JP2021054572A - Parts aligner, parts-aligning plate and method of manufacturing parts-aligning plate - Google Patents

Parts aligner, parts-aligning plate and method of manufacturing parts-aligning plate Download PDF

Info

Publication number
JP2021054572A
JP2021054572A JP2019178128A JP2019178128A JP2021054572A JP 2021054572 A JP2021054572 A JP 2021054572A JP 2019178128 A JP2019178128 A JP 2019178128A JP 2019178128 A JP2019178128 A JP 2019178128A JP 2021054572 A JP2021054572 A JP 2021054572A
Authority
JP
Japan
Prior art keywords
component
component alignment
alignment
virtual
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019178128A
Other languages
Japanese (ja)
Other versions
JP7385413B2 (en
Inventor
齋藤 浩二
Koji Saito
浩二 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2019178128A priority Critical patent/JP7385413B2/en
Publication of JP2021054572A publication Critical patent/JP2021054572A/en
Application granted granted Critical
Publication of JP7385413B2 publication Critical patent/JP7385413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding Of Articles To Conveyors (AREA)

Abstract

To provide a parts aligner adapted for easily taking out parts after alignment.SOLUTION: A parts aligner comprises a parts aligning unit 10 and a vibrations applying unit 20 that can apply vibrations to the parts aligning unit 10. The parts aligning unit 10 comprises a parts tray 11 that has a parts-resting surface and a parts-aligning plate that is attachable/removable to/from the parts-resting surface of the parts tray 11 and has parts-aligning holes H allowing, in an attached state, parts P to be aligned to fall down and rest on the parts-resting surface of the parts tray 11.SELECTED DRAWING: Figure 1

Description

本発明は、バルク状の部品を整列可能な部品整列装置と、当該部品整列装置に用いられる部品整列プレートと、当該部品整列プレートの製造方法に関する。 The present invention relates to a component alignment device capable of aligning bulk parts, a component alignment plate used in the component alignment device, and a method for manufacturing the component alignment plate.

後記特許文献1には、部品整列孔(有底の孔)が形成されたパレットと、当該パレットを載置可能な載置台と、当該載置台に水平移動と上下揺動を付加可能な手段とを備えた部品整列装置が開示されている。この部品整列装置は、載置台に水平移動と上下揺動を付加することによって、パレット上のバルク状の部品を部品整列孔(有底の孔)に落とし込んで整列させるようにしたものである。 In Patent Document 1 described later, a pallet in which a component alignment hole (bottomed hole) is formed, a mounting table on which the pallet can be placed, and a means capable of adding horizontal movement and vertical swing to the mounting table are provided. A component alignment device comprising the above is disclosed. In this component alignment device, by adding horizontal movement and vertical swing to the mounting table, bulk-shaped components on the pallet are dropped into the component alignment holes (bottomed holes) to be aligned.

前掲の部品整列装置はパレット上のバルク状の部品を部品整列孔(有底の孔)に落とし込むだけであるため、落とし込めなかった部品が部品整列孔の周囲に残存すると、当該残存部品が、整列後の部品(部品整列孔に落とし込まれた部品)をパレットから取り出して使用するときの邪魔になる懸念がある。 Since the above-mentioned component alignment device only drops bulk-shaped components on the pallet into the component alignment holes (bottomed holes), if the components that could not be dropped remain around the component alignment holes, the remaining components will be removed. There is a concern that it will be an obstacle when the parts after alignment (parts dropped into the component alignment holes) are taken out from the pallet and used.

特開2000−038213号公報Japanese Unexamined Patent Publication No. 2000-038213

本発明が解決しようとする課題は、整列後の部品の取り出しを容易に行える部品整列装置と、当該部品整列装置に有用な部品整列プレートと、当該部品整列プレートの製造方法を提供することにある。 An object to be solved by the present invention is to provide a component alignment device capable of easily taking out parts after alignment, a component alignment plate useful for the component alignment device, and a method for manufacturing the component alignment plate. ..

前記課題を解決するため、本発明に係る部品整列装置は、部品整列ユニットと、前記部品整列ユニットに振動を付加可能な振動付加ユニットとを備えた部品整列装置であって、前記部品整列ユニットは、部品載置面を有する部品トレイと、前記部品トレイの前記部品載置面に着脱可能であり、かつ、取り付け状態で整列対象となる部品を落とし込んで前記部品トレイの前記部品載置面に載置可能な部品整列孔を有する部品整列プレートとを備える。 In order to solve the above problems, the component alignment device according to the present invention is a component alignment device including a component alignment unit and a vibration addition unit capable of adding vibration to the component alignment unit. , A component tray having a component mounting surface and a component that can be attached to and detached from the component mounting surface of the component tray and that is to be aligned in the mounted state are dropped and mounted on the component mounting surface of the component tray. It is provided with a component alignment plate having a component alignment hole that can be placed.

また、本発明に係る部品整列プレートは、前掲の部品整列プレートに関し、前記部品整列孔は、前記部品整列プレートの上面に設定した仮想XY平面にX方向に対して角度θ傾いた仮想傾斜横直線とY方向に対して同角度θ傾いた仮想傾斜縦直線とを有する仮想傾斜格子線を設定した仮想状態において、前記仮想傾斜格子線における奇数番目の仮想傾斜横直線の奇数番目の交点に前記部品整列孔の中心が位置し、かつ、偶数番目の仮想傾斜横直線の偶数番目の交点に前記部品配列孔の中心が位置するように配列されている。 Further, the component alignment plate according to the present invention relates to the component alignment plate described above, and the component alignment hole is a virtual inclined horizontal straight line inclined by an angle θ with respect to the X direction with respect to the virtual XY plane set on the upper surface of the component alignment plate. In a virtual state in which a virtual tilted vertical line having a virtual tilted vertical line tilted by the same angle θ with respect to the Y direction is set, the component is at the odd-th intersection of the odd-order virtual tilted horizontal straight line in the virtual tilted grid line. The center of the alignment hole is located, and the center of the component arrangement hole is located at the even-th intersection of the even-th virtual inclined horizontal straight line.

さらに、本発明に係る部品整列プレートの製造方法は、前掲の部品整列プレートの製造方法に関し、前記部品整列プレートの基材となる元プレートの上面に仮想XY平面を設定するステップと、前記仮想XY平面にX方向に対して角度θ傾いた仮想傾斜横直線とY方向に対して同角度θ傾いた仮想傾斜縦直線とを有する仮想傾斜格子線を設定するステップと、前記仮想傾斜格子線における奇数番目の仮想傾斜横直線の奇数番目の交点に前記部品整列孔の中心が位置し、かつ、偶数番目の仮想傾斜横直線の偶数番目の交点に前記部品配列孔の中心が位置するように前記元プレートに前記部品整列孔を形成するステップとを備える。 Further, the method for manufacturing a component alignment plate according to the present invention relates to the above-described method for manufacturing a component alignment plate, which includes a step of setting a virtual XY plane on the upper surface of a base plate which is a base material of the component alignment plate, and the virtual XY. A step of setting a virtual inclined grid line having a virtual inclined horizontal straight line inclined by an angle θ with respect to the X direction and a virtual inclined vertical straight line inclined by θ with respect to the Y direction on a plane, and an odd number in the virtual inclined grid line The element so that the center of the component alignment hole is located at the odd-th intersection of the second virtual inclined horizontal line and the center of the component arrangement hole is located at the even-th intersection of the even-th virtual inclined horizontal line. The plate is provided with a step of forming the component alignment hole.

本発明によれば、整列後の部品の取り出しを容易に行える部品整列装置と、当該部品整列装置に有用な部品整列プレートと、当該部品整列プレートの製造方法を提供することができる。 According to the present invention, it is possible to provide a component alignment device that can easily take out parts after alignment, a component alignment plate useful for the component alignment device, and a method for manufacturing the component alignment plate.

図1は本発明を適用した部品整列装置の外観斜視図である。FIG. 1 is an external perspective view of a component aligning device to which the present invention is applied. 図2(A)は図1に示した部品整列ユニットの上面図、図2(B)は同縦断面図、図2(C)は同分解縦断面図、図2(D)は図2(A)〜図2(C)に示した部品整列プレートの部品整列孔の形成エリアを示す上面図である。2 (A) is a top view of the component alignment unit shown in FIG. 1, FIG. 2 (B) is a vertical sectional view of the same, FIG. 2 (C) is an exploded vertical sectional view of the same, and FIG. 2 (D) is FIG. 2 (D). It is a top view which shows the formation area of the component alignment hole of the component alignment plate shown in A) to FIG. 2C. 図3(A)は部品(一例)の構成説明図、図3(B)は図3(A)に示した部品に対応した部品整列孔を有する部品整列プレートの構成説明図、図3(C)は図3(B)のC−C線断面図、図3(D)は図3(B)に示した部品整列孔の配列態様の説明図である。FIG. 3 (A) is a configuration explanatory view of a component (one example), FIG. 3 (B) is a configuration explanatory view of a component alignment plate having a component alignment hole corresponding to the component shown in FIG. 3 (A), and FIG. 3 (C). ) Is a sectional view taken along line CC of FIG. 3 (B), and FIG. 3 (D) is an explanatory view of an arrangement mode of the component alignment holes shown in FIG. 3 (B). 図4(A)〜図4(C)は図3(B)〜図(D)に示した部品整列プレートの製造方法の説明図である。4 (A) to 4 (C) are explanatory views of a method for manufacturing the component alignment plate shown in FIGS. 3 (B) to 3 (D). 図5は図1に示した部品整列装置の操作方法の説明図である。FIG. 5 is an explanatory diagram of an operation method of the component alignment device shown in FIG. 図6は図1に示した部品整列装置の操作方法の説明図である。FIG. 6 is an explanatory diagram of an operation method of the component alignment device shown in FIG. 図7は図1に示した部品整列装置の操作方法の説明図である。FIG. 7 is an explanatory diagram of an operation method of the component alignment device shown in FIG. 図8は図1に示した部品整列装置の操作方法の説明図である。FIG. 8 is an explanatory diagram of an operation method of the component alignment device shown in FIG. 図9は図1に示した部品整列装置の操作方法の説明図である。FIG. 9 is an explanatory diagram of an operation method of the component alignment device shown in FIG. 図10は図3(B)に示した角度θと整列率との関係を示す実験データである。FIG. 10 is experimental data showing the relationship between the angle θ shown in FIG. 3 (B) and the alignment rate.

《部品整列装置の構成》
まず、図1および図2を用いて、図1に例示した部品整列装置(符号省略)の構成を説明する。この部品整列装置は、部品整列ユニット10と、当該部品整列ユニット10に振動を付加可能な振動付加ユニット20とを備えている。
<< Configuration of parts alignment device >>
First, the configuration of the component alignment device (reference numeral omitted) illustrated in FIG. 1 will be described with reference to FIGS. 1 and 2. This component alignment device includes a component alignment unit 10 and a vibration addition unit 20 capable of applying vibration to the component alignment unit 10.

部品整列ユニット10は、部品トレイ11と、部品保持プレート12と、部品整列プレート13と、押付プレート14とを備えている。なお、図1および図2には、便宜上、部品整列プレート13が有する部品整列孔H(図3(B)〜図3(D)を参照)の図示を省略している。 The component alignment unit 10 includes a component tray 11, a component holding plate 12, a component alignment plate 13, and a pressing plate 14. Note that, for convenience, FIG. 1 and FIG. 2 omit the illustration of the component alignment hole H (see FIGS. 3 (B) to 3 (D)) included in the component alignment plate 13.

部品トレイ11は上面視矩形状の外形を有しており、底面が平坦で部品トレイ11の上面視外形よりも小さな上面視矩形状の凹部11aを有している。 The component tray 11 has a top-view rectangular outer shape, and has a top-view rectangular recess 11a having a flat bottom surface and smaller than the top-view outer shape of the component tray 11.

部品保持プレート12は部品トレイ11の凹部11aの上面視外形よりも僅かに小さな上面視矩形状の外形を有しており、凹部11aの底面に着脱可能であり、かつ、取り付け状態でその上面は部品トレイ11の部品載置面(符号省略)となる。すなわち、部品トレイ11の部品載置面は、部品トレイ11に取り付けられた部品保持プレート12の上面によって構成されている。 The component holding plate 12 has a rectangular outer shape that is slightly smaller than the top view outer shape of the concave portion 11a of the component tray 11, is removable from the bottom surface of the concave portion 11a, and has an upper surface that is attached to the lower surface. This is the component mounting surface (reference numeral omitted) of the component tray 11. That is, the component mounting surface of the component tray 11 is composed of the upper surface of the component holding plate 12 attached to the component tray 11.

部品保持プレート12について補足すると、当該部品保持プレート12は、好ましくは自らの表面摩擦抵抗によって部品P(図3(A)を参照)を保持可能なプレートであり、より好ましくは合成樹脂シートの上面にセラミックスや金属等から成る硬質微細粒子を含む合成樹脂接着剤を塗工して硬化させたプレートである。このようなプレートを部品保持プレート12として用いれば、表面摩擦抵抗によって整列後の部品Pの位置ずれを防止することができ、かつ、部品Pの取り出しも支障なく行うことができる。 Supplementing the component holding plate 12, the component holding plate 12 is preferably a plate capable of holding the component P (see FIG. 3A) by its own surface frictional resistance, and more preferably the upper surface of the synthetic resin sheet. A plate coated with a synthetic resin adhesive containing hard fine particles made of ceramics, metal, etc. and cured. When such a plate is used as the component holding plate 12, it is possible to prevent the component P from being displaced due to the surface frictional resistance, and the component P can be taken out without any trouble.

なお、部品保持プレート12には、軟質層や粘着層を表層として有するプレートの使用も可能ではあるが、部品Pに対する密着力が高すぎると、整列後の部品Pが張り付いて取り出しにくくなったり、部品Pを取り出すときに部品保持プレート12が浮き上がったりする等の支障を生じる懸念があるため、密着力については部品Pのサイズおよび質量を考慮のうえで調整することが望ましい。 Although it is possible to use a plate having a soft layer or an adhesive layer as a surface layer for the component holding plate 12, if the adhesion to the component P is too high, the aligned component P may stick to the component P and be difficult to remove. Since there is a concern that the component holding plate 12 may be lifted when the component P is taken out, it is desirable to adjust the adhesion force in consideration of the size and mass of the component P.

部品整列プレート13は部品保持プレート12の上面視外形と略同じ上面視矩形状の外形を有しており、部品保持プレート12の上面(部品載置面)に着脱可能であり、かつ、取り付けた状態で部品整列プレート13の上面に置かれた部品Pを落とし込んで部品保持プレート12の上面(部品載置面)に載置可能な部品整列孔H(部品保持プレート12を貫通した孔、図3(B)〜図3(D)を参照)を多数有している。この部品整列プレート13および部品整列孔H等については後に詳述する。 The component alignment plate 13 has a rectangular outer shape that is substantially the same as the top view outer shape of the component holding plate 12, and is removable and attached to the upper surface (part mounting surface) of the component holding plate 12. In this state, the component P placed on the upper surface of the component alignment plate 13 can be dropped and placed on the upper surface (component mounting surface) of the component holding plate 12 to be mounted on the component alignment hole H (hole penetrating the component holding plate 12, FIG. 3). (B) to FIG. 3 (D)). The component alignment plate 13, the component alignment hole H, and the like will be described in detail later.

押付プレート14は部品トレイ11の上面視外形と略同じ上面視矩形状の外形を有しており、部品整列プレート13の上面視外形よりも小さな上面視矩形状の孔14aを有している他、部品トレイ11の凹部11aの上面視外形よりも僅かに小さな下面視矩形枠状の押付部14bを有している(孔14aは押付プレート14の上面から押付部14bの下端に及んでいる)。無論、押付プレート14の上面視外形は、部品トレイ11の上面視外形よりも大きくても小さくてもよい。 The pressing plate 14 has substantially the same top-view rectangular outer shape as the top-view outer shape of the component tray 11, and has a top-view rectangular hole 14a smaller than the top-view rectangular hole 14a of the component alignment plate 13. , The recess 11a of the component tray 11 has a rectangular frame-shaped pressing portion 14b that is slightly smaller than the top view outer shape (the hole 14a extends from the upper surface of the pressing plate 14 to the lower end of the pressing portion 14b). .. Of course, the top view outer shape of the pressing plate 14 may be larger or smaller than the top view outer shape of the component tray 11.

押付部14bの下方突出寸法(Z方向寸法)は、部品トレイ11の凹部11aの深さ(Z方向寸法)から部品保持プレート12の厚さ(Z方向寸法)と部品整列プレート13の厚さ(Z方向寸法)とを減じた値よりも僅かに大きい。すなわち、押付プレート14は部品トレイ11に着脱可能であり、かつ、取り付け状態で部品整列プレート13を部品保持プレート12の上面(部品載置面)に押し付け可能である。 The downward protrusion dimension (Z direction dimension) of the pressing portion 14b is the thickness of the component holding plate 12 (Z direction dimension) and the thickness of the component alignment plate 13 (Z direction dimension) from the depth (Z direction dimension) of the recess 11a of the component tray 11. It is slightly larger than the value obtained by subtracting the Z-direction dimension). That is, the pressing plate 14 can be attached to and detached from the component tray 11, and the component alignment plate 13 can be pressed against the upper surface (component mounting surface) of the component holding plate 12 in the mounted state.

ちなみに、部品整列プレート13の外周部分は押付プレート14の押付部14bが押し付けられる領域となるため、部品整列プレート13における部品整列孔Hの形成エリア13aは、好ましくは図2(D)に示したように押付プレート14の孔14aの上面視外形よりも小さな上面視矩形状となる。 Incidentally, since the outer peripheral portion of the component alignment plate 13 is a region where the pressing portion 14b of the pressing plate 14 is pressed, the formation area 13a of the component alignment hole H in the component alignment plate 13 is preferably shown in FIG. 2 (D). As described above, the hole 14a of the pressing plate 14 has a rectangular shape in the top view, which is smaller than the outer shape in the top view.

なお、使用可能な部品整列孔Hの数を極力多くする場合、形成エリア13aの上面視外形を押付プレート14の孔14aの上面視外形と略同じにしてもよいし、部品整列プレート13に可能な限りの部品整列孔Hを形成しておいて押付プレート14の押付部14bが接する部品整列孔Hを除くものを使用可能な部品整列孔Hとしてもよい。 When the number of usable component alignment holes H is to be increased as much as possible, the top view outer shape of the forming area 13a may be substantially the same as the top view outer shape of the holes 14a of the pressing plate 14, or the component alignment plate 13 can be used. Any component alignment hole H other than the component alignment hole H in which the pressing portion 14b of the pressing plate 14 is in contact with the component alignment hole H formed as much as possible may be used as the component alignment hole H.

振動付加ユニット20は、直方体状のベース21と、ベース21内に設けられた振動源22と、振動源22からの振動を付加可能な振動プレート23とを備えている。 The vibration adding unit 20 includes a rectangular parallelepiped base 21, a vibration source 22 provided in the base 21, and a vibration plate 23 capable of adding vibration from the vibration source 22.

振動プレート23は、部品トレイ11の上面視外形よりも大きな上面視矩形状の外形を有しており、底面が平坦で部品トレイ11の下面視外形よりも僅かに大きな上面視矩形状の凹部から成るトレイ支持部23aを有しており、トレイ支持部23aの深さ(Z方向寸法)は部品トレイ11の高さ(Z方向寸法)よりも小さい。すなわち、部品トレイ11は振動プレート23のトレイ支持部23aに着脱可能であり、かつ、取り付け状態で振動源22からの振動を付加可能である。 The vibrating plate 23 has a top-view rectangular outer shape that is larger than the top-view outer shape of the component tray 11, and has a flat bottom surface and is slightly larger than the bottom-view outer shape of the part tray 11 from a top-view rectangular recess. It has a tray support portion 23a, and the depth (Z direction dimension) of the tray support portion 23a is smaller than the height (Z direction dimension) of the component tray 11. That is, the component tray 11 can be attached to and detached from the tray support portion 23a of the vibration plate 23, and vibration from the vibration source 22 can be added in the attached state.

振動源22について補足すると、当該振動源22から振動プレート23に付加可能な振動は、部品整列ユニット10の部品整列プレート13の上面に設定された仮想XY面VXYP(図3(B)を参照)におけるX方向振動とY方向振動である。振動源22の機構に特段の制限はないが、好ましくは圧電素子を使用した振動機構、または、電動モータおよびカム機構を使用した振動機構を使用できる。 Supplementing the vibration source 22, the vibration that can be applied from the vibration source 22 to the vibration plate 23 is a virtual XY surface VXYP set on the upper surface of the component alignment plate 13 of the component alignment unit 10 (see FIG. 3B). X-direction vibration and Y-direction vibration in. The mechanism of the vibration source 22 is not particularly limited, but preferably a vibration mechanism using a piezoelectric element or a vibration mechanism using an electric motor and a cam mechanism can be used.

《部品整列プレートの構成》
次に、図3を用いて、前述の部品整列プレート13の構成を、
・整列対象となる部品Pが基準長さLp>基準幅Wp=基準厚さTpで規定される直方体
状を成す電子部品(図3(A)を参照)
である場合を例として説明する。
<< Configuration of parts alignment plate >>
Next, using FIG. 3, the configuration of the above-mentioned component alignment plate 13 is constructed.
-Electronic components in which the component P to be aligned has a rectangular parallelepiped shape defined by reference length Lp> reference width Wp = reference thickness Tp (see FIG. 3 (A)).
This case will be described as an example.

図3(B)に示したように、部品整列孔Hは、部品整列プレート13の上面に設定された仮想XY平面VXYPに、X方向に対して角度θ傾いた仮想傾斜横直線(符号省略、図3(B)中の斜め横向きの4本の線を参照)とY方向に対して同角度θ傾いた仮想傾斜縦直線(符号省略、図3(B)中の斜め縦向きの4本の線を参照)とを有する仮想傾斜格子線VIGLを設定した仮想状態において、当該仮想傾斜格子線VIGLにおける奇数番目の仮想傾斜横直線の奇数番目の交点に部品整列孔Hの中心Hcが位置し、かつ、偶数番目の仮想傾斜横直線の偶数番目の交点に部品配列孔Hの中心Hcが位置するように配列されている。 As shown in FIG. 3 (B), the component alignment hole H is a virtual inclined horizontal straight line (reference numeral omitted, omitted) that is inclined by an angle θ with respect to the X direction with respect to the virtual XY plane VXYP set on the upper surface of the component alignment plate 13. (Refer to the four diagonally horizontal lines in FIG. 3B) and the virtual inclined vertical straight line tilted by θ at the same angle with respect to the Y direction (sign omitted, four diagonally vertical lines in FIG. 3B). In the virtual state in which the virtual inclined grid line VIGL having (see line) is set, the center Hc of the component alignment hole H is located at the odd-order intersection of the odd-order virtual inclined horizontal straight line in the virtual inclined grid line VIGL. Moreover, the center Hc of the component arrangement hole H is arranged so as to be located at the even-th intersection of the even-th virtual inclined horizontal straight line.

また、部品整列孔Hが上面視矩形状であるため、各部品整列孔Hの対向する2辺(符号省略、図3(B)中の上下の2辺を参照)はX方向と平行であり、かつ、対向する他の2辺(符号省略、図3(B)中の左右の2辺を参照)はY方向と平行である。すなわち、図3(D)に示したように、部品整列プレート13が有する部品整列孔Hは、部品整列プレート13上をX方向に移動する部品Pが必ず部品整列孔H上を通過し、Y方向に移動する部品Pも必ず部品整列孔H上を通過するような配列態様となっている。 Further, since the component alignment hole H has a rectangular shape when viewed from above, the two opposite sides of each component alignment hole H (reference notation omitted, refer to the upper and lower two sides in FIG. 3B) are parallel to the X direction. And the other two opposite sides (signed out, see the two left and right sides in FIG. 3B) are parallel to the Y direction. That is, as shown in FIG. 3D, in the component alignment hole H of the component alignment plate 13, the component P moving in the X direction on the component alignment plate 13 always passes over the component alignment hole H, and Y The component P that moves in the direction always passes over the component alignment hole H.

さらに、各部品整列孔Hの前記対向する2辺の寸法Dhx(図3(B)を参照)は部品Pの基準長さLpよりも僅かに大きく、かつ、前記対向する他の2辺の寸法Dhy(図3(B)を参照)は部品Pの基準幅Wpおよび基準厚さTpよりも僅かに大きい。実際の部品Pには基準長さLp、基準幅Wpおよび基準厚さTpのそれぞれに公差があるため、プラス側の公差を考慮して、好ましくは前記寸法Dhxを基準長さLpの1.1倍〜1.3倍、より好ましくは1.2倍とするとよく、前記寸法Dhyを部品Pの基準幅Wpおよび基準厚さTpの1.1倍〜1.3倍、より好ましくは1.2倍とするとよい。 Further, the dimensions Dhx (see FIG. 3B) of the two opposing sides of each component alignment hole H are slightly larger than the reference length Lp of the component P, and the dimensions of the other two opposing sides. Dhy (see FIG. 3B) is slightly larger than the reference width Wp and reference thickness Tp of the component P. Since the actual component P has tolerances for each of the reference length Lp, the reference width Wp, and the reference thickness Tp, the dimension Dhx is preferably 1.1 of the reference length Lp in consideration of the tolerance on the plus side. It is preferable that the dimension Dhy is double to 1.3 times, more preferably 1.2 times, and the dimension Dhy is 1.1 to 1.3 times, more preferably 1.2 times the reference width Wp and the reference thickness Tp of the component P. Double it.

前記寸法Dhxと前記寸法Dhxについて補足すると、前記寸法Dhxを部品Pの基準長さLpの1.1倍未満とし、前記寸法Dhyを部品Pの基準幅Wpおよび基準厚さTpの1.1倍未満とすると、部品整列孔Hへの部品Pの正常姿勢での落とし込みが難しくなる懸念がある。また、前記寸法Dhxを部品Pの基準長さLp両者を1.3倍超過とし、前記寸法Dhyを部品Pの基準幅Wpおよび基準厚さTpの1.3倍超過とすると、部品整列孔Hに正常姿勢で落とし込まれた部品Pの付加振動による揺れ動きが大きくなって当該揺れ動きを原因として整列孔Hから出てしまう懸念がある。 Supplementing the dimension Dhx and the dimension Dhx, the dimension Dhx is less than 1.1 times the reference length Lp of the component P, and the dimension Dhy is 1.1 times the reference width Wp and the reference thickness Tp of the component P. If it is less than, there is a concern that it will be difficult to drop the component P into the component alignment hole H in the normal posture. Further, assuming that the dimension Dhx exceeds the reference length Lp of the component P by 1.3 times and the dimension Dhy exceeds the reference width Wp and the reference thickness Tp of the component P by 1.3 times, the component alignment hole H There is a concern that the swinging motion of the component P dropped in the normal posture due to the additional vibration becomes large and the component P comes out of the alignment hole H due to the swinging motion.

さらに、各部品整列孔Hの深さDhz(図3(C)を参照、部品整列プレート13の厚さT13に相当)は、部品Pの基準長さLpの1/2未満で、かつ、部品Pの基準幅Wpおよび基準厚さTpの1/2超過とすることが好ましく、{(基準長さLpの1/2+基準幅Wpおよび基準厚さTpの1/2)÷2}とすることがより好ましい。 Further, the depth Dhz of each component alignment hole H (see FIG. 3C, corresponding to the thickness T13 of the component alignment plate 13) is less than 1/2 of the reference length Lp of the component P, and the component. It is preferable that the reference width Wp and the reference thickness Tp of P exceed 1/2, and {(1/2 of the reference length Lp + 1/2 of the reference width Wp and the reference thickness Tp) / 2}. Is more preferable.

前記深さDhzについて補足すると、前記深さDhzを部品Pの基準長さLpの1/2以上とすると、部品整列孔Hに縦向き姿勢(異常姿勢)で落とし込まれた部品Pが振動を付加しても当該部品整列孔Hから出ずに止まる懸念がある。また、前記深さDhzを部品Pの基準幅Wpおよび基準厚さTpの1/2以下とすると、部品整列孔Hに正常姿勢で落とし込まれた部品Pが付加振動によって当該部品整列孔Hから出てしまう懸念がある。 Supplementing the depth Dhz, if the depth Dhz is 1/2 or more of the reference length Lp of the component P, the component P dropped into the component alignment hole H in a vertical posture (abnormal posture) vibrates. Even if it is added, there is a concern that it will stop without coming out of the component alignment hole H. Further, assuming that the depth Dhz is 1/2 or less of the reference width Wp and the reference thickness Tp of the component P, the component P dropped into the component alignment hole H in a normal posture is removed from the component alignment hole H by additional vibration. There is a concern that it will come out.

さらに、各部品整列孔HのX方向で隣接する2個の部品整列孔Hの最短間隔IN1(図3(B)を参照)と、Y方向で隣接する2個の部品整列孔Hの最短間隔N2(図3(B)を参照)は、部品Pの基準長さLp以上とすることが好ましい。 Further, the shortest distance IN1 (see FIG. 3B) between the two parts alignment holes H adjacent to each other in the X direction and the shortest distance between the two parts alignment holes H adjacent to each other in the Y direction. It is preferable that N2 (see FIG. 3B) has a reference length Lp or more of the component P or more.

前記最短間隔IN1およびIN2について補足すると、前記最短間隔IN1およびIN2は部品整列プレート13に振動(X方向振動およびY方向振動)を付加したときの部品Pの通り道となるものであり、部品Pを上から見たときの向きに拘わらず当該部品Pが通過できた方が部品整列孔Hに正常姿勢で落とし込まれる確率(整列率)が高くなるため、前記最短間隔IN1およびIN2の好ましい最小値は部品Pの基準長さLpとなる。一方、前記最短間隔IN1およびIN2の最大値には特段の制限はないが、当該最短間隔IN1およびIN2を大きくするとその分だけ単位面積当たりの部品整列孔Hの総数が減少してしまうため、この点を考慮のうえで最短間隔IN1およびIN2を調整することが望ましい。 Supplementing the shortest intervals IN1 and IN2, the shortest intervals IN1 and IN2 serve as a path for the component P when vibrations (vibration in the X direction and vibration in the Y direction) are applied to the component alignment plate 13, and the component P is used. If the component P can pass through regardless of the orientation when viewed from above, the probability that the component P will be dropped into the component alignment hole H in a normal posture (alignment rate) is higher. Therefore, the minimum values of the shortest intervals IN1 and IN2 are preferable. Is the reference length Lp of the component P. On the other hand, the maximum values of the shortest intervals IN1 and IN2 are not particularly limited, but if the shortest intervals IN1 and IN2 are increased, the total number of component alignment holes H per unit area is reduced by that amount. It is desirable to adjust the shortest intervals IN1 and IN2 in consideration of the points.

ここで、部品整列孔Hの寸法Dhx、寸法Dhyおよび深さDhzについて、部品Pが電子部品(例えばコンデンサ素子、バリスタ素子、インダクタ素子、アレイ素子、複合素子等)である場合の主たる市販品(サイズが0402、0603、1005、1608、2012、3216、3225)を例に挙げて具体的に説明する。 Here, regarding the dimensions Dhx, dimensions Dhy, and depth Dhz of the component alignment hole H, the main commercially available product (for example, a capacitor element, a varistor element, an inductor element, an array element, a composite element, etc.) when the component P is an electronic component (for example, a capacitor element, a varistor element, an inductor element, an array element, a composite element, etc.). The size is 0402, 0603, 1005, 1608, 2012, 3216, 3225) as an example to be specifically described.

寸法Dhxが基準長さLpの1.2倍で寸法Dhyが基準幅Wpおよび基準厚さTpの1.2倍のとき、0402サイズの場合の寸法Dhxは0.48mmで寸法Dhyは0.24mmとなり、0603サイズの場合の寸法Dhxは0.72mmで寸法Dhyは0.36mmとなり、1005サイズの場合の寸法Dhxは1.2mmで寸法Dhyは0.6mm、1608サイズの場合の寸法Dhxは1.92mmで寸法Dhyは0.96mmとなり、2012サイズの場合の寸法Dhxは2.4mmで寸法Dhyは1.5mm、3216サイズの場合の寸法Dhxは3.84mmで寸法Dhyは1.92mm、3225サイズの場合の寸法Dhxは3.84mmで寸法Dhyは3mmとなる。 When the dimension Dhx is 1.2 times the reference length Lp and the dimension Dhy is 1.2 times the reference width Wp and the reference thickness Tp, the dimension Dhx in the case of 0402 size is 0.48 mm and the dimension Dhy is 0.24 mm. In the case of 0603 size, the dimension Dhx is 0.72 mm and the dimension Dhy is 0.36 mm, in the case of 1005 size, the dimension Dhx is 1.2 mm, the dimension Dhy is 0.6 mm, and in the case of 1608 size, the dimension Dhx is 1. At .92 mm, the dimension Dhy is 0.96 mm, in the case of 2012 size, the dimension Dhx is 2.4 mm and the dimension Dhy is 1.5 mm, and in the case of 3216 size, the dimension Dhx is 3.84 mm and the dimension Dhy is 1.92 mm, 3225. In the case of size, the dimension Dhx is 3.84 mm and the dimension Dhy is 3 mm.

また、部品整列孔Hの深さDhzが{(基準長さLpの1/2+基準幅Wpおよび基準厚さTpの1/2)÷2}のとき、0402サイズの場合の深さDhzは0.15mmとなり、0603サイズの場合の深さDhzは0.225mmとなり、1005サイズの場合の深さDhzは0.375mmとなり、1608サイズの場合の深さDhzは0.6mmとなり、2012サイズの場合の深さDhzは0.813mmとなり、3216サイズの場合の深さDhzは1.2mmとなり、3225サイズの場合のの深さDhzは1.425mmとなる。 Further, when the depth Dhz of the component alignment hole H is {(1/2 of the reference length Lp + 1/2 of the reference width Wp and the reference thickness Tp) / 2}, the depth Dhz in the case of 0402 size is 0. It becomes .15 mm, the depth Dhz in the case of 0603 size is 0.225 mm, the depth Dhz in the case of 1005 size is 0.375 mm, the depth Dhz in the case of 1608 size is 0.6 mm, and in the case of 2012 size. The depth Dhz is 0.813 mm, the depth Dhz in the case of 3216 size is 1.2 mm, and the depth Dhz in the case of 3225 size is 1.425 mm.

《部品整列プレートの製造方法》
次に、図4を用いて、前述の部品整列プレート13(図3(B)〜図3(D)を参照)の好ましい製造方法を、
・整列対象となる部品Pが基準長さLp>基準幅Wp=基準厚さTpで規定される直方体
状を成す電子部品
・部品整列孔Hの前記寸法Dhxが部品Pの基準長さLpの1.2倍で、前記寸法Dhy
が部品Pの基準幅Wpおよび基準厚さTpの1.2倍
・部品整列孔Hの前記寸法Dhzが{(基準長さLpの1/2+基準幅Wpおよび基準厚
さTpの1/2)÷2}
である場合を例として説明する。なお、以下の製造方法における部品整列孔Hの形成ステップを除くステップは、コンピュータを使用しディスプレイ上で行うことができる。
<< Manufacturing method of parts alignment plate >>
Next, using FIG. 4, a preferred manufacturing method of the above-mentioned component alignment plate 13 (see FIGS. 3 (B) to 3 (D)) is described.
-Electronic component in which the component P to be aligned has a rectangular parallelepiped shape defined by the reference length Lp> reference width Wp = reference thickness Tp.-The dimension Dhx of the component alignment hole H is 1 of the reference length Lp of the component P. .2 times, said dimension Dhy
Is 1.2 times the reference width Wp and the reference thickness Tp of the component P. ・ The dimension Dhz of the component alignment hole H is {(1/2 of the reference length Lp + 1/2 of the reference width Wp and the reference thickness Tp). ÷ 2}
This case will be described as an example. The steps other than the step of forming the component alignment hole H in the following manufacturing method can be performed on the display using a computer.

部品整列プレート13となる上面視矩形状の外形を有する元プレート13’を用意して、その上面に仮想XY平面VXYPを設定する(図4(A)を参照)。元プレート13’が上面視矩形状の外形を有する場合、上下で対向する2辺をX方向と平行にし、左右で対向する他の2辺をY方向と平行にすれば、元プレート13’の上面そのものが仮想XY平面VXYPとなる。 An original plate 13'having a rectangular outer shape in a top view as the component alignment plate 13 is prepared, and a virtual XY plane VXYP is set on the upper surface thereof (see FIG. 4A). When the original plate 13'has a rectangular outer shape when viewed from above, if the two sides facing each other on the top and bottom are parallel to the X direction and the other two sides facing each other on the left and right are parallel to the Y direction, the original plate 13' The upper surface itself becomes a virtual XY plane VXYP.

続いて、仮想XY平面VXYPに、X方向と平行な仮想横直線(符号省略、図4(A)中の横向きの4本の線を参照)とY方向と平行な仮想縦直線(符号省略、図4(A)中の縦向きの4本の線を参照)とを有する仮想格子線VGLを描く。 Subsequently, on the virtual XY plane VXYP, a virtual horizontal straight line parallel to the X direction (sign omitted, see the four horizontal lines in FIG. 4 (A)) and a virtual vertical straight line parallel to the Y direction (sign omitted, Draw a virtual grid line VGL with (see the four vertical lines in FIG. 4 (A)).

続いて、仮想格子線VGLにおける奇数番目の仮想横直線の奇数番目の交点に仮想の部品整列孔Hの中心Hcが位置し、かつ、偶数番目の仮想横直線の偶数番目の交点に仮想の部品整列孔Hの中心Hcが位置するように、加えて、各仮想の部品整列孔Hの上下で対向する2辺の向きがX方向と平行になるように、かつ、左右で対向する他の2辺の向きをY方向と平行となるように、仮想の部品整列孔Hを描く(図4(Aを参照)。 Subsequently, the center Hc of the virtual component alignment hole H is located at the odd-numbered intersection of the odd-numbered virtual horizontal lines in the virtual grid line VGL, and the virtual component is located at the even-numbered intersection of the even-numbered virtual horizontal lines. In addition to locating the center Hc of the alignment hole H, the other two facing each other on the left and right so that the directions of the two opposite sides of each virtual component alignment hole H are parallel to the X direction. A virtual component alignment hole H is drawn so that the direction of the side is parallel to the Y direction (see FIG. 4 (see A)).

ちなみに、図4(A)に示したX方向で隣接する2個の仮想の部品整列孔Hの最短間隔INxは部品Pの基準長さLpと同じであり、Y方向で隣接する2個の仮想の部品整列孔Hの最短間隔INyも部品Pの基準長さLpと同じである。換言すれば、先に述べた仮想格子線VGLを描くするステップは、この最短間隔INxおよびINyが得られるようにX方向と平行な仮想横直線とY方向と平行な仮想縦直線とを描くステップである。 Incidentally, the shortest distance INx of the two virtual component alignment holes H adjacent to each other in the X direction shown in FIG. 4A is the same as the reference length Lp of the component P, and the two virtual component alignment holes H adjacent to each other in the Y direction. The shortest distance INy of the component alignment holes H is also the same as the reference length Lp of the component P. In other words, the step of drawing the virtual grid line VGL described above is a step of drawing a virtual horizontal line parallel to the X direction and a virtual vertical line parallel to the Y direction so that the shortest intervals INx and INy can be obtained. Is.

続いて、仮想XY平面VXYPにおいて仮想格子線VGLと仮想の部品整列孔Hの全てを角度θ傾ける(図4(B)を参照)。これにより、X方向に対して角度θ傾いた仮想傾斜横直線(符号省略、図4(B)中の斜め横向きの4本の線を参照)とY方向に対して同角度θ傾いた仮想傾斜縦直線(符号省略、図4(B)中の斜め縦向きの4本の線を参照)とを有する仮想傾斜格子線VIGLが得られる。なお、図4(B)には傾き方向を反時計回り方向としたものを示しているが、当該傾き方向は時計回り方向であってもよい。 Subsequently, in the virtual XY plane VXYP, all of the virtual grid line VGL and the virtual component alignment hole H are tilted by an angle θ (see FIG. 4B). As a result, the virtual tilted horizontal straight line tilted by θ with respect to the X direction (sign omitted, see the four diagonally horizontal lines in FIG. 4B) and the virtual tilted with the same angle θ with respect to the Y direction. A virtual inclined grid line VIGL having a vertical straight line (reference omitted, see four diagonally vertical lines in FIG. 4B) is obtained. Although FIG. 4B shows a tilting direction as a counterclockwise direction, the tilting direction may be a clockwise direction.

続いて、各仮想の部品整列孔Hをその中心Hcを支点として前記とは逆方向に角度θ傾けて、各仮想の部品整列孔Hの上下で対向する2辺の向きがX方向と平行になるように、かつ、左右で対向する他の2辺の向きをY方向と平行となるように戻す(図4(C)を参照)。 Subsequently, each virtual component alignment hole H is tilted by an angle θ in the direction opposite to the above with its center Hc as a fulcrum, and the directions of the two opposite sides of each virtual component alignment hole H are parallel to the X direction. Then, the directions of the other two sides facing each other on the left and right sides are returned so as to be parallel to the Y direction (see FIG. 4C).

続いて、図4(C)における各仮想の部品整列孔Hの配列および向きに準じて、実際の元プレート13’に部品整列孔Hを形成する。部品整列孔Hの形成手法に特段の制限はないが、精度面を考慮すると、元プレート13’がステンレス等の金属からなるときには部品整列孔Hのサイズに拘わらずフォトエッチング加工を用いることが好ましい。 Subsequently, the component alignment holes H are formed in the actual original plate 13'according to the arrangement and orientation of the virtual component alignment holes H in FIG. 4C. There is no particular limitation on the method of forming the component alignment hole H, but in consideration of accuracy, when the original plate 13'is made of a metal such as stainless steel, it is preferable to use photoetching regardless of the size of the component alignment hole H. ..

なお、図4(A)を用いて説明した仮想格子線VGLを描くステップと、図4(B)を用いて説明した仮想格子線VGLを角度θ傾けるステップは、仮想XY平面VXYPに、直接、図4(B)に示した仮想格子線VIGLを描くことによって省略してもよく、このようにしても実際の元プレート13’に同様の配列および向きで部品整列孔Hを形成することができる。 The step of drawing the virtual grid line VGL described with reference to FIG. 4 (A) and the step of tilting the virtual grid line VGL described with reference to FIG. 4 (B) by an angle θ are directly on the virtual XY plane VXYP. It may be omitted by drawing the virtual grid line VIGL shown in FIG. 4 (B), and even in this way, the component alignment holes H can be formed in the actual original plate 13'in the same arrangement and orientation. ..

また、図4(A)を用いて説明した仮想の部品整列孔Hを描くステップは、仮想格子線VGLを描いてこれを角度θ傾けた後、または、前掲のように仮想格子線VIGLを直接描いた後に行うようにしてもよく、このようにしても実際の元プレート13’に同様の配列および向きで部品整列孔Hを形成することができる。 Further, in the step of drawing the virtual component alignment hole H described with reference to FIG. 4A, after drawing the virtual grid line VGL and tilting the virtual grid line VGL by an angle θ, or directly drawing the virtual grid line VIGL as described above. It may be performed after drawing, and in this way, the component alignment holes H can be formed in the actual original plate 13'in the same arrangement and orientation.

《部品整列装置の操作方法》
次に、図5〜図9を用いて、前述の部品整列プレート13(図3(B)〜図3(D)を参照)を用いた前述の部品整列装置の操作方法を、
・整列対象となる部品Pが基準長さLp>基準幅Wp=基準厚さTpで規定される直方体
状を成す電子部品
・部品整列孔Hの前記寸法Dhxが部品Pの基準長さLpの1.2倍で、前記寸法Dhy
が部品Pの基準幅Wpおよび基準厚さTpの1.2倍
・部品整列孔Hの前記寸法Dhzが{(基準長さLpの1/2+基準幅Wpおよび基準厚
さTpの1/2)÷2}
・各部品整列孔Hの前記最短間隔IN1およびIN2が部品Pの基準長さLp以上
である場合を例として説明する。
<< How to operate the parts alignment device >>
Next, using FIGS. 5 to 9, the operation method of the above-mentioned parts alignment device using the above-mentioned parts alignment plate 13 (see FIGS. 3 (B) to 3 (D)) is described.
-Electronic component in which the component P to be aligned has a rectangular parallelepiped shape defined by the reference length Lp> reference width Wp = reference thickness Tp.-The dimension Dhx of the component alignment hole H is 1 of the reference length Lp of the component P. .2 times, said dimension Dhy
Is 1.2 times the reference width Wp and the reference thickness Tp of the component P. ・ The dimension Dhz of the component alignment hole H is {(1/2 of the reference length Lp + 1/2 of the reference width Wp and the reference thickness Tp). ÷ 2}
A case where the shortest intervals IN1 and IN2 of the component alignment holes H are equal to or larger than the reference length Lp of the component P will be described as an example.

図5に示した部品整列装置の部品整列ユニット10は、図2(B)に示したように部品トレイ11の凹部11aの底面に部品保持プレート12が取り付けられ、当該部品保持プレート12の上面(部品載置面)に部品整列プレート13が取り付けられ、当該部品整列プレート13は部品トレイ11の凹部11aに取り付けられた押付プレート14の押付部14aによって部品保持プレート12に押し付けられて略面接触している。 In the component alignment unit 10 of the component alignment device shown in FIG. 5, the component holding plate 12 is attached to the bottom surface of the recess 11a of the component tray 11 as shown in FIG. 2 (B), and the upper surface of the component holding plate 12 ( The component alignment plate 13 is attached to the component mounting surface), and the component alignment plate 13 is pressed against the component holding plate 12 by the pressing portion 14a of the pressing plate 14 attached to the recess 11a of the component tray 11 to substantially contact the surface. ing.

部品トレイ11の凹部11aに対する押付プレート14の嵌め合わせに振動に耐え得る充分な結合力が得られる場合には、押付プレート14を部品トレイ11に固定する手段は必要ないが、結合力が弱い場合には、部品トレイ11に対して押付プレート14を固定する手段、例えばボルトとネジ穴との組み合わせや、ネジ使用のクランプや、エア吸引孔等を用いてもよい。 When a sufficient coupling force that can withstand vibration can be obtained by fitting the pressing plate 14 to the recess 11a of the component tray 11, a means for fixing the pressing plate 14 to the component tray 11 is not required, but the coupling force is weak. A means for fixing the pressing plate 14 to the component tray 11, for example, a combination of a bolt and a screw hole, a clamp using a screw, an air suction hole, or the like may be used.

また、図5に示した部品整列装置の振動付加ユニット20の振動プレート23のトレイ支持部23aには、部品整列ユニット10の部品トレイ11の下部が取り付けられている。振動プレート23のトレイ支持部23aに対する部品トレイ11の嵌め合わせに振動に耐え得る充分な結合力が得られる場合には、部品トレイ11を振動プレート23に固定する手段は必要ないが、部品トレイ11を振動プレート23に固定する手段として前記同様の手段を用いてもよい。 Further, the lower part of the component tray 11 of the component alignment unit 10 is attached to the tray support portion 23a of the vibration plate 23 of the vibration addition unit 20 of the component alignment device shown in FIG. If a sufficient coupling force that can withstand vibration can be obtained by fitting the component tray 11 to the tray support portion 23a of the vibration plate 23, a means for fixing the component tray 11 to the vibration plate 23 is not necessary, but the component tray 11 is required. As a means for fixing the vibration plate 23, the same means as described above may be used.

バルク状(ばらばらの状態)の部品Pに対して所期の整列を行うときには、図5に示した部品整列装置の部品整列ユニット10の部品整列プレート13の上面の好ましくは中央に、部品整列孔Hのサイズに対応した部品Pを適当数置く。 When performing the desired alignment with respect to the bulk-shaped (disjoint state) component P, the component alignment hole is preferably in the center of the upper surface of the component alignment plate 13 of the component alignment unit 10 of the component alignment device shown in FIG. Place an appropriate number of parts P corresponding to the size of H.

適当数について補足すると、部品整列プレート13の使用可能な部品整列孔Hの数が例えば1000個の場合は、部品整列プレート13の上面に置かれる部品Pの数は好ましくは1000個前後(例えば800個〜1200個)である。部品整列プレート13の上面に置かれる部品Pの数が使用可能な部品整列孔Hの数以下のときは整列率(部品Pが正常姿勢で部品整列孔Hに落とし込まれる確率)に悪影響を生じることはないが、当該部品Pの数を使用可能な部品整列孔Hの数よりも余り多くすると、後述の付加振動による部品Pの動きが悪化するために整列率に悪影響を生じる懸念がある。 To supplement the appropriate number, when the number of usable component alignment holes H of the component alignment plate 13 is, for example, 1000, the number of components P placed on the upper surface of the component alignment plate 13 is preferably around 1000 (for example, 800). 1 to 1200). When the number of parts P placed on the upper surface of the component alignment plate 13 is less than or equal to the number of usable component alignment holes H, the alignment rate (the probability that the component P is dropped into the component alignment holes H in the normal posture) is adversely affected. However, if the number of the parts P is much larger than the number of usable part alignment holes H, there is a concern that the alignment rate may be adversely affected because the movement of the parts P due to the additional vibration described later is deteriorated.

そして、振動付加ユニット20の振動源22を駆動して、部品整列ユニット10、すなわち、部品整列プレート13にX方向振動とY方向振動を付加する。ちなみに、振動を付加する時間(整列時間)は、使用可能な部品整列孔Hの数が例えば1000個の場合は概ね30秒〜60秒の範囲内である。 Then, the vibration source 22 of the vibration addition unit 20 is driven to add X-direction vibration and Y-direction vibration to the component alignment unit 10, that is, the component alignment plate 13. Incidentally, the time for adding vibration (alignment time) is generally in the range of 30 seconds to 60 seconds when the number of usable component alignment holes H is, for example, 1000.

各振動について補足すると、X方向振動の振幅とY方向振動の振幅は、部品Pの基準長さLp(図3(A)を参照)以下であることが好ましい。各振動の振幅は部品整列プレート13の上面における部品PのX方向とY方向の動きに反映されるため、当該振幅が部品Pの基準長さLp以下であるときには整列率に悪影響を生じることはないが(但し、振幅が余り小さいと整列時間が長くなる)、当該振幅を部品Pの基準長さLp超過とすると、後述の付加振動による部品Pの動きが大きくなって整列率に悪影響を生じる懸念がある。 Supplementing each vibration, it is preferable that the amplitude of the vibration in the X direction and the amplitude of the vibration in the Y direction are equal to or less than the reference length Lp of the component P (see FIG. 3A). Since the amplitude of each vibration is reflected in the movement of the component P on the upper surface of the component alignment plate 13 in the X and Y directions, the alignment rate may be adversely affected when the amplitude is equal to or less than the reference length Lp of the component P. However (however, if the amplitude is too small, the alignment time becomes long), but if the amplitude exceeds the reference length Lp of the component P, the movement of the component P due to the additional vibration described later becomes large, which adversely affects the alignment rate. There are concerns.

部品整列プレート13にX方向振動とY方向振動を付加すると、部品整列プレート13の上面に置かれた部品Pが拡散し、図6に示したように、部品Pは部品整列プレート13の上面において主としてX方向とY方向に移動する。例えば部品整列プレート13の上面における部品Pに4種類の向き(Pa〜Pd)があるとすると、第1向きの部品PaはX方向に移動する過程、または、Y方向に移動する過程で部品整列孔Hに正常姿勢で落とし込まれる。また、第2〜第4の向きの部品Pb〜PdはX方向に移動する過程、または、Y方向に移動する過程で部品整列孔Hによってその向きを矯正され、第1向きの部品Paと同様に部品整列孔Hに正常姿勢で落とし込まれる(図7を参照)。 When X-direction vibration and Y-direction vibration are applied to the component alignment plate 13, the component P placed on the upper surface of the component alignment plate 13 is diffused, and as shown in FIG. 6, the component P is located on the upper surface of the component alignment plate 13. It moves mainly in the X and Y directions. For example, if the component P on the upper surface of the component alignment plate 13 has four different orientations (Pa to Pd), the component Pa in the first orientation is aligned in the process of moving in the X direction or in the process of moving in the Y direction. It is dropped into the hole H in a normal posture. Further, the parts Pb to Pd having the second to fourth orientations are corrected in their orientations by the component alignment holes H in the process of moving in the X direction or in the process of moving in the Y direction, and are the same as the parts Pa in the first orientation. It is dropped into the component alignment hole H in a normal posture (see FIG. 7).

整列挙動について補足すると、部品整列孔Hの寸法Dhxが部品Pの基準長さLpの1.2倍で、寸法Dhyが部品Pの基準幅Wpおよび基準厚さTpの1.2倍で、寸法Dhzが{(基準長さLpの1/2+基準幅Wpおよび基準厚さTpの1/2)÷2}であるため、部品整列孔Hに部品Pを正常姿勢で落とし込みやすく、かつ、部品整列孔Hに正常姿勢で落とし込まれた部品Pが付加振動によって部品整列孔Hから出ることはないし、部品整列孔Hに部品Pが縦向き姿勢(異常姿勢)で落とし込まれても、当該部品Pは不安定であるが故に付加振動によって部品整列孔Hから出て再整列されることなる。 To supplement the alignment behavior, the dimension Dhx of the component alignment hole H is 1.2 times the reference length Lp of the component P, and the dimension Dhy is 1.2 times the reference width Wp and the reference thickness Tp of the component P. Since Dhz is {(1/2 of the reference length Lp + 1/2 of the reference width Wp and the reference thickness Tp) / 2}, it is easy to drop the component P into the component alignment hole H in the normal posture, and the component alignment is performed. The component P dropped into the hole H in the normal posture does not come out of the component alignment hole H due to additional vibration, and even if the component P is dropped into the component alignment hole H in the vertical posture (abnormal posture), the component concerned Since P is unstable, it will come out of the component alignment hole H and be rearranged due to additional vibration.

また、各部品整列孔Hの最短間隔IN1およびIN2が部品Pの基準長さLp以上であるため、隣接する2個の部品整列孔Hに既に部品Pが正常姿勢で落とし込まれていても、当該部品Pの部品整列孔Hから上方に露出する部分(図7を参照)によって、未整列の部品PのX方向移動とY方向移動が阻害されることはない。すなわち、未整列の部品Pは最短間隔IN1およびIN2を通じてX方向に移動する過程、または、Y方向に移動する過程で部品整列孔Hに正常姿勢で落とし込まれることになる。 Further, since the shortest intervals IN1 and IN2 of the component alignment holes H are equal to or larger than the reference length Lp of the component P, even if the component P has already been dropped into the two adjacent component alignment holes H in the normal posture. The portion of the component P exposed upward from the component alignment hole H (see FIG. 7) does not hinder the movement of the unaligned component P in the X direction and the Y direction. That is, the unaligned component P is dropped into the component alignment hole H in a normal posture in the process of moving in the X direction through the shortest intervals IN1 and IN2 or in the process of moving in the Y direction.

整列完了後は、部品整列装置の振動付加ユニット20の振動プレート23のトレイ支持部23aから部品整列ユニット10を取り外し、さらに、部品整列ユニット10の部品トレイ11から押付プレート14を取り外した後に部品整列プレート13を取り外す(図8を参照)。 After the alignment is completed, the component alignment unit 10 is removed from the tray support portion 23a of the vibration plate 23 of the vibration addition unit 20 of the component alignment device, and the pressing plate 14 is removed from the component tray 11 of the component alignment unit 10 before component alignment. Remove the plate 13 (see FIG. 8).

部品整列プレート13の各部品整列孔Hに正常姿勢で落とし込まれた部品Pはその下の部品保持プレート12の上面(部品載置面)に載置される構造にあるため(図7を参照)、部品整列プレート13の上面に未整列の部品Pが残存する場合でも、当該未整列の部品Pは、部品整列プレート13を取り外すときに当該部品配列プレート13と一緒に取り除かれることになる。また、部品トレイ11から部品整列プレート13を取り外すと、各部品整列孔Hに正常姿勢で落とし込まれた部品Pが同一の配列および向きで部品保持プレート12の上面(部品載置面)に載置された状態となる(図9を参照)。 Since the component P dropped into each component alignment hole H of the component alignment plate 13 in a normal posture is placed on the upper surface (component mounting surface) of the component holding plate 12 below the component P (see FIG. 7). ), Even if the unaligned component P remains on the upper surface of the component alignment plate 13, the unaligned component P will be removed together with the component alignment plate 13 when the component alignment plate 13 is removed. Further, when the component alignment plate 13 is removed from the component tray 11, the components P dropped into the component alignment holes H in the normal posture are placed on the upper surface (component mounting surface) of the component holding plate 12 in the same arrangement and orientation. It will be in the placed state (see FIG. 9).

すなわち、部品保持プレート12の上面(部品載置面)に所期の配列および向きで部品Pが載置された部品トレイ11を得ることができる。この部品トレイ11は保管場所等に移送されることなるが、部品保持プレート12は自らの表面摩擦抵抗によって部品Pを保持するものであるため、移送時に部品Pに位置ずれが生じることを防止することができる。 That is, it is possible to obtain the component tray 11 on which the component P is mounted in the desired arrangement and orientation on the upper surface (component mounting surface) of the component holding plate 12. The component tray 11 is transferred to a storage place or the like, but since the component holding plate 12 holds the component P by its own surface frictional resistance, it prevents the component P from being displaced during the transfer. be able to.

《所期の配列および向きで部品が載置された部品トレイの利用方法》
次に、所期の配列および向きで部品Pが載置された部品トレイ11の利用方法について、部品Pが電子部品ある場合を例として説明する。
<< How to use the parts tray in which parts are placed in the desired arrangement and orientation >>
Next, a method of using the component tray 11 on which the component P is placed in the desired arrangement and orientation will be described by taking the case where the component P is an electronic component as an example.

所期の配列および向きで部品Pが載置された部品トレイ11は、テーピング装置(キャリアテープのポケットに部品を収納しカバーテープで閉塞して部品収納テープを作製する装置)やマウンター(回路基板に部品を搭載する装置)等の部品供給源として利用することができる。 The component tray 11 on which the component P is placed in the desired arrangement and orientation is a taping device (a device that stores components in a carrier tape pocket and closes them with a cover tape to produce a component storage tape) or a mounter (circuit board). It can be used as a parts supply source for parts such as (devices for mounting parts on).

例えばテーピング装置では、収納対象となる部品をキャリアテープのポケットに収納するために部品貯蔵部、部品供給部、部品挿入部等を具備した複雑な機構を有するが、前述の部品トレイ11を利用すれば、部品搬送機構(例えば部品を3次元で搬送可能な機構)を用いて、当該部品トレイ11から部品Pを取り出して当該部品Pをキャリアテープのポケットに収納することが可能となる。 For example, a taping device has a complicated mechanism including a parts storage unit, a parts supply unit, a parts insertion unit, and the like for storing parts to be stored in a carrier tape pocket. However, the above-mentioned parts tray 11 can be used. For example, it is possible to take out the component P from the component tray 11 and store the component P in the pocket of the carrier tape by using a component transport mechanism (for example, a mechanism capable of transporting the component in three dimensions).

また、例えばマウンターでは、一般にテープフィーダー(前記の部品収納テープからカバーテープを剥離して部品を取り出せるようにした装置)が用いれているが、前記の部品トレイ11を利用すれば、マウンターが具備した部品搬送機構(例えば部品を3次元で搬送可能な機構)によって、当該部品トレイ11から部品Pを取り出して当該部品Pを回路基板に搭載することが可能となる。 Further, for example, in a mounter, a tape feeder (a device in which a cover tape is peeled off from the component storage tape so that a component can be taken out) is generally used, but if the component tray 11 is used, the mounter is provided. The component transport mechanism (for example, a mechanism capable of transporting components in three dimensions) makes it possible to take out the component P from the component tray 11 and mount the component P on the circuit board.

《部品整列装置と部品整列プレートによって得られる主たる作用効果》
次に、部品整列装置と部品整列プレート13によって得られる主たる作用効果について説明する。
<< Main effects obtained by the component alignment device and component alignment plate >>
Next, the main functions and effects obtained by the component alignment device and the component alignment plate 13 will be described.

部品整列ユニット10の部品整列プレート13は部品Pを整列した後に部品保持プレート12の上面(部品載置面)から取り外されるものであるため、部品整列プレート13の上面に未整列の部品Pが残存する場合でも当該未整列の部品Pを部品配列プレート13と一緒に取り除くことができる。すなわち、整列後の部品Pは部品保持プレート12の上面(部品載置面)に所期の配列および向きで載置することができるため、整列後の部品Pの取り出しを容易に行うことができる。 Since the component alignment plate 13 of the component alignment unit 10 is removed from the upper surface (component mounting surface) of the component holding plate 12 after the component P is aligned, the unaligned component P remains on the upper surface of the component alignment plate 13. Even in this case, the unaligned part P can be removed together with the part arrangement plate 13. That is, since the aligned parts P can be placed on the upper surface (part mounting surface) of the component holding plate 12 in the desired arrangement and orientation, the aligned parts P can be easily taken out. ..

また、部品保持プレート12は自らの表面摩擦抵抗によって部品Pを保持するものであるため、所期の配列および向きで部品Pが載置された部品トレイ11を移送しても当該移送時に部品Pに位置ずれが生じることを防止することができ、部品トレイ11からの部品Pの取り出しも支障なく行うことができる。 Further, since the component holding plate 12 holds the component P by its own surface friction resistance, even if the component tray 11 on which the component P is placed is transferred in the desired arrangement and orientation, the component P is transferred at the time of the transfer. It is possible to prevent the component P from being displaced, and the component P can be taken out from the component tray 11 without any trouble.

さらに、部品整列プレート13には独自の配列および向きで部品整列孔Hが設けられているため、当該部品整列プレート13にX方向振動とY方向振動を付加することによって、部品整列プレート13上の部品Pが部品整列孔Hに正常姿勢で落とし込まれる確率(整列率)を高めることができる。 Further, since the component alignment plate 13 is provided with the component alignment holes H in a unique arrangement and orientation, the component alignment plate 13 is subjected to the X-direction vibration and the Y-direction vibration to be formed on the component alignment plate 13. It is possible to increase the probability (alignment rate) that the component P is dropped into the component alignment hole H in a normal posture.

さらに、部品整列プレート13を取り外した後において部品保持プレート12の上面(部品載置面)に載置された部品Pの対向する2辺はX方向と平行であり、かつ、対向する他の2辺はY方向と平行であるため、先に述べた部品搬送機構(例えば部品を3次元で搬送可能な機構)で部品Pを取り出すときにその向き(上から見たときの向き)の変化をX方向とY方向を基準として行うことができ、これにより向き変化に係る負担を軽減することができる。 Further, after the component alignment plate 13 is removed, the two opposing sides of the component P mounted on the upper surface (component mounting surface) of the component holding plate 12 are parallel to the X direction and the other two facing each other. Since the sides are parallel to the Y direction, the change in the orientation (direction when viewed from above) when the component P is taken out by the component transport mechanism (for example, a mechanism capable of transporting the component in three dimensions) described above can be changed. This can be performed with reference to the X direction and the Y direction, and thereby the burden of changing the direction can be reduced.

《整列率に係る実験データ》
次に、図10を用いて、前掲の整列率を検証した実験データを説明する。
<< Experimental data related to alignment rate >>
Next, the experimental data for verifying the alignment rate described above will be described with reference to FIG.

実験に用いた部品サイズは0402、0603、1005、1608、2012、3216、3225であり、部品種類はコンデンサ素子(積層セラミックコンデンサ)である。なお、図10の角度θは図3(B)に示した角度θを示す。 The component sizes used in the experiment are 0402, 0603, 1005, 1608, 2012, 3216, and 3225, and the component type is a capacitor element (multilayer ceramic capacitor). The angle θ in FIG. 10 indicates the angle θ shown in FIG. 3 (B).

実験では、各部品サイズ別に、部品サイズに対応した部品整列孔Hを図3(B)に示した配列および向きで1000個有し、かつ、角度θが2°〜13°の範囲で1°ずつ異なる12種類の部品整列プレートを用意した。また、先に述べた操作方法に準じ、各部品サイズ別に、12種類の部品整列プレート上にバルク状の部品を900個に置き、X方向振動とY方向振動(各振動の振幅は部品の基準長さと同じ)を60秒付加して、振動付加後の整列率(部品Pが部品整列孔Hに正常姿勢で落とし込まれる確率)を百分率で計測した。 In the experiment, each component size has 1000 component alignment holes H corresponding to the component size in the arrangement and orientation shown in FIG. 3B, and the angle θ is 1 ° in the range of 2 ° to 13 °. Twelve different types of component alignment plates were prepared. In addition, according to the operation method described above, 900 bulk-shaped parts are placed on 12 types of parts alignment plates for each part size, and X-direction vibration and Y-direction vibration (the amplitude of each vibration is the reference of the parts). The same as the length) was added for 60 seconds, and the alignment rate (probability that the component P was dropped into the component alignment hole H in the normal posture) after the vibration was added was measured as a percentage.

実験によれば、部品サイズに拘わらず、角度θが3°〜12°の範囲内にあるときに95%以上の整列率が得られることが確認できた。角度θが2°と13°のときの整列率は95%には達しないもののいずれも90%以上を超えているため、実用上の整列率の良否境界を90%とする場合には問題なく使用できることも確認できた。なお、図10への図示を省略したが、角度θが1°と14°のときの整列率はいずれも80%以下となるため、実用には不向きであることも確認できている。 According to the experiment, it was confirmed that an alignment rate of 95% or more can be obtained when the angle θ is in the range of 3 ° to 12 ° regardless of the component size. Although the alignment rate does not reach 95% when the angles θ are 2 ° and 13 °, they both exceed 90%, so there is no problem when the quality boundary of the practical alignment rate is 90%. It was also confirmed that it can be used. Although not shown in FIG. 10, it has been confirmed that it is not suitable for practical use because the alignment rate is 80% or less when the angles θ are 1 ° and 14 °.

《変形例》
次に、前述の部品整列装置と部品整列プレート13の変形例を説明する。
<< Modification example >>
Next, a modification of the above-mentioned component alignment device and component alignment plate 13 will be described.

(1)図1および図2には部品保持プレート12が部品トレイ11に着脱可能としたものを示したが、必ずしも着脱可能である必要はなく、部品保持プレート12に相当する部品保持層を部品トレイ11の凹部11aの底面に一体に形成してもよい。換言すれば、部品保持プレート12を着脱可能に構成すれば、繰り返しの使用によって部品保持プレート12の上面(部品載置面)に所期の表面摩擦抵抗が得られなくなったときに当該部品保持プレート12のみの交換が可能となる。 (1) Although FIGS. 1 and 2 show the component holding plate 12 detachable from the component tray 11, the component holding plate 12 does not necessarily have to be detachable, and the component holding layer corresponding to the component holding plate 12 is provided as a component. It may be integrally formed on the bottom surface of the recess 11a of the tray 11. In other words, if the component holding plate 12 is configured to be removable, the component holding plate can no longer obtain the desired surface frictional resistance on the upper surface (part mounting surface) of the component holding plate 12 due to repeated use. Only 12 can be exchanged.

(2)図1および図2には部品整列ユニットおよび部品整列プレート13として上面視外形が正方形のものを示したが、使用可能な部品整列孔Hの数を増加するために部品整列ユニットおよび部品整列プレート13の上面視外形をX方向に延びた長方形としてもよい。この場合、押付プレート14による部品整列プレート13の押し付けが不充分となるときには、押付プレート14の孔14aをX方向で分断する仕切り部を設けて、当該仕切り部と押付部14bによって部品整列プレート13の押し付けを行うようにするとよい。 (2) Although FIGS. 1 and 2 show a component alignment unit and a component alignment plate 13 having a square top view, the component alignment unit and components are used in order to increase the number of component alignment holes H that can be used. The top view outer shape of the alignment plate 13 may be a rectangle extending in the X direction. In this case, when the parts alignment plate 13 is not sufficiently pressed by the pressing plate 14, a partition portion for dividing the hole 14a of the pressing plate 14 in the X direction is provided, and the partition portion and the pressing portion 14b provide the component alignment plate 13. It is advisable to press.

(3)図3(A)に部品Pの一例として基準長さLp>基準幅Wp=基準厚さTpで規定される直方体状を成す電子部品を示したが、同様の寸法関係を有する電子部品以外の部品であっても所期の整列は可能であり、基準幅Wpと基準厚さTpが多少異なっていても所期の整列は可能である。 (3) Fig. 3 (A) shows an electronic component having a rectangular parallelepiped shape defined by reference length Lp> reference width Wp = reference thickness Tp as an example of component P, but electronic components having the same dimensional relationship. The desired alignment is possible even for parts other than the above, and the desired alignment is possible even if the reference width Wp and the reference thickness Tp are slightly different.

(4)図3(B)〜図3(D)に部品整列孔Hとして上面視矩形状のものを示したが、これに代えて、上面視円状のものや上面視楕円状のものを採用しても、先に述べた作用効果のうちの筆頭の作用効果を得ることができるし、このことは直方体状以外の形状を有する部品を整列対象とする場合でも同様である。 (4) FIGS. 3 (B) to 3 (D) show a rectangular shape in the top view as the component alignment hole H, but instead of this, a circular shape in the top view or an elliptical shape in the top view is used. Even if it is adopted, the first of the above-mentioned effects can be obtained, and this is the same even when parts having a shape other than the rectangular parallelepiped are to be aligned.

10…部品整列ユニット、11…部品トレイ、12…部品保持プレート、13…部品整列プレート、13’…部品整列プレートの元プレート、14…押付プレート、20…振動付加ユニット、21…ベース、22…振動源、23…振動プレート、23a…トレイ支持部、P…部品、H…部品整列プレートの部品整列孔、Hc…部品整列孔の中心、VXYP…仮想XY平面、VIGL…仮想傾斜格子線、θ…角度、IN1,IN2…最短間隔。 10 ... Parts alignment unit, 11 ... Parts tray, 12 ... Parts holding plate, 13 ... Parts alignment plate, 13'... Original plate of parts alignment plate, 14 ... Pressing plate, 20 ... Vibration addition unit, 21 ... Base, 22 ... Vibration source, 23 ... Vibration plate, 23a ... Tray support, P ... Parts, H ... Parts alignment hole of parts alignment plate, Hc ... Center of component alignment hole, VXYP ... Virtual XY plane, VIGL ... Virtual inclined grid line, θ … Angle, IN1, IN2… Shortest interval.

Claims (18)

部品整列ユニットと、前記部品整列ユニットに振動を付加可能な振動付加ユニットとを備えた部品整列装置であって、
前記部品整列ユニットは、部品載置面を有する部品トレイと、前記部品トレイの前記部品載置面に着脱可能であり、かつ、取り付け状態で整列対象となる部品を落とし込んで前記部品トレイの前記部品載置面に載置可能な部品整列孔を有する部品整列プレートとを備える、
部品整列装置。
A component alignment device including a component alignment unit and a vibration addition unit capable of adding vibration to the component alignment unit.
The component alignment unit is detachable from a component tray having a component mounting surface and the component mounting surface of the component tray, and the component to be aligned is dropped in the mounted state to drop the component of the component tray. A component alignment plate having a component alignment hole that can be mounted on the mounting surface is provided.
Parts alignment device.
前記部品整列ユニットは、前記部品トレイに着脱可能であり、かつ、取り付け状態で前記部品整列プレートを前記部品トレイの前記部品載置面に押し付け可能な押付プレートをさらに備える、
請求項1に記載の部品整列装置。
The component alignment unit further includes a pressing plate that can be attached to and detached from the component tray and that can press the component alignment plate against the component mounting surface of the component tray in the mounted state.
The component alignment device according to claim 1.
前記部品トレイの前記部品載置面は、自らの表面摩擦抵抗によって前記部品を保持可能である、
請求項1または2に記載の部品整列装置。
The component mounting surface of the component tray can hold the component by its own surface frictional resistance.
The component alignment device according to claim 1 or 2.
前記部品トレイの前記部品載置面は、前記部品トレイに着脱可能な部品保持プレートの上面によって構成されている、
請求項1〜3のいずれか1項に記載の部品整列装置。
The component mounting surface of the component tray is composed of an upper surface of a component holding plate that can be attached to and detached from the component tray.
The component alignment device according to any one of claims 1 to 3.
前記振動付加ユニットは、前記部品トレイを着脱可能なトレイ支持部を有する振動プレートと、前記振動プレートに振動を付加可能な振動源とを備える、
請求項1〜4のいずれか1項に部品整列装置。
The vibration adding unit includes a vibration plate having a tray support portion to which the component tray can be attached and detached, and a vibration source capable of applying vibration to the vibration plate.
The component alignment device according to any one of claims 1 to 4.
前記振動は、前記部品整列プレートの上面に設定された仮想XY平面におけるX方向振動とY方向振動とから成る、
請求項5に記載の部品整列装置。
The vibration comprises X-direction vibration and Y-direction vibration in a virtual XY plane set on the upper surface of the component alignment plate.
The component alignment device according to claim 5.
請求項1〜6のいずれか1項に記載の部品整列プレートであって、
前記部品整列孔は、前記部品整列プレートの上面に設定した仮想XY平面にX方向と角度θ傾いた仮想傾斜横直線とY方向と同角度θ傾いた仮想傾斜縦直線とを有する仮想傾斜格子線を設定した仮想状態において、前記仮想傾斜格子線における奇数番目の仮想傾斜横直線の奇数番目の交点に前記部品整列孔の中心が位置し、かつ、偶数番目の仮想傾斜横直線の偶数番目の交点に前記部品配列孔の中心が位置するように配列されている、
部品整列プレート。
The component alignment plate according to any one of claims 1 to 6.
The component alignment hole is a virtual tilt grid line having a virtual tilted horizontal straight line tilted by θ in the X direction and a virtual tilted vertical line tilted by θ in the same angle as the Y direction on a virtual XY plane set on the upper surface of the component alignment plate. In the virtual state in which is set, the center of the component alignment hole is located at the odd-th intersection of the odd-th virtual inclined horizontal line in the virtual inclined grid line, and the even-th intersection of the even-th virtual inclined horizontal line is located. Is arranged so that the center of the component arrangement hole is located in
Parts alignment plate.
前記部品整列孔が上面視矩形状を成すとき、前記部品整列孔の対向する2辺は前記X方向と平行であり、かつ、対向する他の2辺は前記Y方向と平行である、
請求項7に記載の部品整列プレート。
When the component alignment holes form a rectangular shape when viewed from above, the two opposing sides of the component alignment holes are parallel to the X direction, and the other two opposing sides are parallel to the Y direction.
The component alignment plate according to claim 7.
前記部品が基準長さ>基準幅=基準厚さで規定される直方体状を成すとき、前記部品整列孔の前記対向する2辺の寸法は前記基準長さよりも僅かに大きく、かつ、前記対向する他の2辺の寸法は前記基準幅および前記基準厚さよりも僅かに大きい、
請求項8に記載の部品整列プレート。
When the component forms a rectangular parallelepiped shape defined by reference length> reference width = reference thickness, the dimensions of the two opposing sides of the component alignment hole are slightly larger than the reference length and are opposed to each other. The dimensions of the other two sides are slightly larger than the reference width and the reference thickness.
The component alignment plate according to claim 8.
前記部品整列孔の深さは、前記基準長さの1/2未満で、かつ、前記基準幅および前記基準厚さの1/2超過である、
請求項9に記載の記載の部品整列プレート。
The depth of the component alignment hole is less than 1/2 of the reference length and more than 1/2 of the reference width and the reference thickness.
The component alignment plate according to claim 9.
X方向で隣接する2個の前記部品整列孔の最短間隔と、Y方向で隣接する2個の前記部品整列孔の最短間隔は、前記基準長さ以上である、
請求項9または10に記載の部品整列プレート。
The shortest distance between the two adjacent component alignment holes in the X direction and the shortest distance between the two adjacent component alignment holes in the Y direction are equal to or greater than the reference length.
The part alignment plate according to claim 9 or 10.
前記角度θは、3°〜12°の範囲内にある、
請求項9〜11のいずれか1項に記載の部品整列プレート。
The angle θ is in the range of 3 ° to 12 °.
The component alignment plate according to any one of claims 9 to 11.
請求項1〜6のいずれか1項に記載の部品整列プレートの製造方法であって、
前記部品整列プレートとなる元プレートの上面に仮想XY平面を設定するステップと、
前記仮想XY平面にX方向と角度θ傾いた仮想傾斜横直線とY方向と同角度θ傾いた仮想傾斜縦直線とを有する仮想傾斜格子線を設定するステップと、
前記仮想傾斜格子線における奇数番目の仮想傾斜横直線の奇数番目の交点に前記部品整列孔の中心が位置し、かつ、偶数番目の仮想傾斜横直線の偶数番目の交点に前記部品配列孔の中心が位置するように前記元プレートに前記部品整列孔を形成するステップとを備える、
部品整列プレートの製造方法。
The method for manufacturing a component alignment plate according to any one of claims 1 to 6.
A step of setting a virtual XY plane on the upper surface of the original plate to be the component alignment plate,
A step of setting a virtual inclined grid line having a virtual inclined horizontal straight line inclined by θ in the X direction and a virtual inclined vertical line inclined by θ in the same angle as the Y direction on the virtual XY plane.
The center of the component alignment hole is located at the odd-numbered intersection of the odd-numbered virtual inclined horizontal straight lines in the virtual inclined lattice line, and the center of the component arrangement hole is located at the even-numbered intersection of the even-numbered virtual inclined horizontal straight lines. The original plate is provided with a step of forming the component alignment hole so as to be located.
Manufacturing method of parts alignment plate.
前記部品整列孔が上面視矩形状を成すとき、前記部品整列孔を形成するステップでは、前記部品整列孔の対向する2辺が前記X方向と平行となり、かつ、対向する他の2辺が前記Y方向と平行となるように前記部品整列孔を形成する、
請求項13に記載の部品整列プレートの製造方法。
When the component alignment holes form a rectangular shape when viewed from above, in the step of forming the component alignment holes, the two opposing sides of the component alignment holes are parallel to the X direction, and the other two opposing sides are said. The component alignment hole is formed so as to be parallel to the Y direction.
The method for manufacturing a component alignment plate according to claim 13.
前記部品が基準長さ>基準幅=基準厚さで規定される直方体状を成すとき、前記部品整列孔の前記対向する2辺の寸法は前記基準長さよりも僅かに大きく、かつ、前記対向する他の2辺の寸法は前記基準幅および前記基準厚さよりも僅かに大きい、
請求項14に記載の部品整列プレートの製造方法。
When the component forms a rectangular parallelepiped shape defined by reference length> reference width = reference thickness, the dimensions of the two opposing sides of the component alignment hole are slightly larger than the reference length and are opposed to each other. The dimensions of the other two sides are slightly larger than the reference width and the reference thickness.
The method for manufacturing a component alignment plate according to claim 14.
前記部品
整列孔の深さは、前記基準長さの1/2未満で、かつ、前記基準幅および前記基準厚さの1/2超過である、
請求項15に記載の記載の部品整列プレートの製造方法。
The depth of the component alignment hole is less than 1/2 of the reference length and more than 1/2 of the reference width and the reference thickness.
The method for manufacturing a component alignment plate according to claim 15.
前記X方向で隣接する2個の前記部品整列孔の最短間隔と、前記Y方向で隣接する2個の前記部品整列孔の最短間隔は、前記基準長さ以上である、
請求項15または16に記載の部品整列プレートの製造方法。
The shortest distance between the two adjacent component alignment holes in the X direction and the shortest distance between the two adjacent component alignment holes in the Y direction are equal to or greater than the reference length.
The method for manufacturing a component alignment plate according to claim 15 or 16.
前記角度θは、3°〜12°の範囲内にある、
請求項15〜17のいずれか1項に記載の部品整列プレートの製造方法。
The angle θ is in the range of 3 ° to 12 °.
The method for manufacturing a component alignment plate according to any one of claims 15 to 17.
JP2019178128A 2019-09-28 2019-09-28 Component alignment device, component alignment plate, and manufacturing method of component alignment plate Active JP7385413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019178128A JP7385413B2 (en) 2019-09-28 2019-09-28 Component alignment device, component alignment plate, and manufacturing method of component alignment plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019178128A JP7385413B2 (en) 2019-09-28 2019-09-28 Component alignment device, component alignment plate, and manufacturing method of component alignment plate

Publications (2)

Publication Number Publication Date
JP2021054572A true JP2021054572A (en) 2021-04-08
JP7385413B2 JP7385413B2 (en) 2023-11-22

Family

ID=75269732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019178128A Active JP7385413B2 (en) 2019-09-28 2019-09-28 Component alignment device, component alignment plate, and manufacturing method of component alignment plate

Country Status (1)

Country Link
JP (1) JP7385413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106041A1 (en) * 2021-12-08 2023-06-15 株式会社村田製作所 Handling device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176289A (en) * 1991-07-23 1993-01-05 International Business Machines Corp. Direct vertical pin feeder
JP2003289197A (en) * 2002-03-28 2003-10-10 Miyota Kk Method and device for arranging electronic component
JP3101934U (en) * 2003-11-27 2004-06-24 株式会社フルヤ金属 Jig for aligning small parts
JP2009173415A (en) * 2008-01-25 2009-08-06 Produce:Kk Minute component aligning device and aligning method
WO2018105591A1 (en) * 2016-12-07 2018-06-14 株式会社村田製作所 Vibratory feeding method and device for electronic components
JP2023046120A (en) * 2021-09-22 2023-04-03 京セラ株式会社 Positioning method for chip component and alignment pallet used therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176289A (en) * 1991-07-23 1993-01-05 International Business Machines Corp. Direct vertical pin feeder
JP2003289197A (en) * 2002-03-28 2003-10-10 Miyota Kk Method and device for arranging electronic component
JP3101934U (en) * 2003-11-27 2004-06-24 株式会社フルヤ金属 Jig for aligning small parts
JP2009173415A (en) * 2008-01-25 2009-08-06 Produce:Kk Minute component aligning device and aligning method
WO2018105591A1 (en) * 2016-12-07 2018-06-14 株式会社村田製作所 Vibratory feeding method and device for electronic components
JP2023046120A (en) * 2021-09-22 2023-04-03 京セラ株式会社 Positioning method for chip component and alignment pallet used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023106041A1 (en) * 2021-12-08 2023-06-15 株式会社村田製作所 Handling device

Also Published As

Publication number Publication date
JP7385413B2 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
CN110035963B (en) Vibration storing method and device for electronic component
JP6269822B2 (en) Vibration device
JP2010278153A (en) Component alignment device, and method for producing electronic components
WO2016052260A1 (en) Resonance device
EP3320987B1 (en) Vibration device
JP2021054572A (en) Parts aligner, parts-aligning plate and method of manufacturing parts-aligning plate
JP2011223489A5 (en)
JP2007008697A (en) Sheet material positioning device and positioning method
JP5007522B2 (en) Piezoelectric vibrator and manufacturing method thereof
JP4324342B2 (en) Electronic component alignment method and electronic component alignment apparatus
JP5168816B2 (en) Parts supply device
JP5991190B2 (en) Electronic equipment
JP2005026499A (en) Center-positioning carrier jig for substrate, method for positioning center and holding method after center positioning
CN104221137A (en) Substrate conveying apparatus, exposure apparatus, substrate supporting apparatus, and method for manufacturing device
JP2011094987A (en) Circuit module and method of manufacturing circuit module
JP5017579B2 (en) Electronic component carrier
JP2007161459A (en) Part supply device
JP2008205999A (en) Lame-mode vibration device and package for electronic component
JPH0669388A (en) Assembly apparatus of semiconductor chip between two heat sinks
JP2014060845A (en) Piezoelectric motor, robot hand, robot, electronic component transport device, electronic component inspection equipment, liquid feed pump, printing equipment, electronic clock, projection apparatus, and transport device
JP4432779B2 (en) Semiconductor package lead alignment apparatus and semiconductor package lead alignment method
JP2004067360A (en) Piezoelectric actuator, feeder, and precipitation preventing device
JP2015012214A (en) Transfer jig and manufacturing method of electronic component using the same
JP2003209129A (en) Disposition method and apparatus for article
JP4626494B2 (en) Electronic member placement method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231110

R150 Certificate of patent or registration of utility model

Ref document number: 7385413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150