JP2021092167A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2021092167A
JP2021092167A JP2019221814A JP2019221814A JP2021092167A JP 2021092167 A JP2021092167 A JP 2021092167A JP 2019221814 A JP2019221814 A JP 2019221814A JP 2019221814 A JP2019221814 A JP 2019221814A JP 2021092167 A JP2021092167 A JP 2021092167A
Authority
JP
Japan
Prior art keywords
waveform
phase shift
fuel
acquisition unit
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019221814A
Other languages
English (en)
Inventor
尚人 関
Naoto Seki
尚人 関
直幸 山田
Naoyuki Yamada
直幸 山田
モハメド モハメド クスバディーン シード
Kuthbudeen Syed Mohamed Mohamed
モハメド モハメド クスバディーン シード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Int India Pvt Ltd
Denso International India Pvt Ltd
Denso Corp
Original Assignee
Denso Int India Pvt Ltd
Denso International India Pvt Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Int India Pvt Ltd, Denso International India Pvt Ltd, Denso Corp filed Critical Denso Int India Pvt Ltd
Priority to JP2019221814A priority Critical patent/JP2021092167A/ja
Priority to DE102020129697.5A priority patent/DE102020129697A1/de
Priority to US17/113,255 priority patent/US11274624B2/en
Publication of JP2021092167A publication Critical patent/JP2021092167A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D1/00Controlling fuel-injection pumps, e.g. of high pressure injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/025Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by a single piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/22Varying quantity or timing by adjusting cylinder-head space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

【課題】位相ずれを正確に取得することのできる制御装置を提供する。【解決手段】制御装置10は、レール150に貯えられた燃料の圧力の、所定期間における時間変化の波形を取得する波形取得部11と、ポンプ130で往復動作するプランジャ135が特定位置に到達するタイミングと、車両MVの内燃機関160で往復動作するピストンが特定位置に到達するタイミングと、の間のずれである位相ずれを、波形取得部11により取得された波形に基づいて取得する位相ずれ取得部12と、を備える。【選択図】図1

Description

本開示は、車両用の制御装置に関する。
所謂「コモンレール式」の燃料供給系を有する車両には、プランジャを往復動作させることにより燃料を送り出すポンプと、ポンプから送り出された燃料を貯えるレールと、レールから供給される燃料を噴射する燃料噴射弁と、が設けられる。このような車両用の制御装置は、レール内の燃料の圧力を概ね一定に保ちながら、適切なタイミング及び期間において燃料噴射弁を開状態とすることで、内燃機関の各気筒に燃料噴射弁から燃料を噴射させる制御を行う。
ところで、ポンプで往復動作するプランジャが特定位置(例えば上死点)に到達するタイミングと、内燃機関で往復動作するピストンが特定位置(例えば上死点)に到達するタイミングと、の間のずれである位相ずれが、当初の設計値とは異なる値になっている場合には、目標の噴射量と、燃料噴射弁を開状態としておくべき期間と、の対応関係が変化してしまう。
このため、車両にポンプを取り付ける際には、位相ずれが設計値通りとなるように作業を行う必要があった。しかしながら、当該作業は作業者の熟練を要するものである上、一部の部材にキー溝を予め形成しておく必要がある。このため、製造コスト及び部品コストが上昇してしまう。
そこで、下記特許文献1に記載されている制御装置では、ポンプの取り付け後において位相ずれを取得し、取得された位相ずれの値に基づいて、燃料の噴射量を補正することとしている。このような方法によれば、ポンプを取り付ける際において、位相ずれを特定の値に正確に一致させておく必要性をなくすことができる。
特開2013−167187号公報
上記特許文献1に記載されている制御装置では、内燃機関の始動時において、単位時間当たりにおけるレール圧の変化量、すなわち、燃料の圧力の上昇特性を取得し、この上昇特性のグラフが変曲点となるタイミングに基づいて位相ずれを取得するように構成されている。
しかしながら、燃料の圧力の変化には、多くの場合、脈動等のノイズが含まれてしまう。このため、上記のような特定の一点のタイミングを正確に判定し、当該判定に基づいて位相ずれを正確に取得することは難しいと考えられる。
本開示は、位相ずれを正確に取得することのできる制御装置、を提供することを目的とする。
本開示に係る制御装置は、車両(MV)用の制御装置(10)である。制御対象である車両は、プランジャ(135)を往復動作させることにより燃料を送り出すポンプ(130)と、ポンプから送り出された燃料を貯えるレール(150)と、レールから供給される燃料を噴射する燃料噴射弁(170)と、が設けられたものである。この制御装置は、レールに貯えられた燃料の圧力の、所定期間における時間変化の波形を取得する波形取得部(11)と、ポンプで往復動作するプランジャが特定位置に到達するタイミングと、車両の内燃機関で往復動作するピストンが特定位置に到達するタイミングと、の間のずれである位相ずれを、波形取得部により取得された波形に基づいて取得する位相ずれ取得部(12)と、を備える。
本発明者らが行った実験等によれば、レール内に貯えられた燃料の圧力の時間変化の波形と、位相ずれとの間には相関がある、という知見が得られている。そこで、上記構成の制御装置では、位相ずれ取得部が、波形取得部により取得された波形に基づいて位相ずれを取得することとしている。例えば、波形と位相ずれとの組み合わせを予め複数組用意しておけば、当該組み合わせを示すマップを参照することで、波形取得部により取得された波形に対応する位相ずれを取得することができる。
この制御装置では、燃料の圧力の変化が変曲点となるタイミング等のような、特定のタイミングに基づくのではなく、所定期間における時間変化を示すグラフの形状(すなわち波形)そのものに基づいて位相ずれを取得する。このため、波形の一部に脈動等のノイズが含まれていたとしても、当該ノイズの影響を低減し、位相ずれを比較的正確に取得することができる。
本開示によれば、位相ずれを正確に取得することのできる制御装置、が提供される。
図1は、本実施形態に係る制御装置、及び当該制御装置が搭載された車両の構成を模式的に示す図である。 図2は、ポンプの構成を模式的に示す図である。 図3は、位相ずれについて説明するための図である。 図4は、位相ずれについて説明するための図である。 図5は、位相ずれと、燃料の圧力の波形との関係について説明するための図である。 図6は、制御装置によって実行される処理の流れを示すフローチャートである。 図7は、波形取得部により取得された波形の例を示す図である。 図8は、2乗和の算出方法について説明するための図である。 図9は、制御装置によって実行される処理の流れを示すフローチャートである。 図10は、一致度の算出方法について説明するための図である。 図11は、一致度に基づいて位相ずれを取得する方法について説明するための図である。 図12は、制御装置によって実行される処理の流れを示すフローチャートである。 図13は、噴射中吐出量の算出方法について説明するための図である。 図14は、噴射中吐出量の算出方法について説明するための図である。 図15は、燃料の噴射量を補正するために予め作成されるマップ、の例を模式的に示す図である。 図16は、各気筒における燃料噴射のタイミングと、ポンプから燃料が送り出されるタイミングと、の関係について説明するための図である。
以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。
本実施形態に係る制御装置10は、内燃機関160と共に車両MVに搭載され、内燃機関160等の制御を行うための装置として構成されている。図1を参照しながら、車両MVの構成について先ず説明する。
図1には、車両MVのうち、内燃機関160及び燃料供給系の構成が模式的に示されている。車両MVは、燃料タンク110と、ポンプ130と、レール150と、燃料噴射弁170と、内燃機関160と、を備えている。
燃料タンク110は、内燃機関160に供給される燃料を貯えておくための容器である。本実施形態では、内燃機関160がディーゼルエンジンとして構成されており、燃料として軽油が用いられている。燃料タンク110には、燃料配管101の一端が接続されている。燃料配管101の他端は、後述のレール150に接続されている。
燃料配管101のうち、燃料タンク110とポンプ130との間となる位置には、フィルタ120が設けられている。フィルタ120は、燃料配管101を通る燃料から、当該燃料に混入している異物を捕集して除去するためのフィルタである。尚、燃料配管101のうちフィルタ120よりも上流側となる位置には、燃料タンク110から燃料を送り出す低圧ポンプが設けられているのであるが、図1においてはその図示が省略されている。低圧ポンプから送り出された燃料は、フィルタ120を通り異物が除去された後、次に述べるポンプ130に供給される。
ポンプ130は、上記の低圧ポンプから供給される燃料を更に加圧して、下流側のレール150に向けて送り出すためのポンプである。図2には、ポンプ130の構成が模式的に示されている。同図に示されるように、ポンプ130は、本体部131と、プランジャ135と、を有している。
本体部131は、概ね筒状の容器であって内部に空間が形成されている。当該空間には、図2における下方側からプランジャ135が挿通されている。プランジャ135の上端と、本体部131の内面との間には、加圧室134が形成されている。
本体部131には、入口部132と出口部133とが形成されている。入口部132は、燃料タンク110から加圧室134に供給される燃料の入口として形成された開口である。出口部133は、加圧室134からレール150に向けて送り出される燃料の出口として形成された開口である。
プランジャ135は、内燃機関160が有する不図示のシリンダの動作に同期して、図2における上下方向に往復動作する。このような往復動作を実現するために、プランジャ135のうち本体部131の外側にある方の端部136が、不図示のクランクシャフトに設けられたカムからの力を受けるように構成されている。
プランジャ135が図2の下方側に移動して、加圧室134の容積が大きくなると、入口部132から加圧室134へと燃料が供給される。その後、プランジャ135が図2の上方側に移動して、加圧室134の容積が小さくなると、加圧室134の燃料は加圧されて出口部133から送り出される。尚、出口部133には、加圧室134に向けた燃料の逆流を防止するための弁が設けられているのであるが、図2においてはその図示が省略されている。
本体部131の内面と、プランジャ135の外周面との間には、微小な隙間が形成されている。本体部131には、当該隙間に流入した燃料を外部に排出するための、不図示のオーバーフロー流路が形成されている。オーバーフロー流路に流入した燃料は、図1に示されるオーバーフローパイプ103及びリターンパイプ106を通り、燃料タンク110へと戻される。
以上のように、ポンプ130は、プランジャ135を往復動作させることにより燃料を送り出すポンプ、として構成されている。尚、このようなポンプ130の構成としては、既に公知となっている構成を採用することができる。このため、ポンプ130の更なる詳細な構造については、その図示や説明を省略する。
ポンプ130には調量弁140が設けられている。調量弁140は、外部からの信号に応じてその開度を調整することのできる電磁弁として構成されており、ポンプ130のうち入口部132の近傍に設けられている。調量弁140の開度が小さくなると、入口部132から加圧室134に供給される燃料の量、すなわち、ポンプ130に供給される燃料の量が少なくなる。逆に、調量弁140の開度が大きくなると、ポンプ130に供給される燃料の量は多くなる。
制御装置100は、ポンプ130からレール150へと送り出される燃料の量についての要求値を算出し、当該要求値に応じて調量弁140の開度を適宜変化させることで、ポンプ130に供給される燃料の量を調整する。その結果として、ポンプ130から送り出される燃料の量を要求値に一致させる。
図1に戻って説明を続ける。レール150は、「コモンレール」とも称されるものであり、ポンプ130から送り出された燃料を貯えるための容器である。レール150には、ポンプ130によって加圧された燃料が供給されるので、ポンプ130の内部における燃料の圧力は高圧に保たれる。これにより、後述の燃料噴射弁170から高圧の燃料を噴射することが可能となっている。
レール150には、燃圧センサ152と、減圧弁151と、が設けられている。燃圧センサ152は、レール150の内部における燃料の圧力を測定するための圧力センサである。燃圧センサ152によって測定された燃料の圧力は、制御装置10へと送信される。
減圧弁151は、レール150から燃料の一部を排出し、レール150の内部における燃料の圧力を適切に保つための開閉弁である。減圧弁151が開状態になると、レール150の内部にある燃料の一部は、リリーフパイプ104及びリターンパイプ106を通り、燃料タンク110へと戻される。制御装置10は、燃圧センサ152によって測定される燃料の圧力が適切な値となるように、減圧弁151の制御、及び、先に述べた要求値に基づく調量弁140の制御を行う。
燃料噴射弁170は所謂「インジェクタ」であり、レール150から供給される燃料を噴射して内燃機関160に供給するための開閉弁である。燃料噴射弁170は、内燃機関160が有するそれぞれの気筒(不図示)に対して1つずつ設けられている。本実施形態では、内燃機関160は4つの気筒を有しており、これに対応して燃料噴射弁170も4つ設けられている。それぞれの燃料噴射弁170とレール150との間は、高圧燃料パイプ102によって接続されている。
燃料噴射弁170は、外部から入力される信号に応じて開閉する電磁式の弁となっている。燃料噴射弁170が開状態になると、レール150から供給される高圧の燃料が燃料噴射弁170から噴射され、内燃機関160の気筒へと供給される。燃料噴射弁170に供給された燃料の一部は、燃料噴射弁170から噴射されず、リークパイプ105及びリターンパイプ106を通り、燃料タンク110へと戻される。燃料噴射弁170の開閉動作は制御装置10によって制御される。
内燃機関160は、供給される燃料を気筒内で燃焼させることにより、車両MVを走行させるための駆動力を発生させるエンジンである。先に述べたように、内燃機関160は4気筒のディーゼルエンジンとして構成されている。内燃機関160は、燃料の燃焼によって、シリンダ内でピストンを往復動作させ、当該往復動作をクランク軸の回転に変換するように構成されている。このような内燃機関160の構成としては公知のものを採用し得るので、その具体的な図示や説明については省略する。
その他の構成について説明する。車両MVには、クランクセンサ21と、アクセルセンサ22と、水温センサ23と、が設けられている。
クランクセンサ21は、上記のクランク軸の回転角度の位相を検知するためのセンサである。クランクセンサ21によって検知された位相は、制御装置10へと送信される。
アクセルセンサ22は、車両MVに設けられたアクセルペダル(不図示)の踏み込み量を検知するためのセンサである。アクセルセンサ22によって検知された踏み込み量は、制御装置10へと送信される。
水温センサ23は、内燃機関160を通る冷却水の温度を検知するためのセンサである。水温センサ23によって検知された温度は、制御装置10へと送信される。
引き続き図1を参照しながら、制御装置10の構成について説明する。制御装置10は、先に述べたように、内燃機関160等の制御を行うための装置として構成されている。制御装置10は、CPU、ROM、RAM等を有するコンピュータシステムとして構成されている。尚、制御装置10は、単一の装置として構成されていてもよいのであるが、互いに通信を行うことのできる複数の装置として構成されていてもよい。また、制御装置10の一部又は全部が、車両MVに搭載されておらず、車両MVとは離れた位置に設置されているような態様であってもよい。制御装置10の具体的な構成や設置場所については特に限定されない。
制御装置10は、機能的な制御ブロックとして、波形取得部11と、位相ずれ取得部12と、記憶部13と、一致度算出部14と、噴射制御部15と、噴射量補正部16と、を備えている。
波形取得部11は、レール150に貯えられた燃料の圧力の、所定期間における時間変化の波形を取得する処理を行う部分である。波形取得部11は、燃圧センサ152で取得された燃料の圧力を所定の周期でサンプリングすることにより、圧力の波形を取得する。サンプリングの周期としては、例えば、不図示のクランク軸の回転角度が6度変化する毎の周期を設定することができる。また、上記における「所定期間」としては、例えば、不図示のクランク軸の回転角度の位相が所定の位相範囲となっている期間を設定することができる。
位相ずれ取得部12は、位相ずれを取得する処理を行う部分である。「位相ずれ」とは、ポンプ130で往復動作するプランジャ135が特定位置(例えば上死点)に到達するタイミングと、内燃機関160で往復動作するピストンが特定位置(例えば上死点)に到達するタイミングと、の間のずれのことである。例えば、プランジャ135が特定位置である上死点に到達するタイミングと、内燃機関160のピストンが特定位置である上死点に到達するタイミングと、が互いに一致するときには、位相ずれは0度となる。位相ずれは、車両MVにポンプ130が取り付けられた時点で、機械的に定まるパラメータとなっている。
位相ずれ取得部12は、波形取得部11により取得された波形に基づいて、上記の位相ずれを取得する。そのために行われる具体的な処理の内容については、後に説明する。
記憶部13は、波形取得部11により取得される波形と、当該波形に対応する位相ずれと、の組み合わせを、予め複数組記憶している部分である。位相ずれ取得部12は、記憶部13に記憶されている上記組み合わせを参照することにより、位相ずれを取得する。記憶部13に記憶されている情報の具体的な内容については後に説明する。
一致度算出部14は、位相ずれ取得部12が行う処理に必要なパラメータである一致度、を算出する処理を行う部分である。「一致度」の具体的な定義及び算出方法については後に説明する。
噴射制御部15は、燃料噴射弁170のそれぞれにおける開閉動作を制御する部分である。噴射制御部15は、燃料噴射弁170に噴射指示信号を送信する。噴射指示信号がONとなっている期間においては、当該信号を受けた燃料噴射弁170は開状態となり、燃料噴射弁170から内燃機関に燃料が噴射される。噴射制御部15は、噴射指示信号をONとするタイミング、及びONとする期間の長さを、アクセルセンサ22によって検知された踏み込み量等に基づいて、それぞれの燃料噴射弁170毎に設定する。
噴射量補正部16は、燃料噴射弁170から実際に噴射される燃料の量が目標値通りとなるように、必要に応じて噴射指示信号を補正する処理を行う部分である。よく知られているように、燃料噴射弁170から実際に噴射される燃料の量は、位相ずれの影響によって変化する。噴射量補正部16は、位相ずれ取得部12によって取得された位相ずれに基づいて、燃料噴射弁170からの燃料の噴射量を補正する。具体的な補正の方法については後に説明する。
図3(A)に示されるのは、内燃機関160が有するピストンがシリンダ内で往復動作する際の、ピストンの位置の変化を示すグラフである。当該グラフの横軸は、クランクセンサ21で検知される位相、すなわち、クランク軸の回転角度の位相である。当該位相のことを、以下では「クランク位相」とも称する。
内燃機関160の動作中において、ピストンはよく知られているように、上死点TDCと下死点BDCとの間で往復動作を行う。図3(A)の例では、クランク位相がC1、C2となったタイミングで、ピストンが上死点TDCに到達している。
図3(B)に示されるのは、ポンプ130のプランジャ135が往復動作する際の、プランジャ135の位置の変化を示すグラフである。当該グラフの横軸は、図3(A)の横軸と同じクランク位相となっている。
図2を参照しながら説明したように、内燃機関160の動作中において、プランジャ135は本体部131内で往復動作を行う。図3(B)においては、加圧室134の容積が最も小さくなるときにおけるプランジャ135の位置を、図3(A)の場合と同様に上死点TDCとして表している。また、加圧室134の容積が最も大きくなるときにおけるプランジャ135の位置を、図3(A)の場合と同様に下死点BDCとして表している。
図3(B)の例では、クランク位相がC1、C2となったタイミングで、プランジャ135が上死点TDCに到達している。
本実施形態では、プランジャ135が上死点TDCに到達するタイミングと、内燃機関160のピストンが上死点TDCに到達するタイミングと、の間のずれを、クランク位相により表したものとして、「位相ずれ」を定義する。図3に示される例では、上記のタイミングが互いに一致するので、位相ずれは0度となる。
図4には、位相ずれが0度でない場合におけるピストンの位置の変化等が、図3と同様の方法により示されている。図4(A)に示されるピストンの動作は、図3(A)に示される動作と同一である。一方、図4(B)に示されるプランジャ135の動作は、図4(B)に示される動作とは異なっている。具体的には、図4(B)の例では、クランク位相がC1よりも後のC11となったタイミングで、プランジャ135が上死点TDCに到達している。このため、図4に示される例では、位相ずれの大きさが、C11とC1との差であるΔθということになる。
尚、位相ずれの定義は上記のようなものに限られない。例えば、プランジャ135が下死点BDCに到達するタイミングと、内燃機関160のピストンが下死点BDCに到達するタイミングと、の間のずれとして、位相ずれを定義してもよい。また、プランジャ135が下死点BDCに到達するタイミングと、内燃機関160のピストンが上死点TDCに到達するタイミングと、の間のずれとして、位相ずれを定義してもよい。このように、位相ずれを定義する際の基準となるそれぞれの「特定位置」としては、任意の位置を設定することができる。
位相ずれが燃料の噴射量に影響を及ぼす理由について、引き続き図3及び図4を参照しながら説明する。それぞれの図に示されている期間TM1は、噴射指示信号がONとされることで、燃料噴射弁170が開状態となり燃料噴射が行われる期間である。期間TM1は、内燃機関160のピストンの位置に対応して設定される。この例では、内燃機関160のピストンが上死点に到達したタイミングの前後に亘るような所定の期間として、期間TM1が設定されている。
図3の例では、期間TM1の開始タイミングから、クランク位相がC1となるタイミングまでの期間が、プランジャ135の上昇に伴ってポンプ130による燃料の送り出しが行われる期間となっている。図3(B)に示される「Q1」は、当該期間におけるプランジャ135の上昇量である。
燃料噴射弁170によって燃料が噴射されている期間、すなわち図3等の期間TM1において、ポンプ130から送り出される燃料の量のことを、以下では「噴射中吐出量」と定義する。噴射中吐出量は、期間TM1におけるプランジャ135の上昇量に概ね比例した量となる。このため、図3(B)に示される「Q1」は、位相ずれが0度の場合における噴射中吐出量を示すもの、ともいうことができる。
図4の例では、期間TM1の全体においてプランジャ135が上昇を続けている。このため、期間TM1の開始タイミングから、期間TM1の終了タイミングまでの期間が、プランジャ135の上昇に伴ってポンプ130による燃料の送り出しが行われる期間となっている。図4(B)に示される「Q2」は、当該期間におけるプランジャ135の上昇量である。「Q2」は、位相ずれがΔθの場合における噴射中吐出量を示すもの、ともいうことができる。
Q2はQ1よりも大きい。つまり、図4の例のように位相ずれがΔθの場合における噴射中吐出量は、図3の例のように位相ずれが0度の場合における噴射中吐出量よりも多くなる。噴射中吐出量が多くなると、それに伴い、開状態となっている燃料噴射弁170から噴射される燃料の量も多くなってしまう。
このように、期間TM1が同じであっても、位相ずれの大きさが異なると、その結果として、燃料噴射弁170から噴射される燃料の量も異なる値となる。つまり、期間TM1の長さと燃料噴射量との関係が、位相ずれの大きさに伴って変化してしまう。このため、目標値通りの正確な量の燃料を燃料噴射弁170から噴射させるためには、位相ずれを位相ずれ取得部12により正確に取得して、位相ずれに応じて噴射指示信号を補正する必要がある。
位相ずれ取得部12が位相ずれを取得する方法の概要について、図5を参照しながら説明する。図5(A)に示されるのは、燃料噴射弁170に送信される噴射指示信号の例である。図5の例では、時刻t1、t2、t3のそれぞれにおいて噴射指示信号がONとされている。
図5(B)に示されるのは、位相ずれが0度の場合における、レール150内の燃料の圧力の時間変化である。図5(C)に示されるのは、位相ずれが48度の場合における、レール150内の燃料の圧力の時間変化である。図5(D)に示されるのは、位相ずれが96度の場合における、レール150内の燃料の圧力の時間変化である。
いずれの場合においても、レール150内の燃料の圧力は、ポンプ130による燃料の送り出しに伴って上昇し、その後、燃料噴射弁170による燃料の噴射に伴って減少している。ただし、それぞれの時間変化の波形は、位相ずれの大きさに応じて互いに異なる波形となっている。本発明者らが行った実験等によれば、図5に示されるように、レール150の燃料の圧力の時間変化の波形と、位相ずれとの間には相関がある、という知見が得られている。
そこで、本実施形態に係る制御装置10では、波形取得部11により取得される波形と、当該波形に対応する位相ずれと、の組み合わせを、記憶部13において予め複数組記憶させておくこととしている。その上で、位相ずれ取得部12が、波形取得部11により取得された波形に基づいて、上記の組み合わせを参照することにより位相ずれを取得することとしている。例えば、波形取得部11により取得された波形が、図5(C)に示される波形に近い場合には、位相ずれとして48度を取得することができる。
位相ずれを取得するために行われる処理の具体的な流れについて、図6を参照しながら説明する。図6に示される一連の処理は、例えば、ポンプ130が車両MVに取り付けられた後、車両MVの内燃機関160が始動されたタイミングにおいて開始され、所定の制御周期が経過する毎に、制御装置10によって繰り返し実行されるものである。
当該処理の最初のステップS01では、取得条件が成立しているか否かが判定される。「取得条件」とは、波形取得部11による波形の取得を行うのに適した条件として、予め設定された条件である。取得条件としては、例えば、燃料噴射弁170に対する噴射量の指示値が所定範囲内となっていること、噴射の指示タイミングが所定のクランク位相の範囲内となっていること、噴射の指示インターバルが所定のクランク位相の範囲内となっていること、噴射パターンが所定範囲内となっていること、レール150内の燃料の圧力についての指示値が所定範囲内となっていること、レール150内の燃料の圧力についての、指示値と測定値との差の絶対値が所定範囲内となっていること、内燃機関160の回転数が所定範囲内となっていること、等が挙げられる。取得条件が成立していると判定されるのは、上記の全てが成立している場合であってもよいが、上記のうち一部のみが成立している場合であってもよい。
取得条件が成立していない場合には、図6に示される一連の処理を一旦終了する。この場合、取得条件が成立するまでの間、ステップS02以降の処理が待機されることとなる。
取得条件が成立している場合には、ステップS02に移行する。ステップS02では、波形取得部11による波形の取得が行われる。既に述べたように、波形取得部11は、レール150に貯えられた燃料の圧力の、所定期間における時間変化の波形を取得する。
図7(A)には、波形取得部11により取得された波形の一例が示されている。波形取得部11は、上記所定期間の開始と同時に波形のサンプリングを開始する。サンプリングは、例えば、クランク位相が6度変化する毎に行われる。所定期間が終了すると、サンプリングも終了する。図7(A)の例では、計11個のサンプリングデータが得られているのであるが、サンプリングデータの個数はこれに限られない。それぞれのデータには、サンプリングされた順に、0から始まるサンプルNo.が付される。
ステップS02に続くステップS03では、ステップS02で取得された波形が、正常な波形か否かが判定される。ここでは、サンプリングされたデータのうちの最大値をpmxとし、最小値をpmnとしたときに、それぞれの差の絶対値である|pmx−pmn|が所定値を超えており、且つ、互いに隣り合うサンプリングデータの差の絶対値である|dp|がいずれも所定値を下回っている場合に、当該波形が正常な波形であると判定される。
|pmx−pmn|が所定値を超えない場合に、正常な波形ではないと判定されるのは、圧力波形の振幅が小さすぎると、記憶部13に記憶されている波形との比較を精度良く行うことが難しいからである。|dp|のいずれかが所定値以上となっている場合に、正常な波形ではないと判定されるのは、その場合にはノイズの影響が大きく、記憶部13に記憶されている波形との比較を精度良く行うことが難しいからである。尚、|pmx−pmn|が比較される「所定値」と、|dp|が比較される「所定値」とは、互いに異なる値である。
ステップS03において正常な波形ではないと判定された場合には、図6に示される一連の処理を一旦終了する。この場合、図6の処理が次回実行された際に、ステップS02において再度波形が取得されることとなる。
ステップS03において正常な波形であると判定された場合には、ステップS04に移行する。ステップS04では正規化処理が行われる。正規化処理とは、ステップS02で取得された波形を、当該波形における圧力の最大値と最小値との差が所定値となるように変換する処理である。本実施形態では、上記の所定値として「1」が設定されている。図7(B)には、図7(A)に示される波形を正規化したデータが示されている。正規化後の波形においては、その最小値が0となっており、最大値が1となっている。
正規化前の波形の各サンプリングデータをdata[i]とし、正規化後の波形の各サンプリングデータをdata_n[i]とすると、両者の関係は以下の式(1)により表すことができる。
data_n[i]=(data[i]−pmn)/(pmx−pmn)・・・(1)
式(1)における「i」は上記のサンプルNo.を示す変数である。それぞれのサンプルNo.について式(1)を用いることにより、ステップS02で取得された波形を正規化することができる。
尚、このような正規化後の波形との比較を行うために、記憶部13に記憶されている各波形も、上記と同様の方法で正規化された状態で記憶されている。つまり、記憶部13に予め記憶されている波形も、当該波形における圧力の最大値と最小値との差が所定値(本実施形態では1)となるように正規化された状態で記憶されている。
ステップS04に続くステップS05では、ステップS04で正規化された波形と、記憶部13に記憶されているそれぞれの波形との差の2乗和を算出する処理が行われる。図8を参照しながら、当該算出の方法について説明する。
図8の線L1に沿って配置されている各データは、記憶部13に記憶されている複数の波形のうちの一つ、を示すデータとなっている。波形取得部11で取得された波形と区別するために、記憶部13に記憶されている波形のことを、以下では「マスタ波形」とも称することがある。図8では、マスタ波形の一つを示すデータがdata_m[k][i]として表記されている。上記における「i」はサンプルNo.である。上記における「k」は、複数のマスタ波形のそれぞれに付された固有の番号であり、0から「マスタ波形の総数−1」までの値をとり得る数値である。kのそれぞれの値は、それぞれのマスタ波形の位相ずれに対応して付された数値、ということもできる。kのことを、以下では「マスタ波形No.」とも称することがある。図8に示される「DMX」は、サンプルNo.の最大値である。
また、図8の線L2に沿って配置されている各データは、ステップS04において正規化された後のデータである。図8では、当該データが、上記の式(1)と同様にdata_n[i]として表記されている。上記における「i」はサンプルNo.である。
ステップS05では、以下の式(2)で示される値を、全てのi、すなわちサンプルNo.について算出し、それらの総和を算出する。
(data_m[k][i]−data_n[i])2・・・(2)
式(2)の総和として算出される2乗和は、ステップS05で算出された正規化後の波形が、マスタ波形とは異なっている場合には大きな値として算出され、マスタ波形に近くなるほど小さな値として算出される。
図9には、ステップS05において実行される処理の具体的な内容が示されている。同図に示されるループLOは、マスタ波形を示す全てのkの値のそれぞれについて1回ずつ実行されるものである。ループLOの最初のステップS21では、k番目のマスタ波形について、上記の式(2)の総和である2乗和が算出される。ステップS21に続くステップS22では、ステップS21で算出された2乗和が、マスタ波形No.であるkの値と紐付けた上で記憶される。
以上のような処理が行われる結果、ステップS05では、式(2)の総和である2乗和が、記憶部13に記憶されているマスタ波形の全てについて個別に算出され、それぞれのマスタ波形に対応する位相ずれと紐付けた上で記憶されることとなる。
ステップS05に続くステップS06では、一致度を算出する処理が、一致度算出部14によって行われる。「一致度」とは、波形取得部11により取得された波形と、記憶部13に予め記憶されているマスタ波形と、の一致の度合いを示す指標であって、上記の2乗和を変換することにより、それぞれのマスタ波形について個別に算出されるものである。本実施形態における一致度は、ステップS05で算出された正規化後の波形が、マスタ波形とは異なっている場合には小さな値となり、マスタ波形に近くなるほど大きな値となるように算出される。また、一致度は、0から1までの範囲の値となるように算出される。
図10(A)では、ステップS05で算出されたそれぞれの2乗和の値が、sum_res[k]としてプロットされている。上記における「k」はマスタ波形No.である。図10(A)では、算出された2乗和のうち最も小さな値が「smn」と表記されている。また、図10(A)において「smx」と表記されているのは、算出された2乗和のうち最も大きな値ではなく、2乗和がとり得る値のうち最も大きな値である。具体的には、式(2)で示される値が全て1となった場合に算出される2乗和であり、その値は、マスタ波形の数に等しくなっている。
図10(B)では、図10(A)に示される2乗和のそれぞれを変換して得られた一致度の値が、deg_coin「k」としてプロットされている。上記における「k」はマスタ波形No.である。先に述べたように、deg_coin「k」は、0から1までの範囲の値をとるように算出されている。
マスタ波形No.がkであるマスタ波形について、式(2)の総和として算出される2乗和のことを「sum[k]」と表記すると、一致度を示すdeg_coin「k」は、以下の式(3)により算出することができる。
deg_coin「k」=1−(sum[k]−smn)/(smx−smn)・・・(3)
図6に戻って説明を続ける。ステップS06において、マスタ波形No.のそれぞれについて一致度が算出された後は、ステップS07に移行する。ステップS07では、これまでにステップS06で算出された一致度の平均値が算出される。当該平均値は、それぞれのマスタ波形No.毎に個別に算出される。例えば、図6に示される一連の処理が5回繰り返され、ステップS06の処理が5回行われた時点においては、5回算出された一致度の平均値が、それぞれのマスタ波形No.について個別に算出される。
ステップS07に続くステップS08では、ステップS06において一致度が算出された回数が、所定回数に到達したか否かが判定される。一致度の算出回数が所定回数に満たない場合には、図6に示される一連の処理を一旦終了する。この場合、次の制御周期において図6の処理が再度実行され、ステップS06において再び一致度が算出されることとなる。尚、所定回数としては2以上の値が設定されるのであるが、所定回数として1が設定されているような態様であってもよい。
一致度の算出回数が所定回数に到達した場合には、ステップS09に移行する。ステップS09では、マスタ波形No.毎に算出された一致度に基づいて、位相ずれを算出する処理が行われる。当該処理は位相ずれ取得部12により行われる。
図11には、マスタ波形No.毎に算出された一致度の分布が、図10(B)と同様に描かれている。ただし、図11においてプロットされているそれぞれの一致度は、ステップS07において算出された平均値となっている。
本実施形態では、一致度について、1よりも小さな閾値THが設定されている。ステップS09では、複数の一致度のうち、閾値TH以上となっているデータのみが抽出され、抽出されたデータのそれぞれに対応する位相ずれの平均値が、実際の位相ずれとして算出され取得される。図11の例では、マスタ波形No.がk1のマスタ波形に対応して記憶されている位相ずれと、マスタ波形No.がk2のマスタ波形に対応して記憶されている位相ずれと、の平均値が、実際の位相ずれとして取得される。
このように、本実施形態に係る位相ずれ取得部12は、記憶部13に予め記憶されているマスタ波形のうち、一致度算出部14によって算出された一致度が所定の閾値TH以上となっている複数のマスタ波形、にそれぞれ対応する位相ずれの平均値を、実際の位相ずれとして取得するように構成されている。
ステップS09に続くステップS10では、ステップS09で取得された位相ずれの値を、制御装置10が備える不揮発性の記憶装置に記憶する処理が行われる。その後、図6に示される一連の処理を終了する。尚、ステップS09及びステップS10の処理が行われた後は、図6に示される一連の処理の、繰り返しの実行が停止される。
以上に説明したように、本実施形態に係る制御装置10では、位相ずれ取得部12が、波形取得部11により取得された波形に基づいて位相ずれを取得するように構成されている。すなわち、燃料の圧力の変化が変曲点となるタイミング等のような、特定の一点のタイミングに基づくのではなく、所定期間における時間変化を示すグラフの形状(すなわち波形)そのものに基づいて、位相ずれ取得部12が位相ずれを取得する。このため、波形の一部に脈動等のノイズが含まれていたとしても、当該ノイズの影響を低減し、位相ずれを比較的正確に取得することができる。
位相ずれ取得部12は、記憶部13に記憶されている複数の組み合わせ、すなわち、マスタ波形と位相ずれとの組み合わせを参照することにより、波形取得部11により取得された波形、に対応する位相ずれを取得する。予め用意しておいた組み合わせを参照することで、サンプリングされた波形に基づく位相ずれの取得を容易に行うことが可能となる。
記憶部に予め記憶されているマスタ波形は、当該マスタ波形における圧力の最大値と最小値との差が所定値となるように正規化された状態で記憶されている。また、位相ずれ取得部12は、波形取得部11によって取得された波形を、当該波形における圧力の最大値と最小値との差が所定値となるように正規化した後に、当該波形に対応する位相ずれを取得する。
レール150内の燃料の圧力の波形は、その振幅方向の値において特にばらつきが生じやすい。そこで、本実施形態では、サンプリングされた波形、及びマスタ波形のそれぞれを予め正規化しておくことで、上記のようなばらつきの影響を低減することとしている。これにより、位相ずれの取得を更に精度良く行うことが可能となる。
尚、記憶部13に記憶されているマスタ波形は、本実施形態では当初から正規化された状態で記憶されている。このような態様に替えて、記憶部13に記憶されているマスタ波形は正規化されておらず、図6のステップS05において2乗和が算出される直前のタイミングで、マスタ波形が都度正規化されることとしてもよい。
位相ずれ取得部12は、一致度算出部14によって算出された一致度に基づいて位相ずれを取得する。ステップS05で算出された2乗和の値に基づくのではなく、0から1までの範囲をとり得る値として算出される一致度に基づくことにより、閾値THの設定、及び閾値THを用いたマスタ波形の選別をより適切に行うことが可能となる。
位相ずれ取得部12は、記憶部13に予め記憶されているマスタ波形のうち、一致度算出部14によって算出された一致度が所定の閾値TH以上となっている複数のマスタ波形、にそれぞれ対応する位相ずれの平均値を、実際の位相ずれとして取得する。これにより、一致度の算出に誤差が生じた場合でも、位相ずれの算出を正確に行うことが可能となる。
尚、誤差の影響を無視できるような場合には、位相ずれ取得部12が、記憶部13に予め記憶されているマスタ波形のうち、一致度算出部14によって算出された一致度が最も高いマスタ波形、に対応する位相ずれを、実際の位相ずれとして取得することとしてもよい。この場合、図10(B)の例では、マスタ波形No.が3のマスタ波形に対応する位相ずれが、実際の位相ずれとして取得されることとなる。
波形取得部11は、レール150に貯えられた燃料の圧力を、所定期間において所定周期でサンプリングすることによって波形を取得する。一致度算出部14は、波形取得部11によりサンプリングされたそれぞれの圧力値と、記憶部13に予め記憶されているマスタ波形に示される圧力値と、の差の2乗の総和に基づいて、一致度を算出する。これにより、サンプリングされた波形とマスタ波形との比較、及び当該比較に基づく一致度の算出を容易に行うことができる。
波形取得部11は、所定の取得条件が成立したとき、すなわち図6のステップS01の判定がYesであるときに波形を取得する。これにより、波形の取得に適さない条件においてサンプリングが行われ、その結果として誤った位相ずれが取得されてしまうような事態を防止することができる。
次に、位相ずれ取得部12により取得された位相ずれに基づいて、燃料噴射弁170からの燃料の噴射量を補正する方法について説明する。図12に示される一連の処理は、内燃機関160が動作している期間において、噴射量補正部16によって繰り返し実行されるものである。当該処理が実行される周期は、燃料噴射弁170によって燃料が噴射される周期と一致している。
最初のステップS31では、実噴射期間を算出する処理が行われる。実噴射期間とは、噴射指示信号がONとされる期間であり、図3等における期間TM1のことである。実噴射期間は、アクセルセンサ22によって検知された踏み込み量、等の各種パラメータと、図6のステップS10において記憶された位相ずれ、及び、ポンプ130から燃料噴射弁170まで燃料の圧力が伝達される際の伝達遅れ等を加味しながら、適宜算出される。
ステップS31において実噴射期間が算出された後、当該実噴射期間に基づき燃料の噴射が行われると、ステップS32に移行する。ステップS32では、既定の噴射中吐出量を算出する処理が行われる。「噴射中吐出量」とは、先に述べたように、期間TM1のような実噴射期間においてポンプ130から送り出される燃料の量のことである。「既定の噴射中吐出量」とは、位相ずれが特定の規定値である場合における噴射中吐出量のことである。本実施形態では、上記の規定値として0度が設定されている。
図13を参照しながら、既定の噴射中吐出量を算出する方法について説明する。図13の線L20に示されるのは、調量弁140が全開のときにおいてポンプ130から送り出される燃料の量の時間変化を示すグラフである。横軸はクランク位相である。図13のC0は、内燃機関160のピストンが下死点BDCにあるときのクランク位相である。この例における位相ずれは0度あるから、C0は、プランジャ135が下死点BDCにあるときのクランク位相でもある。
調量弁140が全開のときには、プランジャ135が下死点BDCから上昇するに従ってポンプ130から燃料が送り出されて行き、最終的には、送り出された燃料の総量はQ20となる。このような線L20に示されるグラフは、ポンプ130の構成に応じて定まるものであるから、予め測定等により取得され、記憶部13に記憶されている。
図13のQ10は、ポンプ130からレール150へと送り出される燃料の量についての要求値である。先に述べたように、調量弁140の開度は、ポンプ130から送り出される燃料の量が当該要求値となるように調整される。図13の線L10に示されるのは、ポンプ130から最終的に送り出される燃料の量がQ20からQ10となるように、線L20を下方側にオフセットさせたグラフである。線L10に示されるグラフは、調量弁140が全開のときにおいてポンプ130から送り出される燃料の量の時間変化のグラフ(つまり線L20)を、要求値であるQ10に応じてオフセットさせたもの、ということができる。
位相ずれが0の場合において、実際にポンプ130から送り出される燃料の量の時間変化は、この線L10に沿ったものとなる。ただし、ポンプ130から実際に送り出される燃料の量が0を下回ることは無いので、クランク位相が図13のC10となるまでの期間においては、送り出される燃料の量は0となる。
図13では、実噴射期間が期間TM10として表記されている。同図に示される「Q4」は、ポンプ130から送り出される燃料の、期間TM10における増加量である。つまり、Q4は、期間TM10における噴射中吐出量、すなわち、「既定の噴射中吐出量」に該当する。このように、線L20で示されるグラフを、要求値に応じてオフセットさせた線L10のグラフ、に基づけば、「既定の噴射中吐出量」を容易に算出することができる。尚、要求値がQ20となり調量弁140が全開となっているときには、図13に示されるQ3が「既定の噴射中吐出量」として算出されることとなる。
図12のステップS32に続くステップS33では、実際の噴射中吐出量を算出する処理が行われる。「実際の噴射中吐出量」とは、位相ずれ取得部12によって取得された位相ずれに対応する噴射中吐出量のことである。
図14を参照しながら、実際の噴射中吐出量を算出する方法について説明する。図14の線L21に示されるのは、図13の線L20をΔθだけ右側にオフセットさせたものである。Δθは、位相ずれ取得部12によって取得された位相ずれである。このような線L21は、調量弁140が全開であり、且つ位相ずれがΔθのときにおいて、ポンプ130から送り出される燃料の量の時間変化を示すグラフ、ということができる。図14のC3は、C0にΔθを加算したものであり、プランジャ135が下死点BDCにあるときのクランク位相に該当する。
図14の線L11に示されるのは、ポンプ130から送り出される燃料の量がQ20からQ10となるように、線L21を下方側にオフセットさせたグラフである。線L11に示されるグラフは、調量弁140が全開のときにおいてポンプ130から送り出される燃料の量の時間変化のグラフ(つまり線L21)を、要求値であるQ10に応じてオフセットさせたもの、ということができる。線L11は、図13の線L10をΔθだけ右側にオフセットさせたものでもある。
位相ずれがΔθとなっているときにおいて、実際にポンプ130から送り出される燃料の量の時間変化は、この線L11に沿ったものとなる。ただし、ポンプ130から実際に送り出される燃料の量が0を下回ることは無いので、クランク位相が図14のC20となるまでの期間においては、送り出される燃料の量は0となる。
図14では、図13と同様に、実噴射期間が期間TM10として表記されている。図14に示される「Q6」は、ポンプ130から送り出される燃料の、期間TM10における増加量である。つまり、Q6は、期間TM10における噴射中吐出量、すなわち、「実際の噴射中吐出量」に該当する。このように、線L21で示されるグラフを、要求値に応じてオフセットさせた線L11のグラフ、に基づけば、「実際の噴射中吐出量」を容易に算出することができる。尚、要求値がQ20となり調量弁140が全開となっているときには、図14に示されるQ5が「実際の噴射中吐出量」として算出されることとなる。
図13のQ4と、図14のQ6とを比較すると明らかなように、噴射中吐出量は、位相ずれに応じて変化する。ステップS33に続くステップS34では、Q4に示される「既定の噴射中吐出量」と、Q6に示される「実際の噴射中吐出量」との差分が算出される。
燃料噴射弁170から実際に噴射される燃料の量と、噴射指示信号の幅により示される要求噴射量との差を、以下では「噴射誤差」と定義する。本発明者らは、噴射誤差と、上記のように算出される差分との間に、相関があるとの知見を得ている。このため、噴射誤差を0とするための補正値と、上記のように算出される差分との対応関係を予め測定マップとして記憶しておけば、算出された差分に基づいて、補正値を算出することが可能となる。ステップS34に続くステップS35では、以上のような方法で補正値が算出される。
ステップS34で算出された補正値は、図12に示される一連の処理が次回の制御周期で実行される際に、ステップS31で算出される実噴射期間に対して加算される。これにより、燃料噴射弁170から噴射される燃料の量を、要求噴射量に近づけていくことができる。
以上のように、本実施形態に係る制御装置10の噴射量補正部16は、位相ずれ取得部12によって取得された位相ずれに基づいて、燃料噴射弁170からの燃料の噴射量を補正するように構成されている。
噴射量補正部16は、位相ずれが規定値である場合における噴射中吐出量、である「既定の噴射中吐出量」と、位相ずれ取得部12によって取得された位相ずれに対応する「実際の前記噴射中吐出量」と、の差分を算出し、当該差分に基づいて、燃料噴射弁170からの燃料の噴射量を補正する。これにより、噴射量の補正を正確に行うことができる。
また、噴射量補正部16は、調量弁140が全開のときにおいてポンプ130から送り出される燃料の量の時間変化のグラフを、ポンプ130から送り出される燃料の量についての要求値、に応じてオフセットさせたものを参照することにより、「既定の噴射中吐出量」と「実際の前記噴射中吐出量」とのそれぞれを算出し、上記の差分を算出する。これにより、調量弁140の開度が変化した場合でも、上記の差分を正確かつ容易に算出することができる。
図15(A)に示されるのは、位相ずれが0度の場合における、要求噴射量と、これを実現するための噴射時間との対応関係を、レール150内の圧力毎に描いたものである。線L31は、圧力が比較的低い場合の対応関係であり、線L33は、圧力が比較的高い場合の対応関係である。このような対応関係は、レール150内の圧力毎に予め実測され、記憶部13に記憶されている。制御装置10は、このような対応関係のマップを参照することにより、要求噴射量に応じた噴射時間を決定し、図5(A)に示されるような噴射指示信号を生成する。
図15(B)に示されるのは、「既定の噴射中吐出量」と「実際の前記噴射中吐出量」との差分と、これに対応する補正値との対応関係を、レール150内の圧力毎に描いたものである。線L41は、圧力が比較的低い場合の対応関係であり、線L43は、圧力が比較的高い場合の対応関係である。このような対応関係は、レール150内の圧力毎に予め実測され、記憶部13に記憶されている。制御装置10は、このような対応関係のマップを参照することにより、図12のステップS35において補正値を算出する。
従来においては、図15(A)に示される対応関係を、様々な位相ずれの値に対応して複数用意しておく必要があった。しかしながら、位相ずれを変化させて行きながら、図15(A)のような対応関係を複数取得する作業は、ポンプ130の取り付けを繰り返しながら行う必要があるので、非常に手間と時間のかかるものであった。
これに対し、本実施形態では、図15(A)に示される対応関係と、図15(B)に示される対応関係と、の2つを用意しておくだけでよい。このため、適合のための手間と時間を大幅に削減することが可能となる。
図16(A)に示されるのは、各気筒の燃料噴射弁170に送信される噴射指示信号の例である。この例では、クランク位相がC110となったタイミングで1番目の気筒に燃料が噴射され、クランク位相がC120となったタイミングで2番目の気筒に燃料が噴射され、クランク位相がC130となったタイミングで3番目の気筒に燃料が噴射され、クランク位相がC140となったタイミングで4番目の気筒に燃料が噴射される。
図16(B)に示されるのは、ポンプ130から送り出される燃料の量の時間変化の例である。この例では、クランク位相がC101、C111、C121、C131のそれぞれとなったタイミングで、ポンプ130からの燃料の送り出しが開始されている。
ポンプ130から燃料の送り出しが開始されてから、各気筒に燃料が噴射されるまでの期間の長さは、本実施形態ではそれぞれの気筒について同一となっている。つまり、本実施形態に係る車両MVの燃料供給系は、ポンプ130からの燃料の送り出しと、燃料噴射弁170からの燃料の噴射が同期して行われるように構成されている。
しかしながら、以上において説明した位相ずれの取得方法、及び、位相ずれに基づく噴射量の補正方法は、ポンプ130からの燃料の送り出しと、燃料噴射弁170からの燃料の噴射と、が非同期で行われるようなシステムにおいても適用することができる。
非同期のシステムにおいては、4つの気筒に燃料が噴射される期間において、ポンプ130からの燃料の送り出しが例えば6回行われる。この場合、ポンプ130から燃料の送り出しが開始されてから、気筒に燃料が噴射されるまでの期間の長さは、気筒毎に異なり、また時間の経過と共に変化する。しかしながら、特定の気筒に着目すれば、上記期間の長さは、特定周期で元に戻る。このため、この特定周期ごとに波形の取得を行い、当該波形に基づいて位相ずれを取得することとすれば、非同期のシステムにおいても、これまでに説明したものと同様の方法で、位相ずれを正確に取得することが可能となる。
また、非同期のシステムにおいては、特定気筒への燃料の圧送パターンが毎回異なるものとなる。そこで、非同期システムにおいて、本実施形態と同様の方法により位相ずれを取得することすれば、位相ずれに応じて圧送パターンを特定し、これに対応した噴射量の補正を行うことが可能となる。つまり、位相ずれ取得部12によって取得された位相ずれの値を、非同期システムにおける圧送パターンの特定のために用いることが可能となる。
位相ずれ取得部12によって取得された位相ずれの値は、噴射量の補正以外にも応用することができる。例えば、位相ずれを定期的に取得し、取得された位相ずれが不連続に変化した場合には、ポンプ130が正規品から非正規品に交換されたことを検知することが可能となる。
以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。
本開示に記載の制御装置及び制御方法は、コンピュータプログラムにより具体化された1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された1つ又は複数の専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及び制御方法は、1つ又は複数の専用ハードウェア論理回路を含むプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。本開示に記載の制御装置及び制御方法は、1つ又は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと1つ又は複数のハードウェア論理回路を含むプロセッサとの組み合わせにより構成された1つ又は複数の専用コンピュータにより、実現されてもよい。コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。専用ハードウェア論理回路及びハードウェア論理回路は、複数の論理回路を含むデジタル回路、又はアナログ回路により実現されてもよい。
MV:車両
10:制御装置
11:波形取得部
12:位相ずれ取得部
130:ポンプ
135:プランジャ
150:レール
170:燃料噴射弁

Claims (12)

  1. 車両(MV)用の制御装置(10)であって、
    前記車両は、
    プランジャ(135)を往復動作させることにより燃料を送り出すポンプ(130)と、
    前記ポンプから送り出された燃料を貯えるレール(150)と、
    前記レールから供給される燃料を噴射する燃料噴射弁(170)と、が設けられたものであり、
    前記レールに貯えられた燃料の圧力の、所定期間における時間変化の波形を取得する波形取得部(11)と、
    前記ポンプで往復動作する前記プランジャが特定位置に到達するタイミングと、前記車両の内燃機関で往復動作するピストンが特定位置に到達するタイミングと、の間のずれである位相ずれを、前記波形取得部により取得された前記波形に基づいて取得する位相ずれ取得部(12)と、を備える制御装置。
  2. 前記波形取得部により取得される前記波形と、当該波形に対応する前記位相ずれと、の組み合わせを、予め複数組記憶している記憶部(13)、を更に備え、
    前記位相ずれ取得部は、前記記憶部に記憶されている前記組み合わせを参照することにより、前記波形取得部により取得された前記波形、に対応する前記位相ずれを取得する、請求項1に記載の制御装置。
  3. 前記記憶部に予め記憶されている前記波形は、当該波形における圧力の最大値と最小値との差が所定値となるように正規化された状態で記憶されている、請求項2に記載の制御装置。
  4. 前記位相ずれ取得部は、前記波形取得部によって取得された前記波形を、当該波形における圧力の最大値と最小値との差が所定値となるように正規化した後に、当該波形に対応する前記位相ずれを取得する、請求項2又は3に記載の制御装置。
  5. 前記波形取得部により取得された前記波形と、前記記憶部に予め記憶されている前記波形と、の一致の度合いを示す指標である一致度、を算出する一致度算出部(14)を更に備え、
    前記位相ずれ取得部は、前記一致度算出部によって算出された前記一致度に基づいて前記位相ずれを取得する、請求項2乃至4のいずれか1項に記載の制御装置。
  6. 前記位相ずれ取得部は、
    前記記憶部に予め記憶されている前記波形のうち、前記一致度算出部によって算出された前記一致度が最も高い前記波形、に対応する前記位相ずれを、実際の前記位相ずれとして取得する、請求項5に記載の制御装置。
  7. 前記位相ずれ取得部は、
    前記記憶部に予め記憶されている前記波形のうち、前記一致度算出部によって算出された前記一致度が所定の閾値(TH)以上となっている複数の前記波形、にそれぞれ対応する前記位相ずれの平均値を、実際の前記位相ずれとして取得する、請求項5に記載の制御装置。
  8. 前記波形取得部は、前記レールに貯えられた燃料の圧力を、前記所定期間において所定周期でサンプリングすることによって前記波形を取得するものであり、
    前記一致度算出部は、前記波形取得部によりサンプリングされたそれぞれの圧力値と、前記記憶部に予め記憶されている前記波形に示される圧力値と、の差の2乗の総和に基づいて、前記一致度を算出する、請求項5乃至7のいずれか1項に記載の制御装置。
  9. 前記波形取得部は、所定の取得条件が成立したときに前記波形を取得する、請求項1乃至8のいずれか1項に記載の制御装置。
  10. 前記位相ずれ取得部によって取得された前記位相ずれに基づいて、燃料噴射弁からの燃料の噴射量を補正する噴射量補正部(16)、を更に備える、請求項1乃至9のいずれか1項に記載の制御装置。
  11. 前記燃料噴射弁によって燃料が噴射されている期間において、前記ポンプから送り出される燃料の量、を噴射中吐出量としたときに、
    前記噴射量補正部は、
    前記位相ずれが規定値である場合における前記噴射中吐出量と、前記位相ずれ取得部によって取得された前記位相ずれに対応する実際の前記噴射中吐出量と、の差分を算出し、当該差分に基づいて、燃料噴射弁からの燃料の噴射量を補正する、請求項10に記載の制御装置。
  12. 前記ポンプには、前記ポンプから送り出される燃料の量についての要求値に応じて、前記ポンプに供給される燃料の量を調整する調量弁(140)が設けられており、
    前記噴射量補正部は、
    前記調量弁が全開のときにおいて前記ポンプから送り出される燃料の量の時間変化のグラフを、前記要求値に応じてオフセットさせたものを参照することにより、
    前記位相ずれが規定値である場合における前記噴射中吐出量と、前記位相ずれ取得部により取得された前記位相ずれに対応する実際の前記噴射中吐出量と、のそれぞれを算出し、前記差分を算出する、請求項11に記載の制御装置。
JP2019221814A 2019-12-09 2019-12-09 制御装置 Pending JP2021092167A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019221814A JP2021092167A (ja) 2019-12-09 2019-12-09 制御装置
DE102020129697.5A DE102020129697A1 (de) 2019-12-09 2020-11-11 Steuerungsvorrichtung
US17/113,255 US11274624B2 (en) 2019-12-09 2020-12-07 Controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019221814A JP2021092167A (ja) 2019-12-09 2019-12-09 制御装置

Publications (1)

Publication Number Publication Date
JP2021092167A true JP2021092167A (ja) 2021-06-17

Family

ID=75962658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221814A Pending JP2021092167A (ja) 2019-12-09 2019-12-09 制御装置

Country Status (3)

Country Link
US (1) US11274624B2 (ja)
JP (1) JP2021092167A (ja)
DE (1) DE102020129697A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103792A (en) * 1990-10-16 1992-04-14 Stanadyne Automotive Corp. Processor based fuel injection control system
JP4026368B2 (ja) 2002-01-31 2007-12-26 株式会社デンソー 蓄圧式燃料噴射装置
JP2005307747A (ja) 2004-04-16 2005-11-04 Mitsubishi Electric Corp 内燃機関の燃料供給装置
JP4415929B2 (ja) * 2005-11-16 2010-02-17 株式会社日立製作所 高圧燃料供給ポンプ
JP4621951B2 (ja) 2007-05-28 2011-02-02 株式会社デンソー コモンレール式燃料噴射装置及び高圧ポンプの圧送特性補償方法
JP5892649B2 (ja) 2012-02-15 2016-03-23 ボッシュ株式会社 高圧燃料ポンプ基準点検出方法及びコモンレール式燃料噴射制御装置
JP2018053843A (ja) 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 車両用制御装置

Also Published As

Publication number Publication date
US20210172395A1 (en) 2021-06-10
DE102020129697A1 (de) 2021-06-10
US11274624B2 (en) 2022-03-15

Similar Documents

Publication Publication Date Title
US7152575B2 (en) Method for determining the injection duration in an internal combustion engine
US7512478B2 (en) Method for operating an internal combustion engine
US7438052B2 (en) Abnormality-determining device and method for fuel supply system, and engine control unit
KR101891008B1 (ko) 분사 시스템의 인젝터를 동작시키는 방법
US7032582B2 (en) Injection control system of internal combustion engine
EP3199789B1 (en) Control system of internal combustion engine
US11506165B2 (en) Method for ascertaining a variable characterizing a flow rate of a fuel injector
CN109555617B (zh) 用于运行内燃机的方法以及用于内燃机的电子控制装置
EP1201905B1 (en) A device for detecting failure in a high pressure fuel supply system
JP4848046B2 (ja) 内燃機関での噴射制御方法および内燃機関での噴射制御装置
CN105275649B (zh) 用于操作内燃发动机的方法和发动机控制单元
WO2015064075A1 (ja) 内燃機関の制御装置
CN111936733B (zh) 用于在泵操作期间测量燃料喷射的系统和方法
US9664605B2 (en) Fuel density detection device
JP2021092167A (ja) 制御装置
EP1371836A2 (en) Fuel supply control system for internal combustion engine
JP4280350B2 (ja) 高圧燃料噴射系の燃料噴射制御装置
JP4424380B2 (ja) 噴射量制御装置およびそれを用いた燃料噴射システム
EP1022452B1 (en) Accumulator fuel injection control apparatus and method
JP4055279B2 (ja) 蓄圧式燃料噴射制御装置
JPH1054317A (ja) 燃料供給装置
JP3777340B2 (ja) 内燃機関の燃料供給制御装置
JP4788700B2 (ja) 燃料噴射制御装置およびそれを用いた燃料噴射システム
JP2019085892A (ja) 燃料噴射制御装置
JP7047293B2 (ja) リリーフ弁の開弁判定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240213