JP2021070791A - Thermoplastic resin film, and packaging material and packaging bag using the same - Google Patents

Thermoplastic resin film, and packaging material and packaging bag using the same Download PDF

Info

Publication number
JP2021070791A
JP2021070791A JP2019200064A JP2019200064A JP2021070791A JP 2021070791 A JP2021070791 A JP 2021070791A JP 2019200064 A JP2019200064 A JP 2019200064A JP 2019200064 A JP2019200064 A JP 2019200064A JP 2021070791 A JP2021070791 A JP 2021070791A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
polyamide
film
based thermoplastic
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019200064A
Other languages
Japanese (ja)
Other versions
JP7456121B2 (en
Inventor
晴夏 神戸
Haruka Kambe
晴夏 神戸
有紀 野中
Yuki Nonaka
有紀 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2019200064A priority Critical patent/JP7456121B2/en
Publication of JP2021070791A publication Critical patent/JP2021070791A/en
Application granted granted Critical
Publication of JP7456121B2 publication Critical patent/JP7456121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a thermoplastic resin film, a packaging material and a packaging bag which have good heat sealability while maintaining rigidity and impact resistance.SOLUTION: A film for packaging material contains a polyolefin-based thermoplastic resin (A), a copolymer thermoplastic resin (B) and a polyamide-based thermoplastic resin (C). The polyamide-based thermoplastic resin (C) is not present on a surface and a rear face of the film, the polyolefin-based thermoplastic resin (A) and the copolymer thermoplastic resin (B) are mixed or only the polyolefin-based thermoplastic resin (A) is present, and the polyolefin-based thermoplastic resin (A), the copolymer thermoplastic resin (B) and the polyamide-based thermoplastic resin (C) are contained in the following mass ratios: a presence weight ratio (A) of 69-99 wt.%, a presence weight ratio (B) of 0.5-30 wt.%, and a presence weight ratio (C) of 0.5-30 wt.%.SELECTED DRAWING: Figure 1

Description

本発明は、包装材等に使用される熱可塑性樹脂フィルム、これを用いた包装材及び包装袋に関する。 The present invention relates to a thermoplastic resin film used for a packaging material or the like, a packaging material using the thermoplastic resin film, and a packaging bag.

包装材は、たとえば、食料品や医療品等を包装する包装袋に使用されており、包装袋の内容物は、液状、粉末上、ペースト状、固形状等、様々な状態を有している。この包装材に用いられるフィルムとして、一般的にポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリアミド、ポリエステル等のフィルムが使用されている。 The packaging material is used, for example, in a packaging bag for packaging foods, medical products, etc., and the contents of the packaging bag have various states such as liquid, powder, paste, and solid. .. As the film used for this packaging material, films such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyamide, and polyester are generally used.

包装材として求められる物性としては、内容物充填時の充填適性、包装材に外力が加わった際の袋の破損が無い事、包装材を開封する際の開封性、内容物の見える透明性等の物性、ならびに製造時の生産性が良い事が求められる。 Physical characteristics required for packaging materials include filling suitability when filling the contents, no damage to the bag when an external force is applied to the packaging material, openability when opening the packaging material, transparency of the contents, etc. It is required that the physical characteristics of the product and the productivity at the time of manufacturing are good.

バリア性や機械的強度に優れた複数の基材をラミネートし積層することで、包装材の強度を向上させることができるが、接着剤の使用は、包装材製造工程を増やすため、製品の安定性や生産効率低下、環境負荷などの問題に繋がる。 The strength of the packaging material can be improved by laminating and laminating multiple base materials with excellent barrier properties and mechanical strength, but the use of an adhesive increases the packaging material manufacturing process and thus stabilizes the product. It leads to problems such as poor performance, reduced production efficiency, and environmental load.

これらの問題を解決するため、例えばポリエチレンやポリプロピレン等のポリオレフィン系樹脂などに加え、ナイロン等のポリアミド樹脂など性質の異なる複数の樹脂を複合させることで、バリア性、耐衝撃性など、一つのフィルムに多機能を付与する方法が用いられている。例えば、特許文献1、2で示すように、異種材料の複合体であるポリマーアロイが記載されている。 In order to solve these problems, for example, by combining a plurality of resins having different properties such as a polyamide resin such as nylon in addition to a polyolefin resin such as polyethylene and polypropylene, one film having barrier properties and impact resistance can be obtained. A method of imparting multiple functions to the plastic is used. For example, as shown in Patent Documents 1 and 2, a polymer alloy which is a composite of different materials is described.

特開2005−232353号公報Japanese Unexamined Patent Publication No. 2005-223353 特開平11−140237号公報Japanese Unexamined Patent Publication No. 11-14237

しかしながら、特許文献1、2では、ポリアミド樹脂の最大の特徴であるバリア性の機能を発揮するために、表面にポリアミド樹脂とオレフィン系樹脂を混在させており、成形体の表面には少なからずポリアミド樹脂が存在する。フィルム表面に融点が200℃以上のポリアミド樹脂が存在すると、低温でのヒートシール性が見込めない問題がある。包装材料の場合、200℃以下の低温でのヒートシール性が重要である。低温にてヒートシールできない場合、高温にてヒートシールすることになるが、その際に包装材料が熱収縮を生じて寸法ズレの原因となる可能性がある。あるいは高温でヒートシールしてもシール部を冷やすまでに時間がかかり、ライン速度が遅くなることによる生産性の低下が問題になる。また、低温でヒートシール出来たとしても、十分にヒートシール強度が発現しないと、包装袋になった後、外力が加わった際にシール部から破損が生じてしまうこともある。 However, in Patent Documents 1 and 2, a polyamide resin and an olefin resin are mixed on the surface in order to exhibit the barrier function which is the greatest feature of the polyamide resin, and the surface of the molded product is not a little polyamide. There is resin. If a polyamide resin having a melting point of 200 ° C. or higher is present on the film surface, there is a problem that heat sealability at low temperatures cannot be expected. In the case of packaging materials, heat sealability at a low temperature of 200 ° C. or lower is important. If heat sealing cannot be performed at a low temperature, heat sealing is performed at a high temperature, but at that time, the packaging material may undergo heat shrinkage and cause dimensional deviation. Alternatively, even if heat-sealed at a high temperature, it takes time to cool the sealed portion, and the decrease in productivity due to the slowing of the line speed becomes a problem. Further, even if heat sealing can be performed at a low temperature, if the heat sealing strength is not sufficiently developed, the sealing portion may be damaged when an external force is applied after the packaging bag is formed.

そこで、本発明は、包装材に必要な剛性と機械的強度を維持しつつ、ヒートシール性の良好な熱可塑性樹脂フィルム及び、それを用いた包装材、包装袋を提供することを目的とする。 Therefore, an object of the present invention is to provide a thermoplastic resin film having good heat-sealing property, and a packaging material and a packaging bag using the thermoplastic resin film while maintaining the rigidity and mechanical strength required for the packaging material. ..

上記目的を達成するために、本発明に係る熱可塑性樹脂フィルムは、ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)およびポリアミド系熱可塑性樹脂(C)を含む包装材用フィルムであって、共重合体熱可塑性樹脂(B)は、ポリオレフィン系熱可塑性樹脂(A)と異なる樹脂であって、ポリアミド系熱可塑性樹脂(C)と結合し得る反応基を有する樹脂であり、フィルム表面と裏面には、ポリアミド系熱可塑性樹脂(C)が存在せず、ポリオレフィン系熱可塑性樹脂(A)と共重合体熱可塑性樹脂(B)の両方、もしくは、ポリオレフィン系熱可塑性樹脂(A)のみが存在しており、かつ、下記の質量割合でポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)およびポリアミド系熱可塑性樹脂(C)を含有することを特徴とする。
存在重量割合
(A)・・・69〜99wt%
(B)・・・0.5〜30wt%
(C)・・・0.5〜30wt%
ただし、ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)およびポリアミド系熱可塑性樹脂(C)の合計を100wt%とする。
In order to achieve the above object, the thermoplastic resin film according to the present invention is for a packaging material containing a polyolefin-based thermoplastic resin (A), a copolymer thermoplastic resin (B), and a polyamide-based thermoplastic resin (C). In the film, the copolymer thermoplastic resin (B) is a resin different from the polyolefin-based thermoplastic resin (A) and has a reactive group capable of binding to the polyamide-based thermoplastic resin (C). There is no polyamide-based thermoplastic resin (C) on the front and back surfaces of the film, and both the polyolefin-based thermoplastic resin (A) and the copolymer thermoplastic resin (B), or the polyolefin-based thermoplastic resin ( It is characterized in that only A) is present and contains a polyolefin-based thermoplastic resin (A), a copolymer thermoplastic resin (B), and a polyamide-based thermoplastic resin (C) in the following mass ratios. To do.
Existence weight ratio (A): 69 to 99 wt%
(B) ・ ・ ・ 0.5 to 30 wt%
(C) ・ ・ ・ 0.5 to 30 wt%
However, the total of the polyolefin-based thermoplastic resin (A), the copolymer-based thermoplastic resin (B), and the polyamide-based thermoplastic resin (C) is 100 wt%.

本発明によれば、包装材に必要な剛性と機械的強度を維持しつつ、ヒートシール性の良好な熱可塑性樹脂フィルム及び、それを用いた包装材、包装袋を提供できる。 According to the present invention, it is possible to provide a thermoplastic resin film having good heat-sealing property, and a packaging material and a packaging bag using the thermoplastic resin film while maintaining the rigidity and mechanical strength required for the packaging material.

本発明における包装材用積層フィルムの概略断面図である。It is the schematic sectional drawing of the laminated film for a packaging material in this invention. 本発明の包装材を用いたスタンディングパウチの断面図である。It is sectional drawing of the standing pouch using the packaging material of this invention. 本発明の包装材を用いたスタンディングパウチの展開図である。It is a development view of the standing pouch using the packaging material of this invention.

以下、本発明の実施形態について説明する。なお、各図は模式的に示した図であり、各部の大きさや形状等は理解を容易にするために適宜誇張して示している。また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は構成部品の材質、形状、構造等が下記のものに限定されるものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described. It should be noted that each figure is a diagram schematically shown, and the size and shape of each part are exaggerated as appropriate for easy understanding. Further, the embodiments shown below exemplify a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention includes the following materials, shapes, structures, etc. of the constituent parts. It is not limited to. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

本発明における熱可塑性樹脂フィルム1は図1で示すように、耐衝撃性に特化したポリオレフィン系熱可塑性樹脂(A)から成る連続相2と、剛性に特化したポリアミド系熱可塑性樹脂(C)から成る分散相3と、共重合体樹脂(B)からなり、分散相3を包み込むように存在し、化学的相性が悪いポリオレフィン系樹脂とポリアミド樹脂の親和性を向上させる役目を担う熱可塑性樹脂4を含有することを特徴とした押出成形フィルムである。 As shown in FIG. 1, the thermoplastic resin film 1 in the present invention has a continuous phase 2 made of a polyolefin-based thermoplastic resin (A) specialized in impact resistance and a polyamide-based thermoplastic resin (C) specialized in rigidity. ) And the copolymer resin (B), which exist so as to enclose the dispersed phase 3 and play a role of improving the affinity between the polyolefin resin and the polyamide resin having poor chemical compatibility. It is an extrusion-molded film characterized by containing resin 4.

熱可塑性樹脂フィルム1は、ポリアミド系熱可塑性樹脂を含んでいるが、成形体フィルム表面にはオレフィン系熱可塑性樹脂、もしくは熱可塑性樹脂4が存在していることから、包装材用フィルムとして必要不可欠なヒートシール性を低下させることなく付与することができる。さらに、ポリオレフィン系熱可塑性樹脂にポリアミド系熱可塑性樹脂を混在させることで、ポリオレフィン系熱可塑性樹脂の本来有する耐衝撃性を維持しつつ、ポリアミド系熱可塑性樹脂の本来有する剛性を付与することができる。 The thermoplastic resin film 1 contains a polyamide-based thermoplastic resin, but since the olefin-based thermoplastic resin or the thermoplastic resin 4 is present on the surface of the molded film, it is indispensable as a film for packaging materials. It can be imparted without deteriorating the heat-sealing property. Further, by mixing the polyamide-based thermoplastic resin with the polyolefin-based thermoplastic resin, it is possible to impart the inherent rigidity of the polyamide-based thermoplastic resin while maintaining the inherent impact resistance of the polyolefin-based thermoplastic resin. ..

ポリオレフィン系熱可塑性樹脂(A)から成る連続相2の主材料としては、340℃まで加温可能な押出成形機により製膜されるため、一般的な熱可塑性樹脂であれば使用する事が可能であるが、包装材料として好適に使用されるためには適度な柔軟性を持ちならびに加工性が良い必要がある。ポリオレフィン系熱可塑性樹脂(A)は、オレフィン由来の構成単位を有するポリマーであれば良く、オレフィンをベースとした、低密度ポリエチレン(LDPE)、α-オレフィンとエチレンを共重合した直鎖状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、ホモポリマー、ランダムコポリマー、ブロックコポリマー等があるポリプロピレン、シクロオレフィンポリマー、シクロオレフィンとオレフィンを共重合したシクロオレフィンコポリマー及び、上記オレフィンと酢酸ビニルを共重合して得られるエチレン−酢酸ビニルコポリマーやオレフィンの側鎖を変性して得られる、エチレン−メチルアクリレート共重合(EMA)、エチレン−エチルアクリレート共重合体(EEA)、エチレン−ブチルアクリレート共重合体(EBA)、エチレン−メタクリル酸共重合体(EMAA)等のうち単体並びに複数を選択し適宜使用する事が可能である。 Since the main material of the continuous phase 2 made of the polyolefin-based thermoplastic resin (A) is formed by an extrusion molding machine capable of heating up to 340 ° C., any general thermoplastic resin can be used. However, in order to be suitably used as a packaging material, it is necessary to have appropriate flexibility and good workability. The polyolefin-based thermoplastic resin (A) may be a polymer having a structural unit derived from an olefin, and may be an olefin-based low-density polyethylene (LDPE) or a linear low-density copolymer of α-olefin and ethylene. Polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), homopolymers, random copolymers, block copolymers and the like, polypropylenes, cycloolefin polymers, cycloolefin copolymers copolymerized with cycloolefins and olefins, and the above. Ethylene-vinyl acetate copolymer obtained by copolymerizing olefin and vinyl acetate, ethylene-methyl acrylate copolymer (EMA) obtained by modifying the side chain of olefin, ethylene-ethyl acrylate copolymer (EEA), ethylene It is possible to select one or more of the −butyl acrylate copolymer (EBA), the ethylene-methacrylic acid copolymer (EMAA) and the like and use them as appropriate.

ポリアミド系熱可塑性樹脂(C)から成る分散相3については、一般に強度があり耐熱性やバリア性の高い汎用樹脂として知られており、包装材用のフィルムに含まれる材料として公的なものである。具体的には、アミド結合(−NH−CO−)を介して複数の単量体が重合されてなる鎖状骨格を有する重合体である。前記熱可塑性樹脂の好ましいポリアミドとしては、例えば、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド610、ポリアミド612、ポリアミド614、ポリアミド12、ポリアミド6T(Tはテレフタル酸成分)、ポリアミド6I(Iはイソフタル酸成分)、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミドMXD6、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド6T/6I/66、ポリアミド6T/2M−5T、ポリアミド9T/2M−8T等が挙げられる。尚、これらのポリアミドは、1種単独で用いてもよいし、2種以上を組み合わせても良い。これらのポリアミド系熱可塑性樹脂の製造方法は、一般に公知に行われている方法で良い。 The dispersed phase 3 made of a polyamide-based thermoplastic resin (C) is generally known as a general-purpose resin having high strength, high heat resistance, and high barrier properties, and is a public material contained in a film for packaging materials. is there. Specifically, it is a polymer having a chain-like skeleton in which a plurality of monomers are polymerized via an amide bond (-NH-CO-). Preferred polyamides for the thermoplastic resin include, for example, polyamide 6, polyamide 66, polyamide 11, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T (T is a terephthalic acid component), and polyamide 6I (I is isophthalic acid). Ingredients), Polyamide 9T, Polyamide M5T, Polyamide 1010, Polyamide 1012, Polyamide 10T, Polyamide MXD6, Polyamide 6T / 66, Polyamide 6T / 6I, Polyamide 6T / 6I / 66, Polyamide 6T / 2M-5T, Polyamide 9T / 2M- 8T and the like can be mentioned. These polyamides may be used alone or in combination of two or more. As a method for producing these polyamide-based thermoplastic resins, a generally known method may be used.

熱可塑性樹脂4は、連続相2を構成するポリオレフィン系熱可塑性樹脂(A)とは異なる樹脂であって、前記ポリアミド系熱可塑性樹脂(C)と結合し得る反応基が付与された分子構造からなる共重合体熱可塑性樹脂であり、ポリアミド系熱可塑性樹脂分子中のアミド基と水素結合するカルボニル基(C=O)または水酸基(OH)等を含み、化学的相性が悪いオレフィン系樹脂とポリアミド樹脂の親和性を向上させる役目を担う相溶化剤として機能する。相溶化剤として機能する熱可塑性樹脂4としては、エチレン−メチルアクリレート共重合体(EMA)、エチレン−エチルアクリレート共重合体(EEA)、エチレン−ブチルアクリレート共重合体(EBA)エチレン・ビニルアルコール共重合体(EVOH)、エチレン−メタクリル酸共重合体(EMAA)等が挙げられる。 The thermoplastic resin 4 is a resin different from the polyolefin-based thermoplastic resin (A) constituting the continuous phase 2, and has a molecular structure to which a reactive group capable of binding to the polyamide-based thermoplastic resin (C) is added. This is a copolymer thermoplastic resin, which contains a carbonyl group (C = O) or a hydroxyl group (OH) that hydrogen-bonds to an amide group in a polyamide-based thermoplastic resin molecule, and has poor chemical compatibility with an olefin-based resin and polyamide. It functions as a compatibilizer that plays a role in improving the affinity of the resin. Examples of the thermoplastic resin 4 that functions as a compatibilizer include ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), and ethylene-butyl acrylate copolymer (EBA) ethylene / vinyl alcohol. Examples thereof include a polymer (EVOH) and an ethylene-methacrylic acid copolymer (EMAA).

化学的相性に関しては様々な測定および評価方法があるが、その中でも表面自由エネルギーにて相性の良しあしを判断することも可能であって、具体的には表面自由エネルギーの値を比較して判断したり、さらには表面自由エネルギーを構成する分散成分(γd)、配向成分(γp)、水素結合力(γh)に成分分けした際のγpを1つの指標として判断したりすることも出来る。 There are various measurement and evaluation methods for chemical compatibility, but among them, it is also possible to judge whether the compatibility is good or bad by the surface free energy, and specifically, it is judged by comparing the value of the surface free energy. Further, it is also possible to judge as one index the γp when the components are divided into the dispersion component (γd), the orientation component (γp), and the hydrogen bonding force (γh) that constitute the surface free energy.

化学的相性が悪い樹脂のみを混合してフィルムにした場合には、例えば衝撃を与えた際に2つの樹脂界面で剥離が生じ、良好な弾性率と耐衝撃性を両立することや、さらには耐屈曲性を担保することが難しい。そのため、熱可塑性樹脂4の表面自由エネルギーを構成する極性成分(γp)が、ポリオレフィン系樹脂とポリアミド樹脂とのγpの差の中間値から±1/3以内であれば、熱可塑性樹脂4がオレフィン系樹脂とポリアミド樹脂の親和性を向上させる役目を担うことで相の界面の密着力を上げ、物性良化に寄与することが出来る。 When only resins with poor chemical compatibility are mixed to form a film, for example, when an impact is applied, peeling occurs at the interface between the two resins, achieving both good elastic modulus and impact resistance, and further. It is difficult to ensure bending resistance. Therefore, if the polar component (γp) constituting the surface free energy of the thermoplastic resin 4 is within ± 1/3 from the intermediate value of the difference in γp between the polyolefin resin and the polyamide resin, the thermoplastic resin 4 is an olefin. By playing the role of improving the affinity between the based resin and the polyamide resin, it is possible to increase the adhesion at the interface of the phase and contribute to the improvement of physical properties.

前記ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)、ポリアミド系熱可塑性樹脂(C)以外に、造核剤、補強フィラー、酸化防止剤、熱安定剤、耐候剤、光安定剤、可塑剤、紫外線吸収剤、帯電防止剤、難燃剤、難燃助剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、分散剤、銅害防止剤、中和剤、気泡防止剤、ウェルド強度改良剤、天然油、合成油、ワックス等の添加材を用いても良い。これらは1種のみを用いてもよく2種以上を併用してもよい。 In addition to the polyolefin-based thermoplastic resin (A), copolymer thermoplastic resin (B), and polyamide-based thermoplastic resin (C), a nucleating agent, a reinforcing filler, an antioxidant, a heat stabilizer, a weather resistant agent, and light Stabilizers, plasticizers, UV absorbers, antistatic agents, flame retardants, flame retardants, slip agents, anti-blocking agents, antifogging agents, lubricants, pigments, dyes, dispersants, copper damage inhibitors, neutralizers , Anti-bubble agent, weld strength improver, natural oil, synthetic oil, wax and other additives may be used. Only one of these may be used, or two or more thereof may be used in combination.

上記造核剤及び補強フィラーとしては、タルク、シリカ、クレー、モンモリロナイト、炭酸カルシウム、炭酸リチウムアルミナ、酸化チタン、アルミニウム、鉄、銀、銅等の金属、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、セルロースミクロフィブリル、酢酸セルロース等のセルロース類、ガラス繊維、ポリエチレンテレフタレート繊維、ナイロン繊維、ポリエチレンナフタレート繊維、アラミド繊維、ビニロン繊維、ポリアリレート繊維等の繊維状フィラー、カーボンナノチューブ等のカーボン類等が挙げられる。 Examples of the nucleating agent and reinforcing filler include metals such as talc, silica, clay, montmorillonite, calcium carbonate, lithium alumina carbonate, titanium oxide, aluminum, iron, silver and copper, and hydroxides such as aluminum hydroxide and magnesium hydroxide. Things, cellulose microfibrils, celluloses such as cellulose acetate, glass fibers, polyethylene terephthalate fibers, nylon fibers, polyethylene naphthalate fibers, aramid fibers, vinylon fibers, fibrous fillers such as polyarylate fibers, carbons such as carbon nanotubes, etc. Can be mentioned.

上記酸化防止剤としては、フェノール系化合物、有機ホスファイト系化合物、チオエーテル系化合物等が挙げられる。 Examples of the antioxidant include phenolic compounds, organic phosphite compounds, thioether compounds and the like.

上記熱安定剤としては、ヒンダードアミン系化合物等が挙げられる。 Examples of the heat stabilizer include hindered amine compounds.

上記紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ベンゾエート系化合物等が挙げられる。 Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, benzoate compounds and the like.

上記帯電防止剤としては、ノニオン系化合物、カチオン系化合物、アニオン系化合物等が挙げられる。 Examples of the antistatic agent include nonionic compounds, cationic compounds, anionic compounds and the like.

上記難燃剤としては、ハロゲン系化合物、リン系化合物、窒素系化合物、無機化合物、ホウ素系化合物、シリコーン系化合物、硫黄系化合物、赤リン系化合物等が挙げられる。 Examples of the flame retardant include halogen-based compounds, phosphorus-based compounds, nitrogen-based compounds, inorganic compounds, boron-based compounds, silicone-based compounds, sulfur-based compounds, and red phosphorus-based compounds.

上記難燃助剤としては、アンチモン化合物、亜鉛化合物、ビスマス化合物、水酸化マグ
ネシウム、粘土質珪酸塩等が挙げられる。
Examples of the flame retardant aid include antimony compounds, zinc compounds, bismuth compounds, magnesium hydroxide, clay silicates and the like.

ポリオレフィン系熱可塑性樹脂(A)の配合量は、ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)及びポリアミド系熱可塑性樹脂(C)の合計の69〜99wt%の範囲内が好ましく、より好ましくは、85〜99wt%の範囲内である。ポリオレフィン系熱可塑性樹脂(A)の配合量が99wt%を超えると、剛性の高いポリアミド系熱可塑性樹脂(C)の配合量が減少し、フィルム全体の剛性が低下することで、フィルムを包装材に用いたときの自立性が低下する。 The blending amount of the polyolefin-based thermoplastic resin (A) is within the range of 69 to 99 wt% of the total of the polyolefin-based thermoplastic resin (A), the copolymer thermoplastic resin (B), and the polyamide-based thermoplastic resin (C). Is preferable, and more preferably, it is in the range of 85 to 99 wt%. When the blending amount of the polyolefin-based thermoplastic resin (A) exceeds 99 wt%, the blending amount of the highly rigid polyamide-based thermoplastic resin (C) decreases, and the rigidity of the entire film decreases, thereby packaging the film. Independence is reduced when used in.

共重合体熱可塑性樹脂(B)の配合量は、ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)及びポリアミド系熱可塑性樹脂(C)の合計の0.5〜30wt%の範囲内が好ましく、より好ましくは0.5〜10wt%の範囲内である。共重合体熱可塑性樹脂(B)の配合量が30wt%を超えると、フィルム全体の剛性が低下することで、フィルムを包装材に用いたときの自立性が低下する。また、共重合体熱可塑性樹脂(B)の配合量が0.5wt%未満であると、ポリオレフィン系熱可塑性樹脂(A)とポリアミド系熱可塑性樹脂(C)の相溶性が低下し、ポリアミド系熱可塑性樹脂(C)の分散サイズが大きくなり、かつ、ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)及びポリアミド系熱可塑性樹脂(C)を複合した場合、成形品の表面に融点の高いポリアミド系熱可塑性樹脂(C)が露出し、ヒートシール性を低下させる恐れがある。 The blending amount of the copolymer thermoplastic resin (B) is 0.5 to 30 wt% of the total of the polyolefin-based thermoplastic resin (A), the copolymer thermoplastic resin (B), and the polyamide-based thermoplastic resin (C). It is preferably in the range of 0.5 to 10 wt%, more preferably in the range of 0.5 to 10 wt%. When the blending amount of the copolymer thermoplastic resin (B) exceeds 30 wt%, the rigidity of the entire film is lowered, so that the self-supporting property when the film is used as a packaging material is lowered. Further, when the blending amount of the copolymer thermoplastic resin (B) is less than 0.5 wt%, the compatibility between the polyolefin-based thermoplastic resin (A) and the polyamide-based thermoplastic resin (C) is lowered, and the polyamide-based When the dispersion size of the thermoplastic resin (C) becomes large and the polyolefin-based thermoplastic resin (A), the copolymer thermoplastic resin (B) and the polyamide-based thermoplastic resin (C) are combined, the molded product The polyamide-based thermoplastic resin (C) having a high melting point may be exposed on the surface, which may reduce the heat sealability.

ポリアミド系熱可塑性樹脂(C)の配合量は、0.5〜30wt%の範囲内が好ましく、より好ましくは1〜10wt%の範囲内が好ましい。ポリアミド系熱可塑性樹脂(C)の配合量が30wt%を超えると、ポリアミド系熱可塑性樹脂(C)のドメインサイズが大きくなり、本来ポリアミド系熱可塑性樹脂(C)の微分散化により得られる耐衝撃性が低下する。30wt%を超えるポリアミド系熱可塑性樹脂(C)を微分散化するためには、例えば二軸押出機を用いた加工工程であると、混練量、つまり、二軸押出機回転数を増加させなければならず、それに伴うトルク負荷が上昇する恐れがある。また、ポリアミド系熱可塑性樹脂(C)の配合量増加に伴い、ポリオレフィン系熱可塑性樹脂(A)とポリアミド系熱可塑性樹脂(C)の化学的相性を取り持つ共重合体熱可塑性樹脂(B)の配合量を増加しなければならず、前述のように、剛性の低い共重合体熱可塑性樹脂(B)の配合量を増加すると、フィルム全体の剛性が低下する。また、弾性率の高いポリアミド系熱可塑性樹脂(C)の配合量が0.5wt%未満であっても、フィルム全体の剛性が低下する恐れがある。 The blending amount of the polyamide-based thermoplastic resin (C) is preferably in the range of 0.5 to 30 wt%, more preferably in the range of 1 to 10 wt%. When the blending amount of the polyamide-based thermoplastic resin (C) exceeds 30 wt%, the domain size of the polyamide-based thermoplastic resin (C) becomes large, and the resistance originally obtained by finely dispersing the polyamide-based thermoplastic resin (C). Impact resistance is reduced. In order to finely disperse the polyamide-based thermoplastic resin (C) exceeding 30 wt%, for example, in the processing process using a twin-screw extruder, the kneading amount, that is, the rotation speed of the twin-screw extruder must be increased. Therefore, the torque load may increase accordingly. Further, as the blending amount of the polyamide-based thermoplastic resin (C) increases, the copolymer thermoplastic resin (B) having a chemical compatibility between the polyolefin-based thermoplastic resin (A) and the polyamide-based thermoplastic resin (C) The blending amount must be increased, and as described above, increasing the blending amount of the low-rigidity copolymer thermoplastic resin (B) reduces the rigidity of the entire film. Further, even if the blending amount of the polyamide-based thermoplastic resin (C) having a high elastic modulus is less than 0.5 wt%, the rigidity of the entire film may decrease.

具体的な熱可塑性樹脂フィルム1の剛性は、JISK7113記載の方法に準拠し、引張弾性率が350MPa以上であることが好ましい。熱可塑性樹脂フィルム1の引張弾性率が350MPa未満であると、熱可塑性樹脂フィルム1を包装材として用いた場合、袋形態での自立性が低下する恐れがある。 The specific rigidity of the thermoplastic resin film 1 conforms to the method described in JIS K7113, and the tensile elastic modulus is preferably 350 MPa or more. If the tensile elastic modulus of the thermoplastic resin film 1 is less than 350 MPa, the self-supporting property in the bag form may decrease when the thermoplastic resin film 1 is used as a packaging material.

また、具体的な熱可塑性樹脂フィルム1の耐衝撃性は、常温下での破断エネルギーが7.4E−03J/μm以上であることが好ましい。熱可塑性樹脂フィルム1の破断エネルギーが7.4E−03J/μm未満であると、熱可塑性樹脂フィルム1を包装材として用いた場合、落下衝撃を受けた際に破損してしまう恐れがある。 Further, as for the impact resistance of the specific thermoplastic resin film 1, it is preferable that the breaking energy at room temperature is 7.4E-03J / μm or more. If the breaking energy of the thermoplastic resin film 1 is less than 7.4E-03J / μm, when the thermoplastic resin film 1 is used as a packaging material, it may be damaged when it receives a drop impact.

また、具体的な熱可塑性樹脂フィルム1のヒートシール性は、シール圧力0.2MPa、シール時間を1秒、シール幅を10mm、シール温度を130℃としてシール層同士をシールし、シールしたフィルムを15mm幅×100mmに切り出し、チャック間距離を50mm、引張り速度を300mm/minにて引張試験機で180°剥離法にて評価したときに10N以上であることが好ましい。熱可塑性樹脂フィルム1のシール強度が10N以下であった場合、包装袋になったときに外力が加わった際にシール部から破損が生じてしまうことがある。 The specific heat-sealing property of the thermoplastic resin film 1 is that the sealing pressure is 0.2 MPa, the sealing time is 1 second, the sealing width is 10 mm, and the sealing temperature is 130 ° C. It is preferably 10 N or more when evaluated by a 180 ° peeling method with a tensile tester at a width of 15 mm × 100 mm, a distance between chucks of 50 mm, and a tensile speed of 300 mm / min. If the sealing strength of the thermoplastic resin film 1 is 10 N or less, the sealed portion may be damaged when an external force is applied to the packaging bag.

また、ポリオレフィン系熱可塑性樹脂(A)に低密度樹脂を用いることでヒートシール性を良好にすることができる。このとき、低温ヒートシール性をもたせるために、ポリオレフィン系熱可塑性樹脂(A)は、0.924g/cm以下の密度であることが望ましいいが、0.903g/cm以下にすると、他の樹脂と共押出成膜した場合に他層との層境界での密着不良やフローマークが発生してしまうので望ましくない。また、ポリオレフィン系熱可塑性樹脂(A)の密度を0.938g/cm以上にすると、層厚みが薄い場合に低温ヒートシール性が得られることがなくなってしまうため望ましくない。 Further, by using a low density resin for the polyolefin-based thermoplastic resin (A), the heat sealability can be improved. At this time, it is desirable that the polyolefin-based thermoplastic resin (A) has a density of 0.924 g / cm 3 or less in order to have low-temperature heat-sealing property, but if it is 0.903 g / cm 3 or less, other When coextruded with the resin of No. 1 in the above, poor adhesion and flow marks occur at the layer boundary with other layers, which is not desirable. Further, if the density of the polyolefin-based thermoplastic resin (A) is 0.938 g / cm 3 or more, low-temperature heat-sealing property cannot be obtained when the layer thickness is thin, which is not desirable.

また、ポリアミド系熱可塑性樹脂(C)の分散サイズは、フィルムMD方向(流れ方向)について日立ハイテクノロジーズ製走査型電子顕微鏡(形式「S−4800」)により分散相の形状を観察し、倍率1000倍の画像を得た後、画像内の無作為に選択した20個の分散相の各々の画像内の無作為に選択した20個の分散相の長軸分散径と単軸分散径平均値を算出し、長軸分散径と単軸分散径の比(=長軸分散径/単軸分散径)が10.0以下が好ましい。ここでの分散サイズは、ポリアミド系熱可塑性樹脂(C)単独の分散相のサイズである。 As for the dispersion size of the polyamide-based thermoplastic resin (C), the shape of the dispersed phase was observed with a scanning electron microscope (type "S-4800") manufactured by Hitachi High Technologies in the film MD direction (flow direction), and the magnification was 1000. After obtaining a double image, the major and uniaxial dispersion diameters of the 20 randomly selected dispersion phases in each of the 20 randomly selected dispersion phases in the image are averaged. It is preferable that the ratio of the long-axis dispersion diameter to the single-axis dispersion diameter (= long-axis dispersion diameter / single-axis dispersion diameter) is 10.0 or less. The dispersion size here is the size of the dispersion phase of the polyamide-based thermoplastic resin (C) alone.

本実施形態の熱可塑性樹脂フィルム1を製作する方法は特に制限されるものではなく、公知の方法を使用することが可能である。 The method for producing the thermoplastic resin film 1 of the present embodiment is not particularly limited, and a known method can be used.

フィルム化の方法としては、押出成形機、ならびにフィードブロックまたはマルチマニホールドを介しTダイで製膜する方法や、インフレーション法を用いた製膜方法を用いる事が可能である。このとき、例えば、複数の押出成形機を使用し、本発明に係る熱可塑性樹脂の混合物と他の熱可塑性樹脂とを共押出することで、本発明に係る熱可塑性樹脂フィルム1に他の熱可塑性樹脂の層が積層された2層以上の層構成を有するフィルムを得ることもできる。 As a film forming method, it is possible to use an extrusion molding machine, a method of forming a film with a T-die via a feed block or a multi-manifold, and a film forming method using an inflation method. At this time, for example, by using a plurality of extrusion molding machines and co-extruding the mixture of the thermoplastic resin according to the present invention and another thermoplastic resin, another heat is applied to the thermoplastic resin film 1 according to the present invention. It is also possible to obtain a film having a layer structure of two or more layers in which layers of a plastic resin are laminated.

フィルムの冷却方法に関しては、上述成形機に準じて使用する事が可能であり、例えばTダイ法では、エアーチャンバー、バキュームチャンバー、エアナイフ等の空冷方式、冷水パンへ冷却ロールをディッピングする等の水冷方式等特に制限されることはないが、賦形による表面凹凸形状を付与する場合には、シリコーンゴム、NBRゴム、またはフッ素樹脂等を加工したニップロールと、金属を切削加工した冷却ロールとを0.1MPa以上の圧力を印加した接触部に溶融樹脂を流入し、冷却する方式が特に好ましい。 The film can be cooled according to the above-mentioned molding machine. For example, in the T-die method, an air cooling method such as an air chamber, a vacuum chamber, or an air knife, or water cooling such as dipping a cooling roll into a cold water pan is used. The method is not particularly limited, but in the case of imparting a surface uneven shape by shaping, the nip roll processed with silicone rubber, NBR rubber, fluorine resin, etc. and the cooling roll processed by cutting metal are set to 0. A method of inflowing the molten resin into the contact portion to which a pressure of 1 MPa or more is applied to cool the contact portion is particularly preferable.

本発明によって得られる熱可塑性樹脂フィルムにおいて、単体フィルムで、または、他基材と積層して包装材とすることができる。単体フィルムまたは積層体として用いる場合、図2、3に示すスタンディングパウチの他に、三方袋、合掌袋、ガゼット袋、スパウト付きパウチ、ビーク付きパウチ等に用いる事が可能である。また、包装袋の製袋様式は特に制限されるものではない。 In the thermoplastic resin film obtained by the present invention, it can be used as a single film or laminated with another base material to form a packaging material. When used as a single film or a laminated body, in addition to the standing pouches shown in FIGS. 2 and 3, it can be used for a three-sided bag, a gassho bag, a gusset bag, a pouch with a spout, a pouch with a beak, and the like. Further, the bag making style of the packaging bag is not particularly limited.

上述の様に、単体フィルム及び他基材と積層するどちらの場合でも、適宜、後工程適性を向上する表面改質処理を実施する事が可能である。例えば、単体フィルム使用時の印刷適性向上、積層使用時のラミネート適性向上のために他基材と接触する面に対して表面改質処理を行う事が可能である。表面改質処理はコロナ放電処理、プラズマ処理、フレーム処理等のフィルム表面を酸化させる事により官能基を発現させる手法や、易接着層のコーティング等のウェットプロセスによる改質を好適に用いる事が可能である。 As described above, in either case of laminating with a single film or another base material, it is possible to appropriately carry out a surface modification treatment for improving the suitability for the post-process. For example, it is possible to perform surface modification treatment on the surface in contact with another base material in order to improve the printability when using a single film and to improve the laminate suitability when using a laminated film. As the surface modification treatment, it is possible to preferably use a method of expressing a functional group by oxidizing the film surface such as corona discharge treatment, plasma treatment, frame treatment, or a modification by a wet process such as coating of an easy-adhesion layer. Is.

以下、本発明の実施例について詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to the following examples.

<実施例1>
[1]第一工程(熱可塑性樹脂組成物の生成)
ポリオレフィン系熱可塑性樹脂(A)に用いる樹脂として、直鎖状低密度ポリエチレン樹脂(密度0.93g/cm、MFR3.2)及び低密度ポリエチレン樹脂(密度0.924g/cm、MFR1.0)を質量比で95:5の割合でブレンドしたものを70wt%、共重合体熱可塑性樹脂(B)として、ポリアミド系熱可塑性樹脂と結合し得る反応基を持つエチレン−酢酸ビニル共重合体(EVA)を20wt%、ポリアミド系熱可塑性樹脂(C)として、ポリアミド樹脂(ナイロン6樹脂、密度1.14g/cm)10wt%とをドライブレンドした後、二軸溶融混練押出機に投入し、混練温度230℃、押出速度3.4kg/h、押出機回転数30rpmの条件で溶融混練を行い、ペレタイザーを介して、第一工程組成物であるペレットを得た。
[2]第二工程(評価用フィルムの製膜)
上記[1]で得られたペレットを単軸押出機に投入し、成形温度230℃でTダイキャスト法にて厚み100μmのフィルムを製膜した。
<Example 1>
[1] First step (production of thermoplastic resin composition)
As the resin used for the polyolefin thermoplastic resin (A), linear low density polyethylene resin (density 0.93g / cm 3, MFR3.2) and low-density polyethylene resin (density 0.924g / cm 3, MFR1.0 ) Is blended in a mass ratio of 95: 5, and 70 wt% is used as the copolymer thermoplastic resin (B), which is an ethylene-vinyl acetate copolymer having a reactive group capable of binding to a polyamide-based thermoplastic resin (). EVA) is 20 wt%, and as a polyamide-based thermoplastic resin (C), a polyamide resin (nylon 6 resin, density 1.14 g / cm 3 ) 10 wt% is dry-blended, and then charged into a twin-screw melt-kneading extruder. Melt kneading was carried out under the conditions of a kneading temperature of 230 ° C., an extrusion speed of 3.4 kg / h, and an extruder rotation speed of 30 rpm to obtain pellets as the first step composition via a pelletizer.
[2] Second step (film formation of evaluation film)
The pellet obtained in the above [1] was put into a single-screw extruder, and a film having a thickness of 100 μm was formed by a T-die casting method at a molding temperature of 230 ° C.

<実施例2>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を80wt%、(B)を10wt%、(C)を10wt%とし、実施例2のフィルムを得た。
<Example 2>
In the same production method as in Example 1, the material blend blending amount in the first step was 80 wt% for (A), 10 wt% for (B), and 10 wt% for (C) to obtain the film of Example 2.

<実施例3>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を99wt%、(B)を0.5wt%、(C)を0.5wt%とし、実施例3のフィルムを得た。
<Example 3>
In the same production method as in Example 1, the material blend blending amount in the first step was 99 wt% for (A), 0.5 wt% for (B), and 0.5 wt% for (C), and the film of Example 3 was formed. Got

<実施例4>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を85.5wt%、(B)を0.5wt%、(C)を10wt%とし、実施例4のフィルムを得た。
<Example 4>
In the same production method as in Example 1, the material blend blending amount in the first step was 85.5 wt% for (A), 0.5 wt% for (B), and 10 wt% for (C), and the film of Example 4 was formed. Got

<実施例5>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を69wt%、(B)を30wt%、(C)を1wt%とし、実施例5のフィルムを得た。
<Example 5>
In the same production method as in Example 1, the material blend blending amount in the first step was 69 wt% for (A), 30 wt% for (B), and 1 wt% for (C) to obtain the film of Example 5.

<実施例6>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を69wt%、(B)を1wt%、(C)を30wt%とし、実施例6のフィルムを得た。
<Example 6>
In the same production method as in Example 1, the material blend blending amount in the first step was 69 wt% for (A), 1 wt% for (B), and 30 wt% for (C) to obtain the film of Example 6.

<比較例1>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を60wt%、(B)を30wt%、(C)を10wt%とし、比較例1のフィルムを得た。
<Comparative example 1>
In the same production method as in Example 1, the material blend blending amount in the first step was 60 wt% for (A), 30 wt% for (B), and 10 wt% for (C) to obtain a film of Comparative Example 1.

<比較例2>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を100wt%とし、比較例2のフィルムを得た。
<Comparative example 2>
In the same production method as in Example 1, the material blend compounding amount in the first step was set to 100 wt% in (A), and the film of Comparative Example 2 was obtained.

<比較例3>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を90wt%、(C)を10wt%とし、比較例3のフィルムを得た。
<Comparative example 3>
In the same production method as in Example 1, the material blend blending amount in the first step was 90 wt% for (A) and 10 wt% for (C) to obtain a film of Comparative Example 3.

<比較例4>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を50wt%、(B)を40wt%、(C)を10wt%とし、比較例4のフィルムを得た。
<Comparative example 4>
In the same production method as in Example 1, the material blend blending amount in the first step was 50 wt% for (A), 40 wt% for (B), and 10 wt% for (C) to obtain the film of Comparative Example 4.

<比較例5>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を90wt%、(B)を10wt%とし、比較例5のフィルムを得た。
<Comparative example 5>
In the same production method as in Example 1, the material blend blending amount in the first step was 90 wt% for (A) and 10 wt% for (B) to obtain a film of Comparative Example 5.

<比較例6>
実施例1と同様の作製方法において、第一工程における材料ブレンド配合量を(A)を50wt%、(B)を10wt%とし、(C)を40wt%とし比較例6のフィルムを得た。
<Comparative Example 6>
In the same production method as in Example 1, the material blend compounding amount in the first step was 50 wt% for (A), 10 wt% for (B), and 40 wt% for (C) to obtain the film of Comparative Example 6.

上記各実施例及び各比較例によって得られた熱可塑性樹脂フィルム1について剛性と耐衝撃性、ヒートシール性、さらに、フィルム中の材料複合状態確認として、走査型電子顕微鏡(SEM)により連続相および分散相形状観察を行った。評価結果を表1に示す。 The thermoplastic resin film 1 obtained in each of the above Examples and Comparative Examples has rigidity, impact resistance, heat sealability, and a continuous phase and a continuous phase by a scanning electron microscope (SEM) for confirming the material composite state in the film. The shape of the dispersed phase was observed. The evaluation results are shown in Table 1.

(引張弾性率評価)
引張弾性率評価では、フィルムを15mm幅×100mmに切出し、JISK7113に準じて、チャック間距離を50mm、引張り速度を300mm/minとして島津製作所株式会社製引張試験機(型番AGS−500NX)を用いて、引張弾性率を測定した。引張弾性率とフィルムの断面積の積が400MPa以上のものを〇、400MPa未満350MPa以上のものを△、それ以外のものを×とした。
(Evaluation of tensile modulus)
In the evaluation of tensile elastic modulus, a film was cut into a width of 15 mm × 100 mm, and a tensile tester manufactured by Shimadzu Corporation (model number AGS-500NX) was used with a distance between chucks of 50 mm and a tensile speed of 300 mm / min according to JIS K7113. , The tensile modulus was measured. The product of the tensile elastic modulus and the cross-sectional area of the film of 400 MPa or more was evaluated as ◯, the product of less than 400 MPa and 350 MPa or more was evaluated as Δ, and the other products were evaluated as ×.

(耐衝撃性率評価)
耐衝撃性評価では、フィルムを幅100mmに切り出し、測定温度を23℃、ひょう量3.0j、弾頭1/2インチとして、株式会社東洋精機製作所製フィルムインパクトテスター(型式 R)を用いて、破断エネルギーを測定した。破断エネルギーが10.0E−03J/μm以上のものを〇、10.0E−03J/μm未満7.4E−03J/μm以上のものを△、それ以外のものを×とした。
(Impact resistance rate evaluation)
In the impact resistance evaluation, the film was cut into a width of 100 mm, the measurement temperature was 23 ° C, the capacity was 3.0 j, the bullet was 1/2 inch, and the film was broken using a film impact tester (model R) manufactured by Toyo Seiki Seisakusho Co., Ltd. The energy was measured. Those having a breaking energy of 10.0E-03J / μm or more were evaluated as 〇, those having a breaking energy of less than 10.0E-03J / μm and having a breaking energy of 7.4E-03J / μm or more were evaluated as Δ, and those having a breaking energy of 7.4E-03J / μm or more were evaluated as ×.

(ヒートシール性評価)
ヒートシール性評価は、テスター産業製のヒートシーラー(型番TP−701−B)を用いてシール圧力0.2MPa、シール時間を1秒、シール幅を10mmとし、シール温度を150℃で、熱可塑性樹脂フィルム1の表面もしくは裏面同士を重ね、シールした。シールしたフィルムを15mm幅×100mmに切出し、チャック間距離を50mm、引張り速度を300mm/minとして島津製作所株式会社製引張試験機(型番AGS−500NX)を用いて180°剥離した場合のシール強度を測定した。その結果、シール強度が10N以上になるものを○、それ以外を×とした。
(Evaluation of heat sealability)
The heat sealability was evaluated using a heat sealer (model number TP-701-B) manufactured by Tester Sangyo, with a seal pressure of 0.2 MPa, a seal time of 1 second, a seal width of 10 mm, a seal temperature of 150 ° C, and thermoplasticity. The front surface or the back surface of the resin film 1 was overlapped and sealed. The sealed film is cut out to a width of 15 mm x 100 mm, the distance between chucks is 50 mm, the tensile speed is 300 mm / min, and the sealing strength when peeled by 180 ° using a tensile tester manufactured by Shimadzu Corporation (model number AGS-500NX) is obtained. It was measured. As a result, those having a seal strength of 10 N or more were evaluated as ◯, and those having a seal strength of 10 N or more were evaluated as x.

(分散相形状評価)
分散相形状評価は、フィルムMD方向(流れ方向)について観察を行った。具体的には、日立ハイテクノロジーズ製走査型電子顕微鏡(形式「S−4800」)により分散相の形状を観察し、倍率1000倍の画像を得た後、画像内の無作為に選択した20個の分散相の各々の長軸分散径と単軸分散径を測定し、長軸分散径と単軸分散径の比(=長軸分散径/単軸分散径)を算出した。長軸分散径と単軸分散径の比が10.0以下であるものを〇、それ以外を×とした。また、分散相3が連続相2に良く相溶し、分散粒子径の算出が困難である場合は、相溶性が良好であるので〇とした。
(Dispersed phase shape evaluation)
In the dispersed phase shape evaluation, observation was performed in the film MD direction (flow direction). Specifically, after observing the shape of the dispersed phase with a scanning electron microscope (type "S-4800") manufactured by Hitachi High Technologies America and obtaining an image at a magnification of 1000 times, 20 randomly selected images in the image were obtained. The major axis dispersion diameter and the uniaxial dispersion diameter of each of the dispersed phases were measured, and the ratio of the major axis dispersion diameter to the uniaxial dispersion diameter (= major axis dispersion diameter / uniaxial dispersion diameter) was calculated. The ratio of the major axis dispersion diameter to the uniaxial dispersion diameter was 10.0 or less, and the others were x. When the dispersed phase 3 is well compatible with the continuous phase 2 and it is difficult to calculate the dispersed particle size, the compatibility is good, so the value is 0.

(総合評価)
総合判定として、熱可塑性樹脂フィルム1に関する評価の全てについて△以上のものを〇とし、一つでも×であったものを×とした。
(Comprehensive evaluation)
As a comprehensive judgment, all the evaluations relating to the thermoplastic resin film 1 were evaluated as ◯ or higher, and those having at least one x were evaluated as x.

上記各実施例及び各比較例の熱可塑性樹脂フィルム1の評価結果を表1に記載する。 Table 1 shows the evaluation results of the thermoplastic resin film 1 of each of the above Examples and Comparative Examples.

Figure 2021070791
Figure 2021070791

表1より、実施例1から6においては総合判定で「○」以上を満たしている。比較例1では(A)に対する(B)の配合比率が多いため、比較例2と5では(C)が配合されていない、剛性が低下し、総合判定が「×」である。比較例3では、(B)が配合されていないため、(C)がフィルム表面に存在することでヒートシール性が低下し、(C)の分散サイズも大きくなるため、総合判定が「×」である。比較例6では、(C)の配合量が多く、(C)が分散されず、耐衝撃性も低下するため、総合判定が「×」である。 From Table 1, in Examples 1 to 6, "○" or more is satisfied in the comprehensive judgment. In Comparative Example 1, since the compounding ratio of (B) to (A) is large, in Comparative Examples 2 and 5, (C) is not compounded, the rigidity is lowered, and the overall judgment is “x”. In Comparative Example 3, since (B) is not blended, the presence of (C) on the film surface lowers the heat sealability and increases the dispersion size of (C), so that the overall judgment is "x". Is. In Comparative Example 6, since the blending amount of (C) is large, (C) is not dispersed, and the impact resistance is lowered, the overall judgment is “x”.

本発明は、熱可塑性樹脂フィルム、これを用いた包装材及び包装袋として利用できる。 The present invention can be used as a thermoplastic resin film, a packaging material using the thermoplastic resin film, and a packaging bag.

1 熱可塑性樹脂フィルム
2 連続相(ポリオレフィン系熱可塑性樹脂(A))
3 分散相(ポリアミド系熱可塑性樹脂(C))
4 熱可塑性樹脂(共重合体熱可塑性樹脂(B))
1 Thermoplastic resin film 2 Continuous phase (polyolefin-based thermoplastic resin (A))
3 Dispersed phase (polyamide-based thermoplastic resin (C))
4 Thermoplastic resin (copolymer thermoplastic resin (B))

Claims (5)

ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)およびポリアミド系熱可塑性樹脂(C)を含む包装材用フィルムであって、共重合体熱可塑性樹脂(B)は、ポリオレフィン系熱可塑性樹脂(A)と異なる樹脂であって、ポリアミド系熱可塑性樹脂(C)と結合し得る反応基を有する樹脂であり、フィルム表面と裏面には、ポリアミド系熱可塑性樹脂(C)が存在せず、ポリオレフィン系熱可塑性樹脂(A)と共重合体熱可塑性樹脂(B)の両方、もしくは、ポリオレフィン系熱可塑性樹脂(A)のみが存在しており、かつ、下記の質量割合でポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)およびポリアミド系熱可塑性樹脂(C)を含有することを特徴とする熱可塑性樹脂フィルム。
存在重量割合
(A)・・・69〜99wt%
(B)・・・0.5〜30wt%
(C)・・・0.5〜30wt%
ただし、ポリオレフィン系熱可塑性樹脂(A)、共重合体熱可塑性樹脂(B)およびポリアミド系熱可塑性樹脂(C)の合計を100wt%とする。
A packaging material film containing a polyolefin-based thermoplastic resin (A), a copolymer thermoplastic resin (B), and a polyamide-based thermoplastic resin (C), wherein the copolymer thermoplastic resin (B) is a polyolefin-based film. It is a resin different from the thermoplastic resin (A) and has a reactive group capable of binding to the polyamide-based thermoplastic resin (C), and the polyamide-based thermoplastic resin (C) is present on the front surface and the back surface of the film. Instead, both the polyolefin-based thermoplastic resin (A) and the copolymer thermoplastic resin (B), or only the polyolefin-based thermoplastic resin (A) are present, and the polyolefin-based in the following mass ratios. A thermoplastic resin film containing a thermoplastic resin (A), a copolymer thermoplastic resin (B), and a polyamide-based thermoplastic resin (C).
Existence weight ratio (A): 69 to 99 wt%
(B) ・ ・ ・ 0.5 to 30 wt%
(C) ・ ・ ・ 0.5 to 30 wt%
However, the total of the polyolefin-based thermoplastic resin (A), the copolymer-based thermoplastic resin (B), and the polyamide-based thermoplastic resin (C) is 100 wt%.
JISK7113に準じた引張試験において、引張弾性率が350MPa以上であり、かつ、耐衝撃性試験において破断エネルギーが7.4E−03J/μm以上であり、かつヒートシール試験において、130℃シール時のヒートシール強度が10N以上であることを特徴とする請求項1に記載の熱可塑性樹脂フィルム。 In the tensile test according to JIS K7113, the tensile elastic modulus is 350 MPa or more, the breaking energy is 7.4E-03 J / μm or more in the impact resistance test, and the heat at 130 ° C. is sealed in the heat seal test. The thermoplastic resin film according to claim 1, wherein the seal strength is 10 N or more. 請求項1に記載の(C)の20個の分散相の各々の長軸分散径と単軸分散径の平均値を算出し、長軸分散径と単軸分散径の比(=長軸分散径/単軸分散径)が10.0以下であることを特徴とする請求項1又は2に記載の熱可塑性樹脂フィルム。 The average value of the major axis dispersion diameter and the uniaxial dispersion diameter of each of the 20 dispersion phases of (C) according to claim 1 is calculated, and the ratio of the major axis dispersion diameter to the uniaxial dispersion diameter (= major axis dispersion). The thermoplastic resin film according to claim 1 or 2, wherein (diameter / uniaxial dispersion diameter) is 10.0 or less. 請求項1乃至3のいずれかに記載の熱可塑性樹脂フィルムを用いたことを特徴とする包装材。 A packaging material using the thermoplastic resin film according to any one of claims 1 to 3. 請求項1乃至3のいずれかに記載の熱可塑性樹脂フィルムを用いたことを特徴とする包装袋。 A packaging bag using the thermoplastic resin film according to any one of claims 1 to 3.
JP2019200064A 2019-11-01 2019-11-01 Thermoplastic resin film, packaging materials and packaging bags using the same Active JP7456121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019200064A JP7456121B2 (en) 2019-11-01 2019-11-01 Thermoplastic resin film, packaging materials and packaging bags using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200064A JP7456121B2 (en) 2019-11-01 2019-11-01 Thermoplastic resin film, packaging materials and packaging bags using the same

Publications (2)

Publication Number Publication Date
JP2021070791A true JP2021070791A (en) 2021-05-06
JP7456121B2 JP7456121B2 (en) 2024-03-27

Family

ID=75712477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200064A Active JP7456121B2 (en) 2019-11-01 2019-11-01 Thermoplastic resin film, packaging materials and packaging bags using the same

Country Status (1)

Country Link
JP (1) JP7456121B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725943A (en) * 1993-07-09 1995-01-27 Mitsubishi Chem Corp Modified polyolefin and thermoplastic resin composition containing the modified polyolefin
JPH07299859A (en) * 1994-04-29 1995-11-14 Daicel Chem Ind Ltd Easy tearing film and production thereof
JP2002187979A (en) * 2000-10-10 2002-07-05 Ube Ind Ltd Resin-particle-filled olefin resin composition
JP2005232353A (en) * 2004-02-20 2005-09-02 Asahi Kasei Chemicals Corp Improved thermoplastic resin molded article
JP2008508392A (en) * 2004-12-07 2008-03-21 エルジー・ケム・リミテッド High barrier property
WO2017094738A1 (en) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 Modifier, usage therefor, production method for modifier, and carrier for additive material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725943A (en) * 1993-07-09 1995-01-27 Mitsubishi Chem Corp Modified polyolefin and thermoplastic resin composition containing the modified polyolefin
JPH07299859A (en) * 1994-04-29 1995-11-14 Daicel Chem Ind Ltd Easy tearing film and production thereof
JP2002187979A (en) * 2000-10-10 2002-07-05 Ube Ind Ltd Resin-particle-filled olefin resin composition
JP2005232353A (en) * 2004-02-20 2005-09-02 Asahi Kasei Chemicals Corp Improved thermoplastic resin molded article
JP2008508392A (en) * 2004-12-07 2008-03-21 エルジー・ケム・リミテッド High barrier property
WO2017094738A1 (en) * 2015-12-01 2017-06-08 トヨタ紡織株式会社 Modifier, usage therefor, production method for modifier, and carrier for additive material

Also Published As

Publication number Publication date
JP7456121B2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
JP7321682B2 (en) Food packaging film and food package
JP2019006461A (en) Food product packaging film and food product packaging body
JP4642499B2 (en) Polyolefin resin composition and packaging film
JP2018127556A (en) Resin composition, lid material for easily-openable container, and easily-openable container
JP7163599B2 (en) Easy peelable film
JP7456121B2 (en) Thermoplastic resin film, packaging materials and packaging bags using the same
JP2020203987A (en) Polypropylene-based resin composition, polypropylene-based film and packaging material, and package
WO2019172375A1 (en) Resin composition for sealant, multilayer film for sealant, heat-fusible layered film, and package
JP2021187895A (en) Thermoplastic resin film, and packaging material and packaging bag using the same
JP2021181549A (en) Thermoplastic resin film, packaging material including the same, and packaging bag
JPH07329260A (en) Heat sealable stretched laminated film
JP7395839B2 (en) sealant film
JP7006329B2 (en) Thermoplastic resin composition, easy-to-open container lid material and easy-to-open container
JP7331433B2 (en) Sealant film for packaging materials, packaging materials and packages
JP6822198B2 (en) Sealant adhesive and easy-to-peel film
JP7404641B2 (en) Resin films for packaging materials, packaging materials, and packaging bodies
JP6800406B2 (en) Foam laminate and foam laminate
JP4133452B2 (en) Multilayer structure and package
JP2024011897A (en) Thermoplastic resin molding, and packaging material using the same
JP2023142880A (en) Thermoplastic resin molded bodies and packaging materials
JP7409045B2 (en) Sealant film for packaging materials, packaging materials and packages using the same
JP7231135B1 (en) Multilayer films, packaging materials and packages
JP2022124306A (en) Thermoplastic resin molding and packaging material
JP7081235B2 (en) Easy-to-open container
JP2023054857A (en) Thermoplastic resin molded body and packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240226

R150 Certificate of patent or registration of utility model

Ref document number: 7456121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150