JP2021057433A - Flexible printed wiring board and manufacturing method thereof - Google Patents

Flexible printed wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2021057433A
JP2021057433A JP2019178245A JP2019178245A JP2021057433A JP 2021057433 A JP2021057433 A JP 2021057433A JP 2019178245 A JP2019178245 A JP 2019178245A JP 2019178245 A JP2019178245 A JP 2019178245A JP 2021057433 A JP2021057433 A JP 2021057433A
Authority
JP
Japan
Prior art keywords
copper layer
wiring board
printed wiring
flexible printed
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019178245A
Other languages
Japanese (ja)
Other versions
JP6634184B1 (en
Inventor
藤浪 秀之
Hideyuki Fujinami
秀之 藤浪
藤本 卓也
Takuya Fujimoto
卓也 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2019178245A priority Critical patent/JP6634184B1/en
Application granted granted Critical
Publication of JP6634184B1 publication Critical patent/JP6634184B1/en
Priority to PCT/JP2020/034991 priority patent/WO2021065490A1/en
Priority to TW109132848A priority patent/TWI744005B/en
Publication of JP2021057433A publication Critical patent/JP2021057433A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

To provide a flexible printed wiring board and a manufacturing method thereof that can clearly separate the entire circuit portion and an insulating base material when an image of the flexible printed wiring board is binarized.SOLUTION: A flexible printed wiring board includes an insulating base material and a circuit portion including a copper layer provided on a part of a circuit forming surface of the insulating base material. In the copper layer, a first surface 21a on the side opposite to the circuit forming surface of the insulating base material includes a non-surface region R2 composed of crystal planes other than the surface of the copper layer and roughened, and a surface region S2 composed of the surface of the copper layer. In the surface region, a plurality of first pits 40 having a rectangular opening are formed.SELECTED DRAWING: Figure 3

Description

本発明は、フレキシブルプリント配線板及びその製造方法に関する。 The present invention relates to a flexible printed wiring board and a method for manufacturing the same.

フレキシブルプリント配線板は一般に、絶縁基材と、絶縁基材の回路形成面の一部に設けられる回路部とを備えている。フレキシブルプリント配線板においては、回路部に銅が用いられており、フレキシブルプリント配線板の製造方法では、過硫酸アンモニウム系のエッチング液を用いて銅箔をソフトエッチングする工程があることが知られている(例えば下記特許文献1及び2参照)。 The flexible printed wiring board generally includes an insulating base material and a circuit portion provided on a part of the circuit forming surface of the insulating base material. Copper is used for the circuit portion of the flexible printed wiring board, and it is known that the method for manufacturing the flexible printed wiring board includes a step of soft-etching the copper foil using an ammonium persulfate-based etching solution. (See, for example, Patent Documents 1 and 2 below).

特開昭62−263689号公報Japanese Unexamined Patent Publication No. 62-263689 特開2008−235801号公報Japanese Unexamined Patent Publication No. 2008-235801

ところで、フレキシブルプリント配線板について、回路部の認識用マークを用いて位置合わせが行われる場合、絶縁基材の回路形成面に対して斜めに光を入射し、回路部に対向する位置に撮像装置を配置してフレキシブルプリント配線板の撮像を行い、得られた画像を2値化処理する。このとき、回路部が白くなり、絶縁基材が黒くなることで、回路部と絶縁基材の区別を行うことができる。 By the way, when the flexible printed wiring board is aligned using the recognition mark of the circuit part, the light is obliquely incident on the circuit forming surface of the insulating base material, and the image pickup device is located at a position facing the circuit part. Is arranged to take an image of the flexible printed wiring board, and the obtained image is binarized. At this time, the circuit portion becomes white and the insulating base material becomes black, so that the circuit portion and the insulating base material can be distinguished from each other.

しかし、従来のフレキシブルプリント配線板は以下に示す課題を有していた。 However, the conventional flexible printed wiring board has the following problems.

すなわち、フレキシブルプリント配線板に対して認識用マークを用いて位置合わせを行う際に、絶縁基材の回路形成面に対して斜めに光を入射し、回路部に対向する位置に撮像装置を配置してフレキシブルプリント配線板の撮像を行い、得られた画像を2値化処理すると、得られる画像の回路部において白い部分の中に黒い部分がまだらに混在する場合があった。このため、回路部と絶縁基材を明確に区分けすることができない場合があった。 That is, when aligning the flexible printed wiring board using the recognition mark, light is incident on the circuit forming surface of the insulating base material at an angle, and the image pickup device is placed at a position facing the circuit portion. When the flexible printed wiring board was imaged and the obtained image was binarized, black portions were sometimes mixed in the white portions in the circuit portion of the obtained image. Therefore, it may not be possible to clearly separate the circuit portion and the insulating base material.

本発明は上記事情に鑑みてなされたものであり、フレキシブルプリント配線板の画像を2値化処理した場合に、回路部全体と絶縁基材を明確に区分けすることができるフレキシブルプリント配線板及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a flexible printed wiring board capable of clearly separating the entire circuit section and the insulating base material when the image of the flexible printed wiring board is binarized. It is an object of the present invention to provide a manufacturing method.

本発明者らは、上記課題を解決するため鋭意検討を行った。その結果、回路部の銅層のうち絶縁基材の回路形成面と反対側の面が、銅層の(100)面以外の結晶面からなり粗面化された非(100)面領域と、銅層の(100)面からなる(100)面領域とを有し、(100)面領域が、得られた画像を2値化処理した場合に黒く見える原因となっていることを突き止めた。そこで、本発明者らは、さらに鋭意研究を重ねた結果、以下の発明により上記課題を解決し得ることを見出した。 The present inventors have conducted diligent studies to solve the above problems. As a result, the surface of the copper layer of the circuit portion on the side opposite to the circuit forming surface of the insulating base material is a non- (100) surface region roughened by crystal planes other than the (100) surface of the copper layer. It has a (100) plane region composed of (100) planes of the copper layer, and it has been found that the (100) plane region causes the obtained image to appear black when binarized. Therefore, as a result of further diligent research, the present inventors have found that the above problems can be solved by the following inventions.

すなわち、本発明は、絶縁基材と、前記絶縁基材の回路形成面の一部に設けられる回路部とを備え、前記回路部が銅層を含み、前記銅層において、前記絶縁基材の前記回路形成面と反対側の第1面が、前記銅層の(100)面以外の結晶面からなり粗面化された非(100)面領域と、前記銅層の(100)面からなる(100)面領域とを有し、前記(100)面領域において、四角形状の開口を有する複数の第1ピットが形成されている、フレキシブルプリント配線板である。 That is, the present invention includes an insulating base material and a circuit portion provided on a part of the circuit forming surface of the insulating base material, the circuit portion includes a copper layer, and the copper layer contains the insulating base material. The first surface opposite to the circuit forming surface is composed of a non- (100) plane region roughened by crystal planes other than the (100) plane of the copper layer, and a (100) plane of the copper layer. A flexible printed wiring board having a (100) plane region and forming a plurality of first pits having a quadrangular opening in the (100) plane region.

本発明のフレキシブルプリント配線板によれば、例えばフレキシブルプリント配線板の認識マークを用いた位置合わせに際して、例えば絶縁基材の回路形成面に対して斜めに光を入射し、回路部からの光を、回路形成面に直交する方向に光軸が配置された撮像装置で受光してフレキシブルプリント配線板の撮像を行うと、回路部の第1面のうち非(100)面領域は粗面化されているため、回路部の銅層の第1面のうち非(100)面領域では光が散乱され、撮像装置で受光される光の光量が多くなる。このため、フレキシブルプリント配線板の画像を2値化処理した場合、非(100)面領域は白くなる。一方、回路部の第1面のうち(100)面領域では、四角形状の開口を有する複数の第1ピットが形成されているため、(100)面領域において複数の第1ピットが形成されていない場合に比べて、光が散乱されやすくなり、撮像装置で受光される光の光量が多くなり、フレキシブルプリント配線板の画像を2値化処理した場合、(100)面領域は白くなりやすくなる。このように、得られた画像を2値化処理した場合、回路部の銅層の第1面における非(100)面領域は白くなり、(100)面領域も白くなり、その結果、回路部全体が白くなりやすくなる。他方、絶縁基材の回路形成面は平滑であるため、絶縁基材の回路形成面に対して斜めに光を入射し、回路部からの光を、回路形成面に直交する方向に光軸が配置された撮像装置で受光してフレキシブルプリント配線板の撮像を行うと、絶縁基材の回路形成面では光が散乱されにくくなり、撮像装置で受光される光の光量が少なくなり、フレキシブルプリント配線板の画像を2値化処理した場合、絶縁基材は黒くなりやすくなる。なお、撮像装置の位置を、光軸が回路形成面への入射光に対して反射角の方向に配置された位置に変更すると、フレキシブルプリント配線板の画像を2値化処理した場合、回路部の銅層の第1面における非(100)面領域は黒くなり、(100)面領域は黒くなり、絶縁基材は白くなりやすくなる。このため、本発明のフレキシブルプリント配線板によれば、フレキシブルプリント配線板の画像を2値化処理した場合に、回路部全体の色の均一性を向上させることができ、その結果、回路部全体と絶縁基材を明確に区分けすることができる。 According to the flexible printed wiring board of the present invention, for example, when aligning using the recognition mark of the flexible printed wiring board, light is obliquely incident on the circuit forming surface of the insulating base material, and the light from the circuit portion is emitted. When the flexible printed wiring board is imaged by receiving light from an imaging device whose optical axis is arranged in a direction orthogonal to the circuit forming surface, the non- (100) surface region of the first surface of the circuit portion is roughened. Therefore, light is scattered in the non- (100) surface region of the first surface of the copper layer of the circuit unit, and the amount of light received by the image pickup apparatus increases. Therefore, when the image of the flexible printed wiring board is binarized, the non- (100) surface region becomes white. On the other hand, since a plurality of first pits having a quadrangular opening are formed in the (100) plane region of the first plane of the circuit portion, a plurality of first pits are formed in the (100) plane region. Compared to the case without it, the light is more likely to be scattered, the amount of light received by the image pickup apparatus is increased, and when the image of the flexible printed wiring board is binarized, the (100) plane region is likely to be white. .. When the obtained image is binarized in this way, the non- (100) plane region on the first surface of the copper layer of the circuit portion becomes white, and the (100) plane region also becomes white, and as a result, the circuit portion The whole becomes white easily. On the other hand, since the circuit forming surface of the insulating base material is smooth, light is incident on the circuit forming surface of the insulating base material at an angle, and the light from the circuit portion is directed by the optical axis in a direction orthogonal to the circuit forming surface. When the image is received by the arranged image pickup device and the flexible printed wiring board is imaged, the light is less likely to be scattered on the circuit forming surface of the insulating base material, the amount of light received by the image pickup device is reduced, and the flexible printed wiring board is used. When the image of the board is binarized, the insulating base material tends to be black. If the position of the image pickup device is changed to a position where the optical axis is arranged in the direction of the reflection angle with respect to the incident light on the circuit forming surface, the circuit section when the image of the flexible printed wiring board is binarized. The non- (100) plane region on the first surface of the copper layer of the copper layer becomes black, the (100) plane region becomes black, and the insulating base material tends to become white. Therefore, according to the flexible printed wiring board of the present invention, when the image of the flexible printed wiring board is binarized, the color uniformity of the entire circuit unit can be improved, and as a result, the entire circuit unit can be improved. And the insulating base material can be clearly separated.

上記フレキシブルプリント配線板において、前記回路部が、前記銅層の上に前記銅層の前記第1面の形状に追従して設けられ、前記銅層を保護する保護層をさらに有し、前記保護層において、前記銅層と反対側の第2面が、前記保護層の厚さ方向に見た時に、前記非(100)面領域と一致し粗面化された非(100)面領域対応部と、前記(100)面領域と一致する(100)面領域対応部とを有し、前記(100)面領域対応部において、四角形状の開口を有する複数の第2ピットが形成されていてもよい。 In the flexible printed wiring board, the circuit unit is provided on the copper layer following the shape of the first surface of the copper layer, and further has a protective layer that protects the copper layer, and the protection is provided. In the layer, the second surface opposite to the copper layer corresponds to the non- (100) surface region and is roughened when viewed in the thickness direction of the protective layer. And, even if a plurality of second pits having a (100) surface region corresponding portion corresponding to the (100) surface region and having a rectangular opening are formed in the (100) surface region corresponding portion. Good.

この場合、保護層が、銅層の第1面の形状に追従して銅層の上に設けられており、保護層において、銅層と反対側の第2面が、回路部を絶縁基材の回路形成面に直交する方向に見た時に、非(100)面領域と一致する非(100)面領域対応部と、(100)面領域と一致する(100)面領域対応部とを有し、(100)面領域対応部において、四角形状の開口を有する複数の第2ピットが形成されている。このため、フレキシブルプリント配線板の画像を2値化処理した場合、回路部の第2面における非(100)面領域対応部は白く又は黒くなり、(100)面領域対応部は白く又は黒くなりやすくなる。従って、フレキシブルプリント配線板の画像を2値化処理した場合に、回路部全体の色の均一性を向上させることができる。 In this case, the protective layer is provided on the copper layer following the shape of the first surface of the copper layer, and in the protective layer, the second surface opposite to the copper layer insulates the circuit portion. When viewed in a direction orthogonal to the circuit forming surface of the above, there is a non- (100) surface region corresponding portion that coincides with the non- (100) plane region and a (100) plane region corresponding portion that coincides with the (100) plane region. However, in the (100) plane region corresponding portion, a plurality of second pits having a quadrangular opening are formed. Therefore, when the image of the flexible printed wiring board is binarized, the non- (100) surface region corresponding portion on the second surface of the circuit unit becomes white or black, and the (100) surface region corresponding portion becomes white or black. It will be easier. Therefore, when the image of the flexible printed wiring board is binarized, the color uniformity of the entire circuit unit can be improved.

また、本発明は、絶縁基材の回路形成面の一部に、銅層を含む回路部を形成する回路部形成工程を含み、前記回路部形成工程が、前記絶縁基材の前記回路形成面の一部に前記銅層を形成する銅層形成工程を含み、前記銅層形成工程において、前記銅層のうち前記絶縁基材の前記回路形成面と反対側の第1面が、前記銅層の(100)面以外の結晶面からなり粗面化された非(100)面領域と、前記銅層の(100)面からなる(100)面領域とを有し、前記(100)面領域において、四角形状の開口を有する複数の第1ピットが形成されるように前記銅層を形成する、フレキシブルプリント配線板の製造方法である。 Further, the present invention includes a circuit portion forming step of forming a circuit portion including a copper layer in a part of the circuit forming surface of the insulating base material, and the circuit portion forming step is the circuit forming surface of the insulating base material. A copper layer forming step of forming the copper layer is included in a part of the copper layer, and in the copper layer forming step, the first surface of the copper layer opposite to the circuit forming surface of the insulating base material is the copper layer. It has a non- (100) plane region composed of crystal planes other than the (100) plane and a roughened non- (100) plane region, and a (100) plane region composed of (100) planes of the copper layer. Is a method for manufacturing a flexible printed wiring board in which the copper layer is formed so that a plurality of first pits having a quadrangular opening are formed.

この製造方法によれば、フレキシブルプリント配線板の画像を2値化処理した場合に、回路部全体の色の均一性を向上させることができ、その結果、回路部全体と絶縁基材を明確に区分けすることができるフレキシブルプリント配線板を製造できる。 According to this manufacturing method, when the image of the flexible printed wiring board is binarized, the color uniformity of the entire circuit section can be improved, and as a result, the entire circuit section and the insulating base material can be clearly defined. A flexible printed wiring board that can be classified can be manufactured.

上記フレキシブルプリント配線板の製造方法においては、前記銅層形成工程が、前記絶縁基材の前記回路形成面の一部に銅層前駆体を形成する銅層前駆体形成工程と、前記銅層前駆体のうち前記絶縁基材の前記回路形成面と反対側の部分に対してエッチング液を用いてエッチングを行い、前記前記銅層を形成するエッチング工程とを含み、前記エッチング工程において、前記エッチング液がハロゲン化物イオンを含むことが好ましい。 In the method for manufacturing a flexible printed wiring board, the copper layer forming step includes a copper layer precursor forming step of forming a copper layer precursor on a part of the circuit forming surface of the insulating base material, and the copper layer precursor. In the etching step, the etching solution includes an etching step of forming the copper layer by etching a portion of the body opposite to the circuit forming surface of the insulating base material with an etching solution. Preferably contains a halide ion.

この場合、銅層前駆体のうち絶縁基材の回路形成面と反対側の部分に対してエッチング液を用いてエッチングを行うと、銅層の(100)面領域において、四角形状の開口を有する複数の第1ピットが効果的に形成される。 In this case, when the portion of the copper layer precursor opposite to the circuit forming surface of the insulating base material is etched with an etching solution, it has a quadrangular opening in the (100) surface region of the copper layer. A plurality of first pits are effectively formed.

上記フレキシブルプリント配線板の製造方法においては、前記エッチング液中の前記ハロゲン化物イオンの含有率が1質量ppm以上であることが好ましい。 In the method for manufacturing a flexible printed wiring board, the content of the halide ion in the etching solution is preferably 1 mass ppm or more.

この場合、銅層前駆体のうち絶縁基材の回路形成面と反対側の部分に対してエッチング液を用いてエッチングを行うと、銅層の(100)面領域において、四角形状の開口を有する第1ピットをより多く形成することができる。 In this case, when the portion of the copper layer precursor opposite to the circuit forming surface of the insulating base material is etched with an etching solution, it has a quadrangular opening in the (100) surface region of the copper layer. More first pits can be formed.

本発明によれば、フレキシブルプリント配線板の画像を2値化処理した場合に、回路部全体と絶縁基材を明確に区分けすることができるフレキシブルプリント配線板及びその製造方法が提供される。 According to the present invention, there is provided a flexible printed wiring board and a method for manufacturing the same, which can clearly separate the entire circuit section and the insulating base material when the image of the flexible printed wiring board is binarized.

本発明のフレキシブルプリント配線板の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the flexible printed wiring board of this invention. 図1のII−II線に沿った断面図である。It is sectional drawing along the line II-II of FIG. 図2の銅層の第1面の一部の領域Bを示す拡大図である。It is an enlarged view which shows the part B of a part of the 1st surface of the copper layer of FIG. 図1の二点鎖線で包囲される領域Aを示す拡大図である。It is an enlarged view which shows the region A surrounded by the alternate long and short dash line of FIG. 図2のフレキシブルプリント配線板に対して認識マークを用いた位置合わせを行っている状態を示す図である。It is a figure which shows the state which performs the alignment using the recognition mark with respect to the flexible printed wiring board of FIG. 本発明のフレキシブルプリント配線板の製造方法で用いる銅箔付き絶縁基材を準備する準備工程を示す断面図である。It is sectional drawing which shows the preparatory process of preparing the insulating base material with a copper foil used in the manufacturing method of the flexible printed wiring board of this invention. 本発明のフレキシブルプリント配線板の製造方法の銅層前駆体形成工程を示す断面図である。It is sectional drawing which shows the copper layer precursor formation process of the manufacturing method of the flexible printed wiring board of this invention. 図7の銅層前駆体の表面における図3の領域Bに対応する領域Cを示す拡大図である。It is an enlarged view which shows the region C corresponding to region B of FIG. 3 on the surface of the copper layer precursor of FIG. 本発明のフレキシブルプリント配線板の製造方法のエッチング工程を示す断面図である。It is sectional drawing which shows the etching process of the manufacturing method of the flexible printed wiring board of this invention. 実施例1において銅層前駆体の表面を示すデジタルマイクロスコープ画像である。8 is a digital microscope image showing the surface of a copper layer precursor in Example 1. 実施例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すデジタルマイクロスコープ画像である。It is a digital microscope image which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in Example 1. FIG. 実施例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すSEM画像(倍率:3000倍)である。It is an SEM image (magnification: 3000 times) which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in Example 1. FIG. 実施例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すSEM画像(倍率:1万倍)である。It is an SEM image (magnification: 10,000 times) which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in Example 1. FIG. 実施例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すSEM画像(倍率:3万倍)である。It is an SEM image (magnification: 30,000 times) which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in Example 1. FIG. 実施例1で得られたフレキシブルプリント配線板における回路部の非(100)面領域対応部を示すSEM画像(倍率:3000倍)である。6 is an SEM image (magnification: 3000 times) showing a non- (100) surface region corresponding portion of the circuit portion in the flexible printed wiring board obtained in the first embodiment. 実施例2で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すデジタルマイクロスコープ画像である。It is a digital microscope image which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in Example 2. 実施例3で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すデジタルマイクロスコープ画像である。It is a digital microscope image which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in Example 3. 比較例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すデジタルマイクロスコープ画像である。It is a digital microscope image which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in the comparative example 1. FIG. 比較例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部を示すSEM画像(倍率:3000倍)である。It is an SEM image (magnification: 3000 times) which shows the (100) plane area correspondence part of the circuit part in the flexible printed wiring board obtained in the comparative example 1. FIG. (a)は実施例1で得られたフレキシブルプリント配線板の表面の2値化像、(b)は実施例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the flexible printed wiring board obtained in Example 1, and (b) is a (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board obtained in Example 1. It is a digital microscope image. (a)は実施例2で得られたフレキシブルプリント配線板の表面の2値化像、(b)は実施例2で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the flexible printed wiring board obtained in Example 2, and (b) is a (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board obtained in Example 2. It is a digital microscope image. (a)は実施例3で得られたフレキシブルプリント配線板の表面の2値化像、(b)は実施例3で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the flexible printed wiring board obtained in Example 3, and (b) is a (100) plane region corresponding portion of the circuit portion of the flexible printed wiring board obtained in Example 3. It is a digital microscope image. (a)は実施例4で得られたフレキシブルプリント配線板の表面の2値化像、(b)は実施例4で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the flexible printed wiring board obtained in Example 4, and (b) is a (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board obtained in Example 4. It is a digital microscope image. (a)は実施例5で得られたフレキシブルプリント配線板の表面の2値化像、(b)は実施例5で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the flexible printed wiring board obtained in Example 5, and (b) is a (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board obtained in Example 5. It is a digital microscope image. (a)は実施例6で得られたフレキシブルプリント配線板の表面の2値化像、(b)は実施例6で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the flexible printed wiring board obtained in Example 6, and (b) is a (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board obtained in Example 6. It is a digital microscope image. (a)は比較例1で得られたフレキシブルプリント配線板の表面の2値化像、(b)は比較例1で得られたフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the flexible printed wiring board obtained in Comparative Example 1, and (b) is a (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board obtained in Comparative Example 1. It is a digital microscope image. (a)は、実施例1のフレキシブルプリント配線板の製造過程におけるエッチング工程直前の構造体の表面の2値化像、(b)は実施例1のフレキシブルプリント配線板の製造過程におけるエッチング工程直前の構造体の銅層前駆体の表面のデジタルマイクロスコープ画像である。(A) is a binarized image of the surface of the structure immediately before the etching process in the manufacturing process of the flexible printed wiring board of Example 1, and (b) is immediately before the etching process in the manufacturing process of the flexible printed wiring board of Example 1. It is a digital microscope image of the surface of the copper layer precursor of the structure of.

[フレキシブルプリント配線板]
以下、本発明のフレキシブルプリント配線板の実施形態について図1を参照しながら説明する。図1は、本発明のフレキシブルプリント配線板の一実施形態を示す平面図、図2は、図1のII−II線に沿った断面図、図3は、図2の銅層の表面の一部の領域Bを示す拡大図、図4は、図1の二点鎖線で包囲される領域Aを示す拡大図、図5は、図2のフレキシブルプリント配線板に対して認識マークを用いた位置合わせを行っている状態を示す図である。
[Flexible printed wiring board]
Hereinafter, embodiments of the flexible printed wiring board of the present invention will be described with reference to FIG. 1 is a plan view showing an embodiment of a flexible printed wiring board of the present invention, FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1, and FIG. 3 is a surface of the copper layer of FIG. An enlarged view showing the area B of the part, FIG. 4 is an enlarged view showing the area A surrounded by the alternate long and short dash line of FIG. 1, and FIG. 5 is a position where the recognition mark is used with respect to the flexible printed wiring board of FIG. It is a figure which shows the state which is performing the alignment.

図1及び図2に示すように、フレキシブルプリント配線板100は、絶縁基材10と、絶縁基材10の回路形成面10aの一部に設けられる回路部20とを備えている。 As shown in FIGS. 1 and 2, the flexible printed wiring board 100 includes an insulating base material 10 and a circuit portion 20 provided on a part of the circuit forming surface 10a of the insulating base material 10.

回路部20は、絶縁基材10の回路形成面10aの一部に設けられる銅層21と、銅層21のうち回路形成面10aと反対側の第1面21a及び側面21bを保護する保護層22とを有する(図2参照)。 The circuit unit 20 is a protective layer that protects a copper layer 21 provided on a part of the circuit forming surface 10a of the insulating base material 10, and the first surface 21a and the side surface 21b of the copper layer 21 opposite to the circuit forming surface 10a. It has 22 (see FIG. 2).

また、図3の二点鎖線で包囲される領域Bに示すように、銅層21の第1面21aが、銅層21の(100)面以外の結晶面からなり粗面化された非(100)面領域R2と、銅層21の(100)面からなる(100)面領域S2とを有する。そして、(100)面領域S2においては、四角形状の開口を有する複数の第1ピット40が形成されている。なお、銅層21の側面21bも銅層21の(100)面以外の結晶面からなり粗面化された非(100)面領域R2と、銅層21の(100)面からなる(100)面領域S2とを有し、(100)面領域S2においては、四角形状の開口を有する複数の第1ピット40が形成されている。 Further, as shown in the region B surrounded by the alternate long and short dash line in FIG. 3, the first surface 21a of the copper layer 21 is composed of crystal planes other than the (100) plane of the copper layer 21 and is roughened. It has a (100) plane region R2 and a (100) plane region S2 composed of (100) planes of the copper layer 21. Then, in the (100) plane region S2, a plurality of first pits 40 having a quadrangular opening are formed. The side surface 21b of the copper layer 21 is also composed of a non- (100) plane region R2 which is composed of crystal planes other than the (100) plane of the copper layer 21 and is roughened, and the (100) plane of the copper layer 21 (100). A plurality of first pits 40 having a surface region S2 and having a (100) surface region S2 having a quadrangular opening are formed.

一方、図4に示すように、図1の二点鎖線で包囲される領域Aにおいては、回路部20の保護層22において、絶縁基材10の回路形成面10aと反対側の第2面20aが、保護層22をその厚さ方向に見た時に、粗面化された非(100)面領域対応部R1と、(100)面領域対応部S1とを有する。ここで、(100)面領域対応部S1においては、四角形状の開口を有する複数の第2ピット30が形成されている。 On the other hand, as shown in FIG. 4, in the region A surrounded by the alternate long and short dash line in FIG. 1, the second surface 20a on the side opposite to the circuit forming surface 10a of the insulating base material 10 in the protective layer 22 of the circuit unit 20. However, when the protective layer 22 is viewed in the thickness direction thereof, it has a roughened non- (100) surface region corresponding portion R1 and a (100) surface region corresponding portion S1. Here, in the (100) plane region corresponding portion S1, a plurality of second pits 30 having a quadrangular opening are formed.

そして、保護層22は、銅層21の第1面21aの形状に追従している。つまり、保護層22をその厚さ方向に見た時に、図4の非(100)面領域対応部R1は、図3の非(100)面領域R2と一致し、図4の(100)面領域対応部S1は、図3の(100)面領域S2と一致している。 The protective layer 22 follows the shape of the first surface 21a of the copper layer 21. That is, when the protective layer 22 is viewed in the thickness direction, the non- (100) plane region corresponding portion R1 in FIG. 4 coincides with the non- (100) plane region R2 in FIG. 3, and the (100) plane in FIG. 4 The area corresponding portion S1 coincides with the (100) plane area S2 in FIG.

上述したフレキシブルプリント配線板100によれば、図5に示すように、例えばフレキシブルプリント配線板100の認識マークを用いた位置合わせに際して、例えば絶縁基材10の回路形成面10aに対してリング状の光源Lから斜めに光を入射し、回路部20からの光を、回路形成面10aに直交する方向に光軸が配置された撮像装置110で受光してフレキシブルプリント配線板100の撮像を行うと、回路部20の第2面20aのうち非(100)面領域対応部R1は粗面化されているため、非(100)面領域対応部R1では光が散乱され、撮像装置110で受光される光の光量が多くなる。このため、フレキシブルプリント配線板100の画像を2値化処理した場合、非(100)面領域対応部R1は白くなる。 According to the flexible printed wiring board 100 described above, as shown in FIG. 5, for example, when the flexible printed wiring board 100 is aligned using the recognition mark, it has a ring shape with respect to the circuit forming surface 10a of the insulating base material 10, for example. When light is incident obliquely from the light source L and the light from the circuit unit 20 is received by the image pickup device 110 whose optical axis is arranged in the direction orthogonal to the circuit formation surface 10a, the flexible printed wiring board 100 is imaged. Since the non- (100) surface region corresponding portion R1 of the second surface 20a of the circuit unit 20 is roughened, light is scattered in the non (100) surface region corresponding portion R1 and received by the image pickup apparatus 110. The amount of light is increased. Therefore, when the image of the flexible printed wiring board 100 is binarized, the non- (100) surface region corresponding portion R1 becomes white.

一方、回路部20の第2面20aのうち(100)面領域対応部S1では、四角形状の開口を有する複数の第2ピット30が形成されているため、(100)面領域対応部S1において複数の第2ピット30が形成されていない場合に比べて、光が散乱されやすくなり、撮像装置110で受光される光の光量が多くなり、フレキシブルプリント配線板100の画像を2値化処理した場合、(100)面領域対応部S1は白くなりやすくなる。このように、フレキシブルプリント配線板100の画像を2値化処理した場合、回路部20の非(100)面領域対応部R1は白くなり、(100)面領域対応部S1は白くなりやすくなる。 On the other hand, in the (100) surface region corresponding portion S1 of the second surface 20a of the circuit unit 20, since a plurality of second pits 30 having a quadrangular opening are formed, the (100) surface region corresponding portion S1 Compared with the case where the plurality of second pits 30 are not formed, the light is more likely to be scattered, the amount of light received by the image pickup apparatus 110 is increased, and the image of the flexible printed wiring board 100 is binarized. In this case, the (100) surface area corresponding portion S1 tends to be white. In this way, when the image of the flexible printed wiring board 100 is binarized, the non- (100) surface region corresponding portion R1 of the circuit unit 20 tends to be white, and the (100) surface region corresponding portion S1 tends to be white.

他方、絶縁基材10の回路形成面10aは平滑であるため、絶縁基材10の回路形成面10aに対して斜めに光を入射し、回路部20からの光を、回路形成面10aに直交する方向に光軸が配置された撮像装置110で受光してフレキシブルプリント配線板100の撮像を行うと、絶縁基材10の回路形成面10aでは光が散乱されにくくなり、撮像装置110で受光される光の光量が少なくなり、フレキシブルプリント配線板100の画像を2値化処理した場合、絶縁基材10は黒くなりやすくなる。 On the other hand, since the circuit forming surface 10a of the insulating base material 10 is smooth, light is obliquely incident on the circuit forming surface 10a of the insulating base material 10 and the light from the circuit unit 20 is orthogonal to the circuit forming surface 10a. When the flexible printed wiring board 100 is imaged by receiving light from the image pickup device 110 whose optical axis is arranged in the direction of the light, the light is less likely to be scattered on the circuit forming surface 10a of the insulating base material 10, and is received by the image pickup device 110. When the light amount of the light is reduced and the image of the flexible printed wiring board 100 is binarized, the insulating base material 10 tends to be black.

なお、撮像装置110を、光軸が回路形成面20aへの入射光に対して反射角の方向に配置された位置に変更すると、フレキシブルプリント配線板100の画像を2値化処理した場合、回路部20の非(100)面領域対応部R1は黒くなり、(100)面領域対応部S1は黒くなり、絶縁基材10は白くなりやすくなる。 When the image pickup device 110 is changed to a position where the optical axis is arranged in the direction of the reflection angle with respect to the incident light on the circuit forming surface 20a, the circuit is obtained when the image of the flexible printed wiring board 100 is binarized. The non- (100) surface region corresponding portion R1 of the portion 20 becomes black, the (100) surface region corresponding portion S1 becomes black, and the insulating base material 10 tends to become white.

このため、フレキシブルプリント配線板100によれば、フレキシブルプリント配線板100の画像を2値化処理した場合、回路部20全体の色の均一性を向上させることができる。その結果、回路部20全体と絶縁基材10を明確に区分けすることができる。 Therefore, according to the flexible printed wiring board 100, when the image of the flexible printed wiring board 100 is binarized, the color uniformity of the entire circuit unit 20 can be improved. As a result, the entire circuit unit 20 and the insulating base material 10 can be clearly separated.

次に、絶縁基材10及び回路部20について詳細に説明する。 Next, the insulating base material 10 and the circuit unit 20 will be described in detail.

<絶縁基材>
絶縁基材10を構成する材料は、特に制限されるものではなく、絶縁基材10を構成する材料としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド樹脂(PI)及び液晶ポリマー(LCP)が挙げられる。
<Insulating base material>
The material constituting the insulating base material 10 is not particularly limited, and examples of the material constituting the insulating base material 10 include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide resin (PI), and liquid crystal polymer. Polymer (LCP) can be mentioned.

絶縁基材10の回路形成面10aは平滑であればよい。回路形成面10aの表面粗さは、回路部20の保護層22の(100)面領域対応部S1の表面粗さよりも小さければよいが、好ましくは0.5μm以下である。この場合、フレキシブルプリント配線板100の画像を2値化処理した場合に、例えば(100)面領域対応部S1を白色にして絶縁基材10の回路形成面10aの色を黒色にしやすくなる。なお、表面粗さは、光学式表面粗さ計により測定される平均表面粗さをいう。以下に述べる表面粗さもすべて上記のようにして測定される平均表面粗さをいう。 The circuit forming surface 10a of the insulating base material 10 may be smooth. The surface roughness of the circuit forming surface 10a may be smaller than the surface roughness of the (100) surface region corresponding portion S1 of the protective layer 22 of the circuit unit 20, but is preferably 0.5 μm or less. In this case, when the image of the flexible printed wiring board 100 is binarized, for example, the (100) surface region corresponding portion S1 is made white and the circuit forming surface 10a of the insulating base material 10 is easily made black. The surface roughness refers to the average surface roughness measured by an optical surface roughness meter. The surface roughness described below also refers to the average surface roughness measured as described above.

<回路部>
回路部20は、銅層21と保護層22とを有する。
<Circuit part>
The circuit unit 20 has a copper layer 21 and a protective layer 22.

(銅層)
銅層21は、銅を含む層であればよく、銅又は銅合金で構成される。銅層21としては、電解銅箔及び圧延銅箔が挙げられるが、銅層21としては、耐屈曲性に優れることから、圧延銅箔が好ましい。なお、圧延銅箔においては、電解銅箔に比べて、(100)面がより多く存在し、(100)面以外の面がまだらに存在している。
(Copper layer)
The copper layer 21 may be a layer containing copper and is made of copper or a copper alloy. Examples of the copper layer 21 include electrolytic copper foil and rolled copper foil, but the copper layer 21 is preferably rolled copper foil because it has excellent bending resistance. In the rolled copper foil, more surfaces (100) are present than in the electrolytic copper foil, and surfaces other than the (100) surface are mottled.

銅層21の(100)面領域S2の表面粗さは、特に制限されるものではないが、非(100)面領域R2の表面粗さの0.6倍以下であることが好ましい。(100)面領域S2の表面粗さは、具体的には、0.1μm以下であることが好ましい。但し、(100)面領域S2の表面粗さは、絶縁基材10の回路形成面10aの表面粗さより大きいことが好ましい。この場合、回路部20及び絶縁基材10の画像を2値化処理した場合に、例えば(100)面領域対応部S1を白色にして絶縁基材10の色を黒色にしやすくすることができる。 The surface roughness of the (100) surface region S2 of the copper layer 21 is not particularly limited, but is preferably 0.6 times or less the surface roughness of the non- (100) surface region R2. (100) Specifically, the surface roughness of the surface region S2 is preferably 0.1 μm or less. However, the surface roughness of the (100) surface region S2 is preferably larger than the surface roughness of the circuit forming surface 10a of the insulating base material 10. In this case, when the images of the circuit unit 20 and the insulating base material 10 are binarized, for example, the (100) plane region corresponding portion S1 can be made white and the color of the insulating base material 10 can be easily made black.

非(100)面領域R2の表面粗さは、具体的には、0.1μm以上であることが好ましい。この場合、非(100)面領域R2の表面粗さが0.1μm未満である場合に比べて、回路部20の画像を2値化処理した場合に、例えば非(100)面領域対応部R1を白色にして絶縁基材10の色をより黒色にしやすくすることができる。 Specifically, the surface roughness of the non- (100) plane region R2 is preferably 0.1 μm or more. In this case, when the image of the circuit unit 20 is binarized as compared with the case where the surface roughness of the non- (100) surface region R2 is less than 0.1 μm, for example, the non- (100) surface region corresponding portion R1 Can be made white so that the color of the insulating base material 10 can be made black more easily.

銅層21の第1ピット40は、四角形状の開口を有する。ここで、第1ピット40は、底面と、開口及び底面を結ぶ内周面とを有しており、内周面が銅層21の第1面21aから深くなる方向に向かって先細りするテーパ形状を有していることが好ましい。この場合、保護層22が銅層21に追従した形状を有するため、第2ピット30が、底面と、開口及び底面を結ぶ内周面とを有しており、内周面が、保護層22の第2面20aから深くなる方向に向かって先細りするテーパ形状を有することとなる。このため、回路形成面10aに対して斜めに光が入射される場合、第2ピット30内に入射した光が、第2ピット30の内周面で散乱されやすくなり、撮像装置110で受光される光の光量を増加させることができ、回路部20の画像に対して2値化処理を行う場合に、回路部20全体の色の均一性をより向上させることができ、その結果、回路部20全体と絶縁基材10をより明確に区分けできる。 The first pit 40 of the copper layer 21 has a quadrangular opening. Here, the first pit 40 has a bottom surface and an inner peripheral surface connecting the opening and the bottom surface, and has a tapered shape in which the inner peripheral surface tapers in a direction becoming deeper from the first surface 21a of the copper layer 21. It is preferable to have. In this case, since the protective layer 22 has a shape that follows the copper layer 21, the second pit 30 has a bottom surface and an inner peripheral surface connecting the opening and the bottom surface, and the inner peripheral surface is the protective layer 22. It has a tapered shape that tapers from the second surface 20a in the direction of deepening. Therefore, when the light is obliquely incident on the circuit forming surface 10a, the light incident on the second pit 30 is likely to be scattered on the inner peripheral surface of the second pit 30, and is received by the image pickup apparatus 110. The amount of light emitted can be increased, and when the image of the circuit unit 20 is subjected to the binarization processing, the color uniformity of the entire circuit unit 20 can be further improved, and as a result, the circuit unit 20 can be used. The entire 20 and the insulating base material 10 can be more clearly separated.

第1ピット40の底面には、さらに四角形状の開口を有する複数のピットが形成されていることが好ましい。この場合、保護層22が銅層21に追従した形状を有するため、第2ピット30の底面に、四角形状の開口を有する複数のピットが形成されることとなる。このため、回路形成面10aに対して斜めに光が入射される場合、第2ピット30内に入射した光が底面で散乱されやすくなり、撮像装置110で受光される光の光量を増加させることができ、フレキシブルプリント配線板100の画像を2値化処理した場合に、回路部20全体の色の均一性をより向上させることができ、その結果、回路部20全体と絶縁基材10をより明確に区分けできる。 It is preferable that a plurality of pits having a quadrangular opening are further formed on the bottom surface of the first pit 40. In this case, since the protective layer 22 has a shape that follows the copper layer 21, a plurality of pits having a quadrangular opening are formed on the bottom surface of the second pit 30. Therefore, when the light is obliquely incident on the circuit forming surface 10a, the light incident on the second pit 30 is likely to be scattered on the bottom surface, and the amount of light received by the image pickup apparatus 110 is increased. When the image of the flexible printed wiring board 100 is binarized, the color uniformity of the entire circuit unit 20 can be further improved, and as a result, the entire circuit unit 20 and the insulating base material 10 can be further improved. Can be clearly separated.

(保護層)
保護層22は、銅層21を錆などから保護するものであり、保護層22を構成する導体は、銅層21を錆などから保護するものであれば特に制限されない。例えば保護層22を構成する導体としては、金、ニッケル、スズ、半田などが挙げられる。
(Protective layer)
The protective layer 22 protects the copper layer 21 from rust and the like, and the conductor constituting the protective layer 22 is not particularly limited as long as it protects the copper layer 21 from rust and the like. For example, examples of the conductor constituting the protective layer 22 include gold, nickel, tin, and solder.

なお、保護層22が銅層21に追従した形状を有するため、保護層22の(100)面領域対応部S1の表面粗さ、非(100)面領域対応部R1の表面粗さ、及びこれらの大小関係については、銅層21の(100)面領域S2の表面粗さ、非(100)面領域R2の表面粗さ、及びこれらの大小関係と同じである。 Since the protective layer 22 has a shape that follows the copper layer 21, the surface roughness of the (100) surface region corresponding portion S1 of the protective layer 22, the surface roughness of the non- (100) surface region corresponding portion R1, and these. The magnitude relation is the same as the surface roughness of the (100) plane region S2 of the copper layer 21, the surface roughness of the non- (100) plane region R2, and the magnitude relation between them.

また、保護層22の第2ピット30は、銅層21の第1ピット40の構成と同一である。 Further, the second pit 30 of the protective layer 22 has the same configuration as the first pit 40 of the copper layer 21.

[フレキシブルプリント配線板の製造方法]
次に、上述したフレキシブルプリント配線板100の製造方法について図6〜図9を参照しながら説明する。図6は、本発明のフレキシブルプリント配線板の製造方法で用いる銅箔付き絶縁基材を準備する準備工程を示す断面図であり、図7は、本発明のフレキシブルプリント配線板の製造方法の銅層前駆体形成工程を示す断面図であり、図8は、図7の銅層前駆体の表面における図3の領域Bに対応する領域Cを示す拡大図であり、図9は、本発明のフレキシブルプリント配線板の製造方法のエッチング工程を示す断面図である。
[Manufacturing method of flexible printed wiring board]
Next, the manufacturing method of the flexible printed wiring board 100 described above will be described with reference to FIGS. 6 to 9. FIG. 6 is a cross-sectional view showing a preparatory step for preparing an insulating base material with a copper foil used in the method for manufacturing a flexible printed wiring board of the present invention, and FIG. 7 is a cross-sectional view showing copper in the method for manufacturing a flexible printed wiring board of the present invention. FIG. 8 is a cross-sectional view showing a layer precursor forming step, FIG. 8 is an enlarged view showing a region C corresponding to a region B of FIG. 3 on the surface of the copper layer precursor of FIG. 7, and FIG. 9 is an enlarged view of the present invention. It is sectional drawing which shows the etching process of the manufacturing method of a flexible printed wiring board.

まず、図6に示すように、絶縁基材10の回路形成面10aの全面に銅箔221が形成された銅張積層板を準備する。 First, as shown in FIG. 6, a copper-clad laminate in which a copper foil 221 is formed on the entire surface of the circuit forming surface 10a of the insulating base material 10 is prepared.

次に、銅箔221の表面が防錆膜で覆われている場合には、硫酸/過酸化水素系ソフトエッチング液にて防錆膜を除去する。 Next, when the surface of the copper foil 221 is covered with a rust preventive film, the rust preventive film is removed with a sulfuric acid / hydrogen peroxide-based soft etching solution.

次に、図7に示すように、フォトリソグラフィーにて銅層前駆体121を形成する(銅層前駆体形成工程)。 Next, as shown in FIG. 7, the copper layer precursor 121 is formed by photolithography (copper layer precursor forming step).

このとき、フォトリソグラフィーは、具体的には以下のようにして行う。すなわち、まず銅箔221をレジストで覆ってレジストを露光した後、現像を行い、銅箔221の一部を露出させる。次に、露出された銅箔221に対して、例えば塩化銅/塩化鉄エッチング液を用いてエッチングを行う。最後に、レジストを剥離させる。 At this time, the photolithography is specifically performed as follows. That is, first, the copper foil 221 is covered with a resist to expose the resist, and then development is performed to expose a part of the copper foil 221. Next, the exposed copper foil 221 is etched with, for example, a copper chloride / iron chloride etching solution. Finally, the resist is peeled off.

なお、銅層前駆体121は、エッチング工程を行う前の状態であり、図3の領域Bに対応する領域Cでは、(100)面領域S1には第1ピット40は形成されていない(図8参照)。 The copper layer precursor 121 is in a state before the etching step, and in the region C corresponding to the region B in FIG. 3, the first pit 40 is not formed in the (100) plane region S1 (FIG. 3). 8).

次に、銅層前駆体121を露出させるようにカバーレイ及びソルダーレジストを形成した後、露出した銅層前駆体121に対して、後述するエッチング液を用いてエッチングを行い(エッチング工程)、図9に示すように、銅層21を形成する(銅層形成工程)。 Next, after forming a coverlay and a solder resist so as to expose the copper layer precursor 121, the exposed copper layer precursor 121 is etched with an etching solution described later (etching step). As shown in 9, the copper layer 21 is formed (copper layer forming step).

このとき、銅層21は、銅層21の第1面21a及び側面21bが、銅層21の(100)面以外の結晶面からなる非(100)面領域R2と、銅層21の(100)面からなる(100)面領域S2とを有するように形成される。また、このとき、銅層21は、(100)面領域S2において、四角形状の開口を有する複数の第1ピット40が形成されるように形成する。また、エッチング工程において行うエッチングはいわゆるソフトエッチングであり、エッチング量が例えば0.2〜2μmとなるように行う。 At this time, in the copper layer 21, the first surface 21a and the side surface 21b of the copper layer 21 are a non- (100) surface region R2 in which the first surface 21a and the side surface 21b are crystal planes other than the (100) surface of the copper layer 21, and the (100) surface of the copper layer 21. ) Is formed to have a (100) plane region S2 composed of planes. Further, at this time, the copper layer 21 is formed so that a plurality of first pits 40 having a quadrangular opening are formed in the (100) plane region S2. Further, the etching performed in the etching step is so-called soft etching, and the etching amount is set to, for example, 0.2 to 2 μm.

次に、銅層21の第1面21aに対して電解又は無電解めっきを行い、保護層22を形成する。 Next, electrolytic or electroless plating is performed on the first surface 21a of the copper layer 21 to form the protective layer 22.

このとき、保護層22は、銅層21の表面形状に追従するように且つ第2面20aの表面形状が第1面21aの表面形状と同一となるように形成される。また、保護層22は、第2面20aが、粗面化された非(100)面領域対応部R1と、(100)面領域対応部S1とを有するように形成される。さらに、保護層22は、(100)面領域対応部S1において、四角形状の開口を有する複数の第2ピット30が形成されるように形成する。 At this time, the protective layer 22 is formed so as to follow the surface shape of the copper layer 21 and so that the surface shape of the second surface 20a is the same as the surface shape of the first surface 21a. Further, the protective layer 22 is formed so that the second surface 20a has a roughened non- (100) surface region corresponding portion R1 and a (100) surface region corresponding portion S1. Further, the protective layer 22 is formed so that a plurality of second pits 30 having a quadrangular opening are formed in the (100) surface region corresponding portion S1.

こうして、フレキシブルプリント配線板100の製造が完了する。 In this way, the production of the flexible printed wiring board 100 is completed.

上記のようにしてフレキシブルプリント配線板100を製造すると、フレキシブルプリント配線板100の画像を2値化処理した場合に、回路部20全体の色の均一性を向上させることができ、その結果、回路部20全体と絶縁基材10を明確に区分けすることができるフレキシブルプリント配線板100を製造することができる。 When the flexible printed wiring board 100 is manufactured as described above, the color uniformity of the entire circuit unit 20 can be improved when the image of the flexible printed wiring board 100 is binarized, and as a result, the circuit It is possible to manufacture a flexible printed wiring board 100 capable of clearly separating the entire portion 20 and the insulating base material 10.

次に、上述した銅層前駆体121のソフトエッチングに使用されるエッチング液について詳細に説明する。 Next, the etching solution used for the soft etching of the copper layer precursor 121 described above will be described in detail.

エッチング液は、銅層前駆体121に対してソフトエッチングを行い、銅層21の第1面21aのうち(100)面領域S2に第1ピット40を形成することが可能であればよく、そのために、エッチング液は、過硫酸塩とハロゲン化物イオンとを含む。 The etching solution may be used as long as it is possible to perform soft etching on the copper layer precursor 121 and form the first pit 40 in the (100) surface region S2 of the first surface 21a of the copper layer 21. Therefore. In addition, the etching solution contains a persulfate and a halide ion.

過硫酸塩としては、例えば過硫酸アンモニウム及び過硫酸ナトリウムなどが挙げられる。これらは単独で又は混合して用いることができる。 Examples of the persulfate include ammonium persulfate and sodium persulfate. These can be used alone or in combination.

ハロゲン化物イオンとしては、塩化物イオン、臭化物イオン及びフッ化物イオンなどが挙げられる。中でも、塩化物イオンが好ましい。この場合、第1面21aの(100)面領域S2に第1ピット40をより効果的に形成することができる。 Examples of the halide ion include chloride ion, bromide ion and fluoride ion. Of these, chloride ion is preferable. In this case, the first pit 40 can be formed more effectively in the (100) plane region S2 of the first plane 21a.

過硫酸塩の濃度は、特に制限されないが、例えば2〜200g/Lとすればよい。 The concentration of persulfate is not particularly limited, but may be, for example, 2 to 200 g / L.

ハロゲン化物イオンの濃度は特に制限されないが、1質量ppm以上であることが好ましい。この場合、銅層前駆体121に対してエッチング液を用いてエッチングを行うと、銅層21の(100)面領域S2において、四角形状の開口を有する第1ピット40をより多く形成することができる。但し、ハロゲン化物イオンの濃度は、100質量ppm以下であることが好ましい。この場合、ハロゲン化物イオンの濃度が100質量ppmを超える場合に比べて、回路部20の形状をより良好なものとすることができる。 The concentration of the halide ion is not particularly limited, but is preferably 1 mass ppm or more. In this case, when the copper layer precursor 121 is etched with an etching solution, more first pits 40 having a quadrangular opening can be formed in the (100) plane region S2 of the copper layer 21. it can. However, the concentration of the halide ion is preferably 100 mass ppm or less. In this case, the shape of the circuit unit 20 can be made better than that in the case where the concentration of the halide ion exceeds 100 mass ppm.

なお、ハロゲン化物イオンの供給物質は、特に制限されず、このような供給物質としては、例えばハロゲン化ナトリウム、ハロゲン化水素及びハロゲン化カルシウムなどが挙げられる。 The material for supplying the halogenated ion is not particularly limited, and examples of such a material include sodium halide, hydrogen halide, calcium halide, and the like.

エッチング液は、必要に応じて、硫酸などをさらに含んでいてもよい。 The etching solution may further contain sulfuric acid or the like, if necessary.

本発明は上記実施形態に限定されるものではない。例えば上記実施形態では、回路部20が銅層21と保護層22とを有しているが、回路部20は保護層22を有していなくてもよい。この場合でも、銅層21の第1面21aの表面形状が第2面20aの表面形状と同一であるため、フレキシブルプリント配線板100の画像を2値化処理した場合に、回路部20全体の色の均一性を向上させることができ、回路部20全体と絶縁基材10の区分けを明確に行うことができる。 The present invention is not limited to the above embodiment. For example, in the above embodiment, the circuit unit 20 has the copper layer 21 and the protective layer 22, but the circuit unit 20 does not have to have the protective layer 22. Even in this case, since the surface shape of the first surface 21a of the copper layer 21 is the same as the surface shape of the second surface 20a, when the image of the flexible printed wiring board 100 is binarized, the entire circuit unit 20 is subjected to the binarization process. The color uniformity can be improved, and the entire circuit unit 20 and the insulating base material 10 can be clearly separated.

また、上記実施形態では、絶縁基材10の回路形成面10aにのみ回路部20が設けられているが、絶縁基材10のうち回路形成面10aと反対側の面に回路部20が設けられてもよい。 Further, in the above embodiment, the circuit unit 20 is provided only on the circuit forming surface 10a of the insulating base material 10, but the circuit unit 20 is provided on the surface of the insulating base material 10 opposite to the circuit forming surface 10a. You may.

以下、本発明の内容を、実施例を挙げてより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the content of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

(実施例1)
まず絶縁基材の回路形成面の全面に銅箔を形成した銅張積層板であって銅箔としてHA−V2箔(JX金属社製)を用いた銅張積層板を準備した。このとき、回路形成面の表面粗さは0.05μmであった。次に、硫酸/過酸化水素系ソフトエッチング液にて銅箔を覆っている防錆膜を除去した。次に、フォトリソグラフィーにて銅層前駆体を形成した。具体的には、銅箔をレジストで覆ってレジストを露光した後、現像を行い、銅箔の一部を露出させた。次に、露出された銅箔に対して、塩化銅/塩化鉄エッチング液を用いてエッチングを行った。最後に、レジストを剥離させた。こうして銅層前駆体を形成した。銅層前駆体の表面のデジタルマイクロスコープ画像を図10に示す。
次に、銅層前駆体を露出させるようにカバーレイ及びソルダーレジストを形成した。
(Example 1)
First, a copper-clad laminate in which a copper foil was formed on the entire surface of the circuit forming surface of the insulating base material, and a copper-clad laminate using HA-V2 foil (manufactured by JX Nippon Mining & Metals Co., Ltd.) as the copper foil was prepared. At this time, the surface roughness of the circuit forming surface was 0.05 μm. Next, the rust preventive film covering the copper foil was removed with a sulfuric acid / hydrogen peroxide-based soft etching solution. Next, a copper layer precursor was formed by photolithography. Specifically, the copper foil was covered with a resist to expose the resist, and then development was performed to expose a part of the copper foil. Next, the exposed copper foil was etched with a copper chloride / iron chloride etching solution. Finally, the resist was peeled off. In this way, a copper layer precursor was formed. A digital microscope image of the surface of the copper layer precursor is shown in FIG.
Next, a coverlay and a solder resist were formed so as to expose the copper layer precursor.

次に、過硫酸アンモニウム100g/L、89%硫酸15mL/Lの水溶液に対し、塩化物イオンの濃度が10ppmとなるようにハロゲン化物イオン供給物質として塩酸を添加してエッチング液を調製した。 Next, hydrochloric acid was added as a halide ion feeder to an aqueous solution of 100 g / L of ammonium persulfate and 15 mL / L of 89% sulfuric acid so that the concentration of chloride ions was 10 ppm to prepare an etching solution.

次に、このエッチング液を用いて、銅層前駆体のうち1.00ミクロンの厚さの部分だけエッチングを行い、銅層を形成した。 Next, using this etching solution, only a portion having a thickness of 1.00 micron in the copper layer precursor was etched to form a copper layer.

最後に、防錆のために銅層に対して金めっきを行い、銅層を覆うように保護層を形成した。こうして絶縁基材上に回路部を形成し、フレキシブルプリント配線板を作製した。 Finally, the copper layer was gold-plated to prevent rust, and a protective layer was formed so as to cover the copper layer. In this way, a circuit portion was formed on the insulating base material to produce a flexible printed wiring board.

部品実装機としてのマウンター(製品名「i−cubeII、YAMAHA社製)にて、得られたフレキシブルプリント配線板に対し、回路形成面に直交する方向に光軸が配置されるようにCCDカメラを配置し、リング状の光源を用いて、絶縁基材の回路形成面に対して斜めに光を入射し、回路部及び回路形成面からの光をCCDカメラで受光してフレキシブルプリント配線板の撮像を行った。結果を図11に示す。なお、図11は、実施例1のフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像を示す。また、実施例1のフレキシブルプリント配線板については、回路部の(100)面領域対応部及び非(100)面領域対応部のSEM観察も行った。結果を図12〜14に示す。図12〜図14は、倍率を3000倍、1万倍、3万倍にしたときの(100)面領域対応部のSEM画像であり、図15は、倍率を3000倍にしたときの非(100)面領域対応部のSEM画像である。図11〜図14に示すように、(100)面領域対応部には複数の第1ピットが形成されていた。さらに、回路部の(100)面領域対応部及び非(100)面領域対応部における表面粗さをデジタルマイクロスコープ VHX−7000(KEYENCE社製)にて測定した。結果を表1に示す。 With a mounter as a component mounting machine (product name "i-cubeII, manufactured by YAMAHA"), a CCD camera is mounted on the obtained flexible printed wiring board so that the optical axis is arranged in a direction orthogonal to the circuit forming surface. Arranged, using a ring-shaped light source, light is incident diagonally on the circuit forming surface of the insulating base material, and the light from the circuit section and the circuit forming surface is received by the CCD camera to image the flexible printed wiring board. The results are shown in FIG. 11. FIG. 11 shows a digital microscope image of the (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board of the first embodiment. For the flexible printed wiring board, SEM observation was also performed on the (100) surface area corresponding part and the non- (100) surface area corresponding part of the circuit part. The results are shown in FIGS. Is an SEM image of the (100) surface area corresponding portion when the magnification is 3,000 times, 10,000 times, and 30,000 times, and FIG. 15 shows the SEM of the non- (100) surface area corresponding portion when the magnification is 3,000 times. As shown in FIGS. 11 to 14, a plurality of first pits were formed in the (100) surface region corresponding portion. Further, the (100) plane region corresponding portion and the non- (100) surface region corresponding portion of the circuit portion were formed. ) The surface roughness in the surface area corresponding portion was measured with a digital microscope VHX-7000 (manufactured by KEYENCE). The results are shown in Table 1.

(実施例2)
エッチング液を調製する際に、ハロゲン化物イオン供給物質として塩酸の代わりに塩化ナトリウムを用い、回路部の(100)面領域対応部及び非(100)面領域対応部における表面粗さを表1に示す通りとしたこと以外は実施例1と同様にしてフレキシブルプリント配線板を作製した。得られたフレキシブルプリント配線板に対し、実施例1と同様にしてフレキシブルプリント配線板の回路部の撮像を行った。結果を図16に示す。なお、図16は、実施例2のフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像を示す。図16に示すように、(100)面領域対応部には複数の第1ピットが形成されていた。
(Example 2)
When preparing the etching solution, sodium chloride was used instead of hydrochloric acid as the halide ion supply substance, and the surface roughness of the (100) surface region corresponding portion and the non- (100) surface region corresponding portion of the circuit section is shown in Table 1. A flexible printed wiring board was produced in the same manner as in Example 1 except as shown. For the obtained flexible printed wiring board, the circuit portion of the flexible printed wiring board was imaged in the same manner as in Example 1. The results are shown in FIG. Note that FIG. 16 shows a digital microscope image of the (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board of the second embodiment. As shown in FIG. 16, a plurality of first pits were formed in the (100) plane region corresponding portion.

(実施例3)
エッチング液を調製する際に、ハロゲン化物イオン供給物質として塩酸の代わりに塩化カルシウムを用い、回路部の(100)面領域対応部及び非(100)面領域対応部における表面粗さを表1に示す通りとしたこと以外は実施例1と同様にしてフレキシブルプリント配線板を作製した。得られたフレキシブルプリント配線板に対し、実施例1と同様にしてフレキシブルプリント配線板の回路部の撮像を行った。結果を図17に示す。なお、図17は、実施例3のフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像を示す。図17に示すように、(100)面領域対応部には複数の第1ピットが形成されていた。
(Example 3)
When preparing the etching solution, calcium chloride was used instead of hydrochloric acid as the halide ion supply substance, and the surface roughness in the (100) plane region corresponding portion and the non- (100) plane region corresponding portion of the circuit part is shown in Table 1. A flexible printed wiring board was produced in the same manner as in Example 1 except as shown. For the obtained flexible printed wiring board, the circuit portion of the flexible printed wiring board was imaged in the same manner as in Example 1. The results are shown in FIG. Note that FIG. 17 shows a digital microscope image of the (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board of the third embodiment. As shown in FIG. 17, a plurality of first pits were formed in the (100) plane region corresponding portion.

(実施例4)
エッチング液を調製する際に、塩酸の濃度を10質量ppmから1質量ppmに変更し、回路部の(100)面領域対応部及び非(100)面領域対応部における表面粗さを表1に示す通りとしたこと以外は実施例1と同様にしてフレキシブルプリント配線板を作製した。得られたフレキシブルプリント配線板に対し、実施例1と同様にしてフレキシブルプリント配線板の回路部の撮像を行った。その結果、(100)面領域対応部には複数の第1ピットが形成されていた。
(Example 4)
When preparing the etching solution, the concentration of hydrochloric acid was changed from 10 mass ppm to 1 mass ppm, and the surface roughness of the (100) surface region corresponding portion and the non- (100) surface region corresponding portion of the circuit section is shown in Table 1. A flexible printed wiring board was produced in the same manner as in Example 1 except as shown. For the obtained flexible printed wiring board, the circuit portion of the flexible printed wiring board was imaged in the same manner as in Example 1. As a result, a plurality of first pits were formed in the (100) plane region corresponding portion.

(実施例5)
エッチング液を調製する際に、塩酸の濃度を10質量ppmから2質量ppmに変更し、回路部の(100)面領域対応部及び非(100)面領域対応部における表面粗さを表1に示す通りとしたこと以外は実施例1と同様にしてフレキシブルプリント配線板を作製した。得られたフレキシブルプリント配線板に対し、実施例1と同様にしてフレキシブルプリント配線板の回路部の撮像を行った。その結果、(100)面領域対応部には複数の第1ピットが形成されていた。
(Example 5)
When preparing the etching solution, the concentration of hydrochloric acid was changed from 10 mass ppm to 2 mass ppm, and the surface roughness of the (100) surface region corresponding portion and the non- (100) surface region corresponding portion of the circuit section is shown in Table 1. A flexible printed wiring board was produced in the same manner as in Example 1 except as shown. For the obtained flexible printed wiring board, the circuit portion of the flexible printed wiring board was imaged in the same manner as in Example 1. As a result, a plurality of first pits were formed in the (100) plane region corresponding portion.

(実施例6)
エッチング液を調製する際に、塩酸の濃度を10質量ppmから0.5質量ppmに変更し、回路部の(100)面領域対応部及び非(100)面領域対応部における表面粗さを表1に示す通りとしたこと以外は実施例1と同様にしてフレキシブルプリント配線板を作製した。得られたフレキシブルプリント配線板に対し、実施例1と同様にしてフレキシブルプリント配線板の回路部の撮像を行った。その結果、(100)面領域対応部には複数の第1ピットが形成されていた。
(Example 6)
When preparing the etching solution, the concentration of hydrochloric acid was changed from 10 mass ppm to 0.5 mass ppm, and the surface roughness of the (100) surface region corresponding portion and the non- (100) surface region corresponding portion of the circuit part was shown. A flexible printed wiring board was produced in the same manner as in Example 1 except as shown in 1. For the obtained flexible printed wiring board, the circuit portion of the flexible printed wiring board was imaged in the same manner as in Example 1. As a result, a plurality of first pits were formed in the (100) plane region corresponding portion.

(比較例1)
エッチング液を調製する際に、塩酸を用いなかったこと以外は実施例1と同様にしてフレキシブルプリント配線板を作製した。得られたフレキシブルプリント配線板に対し、実施例1と同様にしてフレキシブルプリント配線板の回路部の撮像を行った。結果を図18に示す。なお、図18は、比較例1のフレキシブルプリント配線板における回路部の(100)面領域対応部のデジタルマイクロスコープ画像を示す。また、比較例1のフレキシブルプリント配線板については、回路部の(100)面領域対応部のSEM観察も行った。結果を図19に示す。図19は、倍率を3000倍にしたときの(100)面領域対応部のSEM画像である。図18〜図19に示すように、(100)面領域対応部には複数の第1ピットが形成されていた。また、このとき、回路部の(100)面領域対応部及び非(100)面領域対応部における表面粗さを実施例1と同様にして測定した。結果を表1に示す。

Figure 2021057433
(Comparative Example 1)
A flexible printed wiring board was produced in the same manner as in Example 1 except that hydrochloric acid was not used when preparing the etching solution. For the obtained flexible printed wiring board, the circuit portion of the flexible printed wiring board was imaged in the same manner as in Example 1. The results are shown in FIG. Note that FIG. 18 shows a digital microscope image of the (100) plane region corresponding portion of the circuit portion in the flexible printed wiring board of Comparative Example 1. Further, for the flexible printed wiring board of Comparative Example 1, SEM observation of the (100) plane region corresponding portion of the circuit portion was also performed. The results are shown in FIG. FIG. 19 is an SEM image of the (100) plane region corresponding portion when the magnification is increased to 3000 times. As shown in FIGS. 18 to 19, a plurality of first pits are formed in the (100) plane region corresponding portion. At this time, the surface roughness of the (100) surface region corresponding portion and the non- (100) surface region corresponding portion of the circuit portion was measured in the same manner as in Example 1. The results are shown in Table 1.

Figure 2021057433

<2値化処理の評価>
実施例1〜6及び比較例1、エッチング前に得られたフレキシブルプリント配線板の表面について、部品実装機(製品名「i−cubeII」、YAMAHA社製)にて2値化処理した。結果を表1及び図20〜27に示す。なお、図20〜図27において、(a)は2値化像を示し、(b)はデジタルマイクロスコープ画像を示す。また、表1において、「〇」、「△」及び「×」は以下の判定基準に基づくものである。

〇…回路部全体と絶縁基材の区分けが非常に明確である
△…回路部全体と絶縁基材の区分けが明確である
×…回路部全体と絶縁基材の区分けが非常に不明確である
<Evaluation of binarization processing>
The surfaces of the flexible printed wiring boards obtained before the etching of Examples 1 to 6 and Comparative Example 1 were binarized by a component mounting machine (product name "i-cubeII", manufactured by YAMAHA). The results are shown in Table 1 and FIGS. 20-27. In FIGS. 20 to 27, (a) shows a binarized image, and (b) shows a digital microscope image. Further, in Table 1, “◯”, “Δ” and “×” are based on the following criteria.

〇… The division between the entire circuit section and the insulating base material is very clear △… The division between the entire circuit section and the insulating base material is clear ×… The division between the entire circuit section and the insulating base material is very unclear.

図20〜27に示す結果より、実施例1〜6では、回路部の第1面全面を白色にすることができ、回路部全体と絶縁基材を明確に区分けすることができることが分かった。 From the results shown in FIGS. 20 to 27, it was found that in Examples 1 to 6, the entire first surface of the circuit portion can be made white, and the entire circuit portion and the insulating base material can be clearly separated.

これに対し、比較例1では、回路部の第2面に平滑な領域が多く分布しており、回路部の第1面全面を白色にすることができなかった。 On the other hand, in Comparative Example 1, many smooth regions were distributed on the second surface of the circuit unit, and the entire first surface of the circuit unit could not be whitened.

以上より、本発明によれば、フレキシブルプリント配線板の画像を2値化処理した場合に、回路部全体と絶縁基材を明確に区分けすることができることが確認された。 From the above, it was confirmed that according to the present invention, when the image of the flexible printed wiring board is binarized, the entire circuit section and the insulating base material can be clearly separated.

本発明のフレキシブルプリント配線板は、フレキシブルプリント配線板の画像を2値化処理する場合に回路部全体の色の均一性を向上させることができる。このため、本発明のフレキシブルプリント配線板は、フレキシブルプリント配線板に対して認識用マークを用いた位置合わせを行う際に回路部全体と絶縁基材を明確に区分けする場合だけでなく、異物と回路部の画像の2値化処理や、事後的に形成したBVH(Bullied Via Hole)と回路部の画像の2値化処理により両者を区分けする光学検査などにも適用できる。なお、フレキブルプリント配線板においては回路部をべた銅(未加工の銅層)に代えた構造体としてもよい。この場合、この構造体は、異物と銅層の画像の2値化処理や、事後的に形成したBVHと回路部の画像の2値化処理により両者を区分けする光学検査などにも適用できる。 The flexible printed wiring board of the present invention can improve the color uniformity of the entire circuit section when the image of the flexible printed wiring board is binarized. Therefore, the flexible printed wiring board of the present invention is not only used for clearly separating the entire circuit section and the insulating base material when aligning the flexible printed wiring board with the recognition mark, but also for foreign matter. It can also be applied to the binarization process of the image of the circuit part and the optical inspection for separating the BVH (Bullied Via Hole) formed after the fact and the image of the circuit part by the binarization process. In the flexible printed wiring board, the circuit portion may be replaced with solid copper (unprocessed copper layer). In this case, this structure can also be applied to a binarization process of an image of a foreign substance and a copper layer, an optical inspection for separating the two by a binarization process of an image of a BVH formed after the fact and an image of a circuit portion, and the like.

10…絶縁基材
10a…回路形成面
20…回路部
20a…第2面
21…銅層
21a…第1面
22…保護層
30…第2ピット
40…第1ピット
100…フレキシブルプリント配線板
121…銅層前駆体
S1…(100)面領域対応部
S2…(100)面領域
R1…非(100)面領域対応部
R2…非(100)面領域
10 ... Insulation base material 10a ... Circuit forming surface 20 ... Circuit part 20a ... Second surface 21 ... Copper layer 21a ... First surface 22 ... Protective layer 30 ... Second pit 40 ... First pit 100 ... Flexible printed wiring board 121 ... Copper layer precursor S1 ... (100) plane region corresponding portion S2 ... (100) plane region R1 ... non (100) plane region corresponding portion R2 ... non (100) plane region

Claims (5)

絶縁基材と、
前記絶縁基材の回路形成面の一部に設けられる回路部とを備え、
前記回路部が銅層を含み、前記銅層において、前記絶縁基材の前記回路形成面と反対側の第1面が、前記銅層の(100)面以外の結晶面からなり粗面化された非(100)面領域と、前記銅層の(100)面からなる(100)面領域とを有し、
前記(100)面領域において、四角形状の開口を有する複数の第1ピットが形成されている、フレキシブルプリント配線板。
Insulating base material and
A circuit portion provided on a part of the circuit forming surface of the insulating base material is provided.
The circuit portion includes a copper layer, and in the copper layer, the first surface of the insulating base material opposite to the circuit forming surface is formed of a crystal plane other than the (100) plane of the copper layer and is roughened. It has a non- (100) plane region and a (100) plane region composed of (100) planes of the copper layer.
A flexible printed wiring board in which a plurality of first pits having a quadrangular opening are formed in the (100) plane region.
前記回路部が、前記銅層の上に前記銅層の前記第1面の形状に追従して設けられ、前記銅層を保護する保護層をさらに有し、
前記保護層において、前記銅層と反対側の第2面が、前記保護層の厚さ方向に見た時に、前記非(100)面領域と一致し粗面化された非(100)面領域対応部と、前記(100)面領域と一致する(100)面領域対応部とを有し、
前記(100)面領域対応部において、四角形状の開口を有する複数の第2ピットが形成されている、請求項1に記載のフレキシブルプリント配線板。
The circuit unit is provided on the copper layer following the shape of the first surface of the copper layer, and further has a protective layer that protects the copper layer.
In the protective layer, the second surface opposite to the copper layer is a roughened non- (100) surface region that coincides with the non- (100) surface region when viewed in the thickness direction of the protective layer. It has a corresponding portion and a (100) plane region corresponding portion that matches the (100) plane region.
The flexible printed wiring board according to claim 1, wherein a plurality of second pits having a quadrangular opening are formed in the (100) surface region corresponding portion.
絶縁基材の回路形成面の一部に、銅層を含む回路部を形成する回路部形成工程を含み、
前記回路部形成工程が、前記絶縁基材の前記回路形成面の一部に前記銅層を形成する銅層形成工程を含み、
前記銅層形成工程において、前記銅層のうち前記絶縁基材の前記回路形成面と反対側の第1面が、前記銅層の(100)面以外の結晶面からなり粗面化された非(100)面領域と、前記銅層の(100)面からなる(100)面領域とを有し、前記(100)面領域において、四角形状の開口を有する複数の第1ピットが形成されるように前記銅層を形成する、フレキシブルプリント配線板の製造方法。
A circuit portion forming step of forming a circuit portion including a copper layer is included in a part of the circuit forming surface of the insulating base material.
The circuit portion forming step includes a copper layer forming step of forming the copper layer on a part of the circuit forming surface of the insulating base material.
In the copper layer forming step, the first surface of the copper layer opposite to the circuit forming surface of the insulating base material is a non-roughened surface composed of crystal planes other than the (100) plane of the copper layer. A plurality of first pits having a (100) plane region and a (100) plane region composed of (100) planes of the copper layer and having a quadrangular opening are formed in the (100) plane region. A method for manufacturing a flexible printed wiring board that forms the copper layer as described above.
前記銅層形成工程が、
前記絶縁基材の前記回路形成面の一部に銅層前駆体を形成する銅層前駆体形成工程と、
前記銅層前駆体のうち前記絶縁基材の前記回路形成面と反対側の部分に対してエッチング液を用いてエッチングを行い、前記前記銅層を形成するエッチング工程とを含み、
前記エッチング工程において、前記エッチング液がハロゲン化物イオンを含む、請求項3に記載のフレキシブルプリント配線板の製造方法。
The copper layer forming step
A copper layer precursor forming step of forming a copper layer precursor on a part of the circuit forming surface of the insulating base material, and
The copper layer precursor includes an etching step of forming the copper layer by etching a portion of the insulating base material opposite to the circuit forming surface with an etching solution.
The method for manufacturing a flexible printed wiring board according to claim 3, wherein in the etching step, the etching solution contains halide ions.
前記エッチング液中の前記ハロゲン化物イオンの含有率が1質量ppm以上である、請求項4に記載のフレキシブルプリント配線板の製造方法。 The method for manufacturing a flexible printed wiring board according to claim 4, wherein the content of the halide ion in the etching solution is 1 mass ppm or more.
JP2019178245A 2019-09-30 2019-09-30 Flexible printed wiring board and method of manufacturing the same Active JP6634184B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019178245A JP6634184B1 (en) 2019-09-30 2019-09-30 Flexible printed wiring board and method of manufacturing the same
PCT/JP2020/034991 WO2021065490A1 (en) 2019-09-30 2020-09-15 Flexible printed circuit board and method for producing same
TW109132848A TWI744005B (en) 2019-09-30 2020-09-23 Flexible printed wiring board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019178245A JP6634184B1 (en) 2019-09-30 2019-09-30 Flexible printed wiring board and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP6634184B1 JP6634184B1 (en) 2020-01-22
JP2021057433A true JP2021057433A (en) 2021-04-08

Family

ID=69166808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019178245A Active JP6634184B1 (en) 2019-09-30 2019-09-30 Flexible printed wiring board and method of manufacturing the same

Country Status (3)

Country Link
JP (1) JP6634184B1 (en)
TW (1) TWI744005B (en)
WO (1) WO2021065490A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220011A (en) * 1995-02-09 1996-08-30 Hitachi Chem Co Ltd Inspection of circuit conductor of printed wiring board
JP3040461U (en) * 1997-02-12 1997-08-19 株式会社アドバンテスト Printed wiring board
JP2009088162A (en) * 2007-09-28 2009-04-23 Fujitsu Media Device Kk Electronic component
JP2011233648A (en) * 2010-04-26 2011-11-17 Murata Mfg Co Ltd Circuit-board with mark
WO2012043462A1 (en) * 2010-09-28 2012-04-05 Jx日鉱日石金属株式会社 Rolled copper foil
WO2016093109A1 (en) * 2014-12-08 2016-06-16 三井金属鉱業株式会社 Method of manufacturing printed wiring board
US20160218249A1 (en) * 2013-09-13 2016-07-28 Osram Opto Semiconductors Gmbh Optoelectronic component and method of production thereof
WO2017029973A1 (en) * 2015-08-17 2017-02-23 住友電気工業株式会社 Printed wiring board and electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5710152B2 (en) * 2010-04-15 2015-04-30 日本メクトロン株式会社 Manufacturing method of multilayer flexible printed wiring board
CN106662955B (en) * 2015-02-27 2018-11-09 株式会社藤仓 Wiring body, circuit board and touch sensor
JP6682633B2 (en) * 2016-07-12 2020-04-15 株式会社フジクラ Stretchable substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220011A (en) * 1995-02-09 1996-08-30 Hitachi Chem Co Ltd Inspection of circuit conductor of printed wiring board
JP3040461U (en) * 1997-02-12 1997-08-19 株式会社アドバンテスト Printed wiring board
JP2009088162A (en) * 2007-09-28 2009-04-23 Fujitsu Media Device Kk Electronic component
JP2011233648A (en) * 2010-04-26 2011-11-17 Murata Mfg Co Ltd Circuit-board with mark
WO2012043462A1 (en) * 2010-09-28 2012-04-05 Jx日鉱日石金属株式会社 Rolled copper foil
US20160218249A1 (en) * 2013-09-13 2016-07-28 Osram Opto Semiconductors Gmbh Optoelectronic component and method of production thereof
WO2016093109A1 (en) * 2014-12-08 2016-06-16 三井金属鉱業株式会社 Method of manufacturing printed wiring board
WO2017029973A1 (en) * 2015-08-17 2017-02-23 住友電気工業株式会社 Printed wiring board and electronic component

Also Published As

Publication number Publication date
JP6634184B1 (en) 2020-01-22
TWI744005B (en) 2021-10-21
WO2021065490A1 (en) 2021-04-08
TW202126859A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
JP5282675B2 (en) Copper foil for printed wiring board and method for producing the same
JP4224082B2 (en) Flexible printed circuit board and semiconductor device
US11304309B2 (en) Printed circuit board and method for manufacturing printed circuit board
TWI606765B (en) Printed circuit board and method for manufacturing same
JP2011014848A (en) Printed wiring board, and method of manufacturing the same
JP2011044550A (en) Copper foil for printed wiring board, and method of manufacturing the same
JP2005317836A (en) Wiring circuit board and method of manufacturing the same
US20110147050A1 (en) Printed wiring board and method for manufacturing printed wiring board
CN108024442B (en) Wired circuit board and method for manufacturing the same
CN1221158C (en) Method for producing double-side distributing board
WO2021065490A1 (en) Flexible printed circuit board and method for producing same
JP4195706B2 (en) Printed wiring board and manufacturing method thereof
TWI477218B (en) Wiring board, circuit board, and manufacturing thereof
JP7304492B2 (en) Flexible printed wiring board and manufacturing method thereof
JP2009295957A (en) Method for manufacturing of printed wiring board
KR20080012310A (en) Method for forming via hole in substrate for flexible printed circuit board
KR102128954B1 (en) Copper foil for printed wiring board, process for preparing the same, and printed wiring board using the copper foil
JP2006281453A (en) Material for electric and electronic component and its manufacturing method
TWI555449B (en) Printed circuit board copper foil and its manufacturing method and the use of the copper foil printed circuit board
JP5341796B2 (en) Wiring board manufacturing method
JP2010182865A (en) Method of manufacturing wiring circuit board
JP2007088232A (en) Method of manufacturing printed wiring board
JP2009088337A (en) Printed circuit board and its manufacturing method
US20230422408A1 (en) Printed wiring board
CN117320320A (en) Processing method of high-speed signal micro-structure PCB

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191106

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191213

R151 Written notification of patent or utility model registration

Ref document number: 6634184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250