JP2021187895A - Thermoplastic resin film, and packaging material and packaging bag using the same - Google Patents

Thermoplastic resin film, and packaging material and packaging bag using the same Download PDF

Info

Publication number
JP2021187895A
JP2021187895A JP2020091773A JP2020091773A JP2021187895A JP 2021187895 A JP2021187895 A JP 2021187895A JP 2020091773 A JP2020091773 A JP 2020091773A JP 2020091773 A JP2020091773 A JP 2020091773A JP 2021187895 A JP2021187895 A JP 2021187895A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
polyamide
based thermoplastic
copolymer
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020091773A
Other languages
Japanese (ja)
Inventor
晴夏 神戸
Haruka Kambe
健太 小沼
Kenta Konuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2020091773A priority Critical patent/JP2021187895A/en
Publication of JP2021187895A publication Critical patent/JP2021187895A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

To provide a thermoplastic resin film having good heat sealability while maintaining rigidity and mechanical strength required for a packaging material, and a packaging material and a packaging bag using the same.SOLUTION: A film for a packaging material contains a polyolefin-based thermoplastic resin (A), a copolymer (B) of olefin and a functional group-containing monomer that is a resin different from the polyolefin-based thermoplastic resin (A) and has a reaction group capable of being bonded to a polyamide-based thermoplastic resin (C), and a polyamide-based thermoplastic resin (C). The copolymer (B) of the olefin and the functional group-containing monomer is present so as to wrap the polyamide-based thermoplastic resin (C). A thickness of the copolymer (B) of the olefin and the functional group-containing monomer wrapping the polyamide-based thermoplastic resin (C) is within a range of 0.007 to 0.070 μm, and a weight ratio of the polyamide-based thermoplastic resin (C) is 0.5 to 30 wt.%.SELECTED DRAWING: Figure 1

Description

本発明は、包装材等に使用される熱可塑性樹脂フィルム、これを用いた包装材及び包装袋に関する。 The present invention relates to a thermoplastic resin film used for packaging materials and the like, and packaging materials and packaging bags using the thermoplastic resin film.

包装材は、たとえば、食料品や医療品等を包装する包装袋に使用されており、包装袋の内容物は、液状、粉末上、ペースト状、固形状等、様々な状態を有している。この包装材に用いられるフィルムとして、一般的にポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリアミド、ポリエステル等のフィルムが使用されている。 The packaging material is used, for example, in a packaging bag for packaging foods, medical products, etc., and the contents of the packaging bag have various states such as liquid, powder, paste, and solid. .. As the film used for this packaging material, films such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polyamide, and polyester are generally used.

包装材として求められる物性としては、内容物充填時の充填適性、包装材に外力が加わった際の袋の破損が無い事、包装材を開封する際の開封性、内容物の見える透明性等の物性、ならびに製造時の生産性が良い事が求められる。 Physical characteristics required for packaging materials include filling suitability when filling the contents, no damage to the bag when an external force is applied to the packaging material, openability when opening the packaging material, transparency of the contents, etc. It is required that the physical characteristics of the product and the productivity at the time of manufacturing are good.

バリア性や機械的強度に優れた複数の基材をラミネートし積層することで、包装材の強度を向上させることができるが、接着剤の使用は、包装材製造工程を増やすため、製品の安定性や生産効率低下、環境負荷などの問題に繋がる。 The strength of the packaging material can be improved by laminating and laminating multiple base materials with excellent barrier properties and mechanical strength, but the use of an adhesive increases the packaging material manufacturing process and thus stabilizes the product. It leads to problems such as deterioration of sex, production efficiency, and environmental load.

これらの問題を解決するため、例えばポリエチレンやポリプロピレン等のポリオレフィン系樹脂などに加え、ナイロン等のポリアミド樹脂など性質の異なる複数の樹脂を複合させることで、バリア性、耐衝撃性など、一つのフィルムに多機能を付与する方法が用いられている。例えば、特許文献1、2には、異種材料の複合体であるポリマーアロイが記載されている。 In order to solve these problems, in addition to polyolefin resins such as polyethylene and polypropylene, a composite of multiple resins with different properties such as polyamide resins such as nylon is used to create a single film with barrier properties and impact resistance. A method of imparting multiple functions to the plastic is used. For example, Patent Documents 1 and 2 describe polymer alloys that are composites of different materials.

特開平11−140237号公報Japanese Unexamined Patent Publication No. 11-14237 特開2005−232353号公報Japanese Unexamined Patent Publication No. 2005-23253

しかしながら、特許文献1、2では、ポリアミド樹脂の最大の特徴であるバリア性の機能を発揮するために、表面にポリアミド樹脂とオレフィン系樹脂を混在させており、成形体の表面には少なからずポリアミド樹脂が存在する。フィルム表面に融点が200℃以上のポリアミド樹脂が存在すると、低温でのヒートシール性が見込めない問題がある。包装材料の場合、200℃以下の低温でのヒートシール性が重要である。低温にてヒートシールできない場合、高温にてヒートシールすることになるが、その際に包装材料に熱収縮が生じて寸法ズレの原因となる可能性がある。また、高温でヒートシールした場合、シール部を冷やすまでに時間がかかり、ライン速度が遅くなることによる生産性の低下が問題になる。また、低温でヒートシール出来たとしても、十分にヒートシール強度が発現しないと、包装袋になった後、外力が加わった際にシール部から破損が生じてしまうこともある。 However, in Patent Documents 1 and 2, a polyamide resin and an olefin resin are mixed on the surface in order to exhibit the barrier property which is the greatest feature of the polyamide resin, and the surface of the molded product is not a little polyamide. There is resin. If a polyamide resin having a melting point of 200 ° C. or higher is present on the film surface, there is a problem that heat-sealing properties at low temperatures cannot be expected. In the case of packaging materials, heat sealability at low temperatures of 200 ° C or lower is important. If heat-sealing cannot be performed at a low temperature, heat-sealing is performed at a high temperature, but at that time, heat shrinkage may occur in the packaging material, which may cause dimensional deviation. Further, when heat-sealing at a high temperature, it takes time to cool the sealed portion, and the line speed becomes slow, which causes a problem of a decrease in productivity. Further, even if heat sealing can be performed at a low temperature, if the heat sealing strength is not sufficiently developed, the sealed portion may be damaged when an external force is applied after the packaging bag is formed.

そこで、本発明は、包装材に必要な剛性と機械的強度を維持しつつ、ヒートシール性の良好な熱可塑性樹脂フィルム及び、それを用いた包装材、包装袋を提供することを目的とする。 Therefore, an object of the present invention is to provide a thermoplastic resin film having good heat-sealing property, and a packaging material and a packaging bag using the thermoplastic resin film while maintaining the rigidity and mechanical strength required for the packaging material. ..

上記目的を達成するために、本発明に係る熱可塑性樹脂フィルム、はポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)およびポリアミド系熱可塑性樹脂(C)を含む包装材用フィルムであって、オレフィンと官能基含有単量体の共重合体(B)は、ポリオレフィン系熱可塑性樹脂(A)と異なる樹脂であって、ポリアミド系熱可塑性樹脂(C)と結合し得る反応基を有する樹脂であり、オレフィンと官能基含有単量体の共重合体(B)がポリアミド系熱可塑性樹脂(C)を包み込むように存在しており、ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚さが0.007〜0.07μmの範囲内であり、かつ、ポリアミド系熱可塑性樹脂(C)の重量割合が、ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)およびポリアミド系熱可塑性樹脂(C)の合計の0.5〜30wt%であることを特徴とする熱可塑性樹脂フィルムである。 In order to achieve the above object, the thermoplastic resin film according to the present invention is a polyolefin-based thermoplastic resin (A), a copolymer (B) of an olefin and a functional group-containing monomer, and a polyamide-based thermoplastic resin (C). ), The copolymer (B) of the olefin and the functional group-containing monomer is a resin different from the polyolefin-based thermoplastic resin (A), and is a polyamide-based thermoplastic resin (C). ), The copolymer (B) of the olefin and the functional group-containing monomer is present so as to enclose the polyamide-based thermoplastic resin (C), and the polyamide-based thermoplasticity. The thickness of the copolymer (B) of the olefin and the functional group-containing monomer that encloses the resin (C) is in the range of 0.007 to 0.07 μm, and the weight of the polyamide-based thermoplastic resin (C). The ratio is 0.5 to 30 wt% of the total of the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplastic resin (C). It is a thermoplastic resin film.

本発明によれば、包装材に必要な剛性と機械的強度を維持しつつ、ヒートシール性の良好な熱可塑性樹脂フィルム及び、それを用いた包装材、包装袋を提供できる。 According to the present invention, it is possible to provide a thermoplastic resin film having good heat-sealing property, and a packaging material and a packaging bag using the thermoplastic resin film while maintaining the rigidity and mechanical strength required for the packaging material.

本発明における包装材用熱可塑性樹脂フィルムの概略断面図である。It is a schematic sectional drawing of the thermoplastic resin film for a packaging material in this invention. 本発明の包装材を用いたスタンディングパウチの正面図である。It is a front view of the standing pouch using the packaging material of this invention.

以下、本発明の実施形態について説明する。なお、各図は模式的に示した図であり、各部の大きさや形状等は理解を容易にするために適宜誇張して示している。また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は構成部品の材質、形状、構造等が下記のものに限定されるものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described. It should be noted that each figure is a diagram schematically shown, and the size and shape of each part are exaggerated as appropriate for easy understanding. Further, the embodiments shown below exemplify a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention includes the following materials, shapes, structures, etc. of the constituent parts. Not limited to. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims described in the claims.

(構成)
本発明における熱可塑性樹脂フィルム1は、図1で示すように、耐衝撃性に特化したポリオレフィン系熱可塑性樹脂(A)から成る連続相2と、剛性に特化したポリアミド系熱可塑性樹脂(C)から成る分散相3と、オレフィンと特定の官能基含有単量体の共重合体(B)から成る分散相4及び/または5とを有する押出成形フィルムである。分散相4は、分散相3を包み込むように存在しており、分散相5は、連続相2に分散するように存在する。
(composition)
As shown in FIG. 1, the thermoplastic resin film 1 in the present invention has a continuous phase 2 made of a polyolefin-based thermoplastic resin (A) specialized in impact resistance and a polyamide-based thermoplastic resin specialized in rigidity (as shown in FIG. 1). An extrusion-molded film having a dispersed phase 3 made of C) and a dispersed phase 4 and / or 5 made of a copolymer (B) of an olefin and a specific functional group-containing monomer. The dispersed phase 4 exists so as to surround the dispersed phase 3, and the dispersed phase 5 exists so as to disperse in the continuous phase 2.

熱可塑性樹脂フィルム1は、ポリアミド系熱可塑性樹脂(C)を含んでいるが、フィルム表面にはポリオレフィン系熱可塑性樹脂(A)から成る連続相2と、オレフィンと官能基含有単量体の共重合体(B)から成る分散相4もしくは5が存在しており、フィルムの表面にポリアミド系熱可塑性樹脂(C)が単独の分散相としてほぼ存在しないことから、包装材用フィルムとして必要不可欠なヒートシール性を低下させることを抑制できる。さらに、ポリオレフィン系熱可塑性樹脂にポリアミド系熱可塑性樹脂を混在させることで、ポリオレフィン系熱可塑性樹脂が本来有する耐衝撃性を維持しつつ、ポリアミド系熱可塑性樹脂が本来有する剛性を付与することができる。 The thermoplastic resin film 1 contains a polyamide-based thermoplastic resin (C), but on the surface of the film, a continuous phase 2 made of a polyolefin-based thermoplastic resin (A), an olefin, and a functional group-containing monomer are used together. Since the dispersed phase 4 or 5 composed of the polymer (B) is present and the polyamide-based thermoplastic resin (C) is almost absent as a single dispersed phase on the surface of the film, it is indispensable as a film for packaging materials. It is possible to suppress the deterioration of the heat-sealing property. Further, by mixing the polyamide-based thermoplastic resin with the polyolefin-based thermoplastic resin, it is possible to impart the inherent rigidity of the polyamide-based thermoplastic resin while maintaining the impact resistance originally possessed by the polyolefin-based thermoplastic resin. ..

熱可塑性樹脂フィルム1は、340℃まで加温可能な押出成形機により製膜されるため、ポリオレフィン系熱可塑性樹脂(A)から成る連続相2の主材料としては、一般的な熱可塑性樹脂であれば使用する事が可能であるが、包装材料として好適に使用されるためには適度な柔軟性を持ち、加工性が良い必要がある。ポリオレフィン系熱可塑性樹脂(A)は、オレフィン由来の構成単位を有するポリマーであれば良く、オレフィンをベースとした、低密度ポリエチレン(LDPE)、α−オレフィンとエチレンを共重合した直鎖状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、ホモポリマー、ランダムコポリマー、ブロックコポリマー等があるポリプロピレン、シクロオレフィンポリマー、シクロオレフィンとオレフィンを共重合したシクロオレフィンコポリマー、上記オレフィンと酢酸ビニルを共重合して得られるエチレン−酢酸ビニルコポリマー、オレフィンの側鎖を変性した構造を有するエチレン−メチルアクリレート共重合(EMA)、エチレン−エチルアクリレート共重合体(EEA)、エチレン−ブチルアクリレート共重合体(EBA)、エチレン−メタクリル酸共重合体(EMAA)等のうち、1種類または複数種類を選択し適宜使用する事が可能である。 Since the thermoplastic resin film 1 is formed by an extruder capable of heating up to 340 ° C., a general thermoplastic resin is used as the main material of the continuous phase 2 made of the polyolefin-based thermoplastic resin (A). If there is, it can be used, but in order to be suitably used as a packaging material, it is necessary to have appropriate flexibility and good processability. The polyolefin-based thermoplastic resin (A) may be a polymer having a structural unit derived from an olefin, and may be an olefin-based low-density polyethylene (LDPE) or a linear low-density copolymer of α-olefin and ethylene. Polypropylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), homopolymers, random copolymers, block copolymers and the like, polypropylene, cycloolefin polymers, cycloolefin copolymers copolymerized with cycloolefins and olefins, the above olefins Ethylene-vinyl acetate copolymer obtained by copolymerizing with vinyl acetate, ethylene-methyl acrylate copolymer (EMA) having a modified olefin side chain, ethylene-ethyl acrylate copolymer (EEA), ethylene-butyl It is possible to select one or a plurality of types from the acrylate copolymer (EBA), the ethylene-methacrylic acid copolymer (EMAA) and the like and use them as appropriate.

分散相3を構成するポリアミド系熱可塑性樹脂(C)は、一般に強度があり耐熱性やバリア性の高い汎用樹脂として知られており、包装材用のフィルムに含まれる材料として好適なものである。具体的には、ポリアミド系熱可塑性樹脂(C)は、アミド結合(−NH−CO−)を介して複数の単量体が重合されてなる鎖状骨格を有する重合体である。ポリアミド系熱可塑性樹脂(C)としては、例えば、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド610、ポリアミド612、ポリアミド614、ポリアミド12、ポリアミド6T(Tはテレフタル酸成分)、ポリアミド6I(Iはイソフタル酸成分)、ポリアミド9T、ポリアミドM5T、ポリアミド1010、ポリアミド1012、ポリアミド10T、ポリアミドMXD6、ポリアミド6T/66、ポリアミド6T/6I、ポリアミド6T/6I/66、ポリアミド6T/2M−5T、ポリアミド9T/2M−8T等が挙げられる。尚、これらのポリアミドは、1種単独で用いてもよいし、2種以上を組み合わせて用いても良い。これらのポリアミド系熱可塑性樹脂(C)の製造方法は、一般に公知に行われている方法で良い。 The polyamide-based thermoplastic resin (C) constituting the dispersed phase 3 is generally known as a general-purpose resin having high strength, heat resistance, and barrier properties, and is suitable as a material contained in a film for a packaging material. .. Specifically, the polyamide-based thermoplastic resin (C) is a polymer having a chain-like skeleton in which a plurality of monomers are polymerized via an amide bond (-NH-CO-). Examples of the polyamide-based thermoplastic resin (C) include polyamide 6, polyamide 66, polyamide 11, polyamide 610, polyamide 612, polyamide 614, polyamide 12, polyamide 6T (T is a terephthalic acid component), and polyamide 6I (I is isophthalic acid). Acid component), Polyamide 9T, Polyamide M5T, Polyamide 1010, Polyamide 1012, Polyamide 10T, Polyamide MXD6, Polyamide 6T / 66, Polyamide 6T / 6I, Polyamide 6T / 6I / 66, Polyamide 6T / 2M-5T, Polyamide 9T / 2M -8T and the like can be mentioned. In addition, these polyamides may be used individually by 1 type, and may be used in combination of 2 or more types. The method for producing these polyamide-based thermoplastic resins (C) may be a generally known method.

オレフィンと官能基含有単量体の共重合体(B)は、連続相2を構成するポリオレフィン系熱可塑性樹脂(A)とは異なる樹脂であって、ポリアミド系熱可塑性樹脂(C)と結合し得る反応基が付与された分子構造からなる共重合体熱可塑性樹脂である。オレフィンと官能基含有単量体の共重合体(B)は、ポリアミド系熱可塑性樹脂(C)の分子中のアミド基と水素結合するカルボニル基(C=O)または水酸基(OH)を含み、化学的相性が悪いオレフィン系樹脂とポリアミド樹脂の親和性を向上させる役目を担う相溶化剤として機能する。相溶化剤として機能する、オレフィンと官能基含有単量体の共重合体(B)としては、エチレン−メチルアクリレート共重合体(EMA)、エチレン−エチルアクリレート共重合体(EEA)、エチレン−ブチルアクリレート共重合体(EBA)エチレン・ビニルアルコール共重合体(EVOH)、エチレン−メタクリル酸共重合体(EMAA)、エチレン−メチルメタクリレート共重合体(EMMA)等が挙げられる。 The copolymer (B) of the olefin and the functional group-containing monomer is a resin different from the polyolefin-based thermoplastic resin (A) constituting the continuous phase 2, and is bonded to the polyamide-based thermoplastic resin (C). It is a copolymer thermoplastic resin having a molecular structure to which a reactive group to be obtained is added. The copolymer (B) of the olefin and the functional group-containing monomer contains a carbonyl group (C = O) or a hydroxyl group (OH) that hydrogen bonds with an amide group in the molecule of the polyamide-based thermoplastic resin (C). It functions as a compatibilizer that plays a role in improving the affinity between the olefin resin and the polyamide resin, which have poor chemical compatibility. Examples of the olefin-functional group-containing monomer copolymer (B) that functions as a compatibilizer include ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), and ethylene-butyl. Examples thereof include an acrylate copolymer (EBA), an ethylene / vinyl alcohol copolymer (EVOH), an ethylene-methacrylic acid copolymer (EMAA), and an ethylene-methylmethacrylate copolymer (EMMA).

化学的相性に関しては様々な測定および評価方法があるが、その中でも表面自由エネルギーにて相性の良し悪しを判断することも可能であって、具体的には表面自由エネルギーの値を比較して判断したり、さらには表面自由エネルギーを構成する分散成分(γd)、配向成分(γp)、水素結合力(γh)に成分分けした際のγpを1つの指標として判断したりすることも出来る。 There are various measurement and evaluation methods for chemical compatibility, but among them, it is also possible to judge whether the compatibility is good or bad by the surface free energy, and specifically, it is judged by comparing the values of the surface free energy. Further, it is also possible to judge as one index the γp when the components are divided into the dispersion component (γd), the orientation component (γp), and the hydrogen bonding force (γh) constituting the surface free energy.

化学的相性が悪い樹脂のみを混合してフィルムにした場合には、例えば衝撃を与えた際に2つの樹脂界面で剥離が生じ、良好な弾性率と耐衝撃性を両立することや、さらには耐屈曲性を担保することが難しい。そのため、オレフィンと官能基含有単量体の共重合体(B)の表面自由エネルギーを構成する極性成分(γp)が、ポリオレフィン系熱可塑性樹脂(A)とポリアミド系熱可塑性樹脂(C)のγpの差の中間値から±1/3以内であれば、オレフィンと官能基含有単量体の共重合体(B)から成る分散相4がオレフィン系樹脂とポリアミド樹脂の親和性を向上させる役目を担うことで相の界面の密着力を上げ、物性良化に寄与することが出来る。 When only resins with poor chemical compatibility are mixed to form a film, for example, when an impact is applied, peeling occurs at the interface between the two resins, achieving both good elastic modulus and impact resistance, and further. It is difficult to guarantee bending resistance. Therefore, the polar component (γp) constituting the surface free energy of the copolymer (B) of the olefin and the functional group-containing monomer is γp of the polyolefin-based thermoplastic resin (A) and the polyamide-based thermoplastic resin (C). If it is within ± 1/3 from the intermediate value of the difference between the above, the dispersed phase 4 composed of the copolymer (B) of the olefin and the functional group-containing monomer serves to improve the affinity between the olefin resin and the polyamide resin. By carrying it, it is possible to increase the adhesion at the interface of the phase and contribute to the improvement of physical properties.

ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)、ポリアミド系熱可塑性樹脂(C)以外に、造核剤、補強フィラー、酸化防止剤、熱安定剤、耐候剤、光安定剤、可塑剤、紫外線吸収剤、帯電防止剤、難燃剤、難燃助剤、スリップ剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、分散剤、銅害防止剤、中和剤、気泡防止剤、ウェルド強度改良剤、天然油、合成油、ワックス等の添加材を用いても良い。これらは1種のみを用いてもよく2種以上を併用してもよい。 In addition to the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplastic resin (C), a nucleating agent, a reinforcing filler, an antioxidant, and a heat stabilizer. , Weather resistant agent, light stabilizer, plasticizer, ultraviolet absorber, antistatic agent, flame retardant, flame retardant aid, slip agent, anti-blocking agent, antifogging agent, lubricant, pigment, dye, dispersant, copper damage prevention Additives such as an agent, a neutralizing agent, an anti-bubble agent, a weld strength improving agent, a natural oil, a synthetic oil, and a wax may be used. Only one of these may be used, or two or more thereof may be used in combination.

上記造核剤及び補強フィラーとしては、タルク、シリカ、クレー、モンモリロナイト、炭酸カルシウム、炭酸リチウムアルミナ、酸化チタン、アルミニウム、鉄、銀、銅等の金属、水酸化アルミニウム、水酸化マグネシウム等の水酸化物、セルロースミクロフィブリル、酢酸セルロース等のセルロース類、ガラス繊維、ポリエチレンテレフタレート繊維、ナイロン繊維、ポリエチレンナフタレート繊維、アラミド繊維、ビニロン繊維、ポリアリレート繊維等の繊維状フィラー、カーボンナノチューブ等のカーボン類等が挙げられる。 Examples of the nucleating agent and reinforcing filler include talc, silica, clay, montmorillonite, calcium carbonate, lithium alumina carbonate, titanium oxide, aluminum, iron, silver, copper and other metals, and aluminum hydroxide and magnesium hydroxide. Materials, cellulose microfibrils, celluloses such as cellulose acetate, glass fibers, polyethylene terephthalate fibers, nylon fibers, polyethylene naphthalate fibers, aramid fibers, vinylon fibers, fibrous fillers such as polyallylate fibers, carbons such as carbon nanotubes, etc. Can be mentioned.

上記酸化防止剤としては、フェノール系化合物、有機ホスファイト系化合物、チオエーテル系化合物等が挙げられる。 Examples of the antioxidant include phenolic compounds, organic phosphite compounds, thioether compounds and the like.

上記熱安定剤としては、ヒンダードアミン系化合物等が挙げられる。 Examples of the heat stabilizer include hindered amine compounds.

上記紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、ベンゾエート系化合物等が挙げられる。 Examples of the ultraviolet absorber include benzophenone compounds, benzotriazole compounds, benzoate compounds and the like.

上記帯電防止剤としては、ノニオン系化合物、カチオン系化合物、アニオン系化合物等が挙げられる。 Examples of the antistatic agent include nonionic compounds, cationic compounds, anionic compounds and the like.

上記難燃剤としては、ハロゲン系化合物、リン系化合物、窒素系化合物、無機化合物、ホウ素系化合物、シリコーン系化合物、硫黄系化合物、赤リン系化合物等が挙げられる。 Examples of the flame retardant include halogen-based compounds, phosphorus-based compounds, nitrogen-based compounds, inorganic compounds, boron-based compounds, silicone-based compounds, sulfur-based compounds, and red phosphorus-based compounds.

上記難燃助剤としては、アンチモン化合物、亜鉛化合物、ビスマス化合物、水酸化マグ
ネシウム、粘土質珪酸塩等が挙げられる。
Examples of the flame retardant aid include antimony compounds, zinc compounds, bismuth compounds, magnesium hydroxide, clay silicates and the like.

(重量割合)
ポリアミド系熱可塑性樹脂(C)の重量割合は、ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)及びポリアミド系熱可塑性樹脂(C)の合計の0.5〜30wt%の範囲内が好ましく、1〜10wt%の範囲内がより好ましい。ポリアミド系熱可塑性樹脂(C)の重量割合が30wt%を超えると、ポリアミド系熱可塑性樹脂(C)のドメインサイズが大きくなり、ポリアミド系熱可塑性樹脂(C)の微分散化により得られる耐衝撃性が低下する。30wt%を超えるポリアミド系熱可塑性樹脂(C)を微分散化するためには、例えば二軸押出機を用いた加工工程であると、混練量、つまり、二軸押出機回転数を増加させなければならず、それに伴うトルク負荷が上昇する可能性がある。また、ポリアミド系熱可塑性樹脂(C)の配合量増加に伴い、ポリオレフィン系熱可塑性樹脂(A)とポリアミド系熱可塑性樹脂(C)の化学的相性を取り持つオレフィンと官能基含有単量体の共重合体(B)の配合量を増加する必要があるが、剛性の低いオレフィンと官能基含有単量体の共重合体(B)の配合量を増加すると、フィルム全体の剛性が低下する。また、弾性率の高いポリアミド系熱可塑性樹脂(C)の重量割合が0.5wt%未満であっても、フィルム全体の剛性が低下する可能性がある。
(Weight ratio)
The weight ratio of the polyamide-based thermoplastic resin (C) is 0, which is the total of the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplastic resin (C). .The range of 5 to 30 wt% is preferable, and the range of 1 to 10 wt% is more preferable. When the weight ratio of the polyamide-based thermoplastic resin (C) exceeds 30 wt%, the domain size of the polyamide-based thermoplastic resin (C) becomes large, and the impact resistance obtained by the microdispersion of the polyamide-based thermoplastic resin (C) becomes large. The sex is reduced. In order to finely disperse the polyamide-based thermoplastic resin (C) exceeding 30 wt%, for example, in the processing process using a twin-screw extruder, the kneading amount, that is, the rotation speed of the twin-screw extruder must be increased. Therefore, the torque load associated therewith may increase. Further, as the blending amount of the polyamide-based thermoplastic resin (C) increases, both the olefin and the functional group-containing monomer having a chemical compatibility between the polyolefin-based thermoplastic resin (A) and the polyamide-based thermoplastic resin (C) It is necessary to increase the blending amount of the polymer (B), but if the blending amount of the copolymer (B) of the low-rigidity olefin and the functional group-containing monomer is increased, the rigidity of the entire film is lowered. Further, even if the weight ratio of the polyamide-based thermoplastic resin (C) having a high elastic modulus is less than 0.5 wt%, the rigidity of the entire film may decrease.

ポリオレフィン系熱可塑性樹脂(A)の配合量は、ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)及びポリアミド系熱可塑性樹脂(C)の合計の69〜99wt%の範囲内が好ましく、85〜99wt%の範囲内がより好ましい。ポリオレフィン系熱可塑性樹脂(A)が69wt%未満の場合、ポリアミド系熱可塑性樹脂(C)の配合量が増加し、ヒートシール性が低下する。ポリオレフィン系熱可塑性樹脂(A)の配合量が99wt%を超えると、剛性の高いポリアミド系熱可塑性樹脂(C)の配合量が減少し、フィルム全体の剛性が低下することで、フィルムを包装材に用いたときの自立性が低下する。 The blending amount of the polyolefin-based thermoplastic resin (A) is 69, which is the total of the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplastic resin (C). The range of ~ 99 wt% is preferable, and the range of 85 to 99 wt% is more preferable. When the amount of the polyolefin-based thermoplastic resin (A) is less than 69 wt%, the blending amount of the polyamide-based thermoplastic resin (C) increases and the heat-sealing property deteriorates. When the blending amount of the polyolefin-based thermoplastic resin (A) exceeds 99 wt%, the blending amount of the highly rigid polyamide-based thermoplastic resin (C) decreases, and the rigidity of the entire film decreases, thereby packaging the film. Independence is reduced when used in.

オレフィンと官能基含有単量体の共重合体(B)の配合量は、ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)及びポリアミド系熱可塑性樹脂(C)の合計の0.5〜30wt%の範囲内が好ましく、0.5〜10wt%の範囲内がより好ましい。オレフィンと官能基含有単量体の共重合体(B)の配合量が30wt%を超えると、フィルム全体の剛性が低下することで、フィルムを包装材に用いたときの自立性が低下する。また、オレフィンと官能基含有単量体の共重合体(B)の配合量が0.5wt%未満であると、ポリオレフィン系熱可塑性樹脂(A)とポリアミド系熱可塑性樹脂(C)の相溶性が低下し、ポリアミド系熱可塑性樹脂(C)の分散サイズが大きくなり、かつ、ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)及びポリアミド系熱可塑性樹脂(C)を複合した場合、成形品の表面に融点の高いポリアミド系熱可塑性樹脂(C)が露出し、ヒートシール性を低下させる恐れがある。 The blending amount of the copolymer (B) of the olefin and the functional group-containing monomer is the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplastic resin. The total of (C) is preferably in the range of 0.5 to 30 wt%, more preferably in the range of 0.5 to 10 wt%. When the blending amount of the copolymer (B) of the olefin and the functional group-containing monomer exceeds 30 wt%, the rigidity of the entire film is lowered, so that the self-supporting property when the film is used as a packaging material is lowered. Further, when the blending amount of the copolymer (B) of the olefin and the functional group-containing monomer is less than 0.5 wt%, the compatibility between the polyolefin-based thermoplastic resin (A) and the polyamide-based thermoplastic resin (C) is compatible. The dispersion size of the polyamide-based thermoplastic resin (C) becomes large, and the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplasticity When the resin (C) is compounded, the polyamide-based thermoplastic resin (C) having a high melting point may be exposed on the surface of the molded product, which may reduce the heat sealability.

(物性値)
熱可塑性樹脂フィルム1の剛性の指標として、JIS K7113に準拠した引張弾性率が300MPa以上であることが好ましい。熱可塑性樹脂フィルム1の引張弾性率が300MPa未満であると、熱可塑性樹脂フィルム1を包装材として用いた場合、袋形態での自立性が低下する恐れがある。
(Physical characteristic value)
As an index of the rigidity of the thermoplastic resin film 1, it is preferable that the tensile elastic modulus according to JIS K7113 is 300 MPa or more. If the tensile elastic modulus of the thermoplastic resin film 1 is less than 300 MPa, when the thermoplastic resin film 1 is used as a packaging material, the independence in the bag form may decrease.

また、熱可塑性樹脂フィルム1の耐衝撃性の指標として、常温下での破断エネルギーが7.4mJ/μm以上であることが好ましい。熱可塑性樹脂フィルム1の破断エネルギーが7.4mJ/μm未満であると、熱可塑性樹脂フィルム1を包装材として用いた場合、落下衝撃を受けた際に破損してしまう恐れがある。 Further, as an index of the impact resistance of the thermoplastic resin film 1, it is preferable that the breaking energy at room temperature is 7.4 mJ / μm or more. If the breaking energy of the thermoplastic resin film 1 is less than 7.4 mJ / μm, when the thermoplastic resin film 1 is used as a packaging material, it may be damaged when it receives a drop impact.

また、熱可塑性樹脂フィルム1のヒートシール性の指標として、シール圧力0.2MPa、シール時間を1秒、シール幅を10mm、シール温度を130℃としてシール層同士をシールし、シールしたフィルムを15mm幅×100mmに切り出し、チャック間距離を50mm、引張り速度を300mm/minにて引張試験機で180°T字剥離法にて評価したときのシール強度が10N以上であることが好ましい。熱可塑性樹脂フィルム1のシール強度が10N未満であった場合、包装袋になったときに外力が加わった際にシール部から破損が生じてしまうことがある。 Further, as an index of the heat-sealing property of the thermoplastic resin film 1, the sealing pressure is 0.2 MPa, the sealing time is 1 second, the sealing width is 10 mm, the sealing temperature is 130 ° C., and the sealing layers are sealed to each other, and the sealed film is 15 mm. It is preferable that the seal strength is 10 N or more when cut out to a width × 100 mm, the distance between chucks is 50 mm, and the tensile speed is 300 mm / min and evaluated by a 180 ° T-shaped peeling method with a tensile tester. If the sealing strength of the thermoplastic resin film 1 is less than 10N, the sealing portion may be damaged when an external force is applied to the packaging bag.

また、ポリオレフィン系熱可塑性樹脂(A)に低密度樹脂を用いることでヒートシール性を良好にすることができる。このとき、低温ヒートシール性をもたせるために、ポリオレフィン系熱可塑性樹脂(A)は、0.903〜0.938g/cmの範囲であることが望ましく、より好ましくは、0.903〜0.924g/cmの範囲である。0.903g/cm以下にすると、他の樹脂と共押出成膜した場合に他層との層境界での密着不良やフローマークが発生してしまうので望ましくない。また、ポリオレフィン系熱可塑性樹脂(A)の密度を0.938g/cm以上にすると、層厚みが薄い場合に低温ヒートシール性が得られることがなくなってしまうため望ましくない。 Further, by using a low density resin for the polyolefin-based thermoplastic resin (A), the heat sealability can be improved. At this time, the polyolefin-based thermoplastic resin (A) is preferably in the range of 0.903 to 0.938 g / cm 3 , and more preferably 0.903 to 0. The range is 924 g / cm 3. If it is 0.903 g / cm 3 or less, it is not desirable because poor adhesion and flow marks occur at the layer boundary with other layers when coextruded and formed with other resins. Further, if the density of the polyolefin-based thermoplastic resin (A) is 0.938 g / cm 3 or more, low-temperature heat-sealing property cannot be obtained when the layer thickness is thin, which is not desirable.

(オレフィンと官能基含有単量体の共重合体(B)の厚み)
ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)及びポリアミド系熱可塑性樹脂(C)を前記の好ましい範囲の重量割合で配合した熱可塑性樹脂フィルム1では、オレフィンと官能基含有単量体の共重合体(B)が、ポリアミド系熱可塑性樹脂(C)を包み込んだ分散相4、もしくは、ポリオレフィン系熱可塑性樹脂(A)の連続相2中に分散した単体の分散相5として存在する。ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚みは、配合割合や粘度や官能基種類によって異なるが、ある一定の配合割合下で、オレフィンと官能基含有単量体の共重合体(B)の種類を変更した場合、ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚みが薄い程、ポリオレフィン系熱可塑性樹脂(A)への相溶性が良好であり、ポリアミド系熱可塑性樹脂(C)の分散相を凝集させることなく均一に分配できる。ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚みは、0.007〜0.070μmの範囲が好ましい。オレフィンと官能基含有単量体の共重合体(B)の厚みは、フィルムMD方向(流れ方向)に平行な断面を日立ハイテクノロジーズ製走査型電子顕微鏡(形式「S−4800」)により観察し、倍率30000倍の画像を得た後、ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の分散相を無作為に選択した20個について、分散相の周囲5か所のオレフィンと官能基含有単量体の共重合体(B)厚さを計測し、その平均値により表すことができる。オレフィンと官能基含有単量体の共重合体(B)の厚みが0.007μm未満の場合、ポリアミド系熱可塑性樹脂(C)の分散性が低下し、耐衝撃性が低下する可能性があり、オレフィンと官能基含有単量体の共重合体(B)の厚みが0.070μmを超える場合、オレフィンと官能基含有単量体の共重合体(B)の配合量が相対的に多くなり弾性率が低下する可能性がある。
(Thickness of copolymer (B) of olefin and functional group-containing monomer)
In the thermoplastic resin film 1 in which the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplastic resin (C) are blended in the above-mentioned preferable range by weight ratio. , The copolymer (B) of the olefin and the functional group-containing monomer is dispersed in the dispersed phase 4 surrounding the polyamide-based thermoplastic resin (C) or in the continuous phase 2 of the polyolefin-based thermoplastic resin (A). It exists as a single dispersed phase 5. The thickness of the copolymer (B) of the olefin and the functional group-containing monomer that encloses the polyamide-based thermoplastic resin (C) varies depending on the blending ratio, viscosity, and type of functional group, but the olefin is subjected to a certain blending ratio. When the type of the copolymer (B) of the functional group-containing monomer is changed, the thickness of the copolymer (B) of the olefin and the functional group-containing monomer that encloses the polyamide-based thermoplastic resin (C) is thin. The compatibility with the polyolefin-based thermoplastic resin (A) is so good that the dispersed phase of the polyamide-based thermoplastic resin (C) can be uniformly distributed without agglomeration. The thickness of the copolymer (B) of the olefin and the functional group-containing monomer that encloses the polyamide-based thermoplastic resin (C) is preferably in the range of 0.007 to 0.070 μm. For the thickness of the copolymer (B) of the olefin and the functional group-containing monomer, observe the cross section parallel to the film MD direction (flow direction) with a scanning electron microscope (type "S-4800") manufactured by Hitachi High-Technologies. After obtaining an image at a magnification of 30,000 times, 20 dispersed phases of a copolymer (B) of an olefin and a functional group-containing monomer wrapping the polyamide-based thermoplastic resin (C) were randomly selected and dispersed. The thickness of the copolymer (B) of the olefin and the functional group-containing monomer at five places around the phase can be measured and expressed by the average value thereof. If the thickness of the copolymer (B) of the olefin and the functional group-containing monomer is less than 0.007 μm, the dispersibility of the polyamide-based thermoplastic resin (C) may decrease, and the impact resistance may decrease. When the thickness of the copolymer (B) of the olefin and the functional group-containing monomer exceeds 0.070 μm, the blending amount of the copolymer (B) of the olefin and the functional group-containing monomer becomes relatively large. The elasticity may decrease.

(ポリアミド系熱可塑性樹脂(C)の分散性)
ポリアミド系熱可塑性樹脂(C)の分散性の指標として、ポリアミド系熱可塑性樹脂(C)の分散相の長軸分散径と短軸分散径の比(=長軸分散径/短軸分散径)は10.0未満が好ましい。長軸分散径と短軸分散径の比は、フィルムMD方向(流れ方向)に平行な断面を日立ハイテクノロジーズ製走査型電子顕微鏡(形式「S−4800」)により観察し、倍率1000倍の画像を得た後、画像内の無作為に選択した20個の分散相の各々の長軸分散径と短軸分散径の平均値を算出し、直軸分散径の平均値を短軸分散径の平均値で割ることにより算出することができる。長軸分散径と短軸分散径の比が10.0以上であると、ポリアミド系熱可塑性樹脂(C)の分散相のアスペクト比が大きくなり、外部から衝撃が加わったときに、衝撃エネルギーを分散しづらく、耐衝撃性が低下する。長軸分散径と短軸分散径の比は、ポリアミド系熱可塑性樹脂(C)単独の分散相の形状を表す指標である。
(Dispersibility of Polyamide-based Thermoplastic Resin (C))
As an index of the dispersibility of the polyamide-based thermoplastic resin (C), the ratio of the major axis dispersion diameter to the minor axis dispersion diameter of the dispersed phase of the polyamide-based thermoplastic resin (C) (= major axis dispersion diameter / minor axis dispersion diameter) Is preferably less than 10.0. For the ratio of the long-axis dispersion diameter to the short-axis dispersion diameter, a cross section parallel to the film MD direction (flow direction) is observed with a scanning electron microscope (type "S-4800") manufactured by Hitachi High-Technologies, and an image with a magnification of 1000 times is observed. After obtaining, calculate the average value of the major axis dispersion diameter and the minor axis dispersion diameter of each of the 20 randomly selected dispersed phases in the image, and use the average value of the linear axis dispersion diameter as the minor axis dispersion diameter. It can be calculated by dividing by the average value. When the ratio of the major axis dispersion diameter to the minor axis dispersion diameter is 10.0 or more, the aspect ratio of the dispersed phase of the polyamide-based thermoplastic resin (C) becomes large, and impact energy is generated when an impact is applied from the outside. It is difficult to disperse and the impact resistance is reduced. The ratio of the major axis dispersion diameter to the minor axis dispersion diameter is an index showing the shape of the dispersed phase of the polyamide-based thermoplastic resin (C) alone.

(製造方法)
本実施形態の熱可塑性樹脂フィルム1を製作する方法は特に制限されるものではなく、公知の方法を使用することが可能である。
(Production method)
The method for producing the thermoplastic resin film 1 of the present embodiment is not particularly limited, and a known method can be used.

フィルム化の方法としては、押出成形機、ならびにフィードブロックまたはマルチマニホールドを介しTダイで製膜する方法や、インフレーション法を用いた製膜方法を用いる事が可能である。このとき、例えば、複数の押出成形機を使用し、本発明に係る熱可塑性樹脂の混合物と、他の熱可塑性樹脂を共押出することで、本発明に係る熱可塑性樹脂フィルム1に他の熱可塑性樹脂の層が積層された2層以上の層構成を有する熱可塑性樹脂フィルム1を得ることもできる。 As a film forming method, it is possible to use an extruder, a method of forming a film with a T-die via a feed block or a multi-manifold, or a method of forming a film using an inflation method. At this time, for example, by using a plurality of extruders and co-extruding the mixture of the thermoplastic resin according to the present invention and another thermoplastic resin, the thermoplastic resin film 1 according to the present invention has other heat. It is also possible to obtain a thermoplastic resin film 1 having a layer structure of two or more layers in which layers of a plastic resin are laminated.

フィルムの冷却方法に関しては、上述成形機に準じて使用する事が可能であり、例えばTダイ法では、エアーチャンバー、バキュームチャンバー、エアナイフ等の空冷方式、冷水パンへ冷却ロールをディッピングする等の水冷方式等特に制限されることはないが、賦形による表面凹凸形状を付与する場合には、シリコーンゴム、NBRゴム、またはフッ素樹脂等を加工したニップロールと、金属を切削加工した冷却ロールとを0.1MPa以上の圧力を印加した接触部に溶融樹脂を流入し、冷却する方式が特に好ましい。 The film can be cooled according to the above-mentioned molding machine. For example, in the T-die method, an air cooling method such as an air chamber, a vacuum chamber, or an air knife, or water cooling such as dipping a cooling roll into a cold water pan is performed. The method is not particularly limited, but in the case of imparting a surface uneven shape by shaping, the nip roll processed with silicone rubber, NBR rubber, fluororesin, etc. and the cooling roll processed by cutting metal are 0. A method of inflowing the molten resin into the contact portion to which a pressure of 1 MPa or more is applied to cool the contact portion is particularly preferable.

本発明によって得られる熱可塑性樹脂フィルムにおいて、単体フィルムで、または、他の基材と積層して包装材とすることができる。単体フィルムまたは積層体として用いる場合、図2に示すスタンディングパウチの他に、三方袋、合掌袋、ガゼット袋、スパウト付きパウチ、ビーク付きパウチ等に用いる事が可能である。また、包装袋の製袋様式は特に制限されるものではない。 In the thermoplastic resin film obtained by the present invention, it can be used as a single film or laminated with another base material to form a packaging material. When used as a single film or a laminated body, in addition to the standing pouch shown in FIG. 2, it can be used for a three-way bag, a gassho bag, a gusset bag, a pouch with a spout, a pouch with a beak, and the like. Further, the bag making style of the packaging bag is not particularly limited.

上述の様に、単体フィルム及び他基材と積層するどちらの場合でも、適宜、後工程適性を向上する表面改質処理を実施する事が可能である。例えば、単体フィルム使用時の印刷適性向上、積層使用時のラミネート適性向上のために他基材と接触する面に対して表面改質処理を行う事が可能である。表面改質処理はコロナ放電処理、プラズマ処理、フレーム処理等のフィルム表面を酸化させる事により官能基を発現させる手法や、易接着層のコーティング等のウェットプロセスによる改質を好適に用いる事が可能である。 As described above, in either case of laminating with a single film or another base material, it is possible to appropriately carry out a surface modification treatment for improving the suitability for the post-process. For example, in order to improve the printability when using a single film and the laminating suitability when using a laminated film, it is possible to perform surface modification treatment on the surface in contact with another substrate. As the surface modification treatment, it is possible to preferably use a method of expressing a functional group by oxidizing the film surface such as corona discharge treatment, plasma treatment, frame treatment, or a modification by a wet process such as coating of an easy-adhesion layer. Is.

以下、本発明の実施例について詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to the following examples.

<実施例1>
[1]第一工程(熱可塑性樹脂組成物の生成)
ポリオレフィン系熱可塑性樹脂(A)に用いる樹脂として、直鎖状低密度ポリエチレン樹脂(密度0.93g/cm、MFR3.2)及び低密度ポリエチレン樹脂(密度0.924g/cm、MFR1.0)を質量比で95:5の割合でブレンドしたものを85wt%、オレフィンと官能基含有単量体の共重合体(B)として、ポリアミド系熱可塑性樹脂と結合し得る反応基を持つエチレン−酢酸ビニル共重合体(密度0.940g/cm、MFR15.0、VA比19%)を5wt%、ポリアミド系熱可塑性樹脂(C)として、ポリアミド樹脂(ナイロン6樹脂、密度1.14g/cm)10wt%とをドライブレンドした後、二軸溶融混練押出機に投入し、混練温度230℃、押出速度20kg/h、押出機回転数300rpmの条件で溶融混練を行い、ペレタイザーを介して、第一工程組成物であるペレットを得た。
[2]第二工程(評価用フィルムの製膜)
上記[1]で得られたペレットを単軸押出機に投入し、成形温度230℃でTダイキャスト法にて厚み100μmのフィルムを製膜した。
<Example 1>
[1] First step (generation of thermoplastic resin composition)
As the resin used for the polyolefin thermoplastic resin (A), linear low density polyethylene resin (density 0.93g / cm 3, MFR3.2) and low-density polyethylene resin (density 0.924g / cm 3, MFR1.0 ) Is blended in a ratio of 95: 5 by mass to 85 wt%, as a copolymer (B) of an olefin and a functional group-containing monomer, ethylene having a reactive group capable of binding to a polyamide-based thermoplastic resin- Polypolymer resin (nylon 6 resin, density 1.14 g / cm) as vinyl acetate copolymer (density 0.940 g / cm 3 , MFR 15.0, VA ratio 19%) as 5 wt%, polyamide-based thermoplastic resin (C) 3 ) After dry blending with 10 wt%, it is put into a twin-screw melt-kneading extruder, melt-kneaded under the conditions of a kneading temperature of 230 ° C., an extrusion speed of 20 kg / h, and an extruder rotation speed of 300 rpm, and then melt-kneaded through a pelletizer. Pellets which are the first step composition were obtained.
[2] Second step (film formation of evaluation film)
The pellet obtained in the above [1] was put into a single-screw extruder, and a film having a thickness of 100 μm was formed by a T-die casting method at a molding temperature of 230 ° C.

<実施例2>
実施例1と同様の作製方法において、第一工程におけるオレフィンと官能基含有単量体の共重合体(B)として、ポリアミド系熱可塑性樹脂と結合し得る反応基を持つエチレン−酢酸ビニル共重合体(密度0.960g/cm、MFR14.0、VA比33%)を用いて、実施例2のフィルムを得た。
<Example 2>
In the same production method as in Example 1, an ethylene-vinyl acetate copolymer having a reactive group capable of binding to a polyamide-based thermoplastic resin as the copolymer (B) of the olefin and the functional group-containing monomer in the first step The coalescence (density 0.960 g / cm 3 , MFR 14.0, VA ratio 33%) was used to obtain the film of Example 2.

<実施例3>
実施例1と同様の作製方法において、第一工程におけるオレフィンと官能基含有単量体の共重合体(B)として、ポリアミド系熱可塑性樹脂と結合し得る反応基を持つエチレン−酢酸ビニル共重合体(密度0.960g/cm、MFR1.0、VA比33%)を用いて、実施例3のフィルムを得た。
<Example 3>
In the same production method as in Example 1, an ethylene-vinyl acetate copolymer having a reactive group capable of binding to a polyamide-based thermoplastic resin as the copolymer (B) of the olefin and the functional group-containing monomer in the first step The coalescence (density 0.960 g / cm 3 , MFR 1.0, VA ratio 33%) was used to obtain the film of Example 3.

<実施例4>
実施例1と同様の作製方法において、第一工程におけるオレフィンと官能基含有単量体の共重合体(B)として、ポリアミド系熱可塑性樹脂と結合し得る反応基を持つエチレン−酢酸ビニル共重合体(密度0.940g/cm、MFR2.5、VA比19%)を用いて、実施例4のフィルムを得た。
<Example 4>
In the same production method as in Example 1, an ethylene-vinyl acetate copolymer having a reactive group capable of binding to a polyamide-based thermoplastic resin as the copolymer (B) of the olefin and the functional group-containing monomer in the first step The coalescence (density 0.940 g / cm 3 , MFR 2.5, VA ratio 19%) was used to obtain the film of Example 4.

<実施例5>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を94.5wt%、(B)を5wt%、(C)を0.5wt%とし、実施例5のフィルムを得た。
<Example 5>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step was 94.5 wt% for (A), 5 wt% for (B), and 0.5 wt% for (C). The film of Example 5 was obtained.

<実施例6>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を75wt%、(B)を5wt%、(C)を20wt%とし、実施例6のフィルムを得た。
<Example 6>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 75 wt% for (A), 5 wt% for (B), and 20 wt% for (C), and the film of Example 6 is formed. Got

<実施例7>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を65wt%、(B)を5wt%、(C)を30wt%とし、実施例7のフィルムを得た。
<Example 7>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 65 wt% for (A), 5 wt% for (B), and 30 wt% for (C), and the film of Example 7 is formed. Got

<実施例8>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を89.5wt%、(B)を0.5wt%、(C)を10wt%とし、実施例8のフィルムを得た。
<Example 8>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step was 89.5 wt% for (A), 0.5 wt% for (B), and 10 wt% for (C). The film of Example 8 was obtained.

<実施例9>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を80wt%、(B)を10wt%、(C)を10wt%とし、実施例9のフィルムを得た。
<Example 9>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 80 wt% for (A), 10 wt% for (B), and 10 wt% for (C), and the film of Example 9 is formed. Got

<実施例10>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を70wt%、(B)を20wt%、(C)を10wt%とし、実施例10のフィルムを得た。
<Example 10>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 70 wt% for (A), 20 wt% for (B), and 10 wt% for (C), and the film of Example 10 is used. Got

<実施例11>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を69wt%、(B)を29wt%、(C)を10wt%とし、実施例11のフィルムを得た。
<Example 11>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 69 wt% for (A), 29 wt% for (B), and 10 wt% for (C), and the film of Example 11 is used. Got

<実施例12>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を99wt%、(B)を0.5wt%、(C)を0.5wt%とし、実施例12のフィルムを得た。
<Example 12>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step was 99 wt% for (A), 0.5 wt% for (B), and 0.5 wt% for (C). The film of Example 12 was obtained.

<比較例1>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を95wt%、(B)を5wt%、(C)を0wt%とし、比較例1のフィルムを得た。
<Comparative Example 1>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 95 wt% for (A), 5 wt% for (B), and 0 wt% for (C), and the film of Comparative Example 1 is used. Got

<比較例2>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を55wt%、(B)を5wt%、(C)を40wt%とし、比較例2のフィルムを得た。
<Comparative Example 2>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 55 wt% for (A), 5 wt% for (B), and 40 wt% for (C), and the film of Comparative Example 2 is used. Got

<比較例3>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を90wt%、(B)を0wt%、(C)を10wt%とし、比較例3のフィルムを得た。
<Comparative Example 3>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 90 wt% for (A), 0 wt% for (B), and 10 wt% for (C), and the film of Comparative Example 3 is used. Got

<比較例4>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を60wt%、(B)を30wt%、(C)を10wt%とし、比較例4のフィルムを得た。
<Comparative Example 4>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 60 wt% for (A), 30 wt% for (B), and 10 wt% for (C), and the film of Comparative Example 4 is used. Got

<比較例5>
実施例1と同様の作製方法において、第一工程における第一工程における材料ブレンド配合量を(A)を100wt%、(B)を0wt%、(C)を0wt%とし、比較例5のフィルムを得た。
<Comparative Example 5>
In the same production method as in Example 1, the material blend blending amount in the first step in the first step is 100 wt% for (A), 0 wt% for (B), and 0 wt% for (C), and the film of Comparative Example 5 is used. Got

上記各実施例及び各比較例によって得られた熱可塑性樹脂フィルム1について、フィルム中の材料複合状態確認として、走査型電子顕微鏡(SEM)により連続相および材料分散形状観察を行い、ポリアミド系熱可塑性樹脂(C)の長軸分散径と単軸分散径の比と、ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚みの計測を行った。 For the thermoplastic resin film 1 obtained in each of the above Examples and Comparative Examples, the continuous phase and the material dispersion shape were observed with a scanning electron microscope (SEM) as a confirmation of the material composite state in the film, and the polyamide-based thermoplasticity was observed. The ratio of the major axis dispersion diameter to the uniaxial dispersion diameter of the resin (C) and the thickness of the copolymer (B) of the olefin and the functional group-containing monomer that encloses the polyamide-based thermoplastic resin (C) were measured. ..

(材料分散形状評価)
材料分散形状評価は、フィルムMD方向(流れ方向)について観察を行った。具体的には、日立ハイテクノロジーズ製走査型電子顕微鏡(形式「S−4800」)により材料分散形状を観察し、倍率30000倍の画像を得た後、ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の分散相を無作為に20個選択し、選択したオレフィンと官能基含有単量体の共重合体(B)の分散相のそれぞれの厚さを5か所ずつ計測し、その平均値を算出した。また、同様の観察方法で倍率1000倍の画像を得た後、画像内の無作為に選択した20個の分散相の各々の長軸分散径と短軸分散径を測定し、長軸分散径と単軸分散径の比(=長軸分散径/短軸分散径)を算出した。長軸分散径と単軸分散径の比が10.0未満であるものを〇、10.0以上であるものを×とした。
(引張弾性率評価)
引張弾性率評価では、フィルムを15mm幅×100mmに切出し、JIS K7113に準じて、チャック間距離を50mm、引張り速度を300mm/minとして島津製作所株式会社製引張試験機(型番AGS−500NX)を用いて、引張弾性率を測定した。引張弾性率とフィルムの断面積の積が400MPa以上のものを〇、400MPa未満300MPa以上のものを△、300MPa未満のものを×とした。
(Material dispersion shape evaluation)
In the material dispersion shape evaluation, observation was performed in the film MD direction (flow direction). Specifically, the material dispersion shape is observed with a scanning electron microscope (type "S-4800") manufactured by Hitachi High-Technologies, an image with a magnification of 30,000 times is obtained, and then an olefin that encloses the polyamide-based thermoplastic resin (C). And 20 dispersed phases of the copolymer (B) of the functional group-containing monomer were randomly selected, and the thickness of each of the selected olefin and the dispersed phase of the copolymer (B) of the functional group-containing monomer was selected. The values were measured at 5 points each, and the average value was calculated. In addition, after obtaining an image with a magnification of 1000 times by the same observation method, the major axis dispersion diameter and the minor axis dispersion diameter of each of the 20 randomly selected dispersed phases in the image were measured, and the major axis dispersion diameter was measured. And the ratio of the uniaxial dispersion diameter (= major axis dispersion diameter / minor axis dispersion diameter) was calculated. Those having a ratio of the major axis dispersion diameter to the uniaxial dispersion diameter of less than 10.0 were evaluated as 〇, and those having a ratio of 10.0 or more were evaluated as x.
(Evaluation of tensile modulus)
In the evaluation of tensile elastic modulus, a film was cut into a width of 15 mm × 100 mm, and a tensile tester manufactured by Shimadzu Corporation (model number AGS-500NX) was used with a chuck distance of 50 mm and a tensile speed of 300 mm / min according to JIS K7113. The tensile elastic modulus was measured. The product having a tensile elastic modulus and the cross-sectional area of the film of 400 MPa or more was evaluated as ◯, those having a tensile modulus of less than 400 MPa and 300 MPa or more were evaluated as Δ, and those having a product of less than 300 MPa were evaluated as x.

(耐衝撃性率評価)
耐衝撃性評価では、フィルムを幅100mmに切り出し、測定温度を23℃、ひょう量3.0j、弾頭1/2インチとして、株式会社東洋精機製作所製フィルムインパクトテスター(型式 R)を用いて、破断エネルギーを測定した。破断エネルギーが10.0mJ/μm以上のものを〇、10.0mJ/μm未満7.4mJ/μm以上のものを△、7.4mJ/μm未満のものを×とした。
(Impact resistance rate evaluation)
In the impact resistance evaluation, the film was cut into a width of 100 mm, the measurement temperature was 23 ° C, the capacity was 3.0 j, the bullet head was 1/2 inch, and the film impact tester (model R) manufactured by Toyo Seiki Seisakusho Co., Ltd. was used to break the film. The energy was measured. Those with a breaking energy of 10.0 mJ / μm or more were evaluated as ◯, those with a breaking energy of less than 10.0 mJ / μm and 7.4 mJ / μm or more were evaluated as Δ, and those with a breaking energy of less than 7.4 mJ / μm were evaluated as ×.

(ヒートシール性評価)
ヒートシール性評価は、テスター産業株式会社製のヒートシーラー(型番TP−701−B)を用いてシール圧力0.2MPa、シール時間を1秒、シール幅を10mmとし、シール温度を150℃で、熱可塑性樹脂フィルム1の表面もしくは裏面同士を重ね、シールした。シールしたフィルムを15mm幅×100mmに切出し、チャック間距離を50mm、引張り速度を300mm/minとして島津製作所株式会社製引張試験機(型番AGS−500NX)を用いて180°T字剥離した場合のシール強度を測定した。その結果、シール強度が10N以上になるものを○、10.0N未満のものを×とした。
(Evaluation of heat sealability)
The heat sealability was evaluated using a heat sealer (model number TP-701-B) manufactured by Tester Sangyo Co., Ltd. at a seal pressure of 0.2 MPa, a seal time of 1 second, a seal width of 10 mm, and a seal temperature of 150 ° C. The front surface or the back surface of the thermoplastic resin film 1 was overlapped and sealed. The sealed film is cut into a width of 15 mm x 100 mm, the distance between chucks is 50 mm, and the tensile speed is 300 mm / min. The intensity was measured. As a result, those having a seal strength of 10 N or more were evaluated as ◯, and those having a seal strength of less than 10.0 N were evaluated as x.

(総合評価)
総合判定として、熱可塑性樹脂フィルム1に関する評価の全てについて△以上のものを〇とし、一つでも×であったものを×とした。
(comprehensive evaluation)
As a comprehensive judgment, all the evaluations related to the thermoplastic resin film 1 were evaluated as ◯ or more, and those having even one were evaluated as ×.

上記各実施例及び各比較例の熱可塑性樹脂フィルム1の評価結果を表1に記載する。 Table 1 shows the evaluation results of the thermoplastic resin film 1 of each of the above Examples and Comparative Examples.

Figure 2021187895
Figure 2021187895

表1より、実施例1から12においては総合判定で「○」以上を満たしている。比較例1ではポリオレフィン系熱可塑性樹脂(A)に対するポリアミド系熱可塑性樹脂(C)の配合比率が少ないため、また、比較例5ではポリアミド系熱可塑性樹脂(C)が配合されていないため、剛性が低下し、総合判定が「×」である。比較例2ではポリオレフィン系熱可塑性樹脂(A)に対するポリアミド系熱可塑性樹脂(C)の配合比率が多いため、ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚みも薄く、ポリアミド系熱可塑性樹脂(C)が表面付近に多く存在することで、ヒートシール性が低下した。さらに、比較例2では、ポリアミド系熱可塑性樹脂(C)の配合量が多いことにより、溶融混練時にポリアミド系熱可塑性樹脂(C)の相同士の接触が増えるため、長軸分散径/短軸分散径の値が大きくなり、耐衝撃性も低下した。したがって、比較例2の総合判定は「×」である。比較例3では、オレフィンと官能基含有単量体の共重合体(B)が配合されておらず、ポリアミド系熱可塑性樹脂(C)がフィルム表面に存在することでヒートシール性が低下するため、総合判定が「×」である。比較例4では、ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚さが厚く、全体的な配合量も多いため弾性率が低下し、総合判定が「×」である。 From Table 1, in Examples 1 to 12, "○" or more is satisfied in the comprehensive judgment. In Comparative Example 1, the ratio of the polyamide-based thermoplastic resin (C) to the polyolefin-based thermoplastic resin (A) is small, and in Comparative Example 5, the polyamide-based thermoplastic resin (C) is not blended, so that the rigidity is high. Decreases, and the overall judgment is "x". In Comparative Example 2, since the blending ratio of the polyamide-based thermoplastic resin (C) to the polyolefin-based thermoplastic resin (A) is large, a copolymer of the olefin and the functional group-containing monomer that encloses the polyamide-based thermoplastic resin (C). The thickness of (B) was also thin, and the presence of a large amount of the polyamide-based thermoplastic resin (C) near the surface reduced the heat-sealing property. Further, in Comparative Example 2, since the amount of the polyamide-based thermoplastic resin (C) blended in a large amount, the contact between the phases of the polyamide-based thermoplastic resin (C) increases during melt-kneading, so that the major axis dispersion diameter / minor axis The value of the dispersion diameter became large, and the impact resistance also decreased. Therefore, the comprehensive judgment of Comparative Example 2 is “x”. In Comparative Example 3, the copolymer (B) of the olefin and the functional group-containing monomer is not blended, and the polyamide-based thermoplastic resin (C) is present on the film surface, so that the heat sealability is deteriorated. , The overall judgment is "x". In Comparative Example 4, the thickness of the copolymer (B) of the olefin and the functional group-containing monomer that encloses the polyamide-based thermoplastic resin (C) is thick, and the overall compounding amount is large, so that the elastic modulus is lowered. The overall judgment is "x".

本発明は、熱可塑性樹脂フィルム、これを用いた包装材及び包装袋として利用できる。 The present invention can be used as a thermoplastic resin film, a packaging material using the thermoplastic resin film, and a packaging bag.

1 熱可塑性樹脂フィルム
2 連続相(ポリオレフィン系熱可塑性樹脂(A))
3 分散相(ポリアミド系熱可塑性樹脂(C))
4 分散相3を包み込む分散相(オレフィンと官能基含有単量体の共重合体(B))
5 連続相1に分散する分散相(オレフィンと官能基含有単量体の共重合体(B))
1 Thermoplastic resin film 2 Continuous phase (polyolefin-based thermoplastic resin (A))
3 Dispersed phase (polyamide-based thermoplastic resin (C))
4 Dispersed phase surrounding the dispersed phase 3 (copolymer of olefin and functional group-containing monomer (B))
5 Dispersed phase dispersed in continuous phase 1 (copolymer of olefin and functional group-containing monomer (B))

Claims (6)

ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)およびポリアミド系熱可塑性樹脂(C)を含む包装材用フィルムであって、
オレフィンと官能基含有単量体の共重合体(B)は、ポリオレフィン系熱可塑性樹脂(A)と異なる樹脂であって、ポリアミド系熱可塑性樹脂(C)と結合し得る反応基を有する樹脂であり、
オレフィンと官能基含有単量体の共重合体(B)がポリアミド系熱可塑性樹脂(C)を包み込むように存在しており、
ポリアミド系熱可塑性樹脂(C)を包み込むオレフィンと官能基含有単量体の共重合体(B)の厚さが0.007〜0.070μmの範囲内であり、
ポリアミド系熱可塑性樹脂(C)の重量割合が、ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)およびポリアミド系熱可塑性樹脂(C)の合計の0.5〜30wt%であることを特徴とする熱可塑性樹脂フィルム。
A film for packaging materials containing a polyolefin-based thermoplastic resin (A), a copolymer (B) of an olefin and a functional group-containing monomer, and a polyamide-based thermoplastic resin (C).
The copolymer (B) of the olefin and the functional group-containing monomer is a resin different from the polyolefin-based thermoplastic resin (A) and has a reactive group capable of binding to the polyamide-based thermoplastic resin (C). can be,
A copolymer (B) of an olefin and a functional group-containing monomer exists so as to enclose the polyamide-based thermoplastic resin (C).
The thickness of the copolymer (B) of the olefin and the functional group-containing monomer that encloses the polyamide-based thermoplastic resin (C) is in the range of 0.007 to 0.070 μm.
The weight ratio of the polyamide-based thermoplastic resin (C) is 0, which is the total of the polyolefin-based thermoplastic resin (A), the copolymer (B) of the olefin and the functional group-containing monomer, and the polyamide-based thermoplastic resin (C). .A thermoplastic resin film characterized by being 5 to 30 wt%.
JIS K7113に準じた引張試験において、引張弾性率が300MPa以上であり、かつ、耐衝撃性試験において破断エネルギーが7.4mJ/μm以上であり、かつヒートシール試験において、130℃シール時のヒートシール強度が10N以上であることを特徴とする請求項1に記載の熱可塑性樹脂フィルム。 In the tensile test according to JIS K7113, the tensile elastic modulus is 300 MPa or more, the breaking energy is 7.4 mJ / μm or more in the impact resistance test, and the heat seal at 130 ° C. is sealed in the heat seal test. The thermoplastic resin film according to claim 1, wherein the strength is 10 N or more. ポリオレフィン系熱可塑性樹脂(A)、オレフィンと官能基含有単量体の共重合体(B)が下記の重量割合で存在することを特徴とする請求項1または2に記載の熱可塑性樹脂フィルム。
(A)・・・69〜99wt%
(B)・・・0.5〜10wt%
The thermoplastic resin film according to claim 1 or 2, wherein the polyolefin-based thermoplastic resin (A) and the copolymer (B) of the olefin and the functional group-containing monomer are present in the following weight ratios.
(A) ・ ・ ・ 69-99 wt%
(B) ・ ・ ・ 0.5 to 10 wt%
ポリアミド系熱可塑性樹脂(C)の長軸分散径と短軸分散径の比が10.0未満の範囲内であることを特徴とする請求項1乃至3のいずれかに記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to any one of claims 1 to 3, wherein the ratio of the major axis dispersion diameter to the minor axis dispersion diameter of the polyamide-based thermoplastic resin (C) is within the range of less than 10.0. .. 請求項1乃至4のいずれかに記載の熱可塑性樹脂フィルムを用いたことを特徴とする包装材。 A packaging material using the thermoplastic resin film according to any one of claims 1 to 4. 請求項5に記載の包装材を用いたことを特徴とする包装袋。 A packaging bag using the packaging material according to claim 5.
JP2020091773A 2020-05-26 2020-05-26 Thermoplastic resin film, and packaging material and packaging bag using the same Pending JP2021187895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020091773A JP2021187895A (en) 2020-05-26 2020-05-26 Thermoplastic resin film, and packaging material and packaging bag using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091773A JP2021187895A (en) 2020-05-26 2020-05-26 Thermoplastic resin film, and packaging material and packaging bag using the same

Publications (1)

Publication Number Publication Date
JP2021187895A true JP2021187895A (en) 2021-12-13

Family

ID=78848194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091773A Pending JP2021187895A (en) 2020-05-26 2020-05-26 Thermoplastic resin film, and packaging material and packaging bag using the same

Country Status (1)

Country Link
JP (1) JP2021187895A (en)

Similar Documents

Publication Publication Date Title
TW201532806A (en) Laminated fabric shipping sacks, methods of manufacturing, and related systems
JPH02152659A (en) Bag excellent in blocking resistance
JP6898799B2 (en) Polypropylene-based longitudinally uniaxially stretched film, film laminate, and bag-shaped material
JP2019006461A (en) Food product packaging film and food product packaging body
JP2019006462A (en) Food product packaging film and food product packaging body
JP4642499B2 (en) Polyolefin resin composition and packaging film
JP2018127556A (en) Resin composition, lid material for easily-openable container, and easily-openable container
CN111819237B (en) Sealing resin composition, multilayer film for sealing, heat-sealable laminate film, and package
JP7163599B2 (en) Easy peelable film
JP2021187895A (en) Thermoplastic resin film, and packaging material and packaging bag using the same
JP7456121B2 (en) Thermoplastic resin film, packaging materials and packaging bags using the same
JP2020203987A (en) Polypropylene-based resin composition, polypropylene-based film and packaging material, and package
JP2021181549A (en) Thermoplastic resin film, packaging material including the same, and packaging bag
JP6903011B2 (en) Resin compositions, laminates and molded products containing ethylene-vinyl alcohol copolymers
JP2019142018A (en) Heat shrinkable laminate film
JP7331433B2 (en) Sealant film for packaging materials, packaging materials and packages
JP7409045B2 (en) Sealant film for packaging materials, packaging materials and packages using the same
JP7404641B2 (en) Resin films for packaging materials, packaging materials, and packaging bodies
JP2024011897A (en) Thermoplastic resin molding, and packaging material using the same
JP7006329B2 (en) Thermoplastic resin composition, easy-to-open container lid material and easy-to-open container
JP2023142880A (en) Thermoplastic resin molded bodies and packaging materials
JP2022175400A (en) Barrier thermoplastic resin molded body and packaging material using the same
JP2022177519A (en) Barrier thermoplastic resin molded body and packaging material
JP2021154656A (en) Stretched film for laminate and laminate film
JP6822198B2 (en) Sealant adhesive and easy-to-peel film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426