JP2021053699A - Continuous casting process of steel - Google Patents

Continuous casting process of steel Download PDF

Info

Publication number
JP2021053699A
JP2021053699A JP2020139662A JP2020139662A JP2021053699A JP 2021053699 A JP2021053699 A JP 2021053699A JP 2020139662 A JP2020139662 A JP 2020139662A JP 2020139662 A JP2020139662 A JP 2020139662A JP 2021053699 A JP2021053699 A JP 2021053699A
Authority
JP
Japan
Prior art keywords
slab
steel
casting
less
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020139662A
Other languages
Japanese (ja)
Other versions
JP7126099B2 (en
Inventor
智也 小田垣
Tomoya Odagaki
智也 小田垣
浩之 大野
Hiroyuki Ono
浩之 大野
祐介 寺澤
Yusuke Terasawa
祐介 寺澤
則親 荒牧
Norichika Aramaki
則親 荒牧
圭吾 外石
Keigo Toishi
圭吾 外石
憲司 中谷
Kenji Nakatani
憲司 中谷
樹人 松田
Juto Matsuda
樹人 松田
政志 船橋
Masashi Funabashi
政志 船橋
信幸 中
Nobuyuki Naka
信幸 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2021053699A publication Critical patent/JP2021053699A/en
Application granted granted Critical
Publication of JP7126099B2 publication Critical patent/JP7126099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

To provide a continuous casting process of steel in which center segregation can be sufficiently reduced, in particular generation of a coarse segregation spot can be prevented, and delayed fracture after gas cutting can be prevented in a thick steel sheet.SOLUTION: A steel slab is obtained by continuously casting molten steel containing 0.1 mass% or more and 0.3 mass% or less of C by using a vertical bending type or curved type continuous casting machine. In the process, (A) a casting condition is controlled so that a solidified structure in a final solidified part in the thickness direction of the cast slab becomes columnar crystals with an average dendrite primary arm spacing of 2.0 mm or less on the upper surface side in the thickness direction and columnar or branched columnar crystals with an average dendrite primary arm spacing of 2.0 mm or less on the lower surface side in the thickness direction over the entire width, and (B) in the secondary cooling step, a slight pressure drop is applied to the cast slab at a pressure drop speed of 0.5 mm/min or more and 2.0 mm/min or less in the casting direction of the cast slab within a range from a position where the solid phase rate of at least the center of the thickness of the cast slab becomes 0.2 to a solidified position where solidification is completed.SELECTED DRAWING: Figure 1

Description

本発明は、連続鋳造機を用いた鋼の連続鋳造方法に関する。 The present invention relates to a method for continuously casting steel using a continuous casting machine.

鋼の凝固過程では、炭素、燐、硫黄、マンガンなどの溶質元素は、凝固時の再分配により未凝固の液相(溶鋼)側に濃化される。これが、デンドライト樹間に形成されるミクロ偏析である。連続鋳造機により鋳造されつつある鋳片の凝固収縮及び熱収縮、並びに、連続鋳造機のロール間で発生する凝固シェルのバルジングなどによって、鋳片の厚み中心部に空隙が形成されたり負圧が生じたりすると、この部分に向かって溶鋼が流動する。その際、凝固末期の鋳片の厚み中心部には十分な量の溶鋼(未凝固層)が存在しない。そのため、上記のミクロ偏析によって溶質元素が濃縮された溶鋼が流動し、鋳片の厚み中心部に集積して凝固する。このようにして形成された偏析スポットは、溶質元素の濃度が溶鋼の初期濃度に比べ格段に高濃度となっている。この現象は、一般にマクロ偏析と呼ばれ、偏析スポットの存在部位に由来して、中心偏析とも呼ばれる。 In the solidification process of steel, solute elements such as carbon, phosphorus, sulfur, and manganese are concentrated on the unsolidified liquid phase (molten steel) side by redistribution during solidification. This is the microsegregation formed between the dendrite trees. Due to solidification shrinkage and heat shrinkage of the slab being cast by the continuous casting machine, and bulging of the solidification shell generated between the rolls of the continuous casting machine, a gap is formed in the center of the thickness of the slab and negative pressure is generated. When it occurs, the molten steel flows toward this part. At that time, a sufficient amount of molten steel (unsolidified layer) does not exist in the central portion of the thickness of the slab at the end of solidification. Therefore, the molten steel in which the solute element is concentrated flows by the above-mentioned microsegregation, and is accumulated in the center of the thickness of the slab and solidified. The segregation spots formed in this way have a significantly higher concentration of solute elements than the initial concentration of molten steel. This phenomenon is generally called macro segregation, and is also called central segregation because of the location of the segregation spot.

さて、建設、土木、鉱業などの分野で使用される産業機械、部品、運搬機器(例えば、パワーショベル、ブルドーザー、ホッパー、バケットコンベヤー、岩石破砕装置)などは、岩石、砂、鉱石などによるアブレッシブ摩耗、すべり摩耗、衝撃摩耗などの摩耗にさらされる。そのため、そういった産業機械、部品、運搬機器に用いられる鋼には、寿命を向上させるために耐摩耗性に優れることが求められる。 By the way, industrial machinery, parts, transportation equipment (for example, power shovels, bulldozers, hoppers, bucket conveyors, rock crushers) used in fields such as construction, civil engineering, and mining are worn aggressively by rocks, sand, ores, etc. Exposed to wear such as sliding wear and impact wear. Therefore, steel used for such industrial machines, parts, and transportation equipment is required to have excellent wear resistance in order to improve the life.

鋼の耐摩耗性は、硬度を高くすることで向上できることが知られている。そのため、Cr、Mo等の合金元素を大量に添加した合金鋼に焼入れ等の熱処理を施すことによって得られる高硬度鋼が、耐摩耗鋼として幅広く用いられてきた。 It is known that the wear resistance of steel can be improved by increasing the hardness. Therefore, high-hardness steels obtained by subjecting alloy steels to which a large amount of alloying elements such as Cr and Mo are added to heat treatment such as quenching have been widely used as wear-resistant steels.

さらに、耐摩耗鋼板の分野においては、耐摩耗性を向上させることに加えて遅れ破壊を防止することが求められている。遅れ破壊とは、鋼板に加わる応力が降伏強度以下の状態であるにも関わらず、突然鋼板が破断してしまう現象である。この遅れ破壊現象は鋼板強度が高いほど生じ易く、また鋼板への水素侵入により助長される。耐摩耗鋼板の遅れ破壊現象の例としては、ガス切断後の割れが挙げられる。ガス切断時に燃焼ガスからの水素侵入により鋼板が脆化し、さらにガス切断後の残留応力により、切断後数時間〜数日経ってから割れが発生する。耐摩耗鋼板は硬度が高いためガス切断されることが多く、耐摩耗鋼板においては、ガス切断後の遅れ破壊(以下、「ガス切断割れ」という場合がある)がしばしば問題となる。 Further, in the field of wear-resistant steel sheets, it is required to prevent delayed fracture in addition to improving wear resistance. Delayed fracture is a phenomenon in which a steel sheet suddenly breaks even though the stress applied to the steel sheet is equal to or less than the yield strength. This delayed fracture phenomenon is more likely to occur as the strength of the steel sheet is higher, and is promoted by hydrogen intrusion into the steel sheet. An example of the delayed fracture phenomenon of a wear-resistant steel sheet is cracking after gas cutting. When the gas is cut, the steel sheet becomes brittle due to the intrusion of hydrogen from the combustion gas, and the residual stress after the gas cutting causes cracks several hours to several days after the cutting. Since the wear-resistant steel sheet has high hardness, it is often cut by gas, and in the wear-resistant steel sheet, delayed fracture after gas cutting (hereinafter, may be referred to as “gas cutting crack”) is often a problem.

耐摩耗鋼板におけるガス切断後の遅れ破壊は、マルテンサイト組織やベイナイト組織の旧オーステナイト粒界で起る粒界破壊を起点として発生する。そして、粒界破壊は、(a)ガス切断によって生じる残留応力、(b)ガス切断時に切断ガスから鋼板へと侵入する水素による水素脆化、及び(c)ガス切断時の昇温による鋼板の焼戻し脆化の影響が重複することにより発生する。 Delayed fracture after gas cutting in a wear-resistant steel plate occurs from grain boundary fracture that occurs at the former austenite grain boundaries of the martensite structure and bainite structure. The grain boundary fracture is caused by (a) residual stress caused by gas cutting, (b) hydrogen embrittlement due to hydrogen penetrating from the cutting gas into the steel plate during gas cutting, and (c) temperature rise during gas cutting. It occurs due to the overlapping effects of temper brittleness.

さらに、粒界脆化元素であるMn及びPが濃化している鋼板の板厚中心偏析部がガス切断割れの起点となる。また、ガス切断時の昇温により、板厚中心偏析部における前記粒界脆化元素の旧オーステナイト粒界への偏析がさらに促進される結果、旧オーステナイト粒界の強度が著しく低下し、ガス切断割れが発生しやすくなる。 Further, the segregated portion at the center of the thickness of the steel sheet in which the grain boundary embrittlement elements Mn and P are concentrated serves as the starting point of gas cutting cracks. Further, the temperature rise at the time of gas cutting further promotes the segregation of the grain boundary embrittlement element into the former austenite grain boundary in the plate thickness center segregation portion, and as a result, the strength of the former austenite grain boundary is significantly reduced, and gas cutting Cracks are likely to occur.

従って、耐摩耗鋼板のようにガス切断に供される厚鋼板においてガス切断割れを抑制するために、スラブ段階で中心偏析を低減することは極めて重要である。これに対処するべく、連続鋳造工程では鋳片の中心偏析を低減する対策が多数提案されている。 Therefore, it is extremely important to reduce central segregation at the slab stage in order to suppress gas cutting cracks in thick steel sheets subjected to gas cutting such as wear-resistant steel sheets. In order to deal with this, many measures have been proposed to reduce the central segregation of slabs in the continuous casting process.

例えば、特許文献1や特許文献2に開示されているように、連続鋳造機内において、未凝固層を有する凝固末期の鋳片を、鋳片支持ロールによって凝固収縮量と熱収縮量との和に相当する程度の圧下量で徐々に圧下しながら鋳造する方法が提案されている。この技術は、「軽圧下」あるいは「軽圧下法」と呼ばれている。この軽圧下技術では、鋳造方向に並んだ複数対のロールを用いて、凝固収縮量及び熱収縮量の和に見合った圧下量で鋳片を徐々に圧下して、未凝固層の体積を減少させる。これにより、鋳片の厚み中心部における空隙あるいは負圧部の形成を防止すると同時に、デンドライト樹間に形成される濃化溶鋼の流動を防止する。その結果、鋳片の中心偏析が軽減される。 For example, as disclosed in Patent Document 1 and Patent Document 2, in a continuous casting machine, a slab at the end of solidification having an unsolidified layer is combined with a solidification shrinkage amount and a heat shrinkage amount by a slab support roll. A method of casting while gradually reducing the amount of reduction to a considerable extent has been proposed. This technique is called "light reduction" or "light reduction". In this light reduction technique, a plurality of pairs of rolls arranged in the casting direction are used to gradually reduce the volume of the unsolidified layer by gradually reducing the slab with a reduction amount commensurate with the sum of the solidification shrinkage amount and the heat shrinkage amount. Let me. This prevents the formation of voids or negative pressure portions at the center of the thickness of the slab, and at the same time prevents the flow of the concentrated molten steel formed between the dendrite trees. As a result, the central segregation of the slab is reduced.

また、厚み中心部のデンドライト組織の形態と、中心偏析との間には、密接な関係があることから、以下のような方法も提案されている。 Further, since there is a close relationship between the morphology of the dendrite structure at the center of the thickness and the central segregation, the following methods have also been proposed.

特許文献3には、連続鋳造機の二次冷却帯の鋳造方向における特定の範囲の比水量を0.5L/kg以上に設定し、さらに、鋳片の厚み中心部の固相率fsが0.1〜0.8の範囲においてトータル5〜40mmの圧下を加える、鋼の連続鋳造方法が記載されている。この方法は、比水量を増加させることにより、凝固組織を微細化・等軸晶化して、これにより中心偏析を低減するものである。 In Patent Document 3, the specific water content in a specific range in the casting direction of the secondary cooling zone of the continuous casting machine is set to 0.5 L / kg or more, and the solid phase ratio fs at the center of the thickness of the slab is 0. A method for continuous casting of steel is described in which a total reduction of 5 to 40 mm is applied in the range of 1 to 0.8. In this method, the solidified structure is refined and equiaxed by increasing the amount of specific water, thereby reducing the central segregation.

特許文献4には、「タンディッシュ内の溶鋼の過熱度を25℃以上にし、この溶鋼を連続鋳造鋳型に鋳込んで溶鋼の凝固を開始させ、前記鋳型から引き抜かれた凝固初期の鋳片に静磁界を印加し、最終凝固直前の鋳片に静磁界を印加すると共にこの鋳片を軽圧下する鋼の連続鋳造方法」が記載されている。この方法は、鋳片厚み中心部の凝固組織を柱状晶に制御したうえで鋳片に軽圧下を付与することで、中心偏析を低減するものである。 Patent Document 4 states, "The degree of superheat of the molten steel in the tundish is set to 25 ° C. or higher, and this molten steel is cast into a continuous casting mold to start solidification of the molten steel, and the slabs at the initial stage of solidification drawn from the mold are used. A continuous casting method of steel in which a static magnetic field is applied, a static magnetic field is applied to a slab immediately before final solidification, and the slab is lightly reduced is described. In this method, the solidification structure at the center of the thickness of the slab is controlled to be columnar crystals, and then a light reduction is applied to the slab to reduce the central segregation.

特開平8−132203号公報Japanese Unexamined Patent Publication No. 8-132203 特開平8−192256号公報Japanese Unexamined Patent Publication No. 8-192256 特開平8−224650号公報Japanese Unexamined Patent Publication No. 8-224650 特開平6−608号公報Japanese Unexamined Patent Publication No. 6-608

しかしながら、特許文献1や特許文献2の方法では、中心偏析の要因として凝固収縮に着目しているに過ぎない。このため、中心偏析は低減するものの、昨今要求されている厳格な中心偏析抑制レベルを満足することはできない。よって、厚鋼板におけるガス切断後の遅れ破壊を防止することはできない。 However, the methods of Patent Document 1 and Patent Document 2 only focus on solidification shrinkage as a factor of central segregation. Therefore, although the central segregation is reduced, the strict central segregation suppression level required in recent years cannot be satisfied. Therefore, it is not possible to prevent delayed fracture of the thick steel sheet after gas cutting.

また、特許文献3及び特許文献4の手法には以下に示す課題があった。後述するとおり、本発明者らの研究によれば、ガス切断割れは、所定の偏析度以上の偏析スポットが所定のサイズを超えた場合に発生することが明らかになった。しかし、等軸晶となった固液共存域の鋳片に軽圧下を付与する特許文献3の方法では、隣接する等軸晶の間隙にスポット的な偏析ができやすく、当該偏析スポットを所定のサイズ以下に制御することができず、ガス切断割れに影響を与える中心偏析の低減の効果が不十分であることが判明した。また、柱状晶とした鋳片に軽圧下を付与する特許文献4の方法では、厚鋼板におけるガス切断割れの低減に一定の効果が期待できるものの、本発明者らの検討によると、単に凝固組織を柱状晶するのみでは、やはりガス切断割れに影響を与える中心偏析の低減の効果が不十分であることが判明した。 In addition, the methods of Patent Document 3 and Patent Document 4 have the following problems. As will be described later, according to the research by the present inventors, it has been clarified that the gas cutting crack occurs when the segregation spot having a predetermined segregation degree or more exceeds a predetermined size. However, in the method of Patent Document 3 in which a light reduction is applied to a slab in a solid-liquid coexisting region that has become equiaxed crystals, spot segregation is likely to occur in the gaps between adjacent equiaxed crystals, and the segregated spot is designated. It was found that the size could not be controlled below the size, and the effect of reducing central segregation, which affects gas cutting cracks, was insufficient. Further, although the method of Patent Document 4 in which a light reduction is applied to a columnar crystal slab can be expected to have a certain effect in reducing gas cutting cracks in a thick steel sheet, according to the study by the present inventors, it is simply a solidified structure. It was found that the effect of reducing central segregation, which also affects gas cutting cracks, is insufficient only by columnar crystals.

そこで本発明は、上記課題に鑑み、中心偏析をより十分に低減し、特に、粗大な偏析スポットの発生を防いで、厚鋼板におけるガス切断後の遅れ破壊を防止することが可能な、鋼の連続鋳造方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention can further sufficiently reduce central segregation, and in particular, prevent the occurrence of coarse segregation spots and prevent delayed fracture of thick steel sheets after gas cutting. It is an object of the present invention to provide a continuous casting method.

上記課題を解決するため、本発明者らが鋭意検討した結果、以下の知見を得た。
[1]最終凝固部(最終凝固厚み位置から厚み方向に±10mm以内)での凝固組織は、完全に柱状晶であること(ただし、厚み方向下面側では分岐柱状晶であってもよい)
[2]上記柱状晶及び分岐柱状晶を形成するデンドライト1次アーム間隔が平均で2.0mm以下であること、及び
[3]上記[1]及び[2]を満たしたうえで、少なくとも鋳片の厚み中心部の固相率fsが0.2となる位置から凝固完了位置までの範囲において、鋳片に0.5mm/分以上2.0mm/分以下の圧下速度で軽圧下を付与すること
によって、鋳片厚み中心部におけるMn偏析度が2.1以上である偏析スポットの長軸径を200μm以下に制御することができる。このように中心偏析がより十分に低減された鋳片から製造した厚鋼板においては、ガス切断後の遅れ破壊を防止することができる。
As a result of diligent studies by the present inventors in order to solve the above problems, the following findings were obtained.
[1] The solidified structure at the final solidified portion (within ± 10 mm in the thickness direction from the final solidified thickness position) is completely columnar crystals (however, branched columnar crystals may be formed on the lower surface side in the thickness direction).
[2] The dendrite primary arm spacing for forming the columnar crystals and branched columnar crystals is 2.0 mm or less on average, and [3] at least slabs after satisfying the above [1] and [2]. In the range from the position where the solid phase ratio fs at the center of the thickness is 0.2 to the solidification completion position, light reduction is applied to the slab at a reduction speed of 0.5 mm / min or more and 2.0 mm / min or less. Therefore, the major axis diameter of the segregation spot having the Mn segregation degree of 2.1 or more at the center of the slab thickness can be controlled to 200 μm or less. In the thick steel sheet manufactured from the slab in which the central segregation is further sufficiently reduced, delayed fracture after gas cutting can be prevented.

上記知見に基づき完成された本発明の要旨構成は以下のとおりである。
垂直曲げ型又は湾曲型の連続鋳造機を用いた鋼の連続鋳造方法であって、
C:0.1質量%以上0.3質量%以下を含有する溶鋼を鋳型で一次冷却して、内部に未凝固の溶鋼が残存した鋳片を得る一次冷却工程と、
前記鋳型から前記鋳片を引き抜き、前記鋳片を鋳造方向に並んだ複数対のロールで支持しつつ二次冷却して、内部が全て凝固した鋼片を得る二次冷却工程と、
を有し、
(A)前記鋳片の厚み方向の最終凝固部における凝固組織が、全幅にわたって、
厚み方向上面側では、デンドライト1次アーム間隔が平均で2.0mm以下の柱状晶となり、
厚み方向下面側では、デンドライト1次アーム間隔が平均で2.0mm以下の柱状晶又は分岐柱状晶となるように鋳造条件を制御しつつ、
(B)前記二次冷却工程では、前記鋳片の鋳造方向で、少なくとも前記鋳片の厚み中心部の固相率が0.2となる位置から凝固完了位置までの範囲において、前記鋳片に0.5mm/分以上2.0mm/分以下の圧下速度で軽圧下を付与する
ことを特徴とする鋼の連続鋳造方法。
The abstract structure of the present invention completed based on the above findings is as follows.
A method for continuous casting of steel using a vertical bending type or curved type continuous casting machine.
C: A primary cooling step of primary cooling a molten steel containing 0.1% by mass or more and 0.3% by mass or less with a mold to obtain a slab in which unsolidified molten steel remains inside.
A secondary cooling step of pulling out the slab from the mold and secondary cooling the slab while supporting it with a plurality of pairs of rolls arranged in the casting direction to obtain a steel slab whose inside is completely solidified.
Have,
(A) The solidified structure in the final solidified portion in the thickness direction of the slab covers the entire width.
On the upper surface side in the thickness direction, columnar crystals with an average dendrite primary arm spacing of 2.0 mm or less are formed.
On the lower surface side in the thickness direction, while controlling the casting conditions so that the dendrite primary arm spacing becomes a columnar crystal or a branched columnar crystal of 2.0 mm or less on average.
(B) In the secondary cooling step, in the casting direction of the slab, at least in the range from the position where the solid phase ratio at the center of the thickness of the slab is 0.2 to the solidification completion position, the slab is formed. A method for continuously casting steel, characterized in that light reduction is applied at a reduction speed of 0.5 mm / min or more and 2.0 mm / min or less.

本発明の鋼の連続鋳造方法によれば、中心偏析をより十分に低減し、特に、粗大な偏析スポットの発生を防いで、厚鋼板におけるガス切断後の遅れ破壊を防止することが可能である。 According to the continuous steel casting method of the present invention, it is possible to further sufficiently reduce central segregation, particularly prevent the occurrence of coarse segregation spots, and prevent delayed fracture of thick steel sheets after gas cutting. ..

本発明の一実施形態において用いることができる垂直曲げ型の連続鋳造機100の模式図である。It is a schematic diagram of the vertical bending type continuous casting machine 100 which can be used in one Embodiment of this invention. 図1に示す垂直曲げ型の連続鋳造機において、鋳型から引き抜いた鋳片の鋳造方向断面図である。FIG. 5 is a cross-sectional view in the casting direction of a slab drawn from a mold in the vertical bending type continuous casting machine shown in FIG. 本発明の他の実施形態において用いる湾曲型の連続鋳造機における、鋳型から引き抜いた鋳片の鋳造方向断面図である。It is a casting direction sectional view of the slab drawn from a mold in the curved type continuous casting machine used in another embodiment of this invention. デンドライト1次アーム間隔を説明するための模式図である。It is a schematic diagram for demonstrating the dendrite primary arm spacing. 鋳造方向に垂直な断面を含む、鋳片の模式図である。It is a schematic diagram of a slab including a cross section perpendicular to a casting direction. 実験例1により得られた溶鋼熱量と柱状晶割合との関係を示すグラフである。It is a graph which shows the relationship between the heat quantity of molten steel and the columnar crystal ratio obtained by Experimental Example 1. FIG. 実験例3により得られた圧下速度とMn平均偏析度との関係を示すグラフである。It is a graph which shows the relationship between the reduction rate obtained by Experimental Example 3 and Mn average segregation degree. 実験例3により得られた圧下速度と偏析割合との関係を示すグラフである。It is a graph which shows the relationship between the reduction rate and the segregation ratio obtained by Experimental Example 3.

本発明の一実施形態による鋼の連続鋳造方法(鋼片の製造方法)は、垂直曲げ型又は湾曲型の連続鋳造機を用いるものであり、溶鋼を鋳型で一次冷却して、内部に未凝固の溶鋼が残存した鋳片を得る一次冷却工程と、前記鋳型から前記鋳片を引き抜き、前記鋳片を鋳造方向に並んだ複数対のロールで支持しつつ二次冷却して、内部が全て凝固した鋼片を得る二次冷却工程と、を有する。 The method for continuously casting steel (method for producing steel pieces) according to an embodiment of the present invention uses a vertical bending type or curved type continuous casting machine, and the molten steel is primarily cooled with a mold to be unsolidified inside. In the primary cooling step of obtaining the slab in which the molten steel remains, and in the secondary cooling while pulling out the slab from the mold and supporting the slab with a plurality of pairs of rolls arranged in the casting direction, the inside is completely solidified. It has a secondary cooling step of obtaining a steel piece.

[連続鋳造機]
本実施形態では、垂直曲げ型又は湾曲型の連続鋳造機を用いるものとする。一例として、図1を参照して、本実施形態において用いることができる2ストランドタイプの垂直曲げ型の連続鋳造機100の構成を説明する。連続鋳造機100は、取鍋10、タンディッシュ11、鋳型12、スプレーノズル13、複数対のロール14、切断装置15、及び電磁撹拌装置16を有する。
[Continuous casting machine]
In this embodiment, a vertical bending type or curved type continuous casting machine is used. As an example, the configuration of the 2-strand type vertical bending type continuous casting machine 100 that can be used in the present embodiment will be described with reference to FIG. The continuous casting machine 100 includes a ladle 10, a tundish 11, a mold 12, a spray nozzle 13, a plurality of pairs of rolls 14, a cutting device 15, and an electromagnetic agitator 16.

連続鋳造機の最上部に位置する取鍋10には、溶鋼Mが収容される。溶鋼Mは、取鍋10の底部から、当該取鍋10の下方に位置するタンディッシュ11に注がれる。その後、溶鋼Mはタンディッシュ11の底部から、浸漬ノズルを介して鋳型12へと注がれ、鋳型12内で溶鋼の一次冷却が行われる。 The molten steel M is housed in the ladle 10 located at the top of the continuous casting machine. The molten steel M is poured from the bottom of the ladle 10 into the tundish 11 located below the ladle 10. After that, the molten steel M is poured from the bottom of the tundish 11 into the mold 12 via the immersion nozzle, and the primary cooling of the molten steel is performed in the mold 12.

鋳型12から引き抜かれる鋳片Sを鉛直方向から水平方向に案内し、かつ、静鉄圧による鋳片Sの変形を防止するために、円弧、双曲線などの曲線に沿って複数対のロール14が配列される。ロール14の一部は、鋳片Sを引抜くためのピンチロールとしての機能を有する。図2を参照して、鋳型12から鉛直下方に引き抜かれた鋳片Sは、垂直帯20Aを通過した後、上部矯正帯20Bにおいて曲げられ、湾曲帯20Cにおいて湾曲した状態を保った後、下部矯正帯20Dにおいて平板状に曲げ戻されて、水平帯20Eを通過する。鋳型直下から水平帯にわたって鋳片Sの内部には溶鋼の未凝固部が存在し、鋳型直下から水平帯のほぼ全長にわたって鋳片Sの表面を支持するようにロール14が配される。鋳造方向に隣接するロール間にスプレーノズル13が位置し、これらスプレーノズル13から鋳片Sに冷却水が吹き付けられ、鋳片の二次冷却が行われる。なお、スプレーノズルは、実際には各ロール間に複数配置されるが、図1では、その一部を複数のノズルを結ぶ線分で模式的に表現している。 In order to guide the slab S drawn from the mold 12 from the vertical direction to the horizontal direction and prevent the slab S from being deformed by the static iron pressure, a plurality of pairs of rolls 14 are formed along a curve such as an arc or a hyperbola. Be arranged. A part of the roll 14 has a function as a pinch roll for pulling out the slab S. With reference to FIG. 2, the slab S drawn vertically downward from the mold 12 is bent in the upper straightening band 20B after passing through the vertical band 20A, kept in a curved state in the curved band 20C, and then in the lower part. It is bent back into a flat plate in the straightening band 20D and passes through the horizontal band 20E. An unsolidified portion of molten steel exists inside the slab S from directly below the mold to the horizontal band, and the roll 14 is arranged so as to support the surface of the slab S from directly below the mold to almost the entire length of the horizontal band. Spray nozzles 13 are located between rolls adjacent to each other in the casting direction, and cooling water is sprayed from these spray nozzles 13 onto the slab S to perform secondary cooling of the slab. A plurality of spray nozzles are actually arranged between each roll, but in FIG. 1, a part of the spray nozzles is schematically represented by a line segment connecting the plurality of nozzles.

水平帯の下流側には、固化した鋳片Sを切断するガストーチ、油圧切断などの切断装置15が設けられる。切断装置15によって切断された鋳片(スラブ)は、連続鋳造機100から排出され、圧延装置に搬送される。 On the downstream side of the horizontal band, a cutting device 15 such as a gas torch for cutting the solidified slab S and a hydraulic cutting is provided. The slab cut by the cutting device 15 is discharged from the continuous casting machine 100 and conveyed to the rolling device.

なお、図3に示す湾曲型の連続鋳造機も本実施形態において用いることができる。垂直曲げ型連続鋳造機では、鋳型から鉛直下方に鋳片を引き抜くため、鋳型12の内壁面は平坦である。しかし、湾曲型連続鋳造機の場合、鋳型から円弧状に鋳片Sを引き抜くため、湾曲鋳型21を用いる。鋳型21の内壁面が湾曲しているため、湾曲した鋳片が送り出され、下部矯正帯20Dで曲げ戻し矯正を行う。湾曲型の場合、垂直曲げ型の場合と異なり上部矯正帯での曲げ工程はない。 The curved continuous casting machine shown in FIG. 3 can also be used in this embodiment. In the vertical bending type continuous casting machine, since the slab is pulled out vertically downward from the mold, the inner wall surface of the mold 12 is flat. However, in the case of a curved continuous casting machine, a curved mold 21 is used in order to pull out the slab S in an arc shape from the mold. Since the inner wall surface of the mold 21 is curved, the curved slab is sent out, and the lower straightening band 20D performs the bending back straightening. In the case of the curved type, unlike the case of the vertical bending type, there is no bending process in the upper straightening band.

[溶鋼の成分組成]
本実施形態において、溶鋼の成分組成は、C:0.1質量%以上0.3質量%以下を含有するものとする。この範囲のC量の場合、鋳造条件によって最終凝固部(厚み中心部)の凝固組織の種類が変化するため、柱状晶を得るために鋳造条件を最適化する必要があるからである。厚鋼板において中心偏析が問題とならない鋼種はないため、溶鋼の成分組成は、上記C含有量を満たす限り特に限定されないが、例えば、耐摩耗鋼の成分組成として一般的な、質量%で、C:0.1〜0.3%、Si:0.01〜1.0%、Mn:0.3〜3.0%、P:0.025%以下、S:0.02%以下、Cr:0.01〜2.00%、及びAl:0.001〜0.100%を含有し、任意に、Cu:0.01〜1.0%、Ni:0.01〜1.0%、Mo:0.01〜1.0%、Nb:0.001〜0.100%、Ti:0.001〜0.050%、B:0.0001〜0.0100%、及びV:0.001〜1.0%から選ばれる1種以上を含有し、残部がFe及び不可避的不純物である成分組成とすることができる。
[Component composition of molten steel]
In the present embodiment, the component composition of the molten steel shall contain C: 0.1% by mass or more and 0.3% by mass or less. This is because, in the case of the amount of C in this range, the type of the solidified structure of the final solidified portion (thickness center portion) changes depending on the casting conditions, so that it is necessary to optimize the casting conditions in order to obtain columnar crystals. Since there is no steel type in which central segregation does not matter in thick steel sheets, the component composition of molten steel is not particularly limited as long as the above C content is satisfied. : 0.1 to 0.3%, Si: 0.01 to 1.0%, Mn: 0.3 to 3.0%, P: 0.025% or less, S: 0.02% or less, Cr: It contains 0.01 to 2.00% and Al: 0.001 to 0.100%, and optionally Cu: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Mo. : 0.01 to 1.0%, Nb: 0.001 to 0.100%, Ti: 0.001 to 0.050%, B: 0.0001 to 0.0100%, and V: 0.001 to It can have a component composition containing one or more selected from 1.0% and the balance being Fe and unavoidable impurities.

[最終凝固部における凝固組織]
本実施形態では、鋳片の厚み方向の最終凝固部における凝固組織を、全幅にわたって、厚み方向上面側では、デンドライト1次アーム間隔が平均で2.0mm以下の柱状晶となり、厚み方向下面側では、デンドライト1次アーム間隔が平均で2.0mm以下の柱状晶又は分岐柱状晶となるように制御することが重要である。
[Coagulation structure in the final coagulation part]
In the present embodiment, the solidified structure in the final solidified portion in the thickness direction of the slab is formed into columnar crystals having an average dendrite primary arm spacing of 2.0 mm or less on the upper surface side in the thickness direction over the entire width, and on the lower surface side in the thickness direction. It is important to control the dendrite primary arm spacing so that the average columnar crystal or branched columnar crystal is 2.0 mm or less.

[[凝固組織:柱状晶]]
最終凝固部(厚み中心部)の凝固組織は、溶鋼のC含有量と鋳造条件に依存する。一般的な垂直曲げ型又は湾曲型の連続鋳造機を用いる場合、C含有量が0.1質量%未満の低炭素鋼においては、特殊な制御をしない限り、最終凝固部の凝固組織は、厚み方向の上面側では柱状晶、下面側では分岐柱状晶となる。これに対して、本実施形態が対象とするC:0.1質量%以上0.3質量%以下の中高炭素鋼においては、最終凝固部の凝固組織は、鋳造条件(主に溶鋼過熱度ΔTと鋳造速度Vc)の影響を強く受け、鋳造条件によって、厚み方向の上面側では柱状晶、下面側では分岐柱状晶となることもあれば、厚み中心部全体が等軸晶となることもある。また、これらの組織が混合したような凝固組織になる場合もある。
[[Coagulation structure: columnar crystals]]
The solidified structure of the final solidified portion (thickness center portion) depends on the C content of the molten steel and the casting conditions. When a general vertical bending type or bending type continuous casting machine is used, in low carbon steel having a C content of less than 0.1% by mass, the solidification structure of the final solidified portion has a thickness unless special control is applied. Columnar crystals are formed on the upper surface side in the direction, and branched columnar crystals are formed on the lower surface side. On the other hand, in the medium-high carbon steel of C: 0.1% by mass or more and 0.3% by mass or less, which is the target of the present embodiment, the solidification structure of the final solidified portion has casting conditions (mainly molten steel superheat degree ΔT). Depending on the casting conditions, the upper surface side in the thickness direction may be columnar crystals, the lower surface side may be branched columnar crystals, or the entire thickness center may be equiaxed crystals. .. In addition, a coagulated tissue may be formed as if these tissues were mixed.

本実施形態では、鋳造条件を適宜選定することによって、最終凝固部の凝固組織を、全幅にわたって、厚み方向上面側では柱状晶となり、厚み方向下面側では柱状晶又は分岐柱状晶となるように制御する。凝固組織はHuntの関係式により決定すると言われており、等軸核が少ないほど、また凝固界面の先端の温度勾配が大きいほど、柱状晶になりやすい。そして、発明者らの鋭意調査により、溶鋼を鋳型に注入する際の溶鋼熱量が多いほど、柱状晶になりやすいことを発見した。これは、溶鋼熱量が多いほど等軸核の再溶解が発生し、核個数が減少したためと考えられる。ここで、溶鋼熱量Qは、Q=(溶鋼の熱容量C)×(単位時間当たりの注入量q)×(溶鋼過熱度ΔT)で表される。なお、単位時間当たりの注入量q(kg/分)は、Vc(m/分)×スラブ幅(m)×スラブ厚み(m)×密度(kg/m3)で求まる値である。なお、溶鋼過熱度ΔTは、(タンディッシュでの溶鋼温度)−(液相線温度)である。それ以外の条件に関しても、等軸核の生成を抑制することで柱状晶化を促進できる。鋳型内攪拌については、印加しないか強度を弱めるほど、柱状晶が生成しやすくなる。ストランド内攪拌については、印加しないことで柱状晶が生成しやすくなる。また、接種核に関して、TiN等の等軸晶の核となり得る析出物を減らすことも有効である。 In the present embodiment, by appropriately selecting the casting conditions, the solidified structure of the final solidified portion is controlled to be columnar crystals on the upper surface side in the thickness direction and columnar crystals or branched columnar crystals on the lower surface side in the thickness direction over the entire width. To do. It is said that the solidified structure is determined by Hunt's relational expression, and the smaller the number of equiaxed nuclei and the larger the temperature gradient at the tip of the solidified interface, the more likely it is to form columnar crystals. Then, through diligent research by the inventors, it was discovered that the greater the amount of heat of molten steel when injecting molten steel into a mold, the more likely it is to form columnar crystals. It is considered that this is because as the amount of heat of molten steel increases, remelting of equiaxed nuclei occurs and the number of nuclei decreases. Here, the amount of heat of molten steel Q is represented by Q = (heat capacity of molten steel C) × (injection amount q per unit time) × (degree of superheat of molten steel ΔT). The injection amount q (kg / min) per unit time is a value obtained by Vc (m / min) × slab width (m) × slab thickness (m) × density (kg / m 3). The molten steel superheat degree ΔT is (molten steel temperature in tundish) − (liquidus temperature). Under other conditions as well, columnar crystallization can be promoted by suppressing the formation of equiaxed nuclei. Regarding agitation in the mold, the more the application is not applied or the strength is weakened, the easier it is for columnar crystals to be formed. As for the stirring in the strand, columnar crystals are likely to be generated by not applying the stirring. It is also effective to reduce the amount of precipitates that can be the nuclei of equiaxed crystals such as TiN for the inoculated nuclei.

凝固組織の種類の判定は、以下の方法で行うことができる。鋳造方向に垂直な鋳片(鋼片)の断面に塩酸腐食を施す。この断面の厚み中心部(最終凝固厚み位置から厚み方向に±10mm以内)を投影機で撮影する。こうして得られた画像に基づいて、凝固組織の種類を識別する。 The type of coagulated tissue can be determined by the following method. Hydrochloric acid corrosion is applied to the cross section of the slab (steel slab) perpendicular to the casting direction. The central portion of the thickness of this cross section (within ± 10 mm in the thickness direction from the final solidification thickness position) is photographed with a projector. Based on the image thus obtained, the type of coagulated tissue is identified.

[[デンドライト1次アーム間隔:平均で2.0mm以下]]
本実施形態では、最終凝固部の凝固組織において、柱状晶及び分岐柱状晶を形成するデンドライト1次アーム間隔を平均で2.0mm以下とする。鋳片に適切な軽圧下を付与しても、凝固界面前面に濃化溶鋼が排出されることは、凝固が進行するうえで防ぐことはできない。凝固の最終段階では、この凝固界面前面の濃化溶鋼が凝固するため、ある程度の偏析が生じる。その際、偏析がどのように分布されるかは、デンドライト1次アーム間隔に依存する。デンドライト1次アーム間隔が大きい場合、粗大な偏析スポットが形成される。この場合、デンドライトの主軸のMn濃度は低いため、全体としての偏析度は決して高くはないものの、ガス切断割れが発生し得る長軸径が200μmを超える偏析スポットが発生してしまう。デンドライト1次アーム間隔が平均で2.0mm以下であれば、このような粗大な偏析スポットの発生を十分に抑制することができる。デンドライト1次アーム間隔の下限は特に限定されないが、鋳造条件の制約上、デンドライト1次アーム間隔は平均で概ね0.5mm以上となる。
[[Dendrite primary arm spacing: 2.0 mm or less on average]]
In the present embodiment, in the solidified structure of the final solidified portion, the dendrite primary arm spacing for forming columnar crystals and branched columnar crystals is set to 2.0 mm or less on average. Even if an appropriate light pressure is applied to the slab, the discharge of concentrated molten steel to the front surface of the solidification interface cannot be prevented in the progress of solidification. At the final stage of solidification, the concentrated molten steel in front of the solidification interface solidifies, so that some segregation occurs. At that time, how the segregation is distributed depends on the dendrite primary arm spacing. When the dendrite primary arm spacing is large, coarse segregation spots are formed. In this case, since the Mn concentration of the main shaft of the dendrite is low, the segregation degree as a whole is not high, but segregation spots having a major axis diameter of more than 200 μm where gas cutting cracks can occur are generated. When the dendrite primary arm spacing is 2.0 mm or less on average, the occurrence of such coarse segregation spots can be sufficiently suppressed. The lower limit of the dendrite primary arm spacing is not particularly limited, but due to restrictions on casting conditions, the dendrite primary arm spacing is approximately 0.5 mm or more on average.

デンドライト1次アーム間隔は、鋳造条件、特に比水量などの二次冷却条件によって制御できる。具体的には、比水量を多くするほど、デンドライト1次アーム間隔を小さくすることができる。また、二次冷却条件以外には、Biなどの界面活性元素を添加することにより、デンドライト1次アーム間隔を小さくすることができる。 The dendrite primary arm spacing can be controlled by casting conditions, especially secondary cooling conditions such as specific water volume. Specifically, as the amount of specific water increases, the dendrite primary arm spacing can be reduced. In addition to the secondary cooling conditions, the dendrite primary arm spacing can be reduced by adding a surfactant element such as Bi.

デンドライト1次アーム間隔の測定は、以下の方法で行うことができる。鋳造方向に垂直な鋳片(鋼片)の断面の厚み中心部(最終凝固厚み位置から厚み方向に±10mm以内)をピクリン酸で腐食し、投影機で撮影する。こうして得られた画像を処理して、デンドライト1次アーム間隔を測定する。なお、図4に示すように、「デンドライト1次アーム間隔」は、鋳片の幅方向に隣接するデンドライト1次アームの中心間距離λ1を意味する。本実施形態では、厚み中心部の全幅にわたってデンドライト1次アーム間隔を測定し、その平均値を算出する。 The dendrite primary arm spacing can be measured by the following method. The central part of the cross section of the slab (steel piece) perpendicular to the casting direction (within ± 10 mm in the thickness direction from the final solidification thickness position) is corroded with picric acid and photographed with a projector. The image thus obtained is processed to measure the dendrite primary arm spacing. As shown in FIG. 4, the “dendrite primary arm spacing” means the distance λ 1 between the centers of the dendrite primary arms adjacent to each other in the width direction of the slab. In the present embodiment, the dendrite primary arm spacing is measured over the entire width of the central portion of the thickness, and the average value thereof is calculated.

なお、本明細書において、「全幅にわたって」とは、鋳片の鋳造方向に垂直な断面において、鋳片の幅方向両端部間の全幅を意味するものではなく、鋳片の幅方向に延在する最終凝固厚み位置の間の全幅(三重点の間の全幅、図5参照)を意味するものとする。 In addition, in this specification, "over the entire width" does not mean the total width between both ends in the width direction of the slab in the cross section perpendicular to the casting direction of the slab, but extends in the width direction of the slab. It shall mean the total width between the final solidification thickness positions (the total width between the triple points, see FIG. 5).

[軽圧下の付与]
本実施形態では、上記のような最終凝固部における凝固組織としたうえで、凝固末期の鋳片に所定条件の軽圧下を付与することが重要である。具体的には、鋳片の鋳造方向で、少なくとも鋳片の厚み中心部の固相率fs(以後、単に「中心固相率fs」とも称する。)が0.2となる位置から凝固完了位置(CE位置)までの範囲において、鋳片に0.5mm/分以上2.0mm/分以下の圧下速度で軽圧下を付与する。
[Giving under light pressure]
In the present embodiment, it is important to give the slab at the end of solidification a light reduction under predetermined conditions after forming the solidified structure in the final solidified portion as described above. Specifically, in the casting direction of the slab, the solidification completion position starts from the position where at least the solid phase ratio fs at the center of the thickness of the slab (hereinafter, also simply referred to as “central solid phase ratio fs”) is 0.2. In the range up to (CE position), light reduction is applied to the slab at a reduction speed of 0.5 mm / min or more and 2.0 mm / min or less.

ここで中心固相率fsは、1次元の伝熱凝固計算によって求められる。伝熱・凝固計算にあたってはエンタルピー法や等価比熱法などが知られているがいずれの方法を用いてもよい。中心固相率fsは次式で算出される。この式は金属学的に厳密な定義には基づいていないが、簡易的にはこの式がよく用いられている。
fs=(T−TL)/{(1−k)・(T−TM)}
T:中心部の温度
TL:液相線温度
TM:純鉄の融点
k:溶質の分配係数
Here, the central solid phase ratio fs is obtained by a one-dimensional heat transfer solidification calculation. The enthalpy method and the equivalent specific heat method are known for heat transfer / solidification calculation, but any method may be used. The central solid phase ratio fs is calculated by the following equation. This formula is not based on a strict metallurgical definition, but it is often used for simplicity.
fs = (T-TL) / {(1-k) · (T-TM)}
T: Central temperature TL: Liquidus temperature TM: Pure iron melting point k: Solute partition coefficient

圧下速度:0.5mm/分以上2.0mm/分以下
圧下速度が0.5mm/分未満の場合、凝固収縮量を補償することができず、濃化溶鋼の流動を抑制することができないため、中心偏析は改善されない。また、圧下速度が2.0mm/分超えの場合、圧下量が過多となるため濃化溶鋼が上流側へ逆流し、その結果、逆V偏析と呼ばれる偏析が発生するため、やはり中心偏析は改善されない。よって、本実施形態では、圧下速度を0.5mm/分以上2.0mm/分以下とする。
Reduction speed: 0.5 mm / min or more and 2.0 mm / minute or less When the reduction speed is less than 0.5 mm / minute, the amount of solidification shrinkage cannot be compensated and the flow of concentrated molten steel cannot be suppressed. , Central segregation is not improved. Further, when the reduction speed exceeds 2.0 mm / min, the amount of reduction becomes excessive and the concentrated molten steel flows back to the upstream side, and as a result, segregation called reverse V segregation occurs, so that the central segregation is also improved. Not done. Therefore, in the present embodiment, the reduction speed is set to 0.5 mm / min or more and 2.0 mm / min or less.

中心固相率fs:0.2〜1.0(CE位置)
さらには、軽圧下付与するタイミングも中心偏析の低減には重要である。中心固相率fsが0.2を超えてから軽圧下を開始しても、既に中心偏析は形成されつつあるため、中心偏析の低減効果は小さい。また、中心偏析は、ミクロ偏析が流動して局所的に集まることにより発生するところ、fsが1.0となるCE位置よりも下流では、液相の移動は発生しない。よって、fsが1.0となるCE位置よりも下流側では軽圧下は不要となる。よって、本実施形態では、少なくともfsが0.2となる位置から1.0となる位置までの範囲で軽圧下を行う。
Central solid phase ratio fs: 0.2 to 1.0 (CE position)
Furthermore, the timing of applying light pressure is also important for reducing central segregation. Even if the light reduction is started after the central solid phase ratio fs exceeds 0.2, the central segregation is already being formed, so that the effect of reducing the central segregation is small. Further, the central segregation occurs when the microsegregation flows and locally gathers, but the liquid phase does not move downstream from the CE position where fs is 1.0. Therefore, light reduction is not required on the downstream side of the CE position where fs is 1.0. Therefore, in the present embodiment, light reduction is performed in a range from at least a position where fs is 0.2 to a position where fs is 1.0.

なお、軽圧下は、鋳片を挟んで対向した複数対のロールにおいて、各対のロール間隔(この間隔を「ロール開度」という)を、鋳造方向下流に向かって順次狭くなるように設定することによって、行うことができる。 Under light reduction, in a plurality of pairs of rolls facing each other across the slab, the roll interval of each pair (this interval is referred to as "roll opening degree") is set so as to be gradually narrowed toward the downstream in the casting direction. By doing so, it can be done.

以上説明した本発明の一実施形態による鋼の連続鋳造方法では、厚み中心部の凝固組織を適正に制御したうえで、凝固末期の鋳片に軽圧下を付与することができる。そのため、中心偏析をより十分に低減した高品質の鋼片(スラブ)を製造することができる。すなわち、厚鋼板におけるガス切断割れの原因となるスラブ段階での粗大な偏析スポットの発生を十分に抑制することができる。その結果、本実施形態で得た鋼片から、厳しい切断条件であったとしてもガス切断割れが発生しない厚鋼板を製造することができる。 In the continuous steel casting method according to the embodiment of the present invention described above, it is possible to appropriately control the solidification structure at the center of the thickness and then apply a light reduction to the slab at the end of solidification. Therefore, it is possible to manufacture high-quality steel pieces (slabs) with sufficiently reduced central segregation. That is, it is possible to sufficiently suppress the generation of coarse segregation spots at the slab stage, which causes gas cutting cracks in the thick steel sheet. As a result, from the steel pieces obtained in the present embodiment, it is possible to manufacture a thick steel sheet in which gas cutting cracks do not occur even under severe cutting conditions.

具体的には、鋳片厚み中心部におけるMn偏析度が2.1以上である偏析スポットの長軸径を200μm以下に制御することができる。ここで、「偏析スポットの長軸径」とは、鋳造方向に垂直な鋼片の断面で見た偏析スポットの幅方向の長さを意味する。鋳造方向に垂直な鋼片の断面において、最終凝固部を中心に厚み方向に20mmで、幅方向に全幅の範囲(測定範囲)で、電子線マイクロプローブアナライザー(EPMA)装置を用いてMn濃度を分析する。測定範囲内のMn濃度を、粗鋼のMn濃度で割ることによって、Mn偏析度を求める。Mn偏析度が2.1以上となる測定点群から偏析スポットを特定する。特定された全ての偏析スポットについて、その幅方向長さを求める。なお、分析条件は、電圧25kV、電流1.5μA、積算時間50m秒、ビーム径10μmとする。 Specifically, the major axis diameter of the segregation spot having the Mn segregation degree of 2.1 or more at the center of the slab thickness can be controlled to 200 μm or less. Here, the "major axis diameter of the segregation spot" means the length in the width direction of the segregation spot as seen in the cross section of the steel piece perpendicular to the casting direction. In the cross section of the steel piece perpendicular to the casting direction, the Mn concentration is measured using an electron probe microprobe analyzer (EPMA) device in the width direction (measurement range) at 20 mm in the thickness direction centering on the final solidified part. analyse. The Mn segregation degree is obtained by dividing the Mn concentration within the measurement range by the Mn concentration of crude steel. The segregation spot is specified from the measurement point cloud having the Mn segregation degree of 2.1 or more. For all the identified segregation spots, the length in the width direction is calculated. The analysis conditions are a voltage of 25 kV, a current of 1.5 μA, an integration time of 50 msec, and a beam diameter of 10 μm.

(実験例1)
凝固組織の制御実験として、垂直曲げ型連続鋳造機を用いて、質量%で、C:0.20%、Si:0.3%、Mn:0.70%、P:0.008%、S:0.003%、Cr:0.50%、Al:0.030%、Cu:0.01%、Ni:0.02%、Mo:0.18%、Nb:0.015%、Ti:0.030%、及びV:0.01%を含有し、残部がFe及び不可避的不純物からなる成分組成の溶鋼を鋳造した。鋳片厚みは250mmであり、鋳造幅は2100mmである。条件としては、溶鋼過熱度ΔTを10〜45℃の範囲で種々に振り、かつ、鋳造速度Vcを0.95〜1.4m/分の範囲で種々に振ることによって、溶鋼熱量Qを種々に振って、鋳片の厚み中心部(最終凝固厚み位置から厚み方向に±10mm以内)に占める柱状晶の割合を調査した。柱状晶割合は前述の3重点の間の区間を調査し、厚み中央部に占める柱状晶の割合で定義した。図6に、鋳型における溶鋼熱量Qと厚み中心部の柱状晶割合との関係を示す。Q≧1MWで凝固組織を完全に柱状晶にすることが可能であることが分かる。ただし、この閾値は核生成量に依存するため、電磁撹拌条件やTiN等の析出物の有無によって異なる。すなわち、これらの条件が異なる鋼を鋳造する場合、新たにQの閾値を決定する必要がある。
(Experimental Example 1)
As a solidification structure control experiment, using a vertical bending type continuous casting machine, C: 0.20%, Si: 0.3%, Mn: 0.70%, P: 0.008%, S in mass%. : 0.003%, Cr: 0.50%, Al: 0.030%, Cu: 0.01%, Ni: 0.02%, Mo: 0.18%, Nb: 0.015%, Ti: A molten steel having a component composition containing 0.030% and V: 0.01% and having the balance of Fe and unavoidable impurities was cast. The slab thickness is 250 mm and the casting width is 2100 mm. As conditions, the molten steel heat quantity Q can be varied by varying the molten steel superheat degree ΔT in the range of 10 to 45 ° C. and varying the casting speed Vc in the range of 0.95 to 1.4 m / min. By shaking, the ratio of columnar crystals to the center of the thickness of the slab (within ± 10 mm in the thickness direction from the final solidification thickness position) was investigated. The columnar crystal ratio was defined by the ratio of columnar crystals in the central part of the thickness by investigating the section between the triple points mentioned above. FIG. 6 shows the relationship between the calorific value Q of molten steel in the mold and the ratio of columnar crystals at the center of the thickness. It can be seen that the solidified structure can be completely formed into columnar crystals with Q ≧ 1 MW. However, since this threshold value depends on the amount of nucleation, it differs depending on the electromagnetic stirring conditions and the presence or absence of precipitates such as TiN. That is, when casting steels having different conditions, it is necessary to newly determine the threshold value of Q.

(実験例2)
垂直曲げ型連続鋳造機を用いて、実験例1と同じ成分組成の溶鋼を鋳造した。鋳片厚みは250mmであり、鋳造幅は2100mmである。表1に、各水準における、鋳造速度Vc、溶鋼過熱度ΔT、溶鋼熱量Q、二次冷却における比水量、軽圧下を行う際の圧下速度、圧下開始時の中心固相率、及び圧下終了時の中心固相率を示す。各水準において、中心固相率やCE位置は、伝熱計算によって求めた。メニスカスから24〜30mの範囲に位置するセグメント群のうち、所定のセグメントで軽圧下を行うことで、圧下開始時及び終了時の中心固相率を制御した。圧下速度は、軽圧下セグメントの圧下勾配によって制御した。なお、当然ながら、これら以外の鋳造条件は全水準で統一している。
(Experimental Example 2)
A molten steel having the same composition as that of Experimental Example 1 was cast using a vertical bending type continuous casting machine. The slab thickness is 250 mm and the casting width is 2100 mm. Table 1 shows the casting speed Vc, molten steel superheat degree ΔT, molten steel heat quantity Q, specific water amount in secondary cooling, reduction speed when performing light reduction, central solid phase ratio at the start of reduction, and end of reduction at each level. Indicates the central solid phase ratio of. At each level, the central solid phase ratio and CE position were determined by heat transfer calculation. Among the segment groups located in the range of 24 to 30 m from the meniscus, the central solid phase ratio at the start and end of the reduction was controlled by performing light reduction in a predetermined segment. The reduction rate was controlled by the reduction gradient of the light reduction segment. As a matter of course, casting conditions other than these are unified at all levels.

各水準で得られた鋳片の厚み中心部における凝固組織の種類を、既述の方法で判定し、結果を表1に示した。また、各水準で得られた鋳片の厚み中心部における凝固組織におけるデンドライト1次アーム間隔を既述の方法で測定し、幅方向の平均値を表1に示した。なお、凝固組織が等軸晶の場合、デンドライト1次アーム間隔の測定は困難であるため、ここでは省略した。 The type of solidified structure at the center of the thickness of the slabs obtained at each level was determined by the method described above, and the results are shown in Table 1. In addition, the dendrite primary arm spacing in the solidified structure at the center of the thickness of the slabs obtained at each level was measured by the method described above, and the average value in the width direction is shown in Table 1. When the solidified structure is equiaxed, it is difficult to measure the dendrite primary arm spacing, so this is omitted here.

各水準において、既述の方法で、鋳片の厚み中心部におけるMn偏析度が2.1以上である偏析スポットを特定し、そのうち長軸長が200μmを超える偏析スポットの個数をカウントし、結果を表1に示した。 At each level, segregation spots having a Mn segregation degree of 2.1 or more in the center of the thickness of the slab were identified by the method described above, and the number of segregation spots having a major axis length of more than 200 μm was counted. Is shown in Table 1.

各水準で得られた鋳片を加熱炉で加熱した後、熱間圧延を行い、さらに熱処理を施して、耐摩耗鋼板を製造した。そして、予熱や徐冷がなく、切断速度が30cm/分という厳しい条件下で鋼板をガス切断し、切断後1日経過後に、カラー検査で割れの有無を調査した。結果を表1に示す。 After heating the slabs obtained at each level in a heating furnace, they were hot-rolled and further heat-treated to produce wear-resistant steel sheets. Then, the steel sheet was gas-cut under severe conditions of a cutting speed of 30 cm / min without preheating or slow cooling, and one day after cutting, the presence or absence of cracks was investigated by a color inspection. The results are shown in Table 1.

Figure 2021053699
Figure 2021053699

表1から明らかなとおり、発明例1〜3では、粗大な偏析スポットの発生がなく、厚鋼板においてガス切断割れが発生しなかった。これに対して、比較例1〜6では、粗大な偏析スポットが発生し、厚鋼板においてガス切断割れが発生した。 As is clear from Table 1, in Invention Examples 1 to 3, no coarse segregation spots were generated, and no gas cutting cracks were generated in the thick steel sheet. On the other hand, in Comparative Examples 1 to 6, coarse segregation spots were generated, and gas cutting cracks were generated in the thick steel sheet.

(実験例3)
本発明者らの研究によれば、軽圧下を付与した場合における偏析低減効果は、凝固組織によって変わることが明らかとなった。本発明がターゲットとしている偏析形態は、Mn偏析度が2.1以上でかつ長軸径が200μm超えとなる偏析スポットであるが、これは比較的高濃度で粒径も小さく、凝固の最終段階で生成されるような偏析スポットであるため、凝固組織が大きく影響を及ぼす。
(Experimental Example 3)
According to the research by the present inventors, it was clarified that the segregation reducing effect when light pressure is applied varies depending on the solidified structure. The segregation form targeted by the present invention is a segregation spot having a Mn segregation degree of 2.1 or more and a major axis diameter of more than 200 μm, but this is a relatively high concentration, a small particle size, and the final stage of solidification. Since it is a segregated spot as generated in, the solidified structure has a great influence.

そこで、垂直曲げ連続鋳造機を用いて、種々の鋳造条件で、実験例1と同じ成分組成の溶鋼を鋳造した。鋳片厚みは250mmであり、鋳造幅は2100mmである。具体的には、第1グループとして、鋳造速度Vc=1.4m/分、溶鋼過熱度ΔT=45℃、溶鋼熱量Q=1.98MW、二次冷却における比水量=1.92L/kgの条件で、鋳片の厚み中心部の凝固組織が柱状晶(上面側:柱状晶、下面側:分岐柱状晶)となる水準と、第2グループとして、鋳造速度Vc=1.4m/分、溶鋼過熱度ΔT=10℃、溶鋼熱量Q=0.44MW、二次冷却における比水量=1.92L/kgの条件で、鋳片の厚み中心部の凝固組織が等軸晶となる水準を設けた。各グループにおいて、鋳片に付与する圧下速度を変化させた種々の水準の試験を行った。いずれの水準でも、軽圧下開始時の中心固相率は0.2とし、凝固完了位置まで軽圧下を付与し続けた。なお、第1グループにおいては、いずれの水準でも、デンドライト1次アーム間隔は平均で2.0mm以下であった。 Therefore, using a vertical bending continuous casting machine, molten steel having the same composition as that of Experimental Example 1 was cast under various casting conditions. The slab thickness is 250 mm and the casting width is 2100 mm. Specifically, as the first group, the conditions are that the casting speed Vc = 1.4 m / min, the degree of superheat of molten steel ΔT = 45 ° C., the amount of heat of molten steel Q = 1.98 MW, and the amount of specific water in secondary cooling = 1.92 L / kg. Then, the solidification structure at the center of the thickness of the slab becomes columnar crystals (upper surface side: columnar crystals, lower surface side: branched columnar crystals), and as the second group, the casting rate Vc = 1.4 m / min, molten steel overheating. Under the conditions of degree ΔT = 10 ° C., heat quantity of molten steel Q = 0.44 MW, and specific water amount in secondary cooling = 1.92 L / kg, the level at which the solidified structure at the center of the thickness of the slab became equiaxed was set. In each group, various levels of tests were performed with varying reduction velocities applied to the slabs. At any level, the central solid phase ratio at the start of light reduction was 0.2, and light reduction was continued until the solidification completion position. In the first group, the dendrite primary arm spacing was 2.0 mm or less on average at any level.

図7に、圧下速度とMn平均偏析度(既述の測定範囲内の平均Mn濃度を粗鋼のMn濃度で割った値)との関係を示し、図8に、圧下速度と偏析割合(既述の測定範囲の中でMn偏析度が2.1超えとなる面積の割合)との関係を示す。なお、図7及び図8中、▲のプロットは、鋳片の厚み中心部における凝固組織が等軸晶となる水準を示し、●のプロットは、鋳片の厚み中心部における凝固組織が柱状晶となる水準を示す。 FIG. 7 shows the relationship between the reduction rate and the Mn average segregation degree (the value obtained by dividing the average Mn concentration within the measurement range described above by the Mn concentration of the crude steel), and FIG. 8 shows the reduction rate and the segregation ratio (described above). The relationship with (the ratio of the area where the Mn segregation degree exceeds 2.1) in the measurement range of is shown. In FIGS. 7 and 8, the plot of ▲ shows the level at which the solidified structure at the center of the thickness of the slab becomes equiaxed, and the plot of ● shows the columnar crystal of the solidified structure at the center of the thickness of the slab. Indicates the level to be.

図7から明らかなように、圧下速度には適正な範囲が存在していることが分かる。また、同じ圧下速度の場合は、凝固組織が柱状晶の方が中心偏析は低減できている。また、図8から明らかなように、Mn偏析度が2.1超えの面積割合は、柱状晶の場合は適正な圧下速度の範囲で低減しているのに対し、等軸晶の場合はほとんど低減していない。従って、高濃度域の偏析に対しては、等軸晶で軽圧下を付与しても改善効果が認められないことが判明した。等軸晶の場合でも平均偏析度が低減しているのは、比較的に低偏析度の面積が低減しているからである。 As is clear from FIG. 7, it can be seen that there is an appropriate range for the reduction speed. Further, at the same reduction rate, the central segregation can be reduced when the solidified structure is columnar crystals. Further, as is clear from FIG. 8, the area ratio in which the Mn segregation degree exceeds 2.1 is reduced in the range of the appropriate reduction speed in the case of columnar crystals, whereas it is almost in the case of equiaxed crystals. Not reduced. Therefore, it was found that no improvement effect was observed for segregation in the high concentration range even if light reduction was applied with equiaxed crystals. Even in the case of equiaxed crystals, the average segregation degree is reduced because the area with a relatively low segregation degree is reduced.

以上の結果から、厚み中心部の凝固組織を柱状晶に制御したうえで適切な範囲の軽圧下を付与することが、ガス切断割れを抑制するためには必要である。 From the above results, it is necessary to control the solidified structure at the center of the thickness into columnar crystals and to apply a light reduction in an appropriate range in order to suppress gas cutting cracks.

本発明の鋼の連続鋳造方法によれば、中心偏析をより十分に低減し、特に、粗大な偏析スポットの発生を防いで、厚鋼板におけるガス切断後の遅れ破壊を防止することが可能である。よって、本発明により製造された鋼片から製造される厚鋼板は、耐摩耗鋼板などの用途に好適に使用される。 According to the continuous steel casting method of the present invention, it is possible to further sufficiently reduce central segregation, particularly prevent the occurrence of coarse segregation spots, and prevent delayed fracture of thick steel sheets after gas cutting. .. Therefore, the thick steel plate produced from the steel pieces produced according to the present invention is suitably used for applications such as wear-resistant steel plates.

100 連続鋳造機(垂直曲げ型)
10 取鍋
11 タンディッシュ
12 鋳型
13 スプレーノズル
14 ロール
15 切断装置
16 電磁撹拌装置
20A 垂直帯
20B 上部矯正帯
20C 湾曲帯
20D 下部矯正帯
20E 水平帯
21 湾曲鋳型
M 溶鋼
S 鋳片
100 continuous casting machine (vertical bending type)
10 Ladle 11 Tandish 12 Mold 13 Spray nozzle 14 Roll 15 Cutting device 16 Electromagnetic stirrer 20A Vertical band 20B Upper straightening band 20C Curved band 20D Lower straightening band 20E Horizontal band 21 Curved mold M Molten steel S slab

Claims (1)

垂直曲げ型又は湾曲型の連続鋳造機を用いた鋼の連続鋳造方法であって、
C:0.1質量%以上0.3質量%以下を含有する溶鋼を鋳型で一次冷却して、内部に未凝固の溶鋼が残存した鋳片を得る一次冷却工程と、
前記鋳型から前記鋳片を引き抜き、前記鋳片を鋳造方向に並んだ複数対のロールで支持しつつ二次冷却して、内部が全て凝固した鋼片を得る二次冷却工程と、
を有し、
(A)前記鋳片の厚み方向の最終凝固部における凝固組織が、全幅にわたって、
厚み方向上面側では、デンドライト1次アーム間隔が平均で2.0mm以下の柱状晶となり、
厚み方向下面側では、デンドライト1次アーム間隔が平均で2.0mm以下の柱状晶又は分岐柱状晶となるように鋳造条件を制御しつつ、
(B)前記二次冷却工程では、前記鋳片の鋳造方向で、少なくとも前記鋳片の厚み中心部の固相率が0.2となる位置から凝固完了位置までの範囲において、前記鋳片に0.5mm/分以上2.0mm/分以下の圧下速度で軽圧下を付与する
ことを特徴とする鋼の連続鋳造方法。
A method for continuous casting of steel using a vertical bending type or curved type continuous casting machine.
C: A primary cooling step of primary cooling a molten steel containing 0.1% by mass or more and 0.3% by mass or less with a mold to obtain a slab in which unsolidified molten steel remains inside.
A secondary cooling step of pulling out the slab from the mold and secondary cooling the slab while supporting it with a plurality of pairs of rolls arranged in the casting direction to obtain a steel slab whose inside is completely solidified.
Have,
(A) The solidified structure in the final solidified portion in the thickness direction of the slab covers the entire width.
On the upper surface side in the thickness direction, columnar crystals with an average dendrite primary arm spacing of 2.0 mm or less are formed.
On the lower surface side in the thickness direction, while controlling the casting conditions so that the dendrite primary arm spacing becomes a columnar crystal or a branched columnar crystal of 2.0 mm or less on average.
(B) In the secondary cooling step, in the casting direction of the slab, at least in the range from the position where the solid phase ratio at the center of the thickness of the slab is 0.2 to the solidification completion position, the slab is formed. A method for continuously casting steel, characterized in that light reduction is applied at a reduction speed of 0.5 mm / min or more and 2.0 mm / min or less.
JP2020139662A 2019-09-25 2020-08-20 Steel continuous casting method Active JP7126099B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019174535 2019-09-25
JP2019174535 2019-09-25

Publications (2)

Publication Number Publication Date
JP2021053699A true JP2021053699A (en) 2021-04-08
JP7126099B2 JP7126099B2 (en) 2022-08-26

Family

ID=75273006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020139662A Active JP7126099B2 (en) 2019-09-25 2020-08-20 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP7126099B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167698A (en) * 2010-02-16 2011-09-01 Sumitomo Metal Ind Ltd Continuously cast slab for high strength steel sheet, continuous casting method therefor, and steel sheet obtained from the cast slab
JP2016028827A (en) * 2014-07-25 2016-03-03 Jfeスチール株式会社 Steel continuous casting method
JP2019030892A (en) * 2017-08-09 2019-02-28 Jfeスチール株式会社 Continuous casting method for steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167698A (en) * 2010-02-16 2011-09-01 Sumitomo Metal Ind Ltd Continuously cast slab for high strength steel sheet, continuous casting method therefor, and steel sheet obtained from the cast slab
JP2016028827A (en) * 2014-07-25 2016-03-03 Jfeスチール株式会社 Steel continuous casting method
JP2019030892A (en) * 2017-08-09 2019-02-28 Jfeスチール株式会社 Continuous casting method for steel

Also Published As

Publication number Publication date
JP7126099B2 (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP4725216B2 (en) Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
JP5854831B2 (en) Abrasion resistant steel material having excellent fatigue characteristics and method for producing the same
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
Ma et al. Causes of transverse corner cracks in microalloyed steel in vertical bending continuous slab casters
US20100215981A1 (en) Hot rolled thin cast strip product and method for making the same
Geng et al. Feeding steel strip technology in continuous casting process: a review
JP3624804B2 (en) Method for producing ridging resistant ferritic stainless steel
JP6111892B2 (en) Continuous casting method and continuous casting slab
US20130302644A1 (en) Hot rolled thin cast strip product and method for making the same
JPH06256896A (en) Wear-resistant steel excellent in surface property and its production
JP7126099B2 (en) Steel continuous casting method
JP6809243B2 (en) Continuously cast steel slabs and their manufacturing methods
EP3680358A1 (en) Steel sheet and method for producing same
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP6455287B2 (en) Manufacturing method of continuous cast slab
KR20170011808A (en) Method for casting
JP2009214122A (en) Composite roll for hot rolling and its manufacturing method
JP6651306B2 (en) Continuous casting method
JPH0660369B2 (en) Cr-Ni type stainless steel that is less likely to crack during the casting process or the subsequent hot rolling process
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JPH0617505B2 (en) Hot working method for Mo-containing, N-austenitic stainless steel
JP7031628B2 (en) Continuous steel casting method
JP6052504B2 (en) High-strength hot-rolled steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R150 Certificate of patent or registration of utility model

Ref document number: 7126099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150