JP2021070051A - Flux-cored wire for gas shield arc welding - Google Patents

Flux-cored wire for gas shield arc welding Download PDF

Info

Publication number
JP2021070051A
JP2021070051A JP2019199335A JP2019199335A JP2021070051A JP 2021070051 A JP2021070051 A JP 2021070051A JP 2019199335 A JP2019199335 A JP 2019199335A JP 2019199335 A JP2019199335 A JP 2019199335A JP 2021070051 A JP2021070051 A JP 2021070051A
Authority
JP
Japan
Prior art keywords
welding
flux
total
wire
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019199335A
Other languages
Japanese (ja)
Other versions
JP7244399B2 (en
Inventor
笹木 聖人
Masahito Sasaki
聖人 笹木
友勝 岩上
Tomokatsu Iwagami
友勝 岩上
紀文 中尾
Norifumi Nakao
紀文 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP2019199335A priority Critical patent/JP7244399B2/en
Publication of JP2021070051A publication Critical patent/JP2021070051A/en
Application granted granted Critical
Publication of JP7244399B2 publication Critical patent/JP7244399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

To provide a flux-cored wire for gas shield arc welding which is superior in welding workability without weld defects in high-current welding from small heat input, and further, which can obtain weld metal having an excellent mechanical performance by welding with large heat input and high interpass temperature.SOLUTION: A flux-cored wire for gas shield arc welding contains, in mass% to a total mass of the wire, in total of a steel sheath and the flux: 0.04-0.18% of C, 0.1-1.2% of Si, 1.5-2.5% of Mn, 0.1-0.3% of Ti, and more than 0.08-0.25% of a total of either or both of Al and Mg. Additionally, in mass% to the total mass of the wire, the flux contains 0.005-0.050% of the total of an F conversion value, 0.02-0.15% of total of an Na conversion value and a K conversion value, and 0.20% or less of SiO2.SELECTED DRAWING: None

Description

本発明は、490〜550MPa級鋼のガスシールドアーク溶接用フラックス入りワイヤに関し、特に固形裏当材を用いた片面溶接の初層溶接において生じやすいブローホールの発生が無く、小入熱溶接から大電流溶接で溶接作業性に優れ、さらに、大入熱・高パス間温度の溶接施工条件においても機械的性能に優れた溶接金属を得ることができるガスシールドアーク溶接用フラックス入りワイヤに関する。 The present invention relates to a flux-filled wire for gas shielded arc welding of 490 to 550 MPa class steel, and does not generate blowholes that are likely to occur in the first layer welding of single-sided welding using a solid backing material, and is large from small heat input welding. The present invention relates to a flux-containing wire for gas shielded arc welding, which is excellent in welding workability by current welding and can obtain a welded metal having excellent mechanical performance even under welding construction conditions of large heat input and high interpass temperature.

建築鉄骨分野において、溶接施工の能率向上を図るため、溶接用ソリッドワイヤを用いた高電流域でのガスシールドアーク溶接が行われている。溶接用ソリッドワイヤでの高電流溶接では、一層毎の溶着量が多いので溶接の高能率化が可能であるが、アークが不安定でスパッタ発生量が多く、ビード外観・形状が不良であるなど溶接作業性が悪いという問題がある。また、スパッタが大粒になるため、鋼板表面に付着したスパッタを除去作業も困難となり作業効率も不良であった。 In the field of building steel frames, gas shielded arc welding is performed in a high current range using solid wires for welding in order to improve the efficiency of welding work. In high-current welding with solid wire for welding, it is possible to improve the efficiency of welding because the amount of welding for each layer is large, but the arc is unstable, the amount of spatter generated is large, and the bead appearance and shape are poor. There is a problem that welding workability is poor. In addition, since the spatter becomes large, it is difficult to remove the spatter adhering to the surface of the steel sheet, and the work efficiency is also poor.

これら問題を解決する手段として、スパッタ発生量が少ないガスシールドアーク溶接用ソリッドワイヤの開発が行われている。例えば特許文献1には、ワイヤ表面に二硫化モリブデン、リン脂質及び常温で液体の潤滑剤からなる送給潤滑剤を適量付着させることでワイヤ送給性を良好にし、溶接時のスパッタ発生量を低減する技術が開示されている。また、特許文献2には、ワイヤ表層下にアルカリ金属含浸部を有することでスパッタ発生量を低減できる溶接用ソリッドワイヤが開示されている。しかし、溶接用ソリッドワイヤでの高電流溶接では、発生するスパッタ自体が多いため、たとえワイヤ送給性が良好になってもスパッタ発生量を十分に低減できず、また、ビード外観・形状も改善されないという問題があった。 As a means for solving these problems, a solid wire for gas shielded arc welding with a small amount of spatter generated has been developed. For example, in Patent Document 1, the wire feeding property is improved by adhering an appropriate amount of a feeding lubricant composed of molybdenum disulfide, phospholipid, and a lubricant liquid at room temperature to the wire surface, and the amount of spatter generated during welding is increased. Techniques for reduction are disclosed. Further, Patent Document 2 discloses a solid wire for welding that can reduce the amount of spatter generated by having an alkali metal impregnated portion under the wire surface layer. However, in high-current welding with solid wire for welding, a large amount of spatter is generated, so even if the wire feedability is improved, the amount of spatter generated cannot be sufficiently reduced, and the appearance and shape of the bead are also improved. There was a problem that it was not done.

また近年では、更なる溶接施工の高能率化を目的から、大入熱・高パス間温度の溶接施工条件に対応するガスシールドアーク溶接用ソリッドワイヤが開発されており、例えば、特許文献3、特許文献4及び特許文献5等にあるように、ワイヤ中にMo、Cr等を多く含有したものが開示されている。これらソリッドワイヤによれば、大入熱・高パス間温度の溶接施工条件においても、溶接金属の強度及び靭性を確保することが可能であるが、やはりアークが不安定でスパッタ発生量が多く、ビード外観・形状が不良であるなど溶接作業性が悪いという問題があった。 Further, in recent years, for the purpose of further improving the efficiency of welding work, solid wires for gas shielded arc welding corresponding to welding work conditions of large heat input and high inter-pass temperature have been developed. For example, Patent Document 3 and 3. As described in Patent Document 4 and Patent Document 5, a wire containing a large amount of Mo, Cr, etc. is disclosed. According to these solid wires, it is possible to secure the strength and toughness of the weld metal even under welding construction conditions with large heat input and high interpass temperature, but the arc is still unstable and the amount of spatter generated is large. There was a problem that welding workability was poor, such as poor bead appearance and shape.

大入熱・高パス間温度の溶接施工条件で溶接金属の強度及び靭性を確保しつつ、溶接作業性が良好なガスシールドアーク溶接用ワイヤとして、例えば、特許文献6、特許文献7には、大入熱・高パス間温度の溶接施工条件の下で、良好な溶接作業性が得られるとともに、機械的性能に優れた溶接金属が得られるフラックス入りワイヤが開示されている。しかし、これらのフラックス入りワイヤでは、溶接用ソリッドワイヤでの高電流溶接よりもスパッタ発生量は減少できるものの、やはりスパッタ発生量は総じて多く、また、スラグ発生量が多いので、スラグ巻込み等の溶接欠陥が発生しやすくなるという問題があった。 As a gas shielded arc welding wire with good welding workability while ensuring the strength and toughness of the weld metal under welding construction conditions with large heat input and high interpass temperature, for example, Patent Document 6 and Patent Document 7 A flux-filled wire is disclosed in which good welding workability can be obtained and a weld metal having excellent mechanical performance can be obtained under welding construction conditions of high heat input and high interpass temperature. However, although these flux-cored wires can reduce the amount of spatter generated compared to high-current welding with solid wires for welding, the amount of spatter generated is generally large and the amount of slag generated is large, so slag entrainment, etc. There is a problem that welding defects are likely to occur.

一方、本発明者らは特許文献8において、高電流、大入熱・高パス間温度の溶接施工条件の下で、スパッタ発生量が少ない等良好な溶接作業性が得られるとともに、機械的性能の優れた溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提案した。しかし、特許文献8に提案したガスシールドアーク溶接用フラックス入りワイヤを用いて、固形裏当材を用いた片面溶接の初層溶接においてはブローホールが生じやすいという問題があった。 On the other hand, in Patent Document 8, the present inventors can obtain good welding workability such as a small amount of spatter generation under welding construction conditions of high current, large heat input and high inter-pass temperature, and mechanical performance. We have proposed a flux-cored wire for gas shielded arc welding that can obtain excellent weld metal. However, there is a problem that blow holes are likely to occur in the first layer welding of single-sided welding using a solid backing material using the flux-cored wire for gas shielded arc welding proposed in Patent Document 8.

特開2006−95551号公報Japanese Unexamined Patent Publication No. 2006-95551 特開2009−255142号公報Japanese Unexamined Patent Publication No. 2009-255142 特開平10−230387号公報Japanese Unexamined Patent Publication No. 10-23387 特開平11−90678号公報Japanese Unexamined Patent Publication No. 11-90678 特開2001−287086号公報Japanese Unexamined Patent Publication No. 2001-287086 特開2005−279683号公報Japanese Unexamined Patent Publication No. 2005-279683 特開2011−25298号公報Japanese Unexamined Patent Publication No. 2011-25298 特開2018−203236号公報JP-A-2018-203236

そこで本発明は、上記問題点に鑑みて案出されたものであり、490〜550MPa級鋼の固形裏当材を用いた片面溶接の初層溶接時に生じやすいブローホールの発生が無く、小入熱溶接から高電流溶接でスパッタ発生量が少なく、アークの安定性及びビード外観・形状が良好で、スラグ巻き込み等の溶接欠陥が少ないなど溶接作業性に優れ、さらに、大入熱及び高パス間温度の溶接施工条件で適正な強度と靭性を有する溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。 Therefore, the present invention has been devised in view of the above problems, and there is no blow hole that is likely to occur during the first layer welding of single-sided welding using a solid backing material of 490-550 MPa class steel, and a small amount is inserted. From hot welding to high current welding, the amount of spatter generated is small, the arc stability and bead appearance and shape are good, welding defects such as slag entrainment are few, and welding workability is excellent. It is an object of the present invention to provide a flux-filled wire for gas shielded arc welding, which can obtain a welded metal having appropriate strength and toughness under hot welding conditions.

本発明者らは、上記課題を解決するために、490〜550MPa級鋼の固形裏当材を用いた片面溶接、高電流溶接、さらに大入熱・高パス間温度でのガスシールドアーク溶接において、適正な強度及び靭性を有する溶接金属が得られるとともに、ブローホールの発生が無く、アークが安定し、スパッタ発生量が少なく、ビード外観・形状が良好で、溶接欠陥が防止できるなど良好な溶接作業性が得られるガスシールドアーク溶接用フラックス入りワイヤの成分組成について詳細に検討した。 In order to solve the above problems, the present inventors perform single-sided welding using a solid backing material of 490-550 MPa class steel, high-current welding, and gas-shielded arc welding at a large heat input and a high interpass temperature. Welding metal with appropriate strength and toughness can be obtained, no blow holes are generated, arc is stable, spatter generation amount is small, bead appearance and shape are good, and welding defects can be prevented. The composition of the flux-filled wire for gas-shielded arc welding, which provides workability, was examined in detail.

その結果、下向姿勢や横向姿勢等での固形裏当材を用いた片面溶接の初層溶接において生じやすいブローホールは、Al及びMgの一方または両方の合計を適量含有させることによって生じなくなることを見出した。 As a result, blow holes that are likely to occur in the first layer welding of single-sided welding using a solid backing material in a downward posture or a sideways posture are eliminated by containing an appropriate amount of one or both of Al and Mg. I found.

また、高電流での溶接施工条件において、アークの安定性及びスパッタ発生量の低減は、Na酸化物、Na弗化物、K酸化物及びK弗化物のNa換算値とK換算値の合計量及び金属弗化物のF換算値の合計量を適正にすることで良好になることを見出した。 Further, under welding construction conditions at a high current, the stability of the arc and the reduction of the amount of spatter generated are determined by the total amount of the Na conversion value and the K conversion value of Na oxide, Na fluoride, K oxide and K fluoride. It was found that it becomes better by adjusting the total amount of F-converted values of the metal fluoride.

高電流での溶接施工条件における溶接金属の適正な強度と同時に安定した靭性の向上をも同時に達成させるためには、ワイヤ中のスラグ生成剤である酸化物を極力減らし、合金成分のC、Si、Mn、Tiのそれぞれの適正化、さらにBの適量添加が有効であることを知見した。 In order to achieve the proper strength of the weld metal and the stable improvement of toughness under the welding construction conditions at high current, the oxide which is a slag generating agent in the wire is reduced as much as possible, and the alloy components C and Si are used. , Mn, and Ti were optimized, and it was found that the addition of an appropriate amount of B was effective.

さらに、ワイヤ中のMo量を適正にすることにより、大入熱・高パス間温度の溶接施工条件においても、溶接金属の高強度化が、Bの適量添加で靭性の向上が可能であることも知見した。 Furthermore, by optimizing the amount of Mo in the wire, it is possible to increase the strength of the weld metal and improve the toughness by adding an appropriate amount of B even under welding construction conditions with large heat input and high interpass temperature. Also found.

すなわち、本発明の要旨は、鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、C:0.04〜0.18%、Si:0.1〜1.2%、Mn:1.5〜2.5%、Ti:0.1〜0.3%、Al及びMgの一方または両方の合計:0.08超〜0.25%を含有し、さらに、ワイヤ全質量に対する質量%で、フラックス中に、金属弗化物のF換算値の合計:0.005〜0.050%、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上:Na換算値とK換算値の合計で0.01〜0.10%を含有し、SiO2:0.20%以下で、残部は鋼製外皮のFe、フラックス中の鉄粉、鉄合金からのFe分及び不可避的不純物からなることを特徴とする。 That is, the gist of the present invention is a flux-cored wire for gas shielded arc welding in which a steel outer skin is filled with flux, in which the mass% of the total weight of the wire is the total of the steel outer skin and the flux, C: 0.04. ~ 0.18%, Si: 0.1 to 1.2%, Mn: 1.5 to 2.5%, Ti: 0.1 to 0.3%, total of one or both of Al and Mg: 0 It contains more than .08 to 0.25%, and in mass% with respect to the total mass of the wire, the total F-converted value of the metal flux in the flux: 0.005 to 0.050%, Na oxide, Na. One or more types of flux, K oxide and K flux: 0.01 to 0.10% in total of Na conversion value and K conversion value, SiO 2 : 0.20% or less. The balance is characterized by being composed of Fe in a steel outer skin, iron powder in a flux, Fe content from an iron alloy, and unavoidable impurities.

また、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、B:0.002〜0.010%をさらに含有することも特徴とする。 It is also characterized in that it further contains B: 0.002 to 0.010% in total of the steel outer skin and the flux in mass% with respect to the total mass of the wire.

さらに、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Mo:0.15〜0.50%をさらに含有することも特徴とするガスシールドアーク溶接用フラックス入りワイヤにある。 Further, the flux-cored wire for gas shielded arc welding is further characterized by further containing Mo: 0.15 to 0.50% in total of the steel outer skin and the flux in mass% with respect to the total mass of the wire.

本発明のガスシールドアーク溶接用フラックス入りワイヤによれば、固形裏当材を用いた片面溶接の初層溶接におけるブローホールの発生が無く、小入熱溶接から高電流溶接において、アークの安定性及びビード外観・形状が優れ、スパッタ発生量が少なく、スラグ生成量が少なく溶接欠陥が防止できるなど溶接作業性が良好で、さらに、大入熱・高パス間温度の溶接施工条件においても溶接金属の強度及び靭性を十分に確保し、高品質な溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することができる。 According to the flux-filled wire for gas shielded arc welding of the present invention, there is no blow hole in the first layer welding of single-sided welding using a solid backing material, and arc stability is achieved from small heat input welding to high current welding. The appearance and shape of the bead are excellent, the amount of spatter generated is small, the amount of slag generated is small, and welding defects can be prevented. It is possible to provide a flux-filled wire for gas-shielded arc welding, which can sufficiently secure the strength and toughness of the material and obtain high-quality weld metal.

本発明のガスシールドアーク溶接用フラックス入りワイヤは、各成分組成それぞれの単独及び共存による相乗効果によりなし得たもので、以下にそれぞれの各成分組成の限定理由を述べる。なお、各成分組成の含有率は、フラックス入りワイヤ全質量に対する質量%で表すものとし、その質量%に関する記載を単に%と記載して表すこととする。 The flux-cored wire for gas shielded arc welding of the present invention can be achieved by the synergistic effect of each component composition alone or coexisting, and the reasons for limiting each component composition will be described below. The content of each component composition shall be expressed in% by mass with respect to the total mass of the flux-cored wire, and the description regarding the mass% shall be simply expressed as%.

[鋼製外皮とフラックスの合計でC:0.04〜0.18%]
Cは、固溶強化により溶接金属の強度を向上するために必要な元素である。Cが0.04%未満であると、高電流及び大入熱・高パス間温度での溶接施工条件で溶接金属の強度が得られない。一方、Cが0.18%を超えると、溶接金属の強度が過剰に高くなり、靭性が低下する。また、高温割れ感受性が高くなる。従って、鋼製外皮とフラックスの合計でCは0.04〜0.18%とする。なお、Cは、鋼製外皮に含まれる成分の他、フラックスから金属粉及び合金粉等から添加できる。
[Total of steel outer skin and flux C: 0.04 to 0.18%]
C is an element necessary for improving the strength of the weld metal by strengthening the solid solution. If C is less than 0.04%, the strength of the weld metal cannot be obtained under the welding construction conditions of high current, large heat input, and high interpass temperature. On the other hand, when C exceeds 0.18%, the strength of the weld metal becomes excessively high and the toughness decreases. In addition, the sensitivity to high temperature cracking increases. Therefore, the total of the steel outer skin and the flux is set to 0.04 to 0.18%. In addition to the components contained in the steel outer skin, C can be added from flux, metal powder, alloy powder, or the like.

[鋼製外皮とフラックスの合計でSi:0.1〜1.2%]
Siは、溶接金属の脱酸及び溶接金属の強度確保のために添加する。高電流及び大入熱・高パス間温度での溶接施工条件ではSiの消耗が多いが、Siが適量溶接金属に歩留まって強度を確保する必要がある。Siが0.1%未満であると、溶接金属が脱酸不足となり、溶接金属の強度及び靭性が低下する。一方、Siが1.2%を超えると、溶接金属の強度が過剰に高くなり、靭性が安定して得られない。また、溶接時に生成するスラグ量が増加してスラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でSiは0.1〜1.2%とする。なお、Siは、鋼製外皮に含まれる成分の他、フラックスから金属Si、Fe−Si、Fe−Si−Mn等の合金粉から添加できる。
[Total of steel outer skin and flux Si: 0.1 to 1.2%]
Si is added to deoxidize the weld metal and ensure the strength of the weld metal. Under welding construction conditions with high current, large heat input, and high interpass temperature, Si is consumed a lot, but it is necessary to ensure the strength by retaining an appropriate amount of Si in the weld metal. If Si is less than 0.1%, the weld metal becomes insufficiently deoxidized, and the strength and toughness of the weld metal decrease. On the other hand, if Si exceeds 1.2%, the strength of the weld metal becomes excessively high, and the toughness cannot be stably obtained. In addition, the amount of slag generated during welding increases, and welding defects such as slag entrainment are likely to occur. Therefore, the total of the steel outer skin and the flux is 0.1 to 1.2%. In addition to the components contained in the steel outer skin, Si can be added from alloy powders such as metal Si, Fe-Si, and Fe-Si-Mn from the flux.

[鋼製外皮とフラックスの合計でMn:1.5〜2.5%]
Mnは、溶接金属の靭性確保と強度向上のために添加する。Mnが1.5%未満であると、高電流及び大入熱・高パス間温度での溶接施工条件でMnの消耗が多くなり溶接金属の強度が低く、また、靭性が十分に確保できなくなる。一方、Mnが2.5%を超えると、溶接金属の靭性が安定して得られない。また、生成スラグ量が増加してスラグ巻込み等の溶接欠陥が発生しやすくなる。従って、鋼製外皮とフラックスの合計でMnは1.5〜2.5%とする。なお、Mnは、鋼製外皮に含まれる成分の他、フラックスからの金属Mn、Fe−Mn、Fe−Si−Mn等の合金粉末から添加できる。
[Mn: 1.5 to 2.5% in total of steel outer skin and flux]
Mn is added to ensure the toughness and improve the strength of the weld metal. If Mn is less than 1.5%, Mn is consumed more under welding construction conditions with high current, large heat input, and high interpass temperature, the strength of the weld metal is low, and sufficient toughness cannot be ensured. .. On the other hand, if Mn exceeds 2.5%, the toughness of the weld metal cannot be stably obtained. In addition, the amount of generated slag increases, and welding defects such as slag entrainment are likely to occur. Therefore, the total Mn of the steel outer skin and the flux is 1.5 to 2.5%. In addition to the components contained in the steel outer skin, Mn can be added from alloy powders such as metal Mn, Fe-Mn, and Fe-Si-Mn from flux.

[鋼製外皮とフラックスの合計でTi:0.1〜0.3%]
Tiは、脱酸剤として作用するとともに、溶接金属中にTiの微細酸化物を生成し溶接金属の靭性をより向上させる。Tiが0.1%未満であると、溶接金属の靭性が低下する。一方、Tiが0.3%を超えると、スラグ生成量が多くなってスラグ巻き込み欠陥が生じやすくなる。また、溶接金属中に靭性を阻害するTiCが析出し、靭性が低下する。従って、鋼製外皮とフラックスの合計でTiは0.1〜0.3%とする。なお、Tiは、鋼製外皮に含まれる成分の他、フラックスからの金属Ti、Fe−Ti等の合金粉から添加できる。
[Total of steel outer skin and flux Ti: 0.1 to 0.3%]
Ti acts as a deoxidizer and forms fine oxides of Ti in the weld metal to further improve the toughness of the weld metal. If Ti is less than 0.1%, the toughness of the weld metal decreases. On the other hand, when Ti exceeds 0.3%, the amount of slag generated increases and slag entrainment defects are likely to occur. In addition, TiC that inhibits toughness is deposited in the weld metal, and the toughness is lowered. Therefore, the total of the steel outer skin and the flux is set to 0.1 to 0.3%. In addition to the components contained in the steel outer skin, Ti can be added from alloy powders such as metal Ti and Fe-Ti from flux.

[鋼製外皮とフラックスの合計でAl及びMgの一方または両方の合計:0.08超〜0.25%]
Al及びMgは、強脱酸剤であり固形裏当材を用いた片面溶接の初層溶接でのブローホール発生を抑える。また、溶接金属の酸素量を低減して靭性を高める効果がある。Al及びMgの一方または両方の合計が0.08%以下であると、固形裏当材を用いた片面溶接の初層溶接でブローホールが生じやすくなる。一方、Al及びMgの一方または両方の合計が0.25%を超えると、アークが不安定になりスパッタ発生量が多くなる。従って、Al及びMgの一方または両方の合計は0.08超〜0.25%とする。なお、Alは、鋼製外皮に含まれる成分の他、金属Al、Fe−Al、Al−Mg等から、Mgは、鋼製外皮に含まれる成分の他、金属Mg、Al−Mg等から添加できる。
[Total of steel outer skin and flux: Total of one or both of Al and Mg: Over 0.08 to 0.25%]
Al and Mg are strong deoxidizers and suppress the occurrence of blow holes in the first layer welding of single-sided welding using a solid backing material. It also has the effect of reducing the amount of oxygen in the weld metal and increasing toughness. When the total of one or both of Al and Mg is 0.08% or less, blow holes are likely to occur in the initial layer welding of single-sided welding using the solid backing material. On the other hand, if the total of one or both of Al and Mg exceeds 0.25%, the arc becomes unstable and the amount of spatter generated increases. Therefore, the total of one or both of Al and Mg is set to more than 0.08 to 0.25%. Al is added from metals Al, Fe-Al, Al-Mg, etc. in addition to the components contained in the steel outer skin, and Mg is added from metals Mg, Al-Mg, etc. in addition to the components contained in the steel outer skin. it can.

[フラックス中に含有する金属弗化物のF換算値の合計:0.005〜0.050%]
金属弗化物は、アークを集中させて安定させる効果がある。金属弗化物のF換算値の合計が0.005%未満では、この効果が得られず、アークが不安定でスパッタ発生量が多くなる。一方、金属弗化物のF換算値の合計が0.050%を超えると、アークが荒く不安定になり、スパッタ発生量が多くなる。従って、フラックス中に含有する金属弗化物のF換算値の合計は0.005〜0.050%とする。なお、金属弗化物は、フラックスからのCaF2、NaF、LiF、MgF2、K2SiF6、K2ZrF6、Na3AlF6、AlF3等から添加でき、F換算値はそれらに含有されるF量の合計である。
[Total F-converted value of metal fluoride contained in flux: 0.005 to 0.050%]
Metal fluoride has the effect of concentrating and stabilizing the arc. If the total F conversion value of the metal fluoride is less than 0.005%, this effect cannot be obtained, the arc is unstable, and the amount of spatter generated increases. On the other hand, when the total F conversion value of the metal fluoride exceeds 0.050%, the arc becomes rough and unstable, and the amount of spatter generated increases. Therefore, the total F-converted value of the metal fluoride contained in the flux is 0.005 to 0.050%. The metal fluoride can be added from CaF 2 , NaF, LiF, MgF 2 , K 2 SiF 6 , K 2 ZrF 6 , Na 3 AlF 6 , AlF 3, etc. from the flux, and the F conversion value is contained in them. It is the total amount of F.

[フラックス中に含有するNa酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上:Na換算値とK換算値の合計0.01〜0.10%]
Na酸化物、Na弗化物、K酸化物及びK弗化物は、アークをソフトにして安定にする。Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上のNa換算値とK換算値の合計が0.01%未満であると、アークが不安定になりスパッタ発生量が多くなる。一方、Na酸化物、Na弗化物、K酸化物及びK弗化物1種または2種以上のNa換算値とK換算値の合計が0.10%を超えると、アークが強くなりすぎ、スパッタ発生量が多くなる。また、ビード止端部のなじみが悪くなり、ビード外観・形状が不良となる。従って、フラックス中に含有するNa酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上のNa換算値とK換算値の合計は0.01〜0.10%とする。なお、Na酸化物、Na弗化物、K酸化物及びK弗化物は、珪酸ソーダ及び珪酸カリウムからなる水ガラスの固質酸化物成分、NaF、K2SiF6、K2ZrF6、Na3AlF6等の弗化物の粉末から添加できる。
[One or more of Na oxide, Na fluoride, K oxide and K fluoride contained in the flux: 0.01 to 0.10% of the total of Na conversion value and K conversion value]
Na oxides, Na fluorides, K oxides and K fluorides soften and stabilize the arc. If the sum of the Na-equivalent value and the K-equivalent value of one or more of Na oxide, Na fluoride, K oxide and K fluoride is less than 0.01%, the arc becomes unstable and spatter occurs. The amount will increase. On the other hand, if the sum of the Na conversion value and the K conversion value of one or more Na oxides, Na fluorides, K oxides and K fluorides exceeds 0.10%, the arc becomes too strong and spatter occurs. The amount will increase. In addition, the fit of the toe of the bead becomes poor, and the appearance and shape of the bead become poor. Therefore, the sum of the Na-equivalent value and the K-equivalent value of one or more kinds of Na oxide, Na fluoride, K oxide and K fluoride contained in the flux is 0.01 to 0.10%. .. In addition, Na oxide, Na fluoride, K oxide and K fluoride are solid oxide components of water glass composed of sodium silicate and potassium silicate, NaF, K 2 SiF 6 , K 2 ZrF 6 , Na 3 AlF. It can be added from fluoride powder of 6 mag.

[フラックス中に含有するSiO2:0.20%以下]
SiO2は、微量でビード止端部のなじみを良好にするが、フラックス中のSiO2が0.20%を超えると、溶接金属中の酸素量が増加して靭性が低下する。また、スラグ量が多くなり、スラグ巻込み等の溶接欠陥が発生しやすくなる。従って、フラックス中に含有するSiO2は0.20%以下とする。なお、SiO2は、フラックスから珪酸ソーダ及び珪酸カリウムからなる水ガラスの固質成分等から微量添加されるが、SiO2は必須の成分ではなく、含有量が0%でもよい。
[SiO 2 : contained in flux: 0.20% or less]
SiO 2 is to improve the conformability of the bead toe portion in trace amounts, the SiO 2 in the flux is more than 0.20%, the amount of oxygen in the weld metal is toughness is lowered increases. In addition, the amount of slag increases, and welding defects such as slag entrainment are likely to occur. Therefore, the SiO 2 contained in the flux is set to 0.20% or less. Incidentally, SiO 2 is added small amount from the solid matter component of the water glass consisting of sodium silicate and potassium silicate from the flux etc., SiO 2 is not an essential component, the content may be 0%.

[鋼製外皮とフラックスの合計でB:0.002〜0.010%]
Bは、高電流及び大入熱・高パス間温度での溶接施工条件での溶接金属の組織を微細化して靭性を向上させる。Bが0.002%未満であると、その効果が得られず、高電流及び大入熱・高パス間温度での溶接施工条件で溶接金属の靭性向上の効果が得られない。一方、Bが0.010%を超えると、溶接金属の強度が過剰に高くなると共に、粒界が脆化して靭性が低下する。また、高温割れが生じるようになる。従って、鋼製外皮とフラックスの合計でBは0.002〜0.010%とする。なお、Bは、鋼製外皮に含まれる成分の他、Fe−Si−B、Fe−Mn−B等の合金粉から添加できる。
[Total of steel outer skin and flux B: 0.002 to 0.010%]
B improves the toughness by refining the structure of the weld metal under welding construction conditions at a high current, a large heat input, and a high interpass temperature. If B is less than 0.002%, the effect cannot be obtained, and the effect of improving the toughness of the weld metal cannot be obtained under welding construction conditions at a high current and a large heat input / high interpass temperature. On the other hand, when B exceeds 0.010%, the strength of the weld metal becomes excessively high, the grain boundaries become brittle, and the toughness decreases. In addition, high temperature cracking will occur. Therefore, the total of the steel outer skin and the flux is set to 0.002 to 0.010%. In addition to the components contained in the steel outer skin, B can be added from alloy powders such as Fe-Si-B and Fe-Mn-B.

[鋼製外皮とフラックスの合計でMo:0.15〜0.50%]
Moは、大入熱・高パス間温度の溶接施工条件で、溶接金属の強度を確保するうえで重要な元素である。Moが0.15%未満であると、これらの効果が十分に得られず、大入熱・高パス間温度での溶接施工条件で溶接金属の必要な強度が得られない。一方、Moが0.50%を超えると、溶接金属の強度が過剰に高くなり、靭性が安定して得られない。従って、鋼製外皮とフラックスの合計でMoは0.15〜0.50%とする。なお、Moは、鋼製外皮に含まれる成分の他、フラックスからの金属Mo粉から添加できる。
[Total of steel outer skin and flux Mo: 0.15 to 0.50%]
Mo is an important element for ensuring the strength of the weld metal under welding construction conditions with large heat input and high interpass temperature. If Mo is less than 0.15%, these effects cannot be sufficiently obtained, and the required strength of the weld metal cannot be obtained under welding construction conditions at a large heat input and a high interpass temperature. On the other hand, when Mo exceeds 0.50%, the strength of the weld metal becomes excessively high, and the toughness cannot be stably obtained. Therefore, the total Mo of the steel outer skin and the flux is 0.15 to 0.50%. In addition to the components contained in the steel outer skin, Mo can be added from the metal Mo powder from the flux.

本発明のガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮をパイプ状に成型し、その内部にフラックスを充填した構造である。ワイヤの種類としては、成形した鋼製外皮の合わせ目を溶接して得られる鋼製外皮に継目の無いワイヤと、鋼製外皮に合わせ目の溶接を行わないままとした鋼製外皮に継目を有するワイヤとに大別できる。本発明においては、何れの断面構造のワイヤを採用することができるが、鋼製外皮に継目を有するワイヤは、溶接金属の強度が高くなると低温割れが生じやすくなるので水分含有量の少ない原材料を用いる必要がある。一方、鋼製外皮に継目が無いワイヤは、ワイヤ中の全水素量を低減することを目的とした熱処理が可能であり、また製造後のフラックスの吸湿が無いため、溶接金属の拡散性水素量を低減し、耐低温割れ性の向上を図ることができる。さらに、鋼製外皮に継目が無いワイヤは、ワイヤ表面にCuめっきを施すことができ防錆及びワイヤ送給性の向上からも、より好ましい。 The flux-cored wire for gas shielded arc welding of the present invention has a structure in which a steel outer skin is molded into a pipe shape and the inside thereof is filled with flux. As for the types of wires, seamless wires are used for the steel outer skin obtained by welding the seams of the molded steel outer skin, and seams are used for the steel outer skin without welding the seams to the steel outer skin. It can be roughly divided into the wires it has. In the present invention, a wire having any cross-sectional structure can be adopted, but a wire having a seam on a steel outer skin is a raw material having a low water content because low-temperature cracking is likely to occur as the strength of the weld metal increases. Need to be used. On the other hand, a wire with a seamless steel outer skin can be heat-treated for the purpose of reducing the total amount of hydrogen in the wire, and since there is no moisture absorption of flux after production, the amount of diffusible hydrogen in the weld metal Can be reduced and the low temperature cracking resistance can be improved. Further, a wire having a seamless steel outer skin is more preferable because the surface of the wire can be Cu-plated to prevent rust and improve the wire feeding property.

本発明のガスシールドアーク溶接用フラックス入りワイヤの残部は、鋼製外皮のFe、成分調整のために添加する8%以下の鉄粉、Fe−Si、Fe−Mn、Fe−Ti合金などの鉄合金粉のFe分及び不可避的不純物である。不可避不純物については特に限定しないが、高温割れ防止の観点からP及びSは、それぞれ0.020%以下とする。 The rest of the flux-filled wire for gas shielded arc welding of the present invention is Fe of the steel outer skin, iron powder of 8% or less added for component adjustment, and iron such as Fe-Si, Fe-Mn, and Fe-Ti alloy. Fe content of alloy powder and unavoidable impurities. The unavoidable impurities are not particularly limited, but P and S are 0.020% or less, respectively, from the viewpoint of preventing high temperature cracking.

また、フラックス充填率は特に限定しないが、生産性の観点からワイヤ全質量に対して8〜20%とするのが好ましい。 The flux filling rate is not particularly limited, but is preferably 8 to 20% with respect to the total mass of the wire from the viewpoint of productivity.

なお、シールドガスは、炭酸ガスとし、シールドガスの流量は耐欠陥性及び大気からの窒素の混入を防ぐために20〜35リットル/分であることが好ましい。 The shield gas is carbon dioxide, and the flow rate of the shield gas is preferably 20 to 35 liters / minute in order to withstand defects and prevent nitrogen from entering the atmosphere.

以下、本発明の効果を実施例により具体的に説明する。 Hereinafter, the effects of the present invention will be specifically described with reference to Examples.

JIS G3141に規定されるSPCCを鋼製外皮(C:0.01〜0.05%)として使用し、鋼製外皮を成形する工程でU字型に成形した後フラックスを充填し、鋼製外皮の合わせ目を溶接した継目が無いワイヤを造管して伸線し、表1に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.2mmとした。 SPCC specified in JIS G3141 is used as a steel outer skin (C: 0.01 to 0.05%), and after forming into a U shape in the process of forming the steel outer skin, it is filled with flux and the steel outer skin is filled. A seamless wire with welded seams was formed and drawn, and a flux-cored wire having various components shown in Table 1 was prototyped. The wire diameter was 1.2 mm.

Figure 2021070051
Figure 2021070051

表1に示す試作したフラックス入りワイヤを用いて、表2に示すT1の片面横向溶接試験で、40°V形開先、ルートギャップ6mm、セラミックタイプの固形裏当付きの開先で横向多層盛の溶接金属試験を実施した。調査項目は溶接時の溶接作業性と溶接後X線透過試験を実施して欠陥の有無を調査した。 Using the sampled flux-cored wire shown in Table 1, in the single-sided lateral welding test of T1 shown in Table 2, a 40 ° V-shaped groove, a root gap of 6 mm, and a groove with a ceramic type solid backing were used for lateral multi-layer welding. Weld metal test was carried out. The survey items were welding workability during welding and an X-ray transmission test after welding to investigate the presence or absence of defects.

Figure 2021070051
Figure 2021070051

次いで、表2に示すT2の高電流溶接試験で、35°レ形開先、ルートギャップ8mmの裏当金付きの開先を多層盛の溶接金属試験を実施した。調査項目は溶接時のアークの安定性、ビード外観・形状、スパッタ発生量を調査した。また、溶接後板厚中央部の溶接金属部から引張試験片(JIS Z 2201 A2号)及び衝撃試験片(JIS Z 2202 4号)を採取して機械的性能を調査した。 Next, in the high-current welding test of T2 shown in Table 2, a multi-layer weld metal test was carried out on a groove with a 35 ° re-shaped groove and a backing metal with a root gap of 8 mm. The survey items were arc stability during welding, bead appearance / shape, and spatter generation amount. In addition, a tensile test piece (JIS Z 2201 A2) and an impact test piece (JIS Z 22024) were collected from the weld metal part at the center of the plate thickness after welding, and the mechanical performance was investigated.

引張強さの評価は490〜690MPa、靭性の評価は、0℃におけるシャルピー衝撃試験を各5本実施し、吸収エネルギーの平均値は80J以上、個々の最低値は60J以上を良好とした。それらの結果を表3にまとめて示す。 Tensile strength was evaluated at 490 to 690 MPa, and toughness was evaluated by performing five Charpy impact tests at 0 ° C., and the average value of absorbed energy was 80 J or more, and the minimum value of each was 60 J or more. The results are summarized in Table 3.

Figure 2021070051
Figure 2021070051

表1及び表3中のワイヤ記号1〜10が本発明例、ワイヤ記号11〜20は比較例である。本発明例であるワイヤ記号1〜10は、フラックス入りワイヤ中のC、Si、Mn、Ti及びAlとMgの一方または両方の合計が適正で、フラックス中の金属弗化物のF換算値の合計、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上のNa換算値とK換算値の合計及びSiO2が適量であるので、片面横向溶接において溶接作業性が良好でX線透過試験においても欠陥はなかった。また、高電流溶接試験においてもアークが安定してビード外観・形状が良好で、スパッタ発生量が少なく、溶接金属の引張強さ及び吸収エネルギーの平均値及び最低値ともに良好であった。なお、ワイヤ記号1、3、4、7、9は、Bを適量含んでいるので吸収エネルギーの平均値及び最低値ともに高値が得られ、極めて満足な結果であった。 Wire symbols 1 to 10 in Tables 1 and 3 are examples of the present invention, and wire symbols 11 to 20 are comparative examples. In the wire symbols 1 to 10 of the examples of the present invention, the total of one or both of C, Si, Mn, Ti and Al and Mg in the flux-cored wire is appropriate, and the total of the F-converted values of the metal fluoride in the flux. , Na oxide, Na fluoride, K oxide and K fluoride, the sum of Na conversion value and K conversion value of one or more kinds and SiO 2 is an appropriate amount, so welding workability is improved in single-sided sideways welding. It was good and there were no defects in the X-ray transmission test. Further, even in the high current welding test, the arc was stable, the bead appearance and shape were good, the amount of spatter generated was small, and both the average value and the minimum value of the tensile strength and absorbed energy of the weld metal were good. Since the wire symbols 1, 3, 4, 7, and 9 contained an appropriate amount of B, high values were obtained for both the average value and the minimum value of the absorbed energy, which was an extremely satisfactory result.

比較例中ワイヤ記号11は、Cが少ないので、高電流溶接での溶接金属の引張強さが低かった。また、SiO2が多いので、スラグ生成量が多く、片面横向溶接でスラグ巻き込み欠陥が生じた。さらに、SiO2が多いので、高電流溶接での溶接金属の吸収エネルギーが低値であった。 In the comparative example, the wire symbol 11 has a small amount of C, so that the tensile strength of the weld metal in high current welding is low. In addition, since the amount of SiO 2 is large, the amount of slag generated is large, and slag entrainment defects occur in single-sided lateral welding. Further, since the amount of SiO 2 is large, the absorbed energy of the weld metal in high current welding is low.

ワイヤ記号12は、Cが多いので、高電流溶接で溶接金属の引張強さが高く吸収エネルギーが低値であった。また、クレータ部に割れが生じた。さらに、Al及びMgの一方または両方の合計が多いので、片面横向溶接及び鋼電流溶接ともにアークが不安定でスパッタ発生量が多かった。 Since the wire symbol 12 has a large amount of C, the tensile strength of the weld metal is high and the absorbed energy is low in high current welding. In addition, cracks occurred in the crater portion. Further, since the total of one or both of Al and Mg is large, the arc is unstable and the amount of spatter generated is large in both single-sided lateral welding and steel current welding.

ワイヤ記号13は、Siが少ないので、高電流溶接で溶接金属の引張強さが低く吸収エネルギーも低値であった。また、Al及びMgの一方または両方の合計が少ないので、片面横向溶接でブローホールが生じ、高電流溶接で溶接金属の吸収エネルギーを向上する効果は得られなかった。さらに、金属弗化物のF換算値の合計が少ないので、片面横向溶接及び高電流溶接ともにアークが不安定でスパッタ発生量が多かった。 Since the wire symbol 13 contains a small amount of Si, the tensile strength of the weld metal is low and the absorbed energy is also low in high current welding. Further, since the total of one or both of Al and Mg is small, blowholes are generated in the one-sided lateral welding, and the effect of improving the absorbed energy of the weld metal in the high current welding cannot be obtained. Further, since the total F conversion value of the metal fluoride is small, the arc is unstable and the amount of spatter generated is large in both the single-sided sideways welding and the high current welding.

ワイヤ記号14は、Siが多いので、スラグ生成量が多くなって片面横向溶接でスラグ巻き込み欠陥が生じた。また、Siが多いので、高電流溶接で溶接金属の引張強さが高く吸収エネルギーの最低値が低かった。さらに、金属弗化物のF換算値の合計が多いので、片面横向溶接及び高電流溶接ともにアークが荒く不安定でスパッタ発生量が多かった。 Since the wire symbol 14 contains a large amount of Si, the amount of slag generated is large, and slag entrainment defects occur in single-sided lateral welding. Further, since the amount of Si is large, the tensile strength of the weld metal is high and the minimum value of absorbed energy is low in high current welding. Further, since the total F conversion value of the metal fluoride is large, the arc is rough and unstable in both the single-sided sideways welding and the high current welding, and the amount of spatter generated is large.

ワイヤ記号15は、Mnが少ないので、高電流溶接で溶接金属の引張強さが低く吸収エネルギーも低値であった。また、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上のNa換算値とK換算値の合計が少ないので、片面横向溶接及び高電流溶接ともにアークが不安定でスパッタ発生量が多かった。 Since the wire symbol 15 has a small amount of Mn, the tensile strength of the weld metal is low and the absorbed energy is also low in high current welding. In addition, since the sum of the Na conversion value and the K conversion value of one or more types of Na oxide, Na fluoride, K oxide and K fluoride is small, the arc is unstable in both single-sided lateral welding and high current welding. The amount of spatter generated was large.

ワイヤ記号16は、Mnが多いので、スラグ生成量が多くなって片面横向溶接でスラグ巻き込み欠陥が生じた。また、Mnが多いので、高電流溶接で溶接金属の吸収エネルギーの最低値が低かった。さらに、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上のNa換算値とK換算値の合計が多いので、片面横向溶接及び高電流溶接ともにアークが強くスパッタ発生量が多かった。また、ビード外観・形状が不良であった。 Since the wire symbol 16 has a large amount of Mn, the amount of slag generated is large, and slag entrainment defects occur in single-sided lateral welding. Further, since Mn is large, the minimum value of the absorbed energy of the weld metal is low in high current welding. Furthermore, since the sum of the Na conversion value and the K conversion value of one or more types of Na oxide, Na fluoride, K oxide and K fluoride is large, the arc is strongly sputtered in both single-sided lateral welding and high current welding. The amount generated was large. In addition, the appearance and shape of the bead were poor.

ワイヤ記号17は、金属弗化物のF換算値の合計が少ないので、片面横向溶接及び高電流溶接ともにアークが不安定でスパッタ発生量が多かった。 Since the total F conversion value of the metal fluoride of the wire symbol 17 is small, the arc is unstable and the amount of spatter generated is large in both the single-sided lateral welding and the high current welding.

ワイヤ記号18は、Tiが少ないので、高電流溶接で溶接金属の吸収エネルギーが低値であった。また、Al及びMgの一方または両方の合計が少ないので、片面横向溶接でブローホールが生じ、高電流溶接で溶接金属の吸収エネルギーを向上する効果は得られなかった。 Since the wire symbol 18 has a small amount of Ti, the absorbed energy of the weld metal is low in high current welding. Further, since the total of one or both of Al and Mg is small, blowholes are generated in the one-sided lateral welding, and the effect of improving the absorbed energy of the weld metal in the high current welding cannot be obtained.

ワイヤ記号19は、Tiが多いので、高電流溶接で溶接金属の吸収エネルギーが低値であった。また、Tiが多いので、片面横向溶接でスラグ巻き込み欠陥が生じた。さらに、Bが少ないので、高電流溶接で溶接金属の吸収エネルギーを良好にする効果は得られなかった。 Since the wire symbol 19 has a large amount of Ti, the absorbed energy of the weld metal is low in high current welding. In addition, since there is a large amount of Ti, a slag entanglement defect has occurred in single-sided lateral welding. Further, since B is small, the effect of improving the absorbed energy of the weld metal by high current welding could not be obtained.

ワイヤ記号20は、Al及びMgの一方または両方の合計が多いので、片面横向溶接及び高電流溶接ともにアークが不安定でスパッタ発生量が多かった。また、Bが多いので、高電流溶接でクレータ割れが生じ、溶接金属の強度が高く吸収エネルギーが低値であった。 Since the wire symbol 20 has a large total of one or both of Al and Mg, the arc is unstable and the amount of spatter generated is large in both single-sided lateral welding and high-current welding. Further, since there is a large amount of B, crater cracking occurs in high current welding, the strength of the weld metal is high, and the absorbed energy is low.

実施例1と同様にJIS G3141に規定されるSPCCを鋼製外皮(C:0.04%)として使用し、鋼製外皮を成形する工程でU字型に成形した後フラックスを充填し、鋼製外皮の合わせ目を溶接した継目が無いワイヤを造管して伸線し、表4に示す各種成分のフラックス入りワイヤを試作した。ワイヤ径は1.4mmとした。 Similar to Example 1, SPCC specified in JIS G3141 is used as a steel outer skin (C: 0.04%), and after forming into a U shape in the step of forming the steel outer skin, it is filled with flux and steel. A seamless wire in which the seams of the outer skin were welded was formed and drawn, and a wire containing flux of various components shown in Table 4 was prototyped. The wire diameter was 1.4 mm.

Figure 2021070051
Figure 2021070051

表4に示す試作したフラックス入りワイヤを用いて、表2に示す条件No.T3の大入熱・高パス間温度溶接試験で、35°レ開先、ルートギャップ8mmの裏当金付きの開先を多層盛の溶接金属試験を実施した。調査項目は溶接時のアークの安定性、ビード外観・形状、スパッタ発生量を調査した。また、溶接後板厚中央部の溶接金属部から引張試験片(JIS Z 2201 A2号)及び衝撃試験片(JIS Z 2202 4号)を採取して機械的性能を調査した。 Using the flux-cored wire shown in Table 4, the condition No. 1 shown in Table 2 was used. In the large heat input / high pass temperature welding test of T3, a multi-layer weld metal test was carried out on a groove with a 35 ° clearance groove and a backing metal with a root gap of 8 mm. The survey items were arc stability during welding, bead appearance / shape, and spatter generation amount. In addition, a tensile test piece (JIS Z 2201 A2) and an impact test piece (JIS Z 22024) were collected from the weld metal part at the center of the plate thickness after welding, and the mechanical performance was investigated.

引張強さの評価は520〜720MPa、靭性の評価は、0℃におけるシャルピー衝撃試験を各5本実施し、吸収エネルギーの平均値は80J以上、最低値は60J以上を良好とした。それらの結果を表5にまとめて示す。 The tensile strength was evaluated at 520 to 720 MPa, and the toughness was evaluated by performing five Charpy impact tests at 0 ° C., and the average value of absorbed energy was 80 J or more, and the minimum value was 60 J or more. The results are summarized in Table 5.

Figure 2021070051
Figure 2021070051

表4及び表5中のワイヤ記号21〜24が本発明例、ワイヤ記号25〜27は比較例である。本発明例であるワイヤ記号21〜24は、フラックス入りワイヤ中のC、Si、Mn、Ti、Al及びMgの一方または両方の合計及びMoが適正で、フラックス中の金属弗化物のF換算値の合計、Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上のNa換算値とK換算値の合計及びSiO2が適量であるので、大入熱・高パス間温度の溶接施工条件においてもアークが安定してビード外観・形状が良好で、スパッタ発生量が少なく、溶接欠陥がなく、溶接金属の引張強さ及び吸収エネルギーの平均値及び最低値ともに良好であった。また、ワイヤ記号22及び24は、Bを適量含んでいるので吸収エネルギーの平均値及び最低値ともに高値が得られ、極めて満足な結果であった。 Wire symbols 21 to 24 in Tables 4 and 5 are examples of the present invention, and wire symbols 25 to 27 are comparative examples. In the wire symbols 21 to 24 of the examples of the present invention, the sum and Mo of one or both of C, Si, Mn, Ti, Al and Mg in the flux-cored wire are appropriate, and the F conversion value of the metal fluoride in the flux is appropriate. The total of Na oxide, Na fluoride, K oxide and K flux, the sum of Na conversion value and K conversion value of one or more kinds, and SiO 2 are appropriate amounts, so large heat input and high pass The arc is stable and the bead appearance and shape are good even under the welding construction conditions of inter-temperature, the amount of spatter generated is small, there are no welding defects, and the average and minimum values of the tensile strength and absorbed energy of the weld metal are both good. there were. Further, since the wire symbols 22 and 24 contained an appropriate amount of B, high values were obtained for both the average value and the minimum value of the absorbed energy, which was an extremely satisfactory result.

比較例中ワイヤ記号25は、Moが少ないので、溶接金属の引張強さが低値であった。また、金属弗化物のF換算値の合計が少ないので、アークが不安定でスパッタ発生量が多かった。 In the comparative example, the wire symbol 25 had a small amount of Mo, so that the tensile strength of the weld metal was low. Further, since the total F conversion value of the metal fluoride was small, the arc was unstable and the amount of spatter generated was large.

ワイヤ記号26は、Moが多いので、溶接金属の引張強さが高く吸収エネルギーの最低値が低かった。なお、Bが少ないので、溶接金属の吸収エネルギーを向上する効果は得られなかった。さらに、金属弗化物のF換算値の合計が多いので、アークが荒く不安定でスパッタ発生量が多かった。 Since the wire symbol 26 has a large amount of Mo, the tensile strength of the weld metal is high and the minimum value of absorbed energy is low. Since B was small, the effect of improving the absorbed energy of the weld metal could not be obtained. Further, since the total F conversion value of the metal fluoride is large, the arc is rough and unstable, and the amount of spatter generated is large.

ワイヤ記号27は、Moが少ないので、溶接金属の引張強さが低値であった。また、Al及びMgの一方または両方の合計が多いので、アークが不安定でスパッタ発生量が多かった。 Since the wire symbol 27 has a small amount of Mo, the tensile strength of the weld metal was low. Further, since the total of one or both of Al and Mg is large, the arc is unstable and the amount of spatter generated is large.

Claims (3)

鋼製外皮にフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、
C:0.04〜0.18%、
Si:0.1〜1.2%、
Mn:1.5〜2.5%、
Ti:0.1〜0.3%、
Al及びMgの一方または両方の合計:0.08超〜0.25%を含有し、
さらに、ワイヤ全質量に対する質量%で、フラックス中に、
金属弗化物のF換算値の合計:0.005〜0.050%、
Na酸化物、Na弗化物、K酸化物及びK弗化物の1種または2種以上:Na換算値とK換算値の合計で0.01〜0.10%を含有し、
SiO2:0.20%以下であり、
残部は鋼製外皮のFe、フラックス中の鉄粉、鉄合金からのFe分及び不可避的不純物からなることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In a wire containing flux for gas shielded arc welding in which the steel outer skin is filled with flux, the total of the steel outer skin and the flux is the mass% of the total mass of the wire.
C: 0.04 to 0.18%,
Si: 0.1 to 1.2%,
Mn: 1.5-2.5%,
Ti: 0.1 to 0.3%,
Total of one or both of Al and Mg: Containing more than 0.08 to 0.25%,
In addition, in the flux, in mass% of the total mass of the wire,
Total F conversion value of metal fluoride: 0.005 to 0.050%,
One or more of Na oxide, Na fluoride, K oxide and K fluoride: Contains 0.01 to 0.10% in total of Na conversion value and K conversion value.
SiO 2 : 0.20% or less,
The balance is a flux-cored wire for gas shielded arc welding, which is composed of Fe of a steel outer skin, iron powder in a flux, Fe content from an iron alloy, and unavoidable impurities.
ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、B:0.002〜0.010%をさらに含有することを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。 The flux-cored wire for gas shielded arc welding according to claim 1, further containing B: 0.002 to 0.010% in total of the steel outer skin and the flux in mass% with respect to the total mass of the wire. .. ワイヤ全質量に対する質量%で、鋼製外皮とフラックスの合計で、Mo:0.15〜0.50%をさらに含有することを特徴とする請求項1又は2に記載のガスシールドアーク溶接用フラックス入りワイヤ。 The flux for gas shielded arc welding according to claim 1 or 2, further containing Mo: 0.15 to 0.50% in total of the steel outer skin and the flux in mass% with respect to the total mass of the wire. Entering wire.
JP2019199335A 2019-10-31 2019-10-31 Flux-cored wire for gas-shielded arc welding Active JP7244399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199335A JP7244399B2 (en) 2019-10-31 2019-10-31 Flux-cored wire for gas-shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199335A JP7244399B2 (en) 2019-10-31 2019-10-31 Flux-cored wire for gas-shielded arc welding

Publications (2)

Publication Number Publication Date
JP2021070051A true JP2021070051A (en) 2021-05-06
JP7244399B2 JP7244399B2 (en) 2023-03-22

Family

ID=75712103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199335A Active JP7244399B2 (en) 2019-10-31 2019-10-31 Flux-cored wire for gas-shielded arc welding

Country Status (1)

Country Link
JP (1) JP7244399B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203234A (en) * 2015-04-28 2016-12-08 日鐵住金溶接工業株式会社 Flux-cored wire for gas-shielded arc welding
JP2019058938A (en) * 2017-09-27 2019-04-18 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding, and manufacturing method of weld joint
JP2019107673A (en) * 2017-12-19 2019-07-04 日本製鉄株式会社 Flux-cored wire for gas shield arc welding of corrosion-resistant steel, and production method for weld joint
JP2020157315A (en) * 2019-03-25 2020-10-01 日鉄溶接工業株式会社 Flux cored wire for electro-gas arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203234A (en) * 2015-04-28 2016-12-08 日鐵住金溶接工業株式会社 Flux-cored wire for gas-shielded arc welding
JP2019058938A (en) * 2017-09-27 2019-04-18 新日鐵住金株式会社 Flux-cored wire for gas shield arc-welding, and manufacturing method of weld joint
JP2019107673A (en) * 2017-12-19 2019-07-04 日本製鉄株式会社 Flux-cored wire for gas shield arc welding of corrosion-resistant steel, and production method for weld joint
JP2020157315A (en) * 2019-03-25 2020-10-01 日鉄溶接工業株式会社 Flux cored wire for electro-gas arc welding

Also Published As

Publication number Publication date
JP7244399B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP6437327B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6437378B2 (en) Flux-cored wire for gas shielded arc welding
JP6786427B2 (en) Flux-filled wire for gas shielded arc welding
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP6486844B2 (en) Flux-cored wire for gas shielded arc welding
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2012121051A (en) Flux-cored wire for gas shielded arc welding
JP2003019595A (en) Flux cored wire for gas-shielded arc welding for low alloy heat resistant steel
JP2016124023A (en) HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
JP2017087265A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2015112625A (en) Stainless steel flux-cored wire for self-shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
KR102156027B1 (en) Flux cored wire
JP2020168651A (en) COATED ARC WELDING ELECTRODE FOR 9% Ni STEEL WELDING
JP7221812B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding of high-strength steel
JP7244399B2 (en) Flux-cored wire for gas-shielded arc welding
JP6786431B2 (en) Carbon-based flux-cored wire for carbon dioxide shield arc welding
JP7247081B2 (en) Metallic flux-cored wire for gas-shielded arc welding
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP6863862B2 (en) Flux-filled wire for gas shielded arc welding
JP6951285B2 (en) Pulse MAG multi-layer welding method
JP7260316B2 (en) High current density gas-shielded arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230309

R150 Certificate of patent or registration of utility model

Ref document number: 7244399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150