ8を介して、上部電極5の上部に入力された電磁波(例:VHF波、UHF波などの短波周波数よりも高い周波数の電磁波)は、導波路9を通って放射状に水平方向に進行する。この電磁波は、処理容器1の内面に当たると、下方に進行し、誘電体リング7内を通って、その下部の内側の先端面から放出され、処理容器1の中心軸に向けて水平方向に進行する。
処理ガスが処理容器1内に導入され、排気装置20によって、プラズマが発生可能な圧力まで処理容器1の内部が減圧された状態で、電磁波が処理容器1の内部に導入されると、上部電極5の下方にプラズマが発生する。プラズマ領域4は、上部電極5の直下に位置することになる。なお、第1高周波電源11の一方端は、第1高周波整合器10に接続され、他方端はグランドに接続されている。また、アンテナ8としては、VHF波などの電磁波を伝送可能なものであればよく、電磁波伝送部品としては、導波管の他、同軸ケーブルを用いることも可能である。なお、載置台2は、本例では、グランドに電気的に接続されているが、高周波等を印加することも可能である(図10参照)。
処理容器1において鉛直方向に延びた中心軸をZ軸とし、Z軸に垂直な軸をX軸とし、Z軸及びX軸の双方に垂直な軸をY軸とする。この場合、XY平面は水平面を構成する。誘電体リング7の中心軸は、処理容器1の鉛直方向の中心軸(Z軸)に一致している。プラズマ領域4は、上部電極5の直下に位置しており、誘電体リング7の下部の内側の先端部を含む水平面内に位置している。
上部電極5を上方から見た平面形状は円形であり、その中心の位置は、処理容器1の鉛直方向の中心軸(Z軸)の位置に一致している。上部電極5の下面には、必要に応じて、環状の凹部(溝6)が設けられる。溝6は、処理容器1の中心軸を囲むように、環状に形成されており、上部電極5の下方から見た溝6の平面形状は、円環である。
溝6は、下部電極における被処理体配置領域(基板3の直径300mm)の外側領域の上方に配置されている。すなわち、溝6の直下においては、プラズマ強度が高くなる傾向があるため、溝6の位置を、基板3から遠ざけることで、基板3上のプラズマ強度の均一性を高めることができる。なお、本例では、溝6は、載置台2の外側領域の上方に配置されている。
以上、説明したように、実施形態に係るプラズマ処理装置100は、上部電極5と、下部電極(載置台2)と、電磁波放射口(誘電体リング7の下部の内側先端面)とを備えている。上部電極5は、複数のガス孔14を備えており、処理容器1内へ処理ガスを吐出可能に設けられている。下部電極(載置台2)は、処理容器1内において被処理体を保持可能に設けられている。
図2は、電磁波放射口近傍の部位の縦断面構成を示す図である。
誘電体リング7の下部の内側の先端面7B3は、電磁波放射口を構成しており、上部電極5の高さ位置(Z軸方向の位置)と、下部電極の高さ位置(Z軸方向の位置)との間の高さ位置に設けられ、処理容器1の中心方向へ向けて開口している。電磁波放射口からは電磁波RFが放射され、電磁波RFは処理容器1の中心方向へと進行する。この電磁波RFのエネルギーを吸収して、処理容器1内の処理ガスはプラズマ化する。電磁波RFが水平方向に伝播するので、鉛直方向の伝播と比較して、高次モードの発生を抑制でき、水平面内(特に周方向)のプラズマ強度が均一化しやすいという傾向がある。
電磁波放射口(先端面7B3)は、処理容器1の周方向に沿って延びており、周方向のプラズマ強度が均一化する。電磁波RFは処理容器1の中心方向へと進行するので、中心において複数の電磁波の重畳が生じ、プラズマ強度が高くなる。そこで、中央の電磁波強度を低下させることが望まれる。
上部電極5の外周部の下面には、電磁波反射用の溝6が形成されている。外周部の下面に溝6を設けると、電磁波RFは水平方向に進行するばかりでなく、溝6の内部にも進行し、溝6の深部で反射する。この場合、溝6の直下において、電磁波RFが吸収される比率が高くなり、外周部におけるプラズマ強度が増加すると共に、外周部におけるエネルギー消費によって、中心におけるプラズマ強度が低下する。したがって、処理容器1の径方向のプラズマ強度の均一性が増加する。
溝6は、内側内周面6Aと、内側内周面6Aに対向する外側内周面6Bと、溝6の深部に位置し、内側内周面6Aと外側内周面6Bとを接続する底面6Cとを備えている。溝6の内部に進行した電磁波RFは、内側内周面6A及び底面6Cよって反射される。
溝6の外側内周面6Bは、処理容器1の側壁の内周面1Aと面一(径方向の位置が同一)である。面一でなく段差が存在する場合には、かかる段差部に電磁波による電界が集中するという不具合がある。単に、溝を設けるとエッジ部(電界が集中する位置)ができる。電界集中により、意図しない放電やプラズマ強度の増加が生じる場合がある。面一である場合には、このような不具合を抑制することができる。
また、溝6におけるプラズマ強度は高くなるので、溝6の水平方向(径方向)の位置は、基板から遠い方が好ましい。これにより、処理容器1の中心側へのプラズマの拡散を抑制することができる。基板設置領域の外側に溝6を設けることで、ガス孔の形成領域を外側へ拡張することができる。
溝6の内側内周面6Aと溝6の下部開口端面52との間には、第1角部R1が形成されており、この第1角部R1は、処理容器1の径方向に沿った縦断面内において、図2のように、丸みを有している。電磁波RFが処理容器1の中心方向に沿って伝播する際、溝6の第1角部R1が電磁波RFのスムーズな進行を阻害する傾向がある。第1角部R1が丸み(アール)を有している場合には、第1角部R1による電磁波進行阻害を抑制し、プラズマ強度の面内均一性を向上させることができる。第1角部R1の縦断面内における曲率半径は、溝6の幅D、及び高さLの50%以下である。溝6の幅Dが10mmである場合には、曲率半径は5mm以下であるが、曲率半径が小さすぎると効果がなく、大きすぎると周辺部において処理ガスに吸収される電磁波エネルギーが小さくなる。したがって、電磁波進行阻害抑制及びエネルギー吸収の観点からは、第1角部R1の縦断面内における曲率半径は、1mm〜5mmであることが好ましく、1mm〜3mmであることが更に好ましい。なお、本例では、上部電極5の直径は320〜360mm、被処理体としての基板の直径は300mm、処理容器1の内径は350〜380mmである。
誘電体リング7は、円筒形の上部誘電体7Aと、上部誘電体7Aの下部に連続したリング形状の下部誘電体7Bとを備えている。上部誘電体7Aと下部誘電体7Bとは、一体化している。電磁波放射口は、リング形状の下部誘電体7Bの内側面(先端面7B3)から構成される。誘電体リング7から放射される電磁波RFは、周方向の均一性が高く、プラズマ強度の周方向の均一性が高くなる。上部誘電体7Aから導入された電磁波RFは、リング形状の下部誘電体7B内を、その内側面に向けて進行する。下部誘電体7B内における進行の過程で、電磁波RFによる電界の方向が揃ってくる。
誘電体リング7の下部誘電体7Bの径方向の幅(WB+WA)から、上部誘電体7Aの径方向の幅WAを減じた寸法の幅WBは、5mm〜30mmである。すなわち、幅WBが5mm以上であれば、電磁波RFによる電界の方向が揃ってくる。幅WBが30mmを超えると、電界の方向は揃ってくるが、電磁波強度の減衰や装置の大型化が生じる。
誘電体リング7の上部誘電体7Aの上面7A1から電磁波RFが導入され、下方に向けて進行する。誘電体リング7の下部誘電体7Bの外側面7B4と、下面7B2との間には、第2角部R2が形成されている。第2角部R2は、処理容器1の径方向に沿った縦断面内において、丸みを有している。第2角部R2に丸み(アール)がある場合、上部誘電体7Aから下部誘電体7Bに電磁波RFが移動する場合に、丸みが無い場合よりも、スムーズに電磁波が進行することできる。アールが大きすぎる場合には、電磁波RFの通路が細くなり伝播しにくい。電磁波進行をスムーズに行うという観点からは、第2角部R2の縦断面内における曲率半径は、0.5mm〜3mmであることが好ましく、1mm〜2mmであることが更に好ましい。
溝6の下部開口端面52と誘電体リング7の下部誘電体7Bの上面7B1とは、高さが同じである(Z軸方向の位置が同じ)。すなわち、誘電体リング7の下部誘電体7Bの上面7B1より下側から電磁波RFが放射されるが、溝6の下部開口端面52(上部電極の下面)と下部誘電体7Bの上面7B1とは、同一高さである。したがって、これらの間の高さの違いによる段差部がなく、意図しない放電やプラズマ強度の増加を抑制することができる。
処理容器1は、内周面1A及び外周面1Bを備えており、内周面1Aには環状の段差が設けられており、この段差の上面上に、誘電体リング7の下部誘電体7Bの下面7B2が位置している。なお、この段部の上面と、この上面から上方に向けて連続する側壁の内側円筒面とは、縦断面内において、第2角部R2に対応するアールを介して接続されている。誘電体リング7の材料は、例えば、Alであるが、石英ガラスなどの他の誘電体材料を用いることもできる。誘電体リング7に接する処理容器1及び上部電極5の材料は、金属である。金属の材料としては、鉄、ステンレス鋼又はアルミニウムなどを用いることができる。
上部電極5は、処理ガス分散部としての内部空間16を有している。ガス孔14は、内部空間16の下側を規定する下部金属部材5Bの上面51から、下部金属部材5Bの下面52まで貫通して延びている。内部空間16内に導入された処理ガスGSは、複数のガス孔14を通って、上部電極5の下方の領域に供給される。先端面7B3から放射された電磁波(例:VHF波)は、供給された処理ガスGSにエネルギーを与えつつ、表面波となって、上部電極5の下面に沿って、処理容器1の中心軸に向かって進行する。
なお、溝6の深さL(Z軸方向の深さ)と溝6の幅D(径方向の距離)を調整すると、プラズマ強度の面内均一性を更に向上させることができる。深さLは0mm以上20mm以下、幅Dは0mm以下20mm以下に設定することができる。なお、深さL=0mmの場合は、溝6が無い例である。なお、溝6が無い場合においても、比較例よりは、プラズマ強度の面内均一性を向上させることができる。以下、詳説する。
図3は、比較例に係るプラズマ処理装置の縦断面構成を示す図である。
図3に示したプラズマ処理装置100は、図1の誘電体リング7に代えて、上部電極5の外周面に当接する誘電体筒70を備えている。誘電体筒70の上面から電磁波RFが導入され、下面から下方に向けて放射される。上部電極5は、溝を備えていない。これらの点を除いて、図3に示す比較例のプラズマ処理装置100は、図1に示したプラズマ処理装置と同一である。
図4は、処理容器の中心からの距離rと正規化したプラズマの電力Pとの関係を示すグラフである。
正規化したプラズマの電力Pは、高周波電源からプラズマ処理装置に入力した電力Pinに対して、処理ガスが吸収した電力Plossで与えられるものとする(P=Ploss/Pin)。
Data0は、図3に示した比較例に係るプラズマ処理装置の場合のデータを示し、Data1は、第1実施例に係るプラズマ処理装置の場合のデータを示している。第1実施例(Data1)は、図1のプラズマ処理装置において、溝6を備えないものである。
同図に示されるように、比較例(Data0)の場合、中央近傍におけるプラズマの電力Pが、周辺部と比較して著しく高くなる。一方、第1実施例(Data1)の場合、中央近傍におけるプラズマの電力Pが、周辺部よりも低くなる。なお、グラフ上の測定点のとしての距離rは、r=23.75mm、r=47.5mm、r=71.25mm、r=95mm、r=118.75mm、r=142.5mm、r=166.25mm、r=190mmである。
比較例(トッププラズマ)においては、上部電極面から電磁波を導入するため、電極の寸法が小さくなり、処理ガスの導入範囲を十分に確保できない。また、比較例のように、誘電体筒70を用い、上部電極5と基板3との間の距離を近づけ過ぎると、プラズマの均一性の観点からは好ましくない。実施形態(サイドプラズマ)に係るプラズマ処理装置においては、上部電極5に隣接した側壁において、側壁と垂直な方向からVHF帯の電磁波を導入している。これにより、処理容器1の大きさを変えることなく、上部電極5の外径を大きくでき、プラズマ発生領域及び処理ガスの導入範囲を広げることができる。溝の無いサイドプラズマ構造(第1実施例)の場合においても、比較例と比較して、プラズマ発生領域及び処理ガスの導入範囲を広げることができる。なお、比較例の場合、電磁波の伝搬経路上に形成されたガスの供給管17の配置等が影響し、周方向のプラズマ均一性が低くなる。一方、実施形態の場合、周方向のプラズマ強度の均一性は、比較例よりも高くなる。
図5は、処理容器の中心からの距離rと正規化したプラズマの電力Pとの関係を示すグラフである。
正規化したプラズマの電力Pの定義は、図4の場合と同一である。Data0は、上述の比較例の場合のデータである。第2実施例(Data2)は、図1のプラズマ処理装置において、溝6の深さLと幅Dの比率R=L/Dとすると、R=L/D=0.25としたものである。同様に、第3実施例(Data3)は、R=L/D=0.5としたものである。第4実施例(Data4)は、R=L/D=0.75としたものである。第5実施例(Data5)は、R=L/D=1.0としたものである。第6実施例(Data6)は、R=L/D=2.0としたものである。
なお、具体的には、第2実施例では、L=5mm、D=20mmである。第3実施例では、L=8mm、D=16mmである。第4実施例では、L=6mm、D=8mmである。第5実施例では、L=8mm、D=8mmである。第6実施例では、L=20mm、D=10mmである。また、グラフ上の測定点のとしての距離rは、r=23.75mm、r=47.5mm、r=71.25mm、r=95mm、r=118.75mm、r=142.5mm、r=166.25mm、r=190mmである。
第2実施例(Data2)〜第6実施例(Data6)に示すように、比率R=L/Dを0.25〜2.0まで変化させると、第3実施例(Data3)の比率R=L/D=0.5の場合に、中心近傍のプラズマの電力Pが小さくなることが分かる。したがって、径方向の電力分布の平坦性が高くなることが分かる。
かかる観点からは、溝6の深さL(Z軸方向の深さ)と、溝6の幅D(径方向の距離)は、以下の条件を満たすことが好ましい。
0.25≦R=L/D≦2.0
0.25≦R=L/D≦1.0
0.25≦R=L/D≦0.75
0.5≦R=L/D≦0.75
なお、図4及び図5のグラフによれば、周辺部のプラズマ強度は高くなっているが、少なくとも、基板が存在する例えば直径300mm内の領域内でプラズマ強度が均一になっていれば良い(半径rは150mm以内)。すなわち、この場合、周辺部においてプラズマ強度が高くても、プラズマ処理には、大きな影響がないと考えられる。
図6は、L/Dに対する正規化したプラズマの電力Pとの関係を示すグラフである。
正規化したプラズマの電力Pは、溝6を有さないプラズマ処理装置において処理ガスが吸収した電力Prlに対して、溝を有するプラズマ処理装置において処理ガスが吸収した電力Pで与えられるものとする(P=P/Prl)。なお、このグラフは、中心近傍領域(r=23.75mm)の場合のデータを示している。また、溝の無い場合のデータ(L,D)=(0,1)(単位は(mm))の場合は(L/D=0)とした。その他、Lは2mm〜20mm、Dは6mm〜20mmの間で値を変化させた。各データ(L,D)(単位は(mm))は、以下の通りである。
(L,D)=(0,1)。(L,D)=(2,6)、(2,8)、(2,10)、(2,12)、(2,14)、(2,16)、(2,18)、(2,20)。(L,D)=(4,6)、(4,8)、(4,10)、(4,12)、(4,14)、(4,16)、(4,18)、(4,20)。(L,D)=(5,10)、(5,20)。(L,D)=(6,6)、(6,8)、(6,10)、(6,12)、(6,14)、(6,16)、(6,18)、(6,20)、(8,6)。(L,D)=(8,8)、(8,10)、(8,12)、(8,14)、(8,16)、(8,18)、8,20)。(L,D)=(10,6)、(10,8)、(10,10)、(10,12)、(10,14)、(10,16)、(10,18)、(10,20)。(L,D)=(20,10)、(20,20)。
同図から分かるように、中心近傍領域におけるプラズマの電力Pを小さくするためには、溝6の深さLと、溝の幅Dは、0.3≦L/D≦1.0を満たすことが好ましい(範囲RG1)。この条件を満たす場合には、中心近傍領域のプラズマの電力が低下し、プラズマ強度の面内均一性が高くなる。また、溝6の深さLと、溝の幅Dは、0.4≦L/D≦0.9を満たすことが好ましい(範囲RG2)。この条件を満たす場合には、中心近傍領域のプラズマの電力が低下し、プラズマ強度の面内均一性が更に高くなる。
図7は、一つの例示的実施形態に係るプラズマ処理装置の誘電体リング周辺の縦断面構成を示す図である。
図2に示した誘電体リング7の下部の上面7B1は、上部電極5の下面52と同一平面内に位置している。図7に示したプラズマ処理装置は、図2に示した誘電体リング7の下部誘電体7Bを下方にずらしたものであり、他の構成は図2に示したものと同一である。下部誘電体7Bの上面7B1は、上部電極5の下面52よりも、距離L2だけ、下方に位置している。これにより、下部誘電体7Bの内側の先端面7B3(電磁波放射口)は、図2の場合よりも下方に位置することになる。この構成は、プラズマの発生位置を上部電極5から離間させたい場合に有効である。なお、溝6の外側内周面6Bは、誘電体リング7の内側の先端面7B3と同一の径方向位置に位置し、これらは面一となっている。この構造により、不要な電界の集中を抑制することができる。
図7の構造では、電磁波の導入位置は、上部電極5の下面52の位置から高さ方向に沿って離れている。これにより、径方向のプラズマ強度の偏りが抑制される。電磁波放射口の位置は、上部電極5の下面52の位置と載置台2の表面との間の位置であれば、どの高さ位置でもよい。
図8は、一つの例示的実施形態に係るプラズマ処理装置の誘電体リング周辺の縦断面構成を示す図である。
図8に示したプラズマ処理装置は、図2に示した溝6の内面に補助ガス孔140を設けたものであり、他の構成は図2に示したものと同一である。
すなわち、このプラズマ処理装置は、溝6の内面にガス導入口(補助ガス孔140)を備えている。この構成の場合、溝6の存在する場所においても、補助ガス孔140を介して、処理ガスGSを導入することができ、処理容器1内の処理ガスの濃度分布や対流を制御することができる。したがって、これらの濃度分布や対流といったパラメータを制御することができるので、プラズマの分布をより精密に制御することができる。補助ガス孔140は、上部電極5の下部金属部材5Bに形成されている。補助ガス孔140は、下部金属部材5Bの上面51から溝6の内面まで延びた貫通孔である。この貫通孔の平面形状は多角形や円形であるが、円弧状とすることも可能である。
補助ガス孔140の形成位置は、上部金属部材5Aの側壁の内面からの最短距離が、距離WCだけ離間するように設定されている。距離WCは、例えば、0mm〜30mmである。内部空間16内には、処理ガスが導入され、拡散する。この際、上部金属部材5Aの内面に沿ったガス流がある場合には、補助ガス孔140への処理ガスの導入抵抗は、距離WCが小さいほど小さくなる。したがって、このような場合において、補助ガス孔140内に効率的に処理ガスを導入する場合には、距離WC=0mmに設定すればよい。凹部を構成する溝6の位置は、処理対象の基板から離れた方がよいため、その外側に位置する補助ガス孔140の位置は、処理容器の径方向の寸法に影響を与える。距離WC=0mmとすれば、径方向の装置の大きさを小さくすることができる。換言すれば、例えば、平面形状が円弧状の補助ガス孔140を用いる場合、上部金属部材5Aの側壁の内面と、補助ガス孔140の外側の内面は面一となる。
図9は、一つの例示的実施形態に係るプラズマ処理装置の誘電体リング周辺の縦断面構成を示す図である。
図9に示したプラズマ処理装置は、図7に示したプラズマ処理装置において、溝6の外部に、図8に示したような補助ガス孔140を設けたものであり、他の構成は図7に示したものと同一である。なお、本例では、図8における補助ガス孔の離間距離WC=0mmとなる例を図示しているが、図8の場合の距離WCと同様な範囲を設定することも可能である。
誘電体リング7における上部誘電体7Aの寸法が、図8の場合よりも長く、補助ガス孔140は、溝6の外部に設けているので、補助ガス孔140のZ軸方向の長さは、図8の場合よりも長くなる。補助ガス孔140を用いることで、濃度分布や対流といったパラメータを制御することができるので、プラズマの分布をより精密に制御することができる。
また、図8及び図9の構造は、縦断面内において2方向に放出される処理ガスの吹き出し口(ガス孔)を備えている。ガス孔は、上部電極5の表面のみ、又は、側壁のみに設ける構成としてもよい。
図10は、下部電極への例示的なバイアス印加の構造を示す図である。
上述のプラズマ処理装置において、載置台2は、第2高周波整合器12を介して、第2高周波電源13に接続することも可能である。第2高周波電源13は、図1に示した第1高周波電源11とは周波数を異ならせることができる。この構造の場合、2つの周波数をプラズマ発生用に用いることができるので、処理容器の内部空間における電界の制御種類が増え、さらに精密にプラズマ強度の面内分布を制御することができる。
第2高周波電源13の周波数は、第1高周波電源11の周波数よりも低く設定することができる(例えば、2MHz)。これはプラズマ中のイオンを基板側に引き込むイオンアシスト構造として機能することができる。本構成は、上述のプラズマ処理装置に適用することができる。
本開示のプラズマ処理方法は、上記のいずれか一つのプラズマ処理装置内の載置台2(下部電極)上に、被処理体を配置する工程と、上部電極5から処理ガスを処理容器1の内部に供給する工程を備える。この方法は、更に、電磁波放射口(誘電体リング7の下部の内側の先端面)から、処理容器1の内部に電磁波を導入する工程とを備える。このプラズマ処理方法によれば、上述のプラズマ処理装置を用いることにより、プラズマの面内均一性を向上させることができるので、面内均一性の高いプラズマ処理を被処理体に施すことができる。
プラズマ処理方法における一例としての処理容器内の圧力は、0.1(Torr)(13.33(Pa))、導波路内の圧力は760(Torr)(1013(hPa))とする。第1高周波電源11の周波数は220(MHz)、第1高周波電源11の出力は1000(W)、基板3と上部電極5との間の間隔は60mm、溝6の深さLは6mm、溝の幅Dは8mmとする。プラズマ処理には、エッチング処理や堆積処理が知られている。処理対象のSiO膜やSi膜のエッチングガスとしては、CF、CF、C、CO、SiF、SiCFなどが知られている。プラズマCVDなどの堆積処理に用いられるガスとしては、Siを含む膜の成膜の場合には、シラン系のガス(SiH、Si)等を用いることができる。Siを含む化合物(例えば、窒化珪素)を成膜する場合は、化合物原料(例えば、窒素)を含むガスを更に用いればよい。
なお、上述の実施形態では、VHF帯の周波数を例示しているが、高周波電源の周波数としては他の周波数を用いることもできる。短波(HF)帯の周波数は3MHz〜30MHzであって波長は100m〜10mである。VHF帯の周波数は30MHz〜300MHzであって波長は10m〜1mである。マイクロ波帯に含まれるUHF帯は300MHz〜3GHzであって波長は1m〜10cmである。VHF帯の高周波は、導波路の中でも特に電極の表面を伝播する傾向がある。表面波は、上部電極5の下面の周縁部から、中心部へ向かって伝播する。このような周波数帯の場合、径方向のプラズマ強度の均一性を高めるためには、溝6を形成することが有効である。
すなわち、周波数が高くなると、波長が短くなり、処理容器の径方向に沿って波長に応じた電界の腹及び節が生じ、電界分布が不均一となる傾向がある。特に、上部電極5の中心側のプラズマ密度が、周辺部のプラズマ密度よりも高くなる。中心部ではプラズマの抵抗率が低くなり、電流が集中し、電界分布の不均一構造がさらに強まるという傾向がある。
一方、誘電体リング7における電磁波導入口付近の上部電極面に溝6(凹部)を設けることにより、電磁波の反射効果、ラビリンス効果が生じるので、誘電体リング7より、導入されたVHF波の電界の上部電極5の表面への伝達が抑制される。これにより、選択的に処理容器の周辺部におけるプラズマ密度を高めることができる。その結果、基板3上において、電界分布の偏りを少なくし、基板3の全体に亘って均一なプラズマ処理を行うことができる。
プラズマ処理装置は、比較的低温で良好な反応を行うことができる装置である。上述のプラズマ処理装置は、平行平板方式のプラズマ処理装置等、様々なタイプのプラズマ処理装置に利用することができる。プラズマ処理としては、エッチング、スパッタリング、化学的気相成長(CVD)法などの堆積等の処理があり、実施形態に係る装置は、いずれの処理にも、利用することができる。なお、上部電極と下部電極との間のギャップが狭い場合、容量結合プラズマ(CCP)が発生する。一方、このギャップが広い場合は、処理容器(チャンバ)の上方空間においてプラズマが発生する。プラズマ処理装置のギャプの最小値は、9mm〜13mmのものが知られている。なお、上部電極5の下面に誘電体を設けて波長を変えると、均一性を向上させられると考えられるが、この場合は電極間距離が変わる。上述のプラズマ処置装置は、表面波プラズマが発生する構造において、特に有効である。
近年、デザインルールの微細化に伴い、高密度のプラズマ処理が期待されている。上述のVHF帯やUHF帯の高周波を用いたプラズマ発生機構は、高密度のプラズマ処理にとって有用である。また、実施形態に係るプラズマ処理装置は、プラズマ強度の面内均一性を高め、且つ、上部電極5の外径も大きくすることができ、プラズマ発生領域及び処理ガスの導入範囲を広げることができるという利点がある。
以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。また、以上の説明から、本開示の種々の実施形態は、本明細書において説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。
1…処理容器、1A…内周面、1B…外周面、1L…蓋、2…載置台、3…基板、4…プラズマ領域、5…上部電極、5A…上部金属部材、5B…下部金属部材、6…溝、6A…内側内周面、6B…外側内周面、6C…底面、7…誘電体リング、7A…上部誘電体、7A1…上面、7B…下部誘電体、7B1…上面、7B2…下面、7B3…先端面、7B4…外側面、8…アンテナ、9…導波路、10…第1高周波整合器、11…第1高周波電源、12…第2高周波整合器、13…第2高周波電源、14…ガス孔、16…内部空間、17…供給管、18…ガス供給源、19…ガス排気口、20…排気装置、51…上面、52…下部開口端面(下面)、70…誘電体筒、100…プラズマ処理装置、140…補助ガス孔、GS…処理ガス、R1…第1角部、R2…第2角部、RF…電磁波。

Claims (14)

  1. 処理容器内へ処理ガスを吐出可能に設けられた上部電極と、
    前記処理容器内において被処理体を保持可能に設けられた下部電極と、
    前記上部電極の高さ位置と、前記下部電極の高さ位置と、の間の高さ位置に設けられ、前記処理容器の中心方向へ向けて開口する電磁波放射口と、
    を備えるプラズマ処理装置。
  2. 前記上部電極の外周部の下面には、電磁波反射用の溝が形成されている、
    請求項1に記載のプラズマ処理装置。
  3. 前記溝は、
    内側内周面と、
    前記内側内周面に対向する外側内周面と、
    前記溝の深部に位置し前記内側内周面と前記外側内周面とを接続する底面と、
    を備えている、
    請求項2に記載のプラズマ処理装置。
  4. 前記外側内周面は、前記処理容器の側壁の内周面と面一である、
    請求項3に記載のプラズマ処理装置。
  5. 前記溝の前記内側内周面と前記溝の下部開口端面との間には、角部が形成されており、この角部は、前記処理容器の径方向に沿った縦断面内において、丸みを有している、
    請求項3又は請求項4に記載のプラズマ処理装置。
  6. 前記溝は、前記下部電極における被処理体配置領域の外側領域の上方に配置されている、
    請求項3〜5のいずれか一項に記載のプラズマ処理装置。
  7. 前記溝の深さLと、前記溝の幅Dは、
    0.3≦L/D≦1.0
    を満たす、
    請求項2〜6のいずれか一項に記載のプラズマ処理装置。
  8. 前記溝の深さLと、前記溝の幅Dは、
    0.4≦L/D≦0.9
    を満たす、
    請求項2〜6のいずれか一項に記載のプラズマ処理装置。
  9. 前記溝の内面にガス導入口を備える、
    請求項2〜8のいずれか一項に記載のプラズマ処理装置。
  10. 円筒形の上部誘電体と、
    前記上部誘電体の下部に連続したリング形状の下部誘電体と、
    を備える誘電体リングを備え、
    前記電磁波放射口は、リング形状の前記下部誘電体の内側面から構成される、
    請求項1〜9のいずれか一項に記載のプラズマ処理装置。
  11. 前記誘電体リングの前記下部誘電体の径方向の幅から、前記上部誘電体の径方向の幅を減じた寸法は、5mm〜30mmである、
    請求項10に記載のプラズマ処理装置。
  12. 前記誘電体リングの前記下部誘電体の外側面と、下面との間には、角部が形成されており、この角部は、前記処理容器の径方向に沿った縦断面内において、丸みを有している、
    請求項10又は請求項11に記載のプラズマ処理装置。
  13. 前記上部電極の下面と前記誘電体リングの前記下部誘電体の上面とは、同一高さである、請求項10〜12のいずれか一項に記載のプラズマ処理装置。
  14. 請求項1〜13のいずれか一項に記載のプラズマ処理装置内の前記下部電極上に、前記被処理体を配置する工程と、
    前記上部電極から前記処理ガスを前記処理容器の内部に供給する工程と、
    前記電磁波放射口から前記処理容器の内部に電磁波を導入する工程と、
    を備えたプラズマ処理方法。
JP2019226625A 2019-12-16 2019-12-16 プラズマ処理装置及びプラズマ処理方法 Active JP7336378B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019226625A JP7336378B2 (ja) 2019-12-16 2019-12-16 プラズマ処理装置及びプラズマ処理方法
PCT/JP2020/044903 WO2021124898A1 (ja) 2019-12-16 2020-12-02 プラズマ処理装置及びプラズマ処理方法
US17/756,980 US20230005722A1 (en) 2019-12-16 2020-12-02 Plasma processing apparatus and plasma processing method
KR1020227022996A KR20220110812A (ko) 2019-12-16 2020-12-02 플라스마 처리 장치 및 플라스마 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019226625A JP7336378B2 (ja) 2019-12-16 2019-12-16 プラズマ処理装置及びプラズマ処理方法

Publications (2)

Publication Number Publication Date
JP2021096934A true JP2021096934A (ja) 2021-06-24
JP7336378B2 JP7336378B2 (ja) 2023-08-31

Family

ID=76432108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226625A Active JP7336378B2 (ja) 2019-12-16 2019-12-16 プラズマ処理装置及びプラズマ処理方法

Country Status (4)

Country Link
US (1) US20230005722A1 (ja)
JP (1) JP7336378B2 (ja)
KR (1) KR20220110812A (ja)
WO (1) WO2021124898A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248781A1 (ja) * 2022-06-20 2023-12-28 東京エレクトロン株式会社 プラズマ処理装置
KR20240028934A (ko) 2022-08-25 2024-03-05 도쿄엘렉트론가부시키가이샤 플라스마 처리 장치

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230011938A1 (en) * 2021-07-09 2023-01-12 Applied Materials, Inc. Shaped showerhead for edge plasma modulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283300A (ja) * 1996-04-18 1997-10-31 Sony Corp プラズマ処理装置
JPH11243000A (ja) * 1998-11-11 1999-09-07 Canon Inc マイクロ波導入方法及びプラズマ処理方法
JP2006324551A (ja) * 2005-05-20 2006-11-30 Shibaura Mechatronics Corp プラズマ発生装置及びプラズマ処理装置
WO2018101065A1 (ja) * 2016-11-30 2018-06-07 東京エレクトロン株式会社 プラズマ処理装置
JP2019106358A (ja) * 2017-12-14 2019-06-27 東京エレクトロン株式会社 マイクロ波プラズマ処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW469534B (en) * 1999-02-23 2001-12-21 Matsushita Electric Ind Co Ltd Plasma processing method and apparatus
TW516113B (en) * 1999-04-14 2003-01-01 Hitachi Ltd Plasma processing device and plasma processing method
JP4454718B2 (ja) 1999-05-07 2010-04-21 東京エレクトロン株式会社 プラズマ処理装置およびそれに用いられる電極
JP4541379B2 (ja) 2007-04-19 2010-09-08 キヤノンアネルバ株式会社 酸化シリコンエッチング方法及び酸化シリコンエッチング装置
JP5835985B2 (ja) * 2010-09-16 2015-12-24 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP2016086099A (ja) * 2014-10-27 2016-05-19 東京エレクトロン株式会社 プラズマ処理装置
US10907252B2 (en) * 2017-10-23 2021-02-02 Applied Materials, Inc. Horizontal heat choke faceplate design

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283300A (ja) * 1996-04-18 1997-10-31 Sony Corp プラズマ処理装置
JPH11243000A (ja) * 1998-11-11 1999-09-07 Canon Inc マイクロ波導入方法及びプラズマ処理方法
JP2006324551A (ja) * 2005-05-20 2006-11-30 Shibaura Mechatronics Corp プラズマ発生装置及びプラズマ処理装置
WO2018101065A1 (ja) * 2016-11-30 2018-06-07 東京エレクトロン株式会社 プラズマ処理装置
JP2019106358A (ja) * 2017-12-14 2019-06-27 東京エレクトロン株式会社 マイクロ波プラズマ処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248781A1 (ja) * 2022-06-20 2023-12-28 東京エレクトロン株式会社 プラズマ処理装置
KR20240028934A (ko) 2022-08-25 2024-03-05 도쿄엘렉트론가부시키가이샤 플라스마 처리 장치

Also Published As

Publication number Publication date
JP7336378B2 (ja) 2023-08-31
KR20220110812A (ko) 2022-08-09
WO2021124898A1 (ja) 2021-06-24
US20230005722A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
WO2021124898A1 (ja) プラズマ処理装置及びプラズマ処理方法
KR101851436B1 (ko) 플라즈마 처리 장치
TWI643236B (zh) Plasma processing device
JP5438205B2 (ja) プラズマ処理装置用の天板及びプラズマ処理装置
US6818852B2 (en) Microwave plasma processing device, plasma processing method, and microwave radiating member
US10418224B2 (en) Plasma etching method
KR100549554B1 (ko) 플라즈마처리장치 및 플라즈마처리방법
TW201331408A (zh) 電漿處理裝置
WO2006009213A1 (ja) プラズマ処理装置
US6656322B2 (en) Plasma processing apparatus
US20190180984A1 (en) Antenna and plasma deposition apparatus
US20230386791A1 (en) Plasma processing apparatus
US6675737B2 (en) Plasma processing apparatus
JP3889280B2 (ja) プラズマ処理装置
KR20160144327A (ko) 플라즈마 처리 장치
US20230081103A1 (en) Plasma source and plasma processing apparatus
WO2022050083A1 (ja) プラズマ処理装置
JP7450475B2 (ja) プラズマ処理装置
WO2023243540A1 (ja) プラズマ処理装置
US20050087304A1 (en) Plasma processing system
US20230335380A1 (en) Plasma processing apparatus and semiconductor device manufacturing method
JP7378317B2 (ja) プラズマ処理装置
JP2022011432A (ja) 整合器及びプラズマ処理装置
JP3364131B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7336378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150