JP2021088966A - Communication path mechanism for twin scroll turbo - Google Patents

Communication path mechanism for twin scroll turbo Download PDF

Info

Publication number
JP2021088966A
JP2021088966A JP2019220141A JP2019220141A JP2021088966A JP 2021088966 A JP2021088966 A JP 2021088966A JP 2019220141 A JP2019220141 A JP 2019220141A JP 2019220141 A JP2019220141 A JP 2019220141A JP 2021088966 A JP2021088966 A JP 2021088966A
Authority
JP
Japan
Prior art keywords
passage
communication
small
dalian
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019220141A
Other languages
Japanese (ja)
Other versions
JP7288395B2 (en
Inventor
雅俊 柳沢
Masatoshi Yanagisawa
雅俊 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2019220141A priority Critical patent/JP7288395B2/en
Publication of JP2021088966A publication Critical patent/JP2021088966A/en
Application granted granted Critical
Publication of JP7288395B2 publication Critical patent/JP7288395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

To appropriately control an opening of a communication path in a simple configuration without requiring a high-resolution actuator.SOLUTION: The present invention relates to a communication path mechanism 1 comprising: a large communication path 3 between a first flow channel 16 and a second flow channel 17; a large communication valve 5 which opens/closes the large communication path 3; a small communication path 4 inside of the large communication valve 5; and a small communication valve 6 which opens/closes the small communication path 4 inside of the large communication valve 5. The communication path mechanism is freely changeable into a closed state where the small communication valve 6 closes the small communication path 4, the large communication valve 5 closes the large communication path 3 and a communication path 2 between the first flow channel 16 and the second flow channel 17 is closed, a small open state where the small communication valve 6 opens the small communication path 4, the large communication valve 5 closes the large communication path 3 and a minimum cross-sectional area of the communication path 2 is equal to a cross-sectional area of the small communication path 4, and a large open state where the small communication valve 6 opens the small communication path 4, the large communication valve 5 opens the large communication path 3 and the minimum cross-sectional area of the communication path 2 is equal to a cross-sectional area of the large communication path 3. An opening of the communication path 2 is appropriately controllable in a simple configuration without requiring a high-resolution actuator.SELECTED DRAWING: Figure 2

Description

本発明は、ツインスクロールターボの連通路機構に関する。 The present invention relates to a twin-scroll turbo communication passage mechanism.

エキゾーストマニホールドからターボチャージャのタービンハウジングへの流路が第1流路と第2流路とに分割されたツインスクロールターボが知られている。ツインスクロールターボでは、第1流路と第2流路との間に開閉自在な連通路を設け、回転数又は負荷に応じて連通路を開閉することによりポンピングロスが低減し、燃費が改善する。例えば、特許文献1には、連通路を板状部材により部分的に覆うことによって、連通路の開度を調整する技術が開示されている。 A twin scroll turbo in which the flow path from the exhaust manifold to the turbine housing of the turbocharger is divided into a first flow path and a second flow path is known. In the twin scroll turbo, a connecting passage that can be opened and closed is provided between the first flow path and the second flow path, and the connecting passage is opened and closed according to the rotation speed or the load, thereby reducing the pumping loss and improving the fuel efficiency. .. For example, Patent Document 1 discloses a technique for adjusting the opening degree of a communication passage by partially covering the communication passage with a plate-shaped member.

特表2017-537259号公報Special Table 2017-537259

ところで、上記特許文献1のような技術では、微小開度で連通路の開度を適切に制御するためには、高分解能のアクチュエータを必要とし、高コストをもたらすため、改善が望まれている。 By the way, in the technique as described in Patent Document 1, in order to appropriately control the opening degree of the communication passage with a small opening degree, a high-resolution actuator is required and high cost is brought about, so improvement is desired. ..

そこで本発明は、高分解能のアクチュエータを要さずに、単純な構成により、連通路の開度を適切に制御することができるツインスクロールターボの連通路機構を提供することを目的とする。 Therefore, an object of the present invention is to provide a twin-scroll turbo communication passage mechanism capable of appropriately controlling the opening degree of the communication passage with a simple configuration without requiring a high-resolution actuator.

本発明は、エキゾーストマニホールドからターボチャージャのタービンハウジングへの流路が第1流路と第2流路とに分割され、第1流路と第2流路との間に開閉自在な連通路が設けられたツインスクロールターボの連通路機構であって、第1流路と第2流路との間の大連通路と、大連通路を開閉する大連通バルブと、大連通バルブの内部に設けられ、大連通路よりも断面積が小さい小連通路と、大連通バルブの内部に設けられ、小連通路を開閉する小連通バルブとを備え、小連通バルブが小連通路を閉鎖し、大連通バルブが大連通路を閉鎖することにより、第1流路と第2流路との間の連通路が閉鎖された閉鎖状態と、小連通バルブが小連通路を開放し、大連通バルブが大連通路を閉鎖することにより、第1流路と第2流路との間の連通路の最小断面積が小連通路の断面積である小開放状態と、小連通バルブが小連通路を開放し、大連通バルブが大連通路を開放することにより、第1流路と第2流路との間の連通路の最小断面積が大連通路の断面積である大開放状態とに変更自在なツインスクロールターボの連通路機構である。 In the present invention, the flow path from the exhaust manifold to the turbine housing of the turbocharger is divided into a first flow path and a second flow path, and an openable and closable communication path is provided between the first flow path and the second flow path. It is a twin scroll turbo communication passage mechanism provided, and is provided inside the Dalian passage between the first flow path and the second flow path, the Dalian communication valve that opens and closes the Dalian passage, and the Dalian communication valve. It is equipped with a small communication passage that has a smaller cross-sectional area than the Dalian passage and a small communication valve that is provided inside the Dalian communication valve and opens and closes the small communication passage. By closing the Dalian passage, the communication passage between the first flow path and the second flow path is closed, and the small communication valve opens the small communication passage, and the Dalian communication valve closes the Dalian passage. By doing so, the minimum cross-sectional area of the communication passage between the first flow path and the second flow path is the cross-sectional area of the small communication passage, which is the small open state, and the small communication valve opens the small communication passage to open the Dalian passage. By opening the Dalian passage, the minimum cross-sectional area of the communication passage between the first flow path and the second flow path can be changed to the large open state, which is the cross-sectional area of the Dalian passage. It is a passage mechanism.

この構成によれば、エキゾーストマニホールドからターボチャージャのタービンハウジングへの流路が第1流路と第2流路とに分割され、第1流路と第2流路との間に開閉自在な連通路が設けられたツインスクロールターボの連通路機構において、第1流路と第2流路との間の大連通路と、大連通路を開閉する大連通バルブと、大連通バルブの内部に設けられ、大連通路よりも断面積が小さい小連通路と、大連通バルブの内部に設けられ、小連通路を開閉する小連通バルブとを備え、小連通バルブが小連通路を閉鎖し、大連通バルブが大連通路を閉鎖することにより、第1流路と第2流路との間の連通路が閉鎖された閉鎖状態と、小連通バルブが小連通路を開放し、大連通バルブが大連通路を閉鎖することにより、第1流路と第2流路との間の連通路の最小断面積が小連通路の断面積である小開放状態と、小連通バルブが小連通路を開放し、大連通バルブが大連通路を開放することにより、第1流路と第2流路との間の連通路の最小断面積が大連通路の断面積である大開放状態とに変更自在である。そのため、高分解能のアクチュエータを要さずに、単純な構成により、連通路の開度を適切に制御することができる。 According to this configuration, the flow path from the exhaust manifold to the turbine housing of the turbocharger is divided into a first flow path and a second flow path, and a chain that can be opened and closed between the first flow path and the second flow path. In a twin scroll turbo communication passage mechanism provided with a passage, a Dalian passage between the first flow path and the second flow path, a Dalian communication valve for opening and closing the Dalian passage, and a Dalian communication valve provided inside the Dalian communication valve are provided. It is equipped with a small communication passage that has a smaller cross-sectional area than the Dalian passage and a small communication valve that is provided inside the Dalian communication valve and opens and closes the small communication passage. By closing the Dalian passage, the communication passage between the first flow path and the second flow path is closed, and the small communication valve opens the small communication passage, and the Dalian communication valve closes the Dalian passage. By doing so, the minimum cross-sectional area of the communication passage between the first flow path and the second flow path is the cross-sectional area of the small communication passage, which is the small open state, and the small communication valve opens the small communication passage to open the Dalian passage. By opening the Dalian passage, the valve can freely change the minimum cross-sectional area of the communication passage between the first flow path and the second flow path to the large open state which is the cross-sectional area of the Dalian passage. Therefore, the opening degree of the communication passage can be appropriately controlled by a simple configuration without requiring a high-resolution actuator.

この場合、大開放状態のときに、大連通路は、タービンハウジングを迂回しつつタービンハウジングの下流の流路に連通するバイパス路に連通していてもよい。 In this case, in the large open state, the Dalian passage may communicate with the bypass path communicating with the flow path downstream of the turbine housing while bypassing the turbine housing.

この構成によれば、大開放状態のときに、大連通路は、タービンハウジングを迂回しつつタービンハウジングの下流の流路に連通するバイパス路に連通しており、大連通路の大きな断面積が律速となるため、大流量に対応でき、ウェストゲート量不足とならず、適切なウェストゲート量に制御することができる。 According to this configuration, in the large open state, the Dalian passage communicates with the bypass path communicating with the flow path downstream of the turbine housing while bypassing the turbine housing, and the large cross-sectional area of the Dalian passage is the rate-determining factor. Therefore, it is possible to cope with a large flow rate, the waist gate amount is not insufficient, and the waist gate amount can be controlled to an appropriate level.

また、大連通バルブが大連通路を閉鎖する方向に付勢するバネと、小連通バルブ及び大連通バルブを作動させるアクチュエータとをさらに備え、小開放状態では、アクチュエータによって、バネにより付勢されることにより大連通路を閉鎖している大連通バルブの内部の小連通バルブが作動させられることにより小連通路が開放され、大開放状態では、小連通バルブを作動させて小連通路を開放させているアクチュエータによって、バネにより大連通路を閉鎖する方向に付勢されている大連通バルブが作動させられることにより大連通路が開放されてもよい。 Further, a spring for urging the Dalian communication valve in the direction of closing the Dalian passage and an actuator for operating the small communication valve and the Dalian communication valve are further provided, and in the small open state, the valve is urged by the spring. The small communication valve inside the large communication valve that closes the Dalian passage is opened by operating the small communication valve, and in the large open state, the small communication valve is operated to open the small communication passage. The Dalian passage may be opened by the actuator activating the Dalian passage valve urged by a spring in the direction of closing the Dalian passage.

この構成によれば、大連通バルブが大連通路を閉鎖する方向に付勢するバネと、小連通バルブ及び大連通バルブを作動させるアクチュエータとをさらに備え、小開放状態では、アクチュエータによって、バネにより付勢されることにより大連通路を閉鎖している大連通バルブの内部の小連通バルブが作動させられることにより小連通路が開放され、大開放状態では、小連通バルブを作動させて小連通路を開放させているアクチュエータによって、バネにより大連通路を閉鎖する方向に付勢されている大連通バルブが作動させられることにより大連通路が開放されるため、バネと1つのアクチュエータとによる単純な構成により、連通路の開度を適切に制御することができる。 According to this configuration, a spring for urging the large communication valve in the direction of closing the large communication passage and an actuator for operating the small communication valve and the large communication valve are further provided. The small communication valve inside the large communication valve that closes the Dalian passage is activated by being forced to open the small communication valve, and in the large open state, the small communication valve is operated to open the small communication passage. The open actuator activates the Dalian passage, which is urged by the spring to close the Dalian passage, and the Dalian passage is opened. The opening degree of the communication passage can be appropriately controlled.

本発明のツインスクロールターボの連通路機構によれば、高分解能のアクチュエータを要さずに、単純な構成により、連通路の開度を適切に制御することができる。 According to the twin-scrolling turbo communication passage mechanism of the present invention, the opening degree of the communication passage can be appropriately controlled by a simple configuration without requiring a high-resolution actuator.

実施形態に係るツインスクロールターボを示す図である。It is a figure which shows the twin scroll turbo which concerns on embodiment. 実施形態に係るツインスクロールターボの連通路機構の閉鎖状態を示す縦断面図である。It is a vertical cross-sectional view which shows the closed state of the communication passage mechanism of the twin scroll turbo which concerns on embodiment. 実施形態に係るツインスクロールターボの連通路機構の小開放状態を示す縦断面図である。It is a vertical cross-sectional view which shows the small open state of the communication passage mechanism of the twin scroll turbo which concerns on embodiment. 実施形態に係るツインスクロールターボの連通路機構の大開放状態を示す縦断面図である。It is a vertical cross-sectional view which shows the wide open state of the communication passage mechanism of the twin scroll turbo which concerns on embodiment.

以下、本発明の実施形態に係るツインスクロールターボの連通路機構について、図面を用いて詳細に説明する。図1に示されるように、本実施形態の連通路機構1は、ツインスクロールターボ100に適用される。ツインスクロールターボ100では、エンジン10のエキゾーストマニホールド15からタービンハウジング19及びコンプレッサ20を有するターボチャージャ18のタービンハウジング19への流路が、第1気筒11及び第4気筒14の排気を束ねた第1流路16と、第2気筒12及び第3気筒13の排気を束ねた第2流路17とに分割されている。第1流路16と第2流路17との間には開閉自在な連通路2が設けられている。連通路2は、ウェストゲートバルブ22を介して、タービンハウジング19を迂回しつつタービンハウジング19の下流の流路に連通するバイパス路21に連通している。 Hereinafter, the twin-scroll turbo communication passage mechanism according to the embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the communication passage mechanism 1 of the present embodiment is applied to the twin scroll turbo 100. In the twin scroll turbo 100, the flow path from the exhaust manifold 15 of the engine 10 to the turbine housing 19 of the turbocharger 18 having the turbine housing 19 and the compressor 20 bundles the exhausts of the first cylinder 11 and the fourth cylinder 14. It is divided into a flow path 16 and a second flow path 17 that bundles the exhaust gas of the second cylinder 12 and the third cylinder 13. A reciprocal passage 2 that can be opened and closed is provided between the first flow path 16 and the second flow path 17. The communication passage 2 communicates with the bypass passage 21 communicating with the flow path downstream of the turbine housing 19 while bypassing the turbine housing 19 via the wastegate valve 22.

図2に示されるように、連通路機構1は、第1流路16と第2流路17とが隣接している箇所に配置されている。連通路機構1は、第1流路16と第2流路17との間の大連通路3と、大連通路3を開閉する大連通バルブ5とを備える。図2に示される第1流路16と第2流路17との間の連通路2が閉鎖された閉鎖状態では、大連通路3は、大連通バルブ5により閉鎖されている。連通路機構1は、大連通バルブ5の内部に設けられ、大連通路3よりも断面積が小さい小連通路4と、大連通バルブ5の内部に設けられ、小連通路4を開閉する小連通バルブ6とを備える。図2に示される第1流路16と第2流路17との間の連通路2が閉鎖された閉鎖状態では、小連通路4は、小連通バルブ6により閉鎖されている。 As shown in FIG. 2, the communication passage mechanism 1 is arranged at a position where the first flow path 16 and the second flow path 17 are adjacent to each other. The communication passage mechanism 1 includes a Dalian passage 3 between the first flow path 16 and the second flow path 17, and a Dalian passage valve 5 that opens and closes the Dalian passage 3. In the closed state in which the communication passage 2 between the first flow path 16 and the second flow path 17 shown in FIG. 2 is closed, the Dalian passage 3 is closed by the Dalian communication valve 5. The communication passage mechanism 1 is provided inside the Dalian passage valve 5 and has a smaller cross-sectional area than the Dalian passage 3, and is provided inside the Dalian passage valve 5 to open and close the small passage 4. It is provided with a valve 6. In the closed state in which the communication passage 2 between the first flow path 16 and the second flow path 17 shown in FIG. 2 is closed, the small communication passage 4 is closed by the small communication valve 6.

連通路機構1は、大連通バルブ5が大連通路3を閉鎖する方向に付勢するバネ7と、小連通バルブ6及び大連通バルブ5を作動させるアクチュエータ8と備える。アクチュエータ8は、その駆動軸8aが大連通バルブ5の内部の小連通バルブを電磁石又は油圧等の力によって押し込むことにより、小連通バルブ6が小連通路4を閉鎖する方向に力を加える。また、アクチュエータ8は、その駆動軸8aが大連通バルブ5の内部の小連通バルブ6を電磁石又は油圧等の力によって引っ張ることにより、小連通バルブ6が小連通路4を開放し、大連通バルブ5の内部の小連通バルブ6を介して大連通バルブ5が大連通路3を開放する方向に力を加える。バネ7は、アクチュエータ8の駆動軸8aの周囲に配置された圧縮バネであり、大連通バルブ5が大連通路3を閉鎖する方向に付勢する。大連通バルブ5の周囲は、バイパス路21に連通している。 The communication passage mechanism 1 includes a spring 7 for urging the large communication valve 5 in the direction of closing the large communication valve 3, and an actuator 8 for operating the small communication valve 6 and the large communication valve 5. The actuator 8 exerts a force in the direction in which the small communication valve 6 closes the small communication passage 4 by pushing the small communication valve inside the large communication valve 5 by a force such as an electromagnet or a hydraulic pressure by the drive shaft 8a. Further, in the actuator 8, the drive shaft 8a pulls the small communication valve 6 inside the large communication valve 5 by a force such as an electromagnet or a hydraulic pressure, so that the small communication valve 6 opens the small communication passage 4 and the large communication valve 6 is opened. A force is applied in the direction in which the Dalian communication valve 5 opens the Dalian passage 3 via the small communication valve 6 inside the 5. The spring 7 is a compression spring arranged around the drive shaft 8a of the actuator 8, and the Dalian communication valve 5 urges the Dalian passage 3 in the closing direction. The periphery of the large communication valve 5 communicates with the bypass path 21.

以下、本実施形態のツインスクロールターボ100の連通路機構1の動作について説明する。図2に示される閉鎖状態では、アクチュエータ8の駆動軸8aにより押し込まれた小連通バルブ6が小連通路4を閉鎖し、バネ7により付勢されている大連通バルブ5が大連通路3を閉鎖することにより、第1流路16と第2流路17との間の連通路2が閉鎖される。 Hereinafter, the operation of the communication passage mechanism 1 of the twin scroll turbo 100 of the present embodiment will be described. In the closed state shown in FIG. 2, the small communication valve 6 pushed by the drive shaft 8a of the actuator 8 closes the small communication passage 4, and the large communication valve 5 urged by the spring 7 closes the Dalian passage 3. By doing so, the communication passage 2 between the first flow path 16 and the second flow path 17 is closed.

図3に示される小開放状態では、アクチュエータ8の駆動軸8aによって、バネ7により付勢されることにより大連通路3を閉鎖している大連通バルブ5の内部の小連通バルブ6が引っ張られることによって作動させられることにより小連通路4が開放される。小開放状態では、小連通バルブ6が小連通路4を開放し、バネ7により付勢されている大連通バルブ5が大連通路3を閉鎖することにより、第1流路16と第2流路17との間の連通路2の最小断面積が小連通路4の断面積となる。つまり、小開放状態では、断面積が小さい小連通路4が律速となる。 In the small open state shown in FIG. 3, the drive shaft 8a of the actuator 8 pulls the small communication valve 6 inside the large communication valve 5 that closes the Dalian passage 3 by being urged by the spring 7. The small passage 4 is opened by being operated by. In the small open state, the small communication valve 6 opens the small communication passage 4, and the large communication valve 5 urged by the spring 7 closes the Dalian passage 3, whereby the first flow path 16 and the second flow path 16 and the second flow path. The minimum cross-sectional area of the communication passage 2 between 17 and 17 is the cross-sectional area of the small passage 4. That is, in the small open state, the small passage 4 having a small cross-sectional area is the rate-determining factor.

図4に示される大開放状態では、小連通バルブ6を作動させて小連通路4を開放させているアクチュエータ8の駆動軸8aによって、大連通バルブ5の内部の小連通バルブ6を介して、バネ7により大連通路3を閉鎖する方向に付勢されている大連通バルブ5が引っ張られることによって作動させられることにより大連通路3が開放される。大開放状態では、小連通バルブ6が小連通路4を開放し、大連通バルブ5が大連通路3を開放することにより、第1流路16と第2流路17との間の連通路2の最小断面積が大連通路3の断面積となる。つまり、大開放状態では、断面積が大きい大連通路3が律速となる。大開放状態のときに、大連通路3は、タービンハウジング19を迂回しつつタービンハウジング19の下流の流路に連通するバイパス路21に連通している。 In the large open state shown in FIG. 4, the drive shaft 8a of the actuator 8 that operates the small communication valve 6 to open the small communication passage 4 passes through the small communication valve 6 inside the large communication valve 5. The Dalian passage 3 is opened by being operated by pulling the Dalian passage valve 5 urged in the direction of closing the Dalian passage 3 by the spring 7. In the large open state, the small communication valve 6 opens the small communication passage 4, and the large communication valve 5 opens the Dalian passage 3, so that the communication passage 2 between the first flow path 16 and the second flow path 17 is opened. The minimum cross-sectional area of is the cross-sectional area of the Dalian passage 3. That is, in the large open state, the Dalian passage 3 having a large cross-sectional area is the rate-determining factor. In the greatly open state, the Dalian passage 3 communicates with the bypass path 21 communicating with the flow path downstream of the turbine housing 19 while bypassing the turbine housing 19.

以上のように、本実施形態のツインスクロールターボ100の連通路機構1では、閉鎖状態と、小開放状態と、大開放状態とに変更自在である。 As described above, in the communication passage mechanism 1 of the twin scroll turbo 100 of the present embodiment, it is possible to change the closed state, the small open state, and the large open state.

ツインスクロールターボ100では、第1流路16と第2流路17との間に開閉自在な連通路2を設け、回転数又は負荷に応じて連通路2を開閉することによりポンピングロスが低減し、燃費が改善することが判っている。しかし、本発明者による実験により、連通路2を開閉するバルブは、微小開度の特性が過敏であることが判った。微小開度で連通路2を開閉するバルブを精密な開度に調整するためには、高分解能のアクチュエータが必要となり、高コストをもたらす。一方、微小開度での特性を緩慢にするために、連通路2の断面積を絞った場合には、フルリフト時の全流量も低下するため、連通路2を開閉するバルブを全開にしたとしても、連通路2の連通量及びウェストゲート量が不足となる懸念がある。 In the twin scroll turbo 100, a connecting passage 2 that can be opened and closed is provided between the first flow path 16 and the second flow path 17, and the connecting passage 2 is opened and closed according to the rotation speed or the load, thereby reducing the pumping loss. , It is known that fuel efficiency is improved. However, experiments by the present inventor have shown that the valve that opens and closes the communication passage 2 is sensitive to the characteristics of minute opening. In order to adjust the valve that opens and closes the communication passage 2 with a small opening to a precise opening, a high-resolution actuator is required, resulting in high cost. On the other hand, if the cross-sectional area of the communication passage 2 is narrowed in order to slow down the characteristics at a minute opening, the total flow rate at the time of full lift also decreases, so it is assumed that the valve that opens and closes the communication passage 2 is fully opened. However, there is a concern that the amount of communication and the amount of Westgate in the communication passage 2 will be insufficient.

一方、本実施形態では、エキゾーストマニホールド15からターボチャージャ18のタービンハウジング19への流路が第1流路16と第2流路17とに分割され、第1流路16と第2流路17との間に開閉自在な連通路2が設けられたツインスクロールターボ100の連通路機構1において、第1流路16と第2流路17との間の大連通路3と、大連通路3を開閉する大連通バルブ5と、大連通バルブ5の内部に設けられ、大連通路3よりも断面積が小さい小連通路4と、大連通バルブ5の内部に設けられ、小連通路4を開閉する小連通バルブ6とを備え、小連通バルブ6が小連通路4を閉鎖し、大連通バルブ5が大連通路3を閉鎖することにより、第1流路16と第2流路17との間の連通路2が閉鎖された閉鎖状態と、小連通バルブ6が小連通路4を開放し、大連通バルブ5が大連通路3を閉鎖することにより、第1流路16と第2流路17との間の連通路2の最小断面積が小連通路4の断面積である小開放状態と、小連通バルブ6が小連通路4を開放し、大連通バルブ5が大連通路3を開放することにより、第1流路16と第2流路17との間の連通路2の最小断面積が大連通路3の断面積である大開放状態とに変更自在である。そのため、高分解能のアクチュエータを要さずに、単純な構成により、連通路2の開度を適切に制御することができる。 On the other hand, in the present embodiment, the flow path from the exhaust manifold 15 to the turbine housing 19 of the turbocharger 18 is divided into a first flow path 16 and a second flow path 17, and the first flow path 16 and the second flow path 17 In the twin passage mechanism 1 of the twin scroll turbo 100 provided with a communication passage 2 that can be opened and closed between the two, the Dalian passage 3 between the first flow path 16 and the second flow path 17 and the Dalian passage 3 are opened and closed. A small communication valve 5 provided inside the Dalian communication valve 5 and a small communication passage 4 having a smaller cross-sectional area than the Dalian passage 3 and a small communication valve 5 provided inside the Dalian passage 4 to open and close the small communication passage 4. A communication valve 6 is provided, the small communication valve 6 closes the small communication passage 4, and the Dalian communication valve 5 closes the Dalian passage 3, whereby the communication between the first flow path 16 and the second flow path 17 is provided. In the closed state where the passage 2 is closed, the small communication valve 6 opens the small communication passage 4, and the Dalian communication valve 5 closes the Dalian passage 3, so that the first flow path 16 and the second flow path 17 are connected. By the small open state where the minimum cross-sectional area of the communication passage 2 between them is the cross-sectional area of the small communication passage 4, the small communication valve 6 opens the small communication passage 4, and the Dalian communication valve 5 opens the Dalian passage 3. The minimum cross-sectional area of the communication path 2 between the first flow path 16 and the second flow path 17 can be changed to a large open state which is the cross-sectional area of the Dalian passage 3. Therefore, the opening degree of the communication passage 2 can be appropriately controlled by a simple configuration without requiring a high-resolution actuator.

つまり、小開放状態では、断面積が小さい小連通路4が律速となる。このため、微小開度の特性を緩慢にすることができる。一方、大開放状態では、断面積が大きい大連通路3が律速となる。このため、大流量に対応することができる。このように本実施形態では、定常運転時及び過渡運転時の急激な流量変化が抑えられることから、制御性向上が果たされる。 That is, in the small open state, the small passage 4 having a small cross-sectional area is the rate-determining factor. Therefore, the characteristic of the minute opening can be slowed down. On the other hand, in the wide open state, the Dalian passage 3 having a large cross-sectional area is rate-determining. Therefore, it is possible to cope with a large flow rate. As described above, in the present embodiment, since the sudden change in the flow rate during the steady operation and the transient operation is suppressed, the controllability is improved.

また、本実施形態では、大開放状態のときに、大連通路3は、タービンハウジング19を迂回しつつタービンハウジング19の下流の流路に連通するバイパス路21に連通しており、大連通路3の大きな断面積が律速となるため、大流量に対応でき、ウェストゲート量不足とならず、適切なウェストゲート量に制御することができる。 Further, in the present embodiment, in the large open state, the Dalian passage 3 communicates with the bypass passage 21 communicating with the flow path downstream of the turbine housing 19 while bypassing the turbine housing 19, and the Dalian passage 3 Since a large cross-sectional area is the rate-determining factor, it is possible to cope with a large flow rate, the waist gate amount is not insufficient, and the waist gate amount can be controlled appropriately.

また、本実施形態では、大連通バルブ5が大連通路3を閉鎖する方向に付勢するバネ7と、小連通バルブ6及び大連通バルブ5を作動させるアクチュエータ8とをさらに備え、小開放状態では、アクチュエータ8によって、バネ7により付勢されることにより大連通路3を閉鎖している大連通バルブ5の内部の小連通バルブ6が作動させられることにより小連通路4が開放され、大開放状態では、小連通バルブ6を作動させて小連通路4を開放させているアクチュエータ8によって、バネ7により大連通路3を閉鎖する方向に付勢されている大連通バルブ5が作動させられることにより大連通路3が開放されるため、バネ7と1つのアクチュエータ8とによる単純な構成により、連通路2の開度を適切に制御することができる。 Further, in the present embodiment, the spring 7 for urging the large communication valve 5 in the direction of closing the large communication passage 3 and the actuator 8 for operating the small communication valve 6 and the large communication valve 5 are further provided, and in the small open state. The actuator 8 activates the small communication valve 6 inside the large communication valve 5 that closes the large communication passage 3 by being urged by the spring 7, so that the small communication valve 4 is opened and is in a large open state. Then, the actuator 8 that operates the small communication valve 6 to open the small communication passage 4 activates the large communication valve 5 that is urged by the spring 7 in the direction of closing the large communication passage 3. Since the passage 3 is opened, the opening degree of the communication passage 2 can be appropriately controlled by a simple configuration of the spring 7 and one actuator 8.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく様々な形態で実施される。例えば、上記実施形態の連通路機構1において、小連通バルブ6の内部に設けられ、小連通路4よりも断面積が小さい極小連通路と、小連通バルブ6の内部に設けられ、極小連通路を開閉する極小連通バルブとをさらに備えてもよい。この場合、連通路機構1は、上述した閉鎖状態と、小開放状態と、大開放状態とに加えて、極小連通バルブが極小連通路を開放し、小連通バルブ6が小連通路4を閉鎖し、大連通バルブ5が大連通路3を閉鎖することにより、第1流路16と第2流路17との間の連通路2の最小断面積が極小連通路の断面積である極小開放状態との4つの状態に変更自在でもよい。同様に、連通路機構1は5以上の状態に変更自在でもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and is implemented in various forms. For example, in the communication passage mechanism 1 of the above embodiment, a minimum communication passage provided inside the small communication valve 6 and having a smaller cross-sectional area than the small communication passage 4 and a minimum communication passage provided inside the small communication valve 6 are provided. It may be further provided with a very small communication valve that opens and closes. In this case, in the communication passage mechanism 1, in addition to the above-mentioned closed state, small open state, and large open state, the minimum communication valve opens the minimum communication passage, and the small communication valve 6 closes the small communication passage 4. Then, when the Dalian passage valve 5 closes the Dalian passage 3, the minimum cross-sectional area of the communication passage 2 between the first flow path 16 and the second flow path 17 is the minimum cross-sectional area of the minimum communication passage. It may be freely changed to the four states of. Similarly, the communication passage mechanism 1 may be freely changed to 5 or more states.

また、上記実施形態の連通路機構1において、大連通バルブ5の内部に小連通バルブ6が小連通路4を閉鎖する方向に付勢する小連通バルブ用バネをさらに備え、閉鎖状態では、小連通バルブ用バネにより付勢されている小連通バルブ6が小連通路4を閉鎖し、バネ7により付勢されている大連通バルブ5が大連通路3を閉鎖することにより、第1流路16と第2流路17との間の連通路2が閉鎖されてもよい。これにより、アクチュエータ8は、駆動軸8aを引っ張る方向に力を与える機能のみを有すればよくなる。 Further, in the communication passage mechanism 1 of the above embodiment, a small communication valve spring for urging the small communication valve 6 in the direction of closing the small communication valve 4 is further provided inside the large communication valve 5, and the small communication valve 6 is provided in the closed state. The small communication valve 6 urged by the spring for the communication valve closes the small communication passage 4, and the large communication valve 5 urged by the spring 7 closes the large communication passage 3. The communication passage 2 between the and the second flow path 17 may be closed. As a result, the actuator 8 need only have a function of applying a force in the direction of pulling the drive shaft 8a.

1…連通路機構、2…連通路、3…大連通路、4…小連通路、5…大連通バルブ、6…小連通バルブ、7…バネ、8…アクチュエータ、8a…駆動軸、10…エンジン、11…第1気筒、12…第2気筒、13…第3気筒、14…第4気筒、15…エキゾーストマニホールド、16…第1流路、17…第2流路、18…ターボチャージャ、19…タービンハウジング、20…コンプレッサ、21…バイパス路、22…ウェストゲートバルブ、100…ツインスクロールターボ。 1 ... communication passage mechanism, 2 ... communication passage, 3 ... Dalian passage, 4 ... small communication passage, 5 ... large communication valve, 6 ... small communication valve, 7 ... spring, 8 ... actuator, 8a ... drive shaft, 10 ... engine , 11 ... 1st cylinder, 12 ... 2nd cylinder, 13 ... 3rd cylinder, 14 ... 4th cylinder, 15 ... exhaust manifold, 16 ... 1st flow path, 17 ... 2nd flow path, 18 ... turbocharger, 19 ... Turbine housing, 20 ... Compressor, 21 ... Bypass, 22 ... Wastegate valve, 100 ... Twin scroll turbo.

Claims (3)

エキゾーストマニホールドからターボチャージャのタービンハウジングへの流路が第1流路と第2流路とに分割され、前記第1流路と前記第2流路との間に開閉自在な連通路が設けられたツインスクロールターボの連通路機構であって、
前記第1流路と前記第2流路との間の大連通路と、
前記大連通路を開閉する大連通バルブと、
前記大連通バルブの内部に設けられ、前記大連通路よりも断面積が小さい小連通路と、
前記大連通バルブの内部に設けられ、前記小連通路を開閉する小連通バルブと、
を備え、
前記小連通バルブが前記小連通路を閉鎖し、前記大連通バルブが前記大連通路を閉鎖することにより、前記第1流路と前記第2流路との間の前記連通路が閉鎖された閉鎖状態と、
前記小連通バルブが前記小連通路を開放し、前記大連通バルブが前記大連通路を閉鎖することにより、前記第1流路と前記第2流路との間の前記連通路の最小断面積が前記小連通路の断面積である小開放状態と、
前記小連通バルブが前記小連通路を開放し、前記大連通バルブが前記大連通路を開放することにより、前記第1流路と前記第2流路との間の前記連通路の最小断面積が前記大連通路の断面積である大開放状態と、に変更自在なツインスクロールターボの連通路機構。
The flow path from the exhaust manifold to the turbine housing of the turbocharger is divided into a first flow path and a second flow path, and an openable and closable communication passage is provided between the first flow path and the second flow path. It is a twin-scroll turbo communication passage mechanism.
The Dalian passage between the first flow path and the second flow path,
A Dalian passage valve that opens and closes the Dalian passage,
A small passage that is provided inside the Dalian valve and has a smaller cross-sectional area than the Dalian passage.
A small communication valve provided inside the large communication valve that opens and closes the small communication passage,
With
The small communication valve closes the small communication passage, and the large communication valve closes the Dalian passage, so that the communication passage between the first flow path and the second flow path is closed. State and
The small communication valve opens the small communication passage, and the large communication valve closes the Dalian passage, so that the minimum cross-sectional area of the communication passage between the first flow path and the second flow path is reduced. The small open state, which is the cross-sectional area of the small passage, and
The small communication valve opens the small communication passage, and the large communication valve opens the Dalian passage, so that the minimum cross-sectional area of the communication passage between the first flow path and the second flow path is reduced. A twin-scroll turbo continuous passage mechanism that can be freely changed to the large open state, which is the cross-sectional area of the Dalian passage.
前記大開放状態のときに、前記大連通路は、前記タービンハウジングを迂回しつつ前記タービンハウジングの下流の流路に連通するバイパス路に連通している、請求項1に記載のツインスクロールターボの連通路機構。 The twin scroll turbo communication according to claim 1, wherein in the greatly open state, the Dalian passage communicates with a bypass path communicating with a flow path downstream of the turbine housing while bypassing the turbine housing. Passage mechanism. 前記大連通バルブが前記大連通路を閉鎖する方向に付勢するバネと、
前記小連通バルブ及び前記大連通バルブを作動させるアクチュエータと、
をさらに備え、
前記小開放状態では、前記アクチュエータによって、前記バネにより付勢されることにより前記大連通路を閉鎖している前記大連通バルブの内部の前記小連通バルブが作動させられることにより前記小連通路が開放され、
前記大開放状態では、前記小連通バルブを作動させて前記小連通路を開放させているアクチュエータによって、前記バネにより前記大連通路を閉鎖する方向に付勢されている前記大連通バルブが作動させられることにより前記大連通路が開放される、請求項1又は2に記載のツインスクロールターボの連通路機構。
A spring that urges the Dalian valve to close the Dalian passage,
The actuator that operates the small communication valve and the large communication valve, and
With more
In the small open state, the small open passage is opened by operating the small communication valve inside the large communication valve that closes the Dalian passage by being urged by the spring by the actuator. Being done
In the large open state, the actuator that operates the small communication valve to open the small communication passage operates the large communication valve that is urged by the spring in the direction of closing the large communication passage. The twin-scroll turbo inter-passage mechanism according to claim 1 or 2, wherein the Dalian passage is opened thereby.
JP2019220141A 2019-12-05 2019-12-05 Twin scroll turbo communication passage mechanism Active JP7288395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220141A JP7288395B2 (en) 2019-12-05 2019-12-05 Twin scroll turbo communication passage mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220141A JP7288395B2 (en) 2019-12-05 2019-12-05 Twin scroll turbo communication passage mechanism

Publications (2)

Publication Number Publication Date
JP2021088966A true JP2021088966A (en) 2021-06-10
JP7288395B2 JP7288395B2 (en) 2023-06-07

Family

ID=76219623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220141A Active JP7288395B2 (en) 2019-12-05 2019-12-05 Twin scroll turbo communication passage mechanism

Country Status (1)

Country Link
JP (1) JP7288395B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137619A (en) * 1981-02-18 1982-08-25 Hitachi Ltd Exhaust bypass device of turbocharger for multi- cylinder engine
JPS584732U (en) * 1981-07-01 1983-01-12 株式会社日立製作所 Exhaust bypass device for exhaust turbine supercharger
US4530640A (en) * 1982-09-29 1985-07-23 Roto-Master, Inc. Method and apparatus for wastegating turbocharged engine with divided exhaust system
JPS63117124A (en) * 1986-11-05 1988-05-21 Ishikawajima Harima Heavy Ind Co Ltd Engine with twin scroll turbo-charger
JPH0454381U (en) * 1990-09-17 1992-05-11
JPH09137879A (en) * 1995-11-14 1997-05-27 Smc Corp Slow exhaust valve for controlling vacuum pressure
JP2001520346A (en) * 1997-10-09 2001-10-30 アーベー ボルボ Turbocharged internal combustion engine
JP2005291044A (en) * 2004-03-31 2005-10-20 Mazda Motor Corp Multi-cylinder engine with turbo type supercharger
JP2008101589A (en) * 2006-10-20 2008-05-01 Mitsubishi Heavy Ind Ltd Structure of exhaust turbocharger with waist gate valve
JP2009144665A (en) * 2007-12-17 2009-07-02 Toyota Central R&D Labs Inc Turbo supercharger and supercharging engine system
JP2009150226A (en) * 2007-12-18 2009-07-09 Toyota Central R&D Labs Inc Turbine for superchargers and supercharger
US20100059026A1 (en) * 2006-09-08 2010-03-11 Borgwarner Inc. Method and device for operating an internal combustion engine
US20140230432A1 (en) * 2013-02-20 2014-08-21 Ford Global Technologies, Llc Supercharged internal combustion engine with two-channel turbine and method for operating an internal combustion engine of said type
JP2017201144A (en) * 2016-05-02 2017-11-09 トヨタ自動車株式会社 Internal combustion engine

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137619A (en) * 1981-02-18 1982-08-25 Hitachi Ltd Exhaust bypass device of turbocharger for multi- cylinder engine
JPS584732U (en) * 1981-07-01 1983-01-12 株式会社日立製作所 Exhaust bypass device for exhaust turbine supercharger
US4530640A (en) * 1982-09-29 1985-07-23 Roto-Master, Inc. Method and apparatus for wastegating turbocharged engine with divided exhaust system
JPS63117124A (en) * 1986-11-05 1988-05-21 Ishikawajima Harima Heavy Ind Co Ltd Engine with twin scroll turbo-charger
JPH0454381U (en) * 1990-09-17 1992-05-11
JPH09137879A (en) * 1995-11-14 1997-05-27 Smc Corp Slow exhaust valve for controlling vacuum pressure
JP2001520346A (en) * 1997-10-09 2001-10-30 アーベー ボルボ Turbocharged internal combustion engine
JP2005291044A (en) * 2004-03-31 2005-10-20 Mazda Motor Corp Multi-cylinder engine with turbo type supercharger
US20100059026A1 (en) * 2006-09-08 2010-03-11 Borgwarner Inc. Method and device for operating an internal combustion engine
JP2008101589A (en) * 2006-10-20 2008-05-01 Mitsubishi Heavy Ind Ltd Structure of exhaust turbocharger with waist gate valve
JP2009144665A (en) * 2007-12-17 2009-07-02 Toyota Central R&D Labs Inc Turbo supercharger and supercharging engine system
JP2009150226A (en) * 2007-12-18 2009-07-09 Toyota Central R&D Labs Inc Turbine for superchargers and supercharger
US20140230432A1 (en) * 2013-02-20 2014-08-21 Ford Global Technologies, Llc Supercharged internal combustion engine with two-channel turbine and method for operating an internal combustion engine of said type
JP2017201144A (en) * 2016-05-02 2017-11-09 トヨタ自動車株式会社 Internal combustion engine

Also Published As

Publication number Publication date
JP7288395B2 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
JP4277063B2 (en) Variable nozzle number turbine
US7481056B2 (en) Turbocharger with adjustable throat
EP1888881B1 (en) Variable geometry turbine
EP2191116B1 (en) Multi-stage turbocharger system
US8291703B2 (en) Variable geometry turbine
US10294856B2 (en) VTG turbocharger with wastegate controlled by a common actuator
US20120198837A1 (en) Turbocharger control strategy to increase exhaust manifold pressure
US20130164157A1 (en) Generator arrangement
EP1809871B1 (en) Turbocharger system and control methods for controlling a turbocharger system
JP2013531760A (en) Control device for internal combustion engine
EP1948918B1 (en) Method of controlling a turbocharger having a variable-geometry mechanism and a waste gate
JP2010513777A (en) Multistage turbocharger device
JPS58176417A (en) Variable nozzle control device for turbosupercharger
JP2008231993A (en) Turbine device
SE7603774L (en) CONTROL DEVICE FOR AN EXHAUST-DRIVEN COMPRESSOR
JP2021088966A (en) Communication path mechanism for twin scroll turbo
RU2717198C2 (en) Turbo-supercharger supercharging pressure lever mechanism assembly unit, turbo-supercharger housing for such unit, vehicle or engine comprising such turbo-supercharger unit or housing
JP2004204842A (en) Exhaust gas turbo-charger and manufacturing method for this charger
EP3430240B1 (en) Turbine arrangement
JPH0953470A (en) Exhaust brake device of diesel engine with turbocharger
JP5909954B2 (en) Supercharging assistance system for internal combustion engine, internal combustion engine, and supercharging assistance method for internal combustion engine
JP2007247572A (en) Diesel engine
CN202250369U (en) Multi-valve bypass valve device used for two stage supercharging
JP2003148173A (en) Device for controlling rotation of gas turbine
JPS61190124A (en) Supercharger of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230526

R150 Certificate of patent or registration of utility model

Ref document number: 7288395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150