JP2021050395A - 原子力設備部材の製造方法及び原子力設備部材 - Google Patents

原子力設備部材の製造方法及び原子力設備部材 Download PDF

Info

Publication number
JP2021050395A
JP2021050395A JP2019174714A JP2019174714A JP2021050395A JP 2021050395 A JP2021050395 A JP 2021050395A JP 2019174714 A JP2019174714 A JP 2019174714A JP 2019174714 A JP2019174714 A JP 2019174714A JP 2021050395 A JP2021050395 A JP 2021050395A
Authority
JP
Japan
Prior art keywords
metal
space
pressure
manufacturing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019174714A
Other languages
English (en)
Other versions
JP7264784B2 (ja
Inventor
和馬 廣坂
Kazuma Hirosaka
和馬 廣坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019174714A priority Critical patent/JP7264784B2/ja
Publication of JP2021050395A publication Critical patent/JP2021050395A/ja
Application granted granted Critical
Publication of JP7264784B2 publication Critical patent/JP7264784B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Powder Metallurgy (AREA)

Abstract

【課題】大型の金属部材であってもHIP接合可能な原子力設備部材の製造方法を提供する。【解決手段】第1金属部材と、金属焼結体を介して前記第1金属部材に接合される第2金属部材とを備える原子力設備部材の製造方法であって、前記第1金属部材の第1接合面と前記第2金属部材の第2接合面との双方の接合面を臨む画成空間を画成する、可撓性を有する画成部材を配置する配置工程S1と、前記画成空間に金属原料を充填する充填工程S3と、前記画成部材の前記画成空間とは反対側に形成されるガス空間にガスを注入し、前記画成部材を介した前記金属原料へのガス圧の伝播によって前記画成空間内で前記金属原料の熱間等方圧加圧を行うことで前記画成空間内に前記金属焼結体を形成するHIP工程S5と、を含む。【選択図】図1

Description

本発明は、原子力設備部材の製造方法及び原子力設備部材に関する。
金属部材の処理技術として、熱間等方圧加圧法(HIP法)が知られている。HIP法に関する技術として、特許文献1に記載の技術が知られている。特許文献1には、一端が開口するカプセル内に処理材を充填し、該開口部を通じて真空脱気し、次いで該開口部を密封して処理体を製作した後、該処理体の密封部を下にして熱間静水圧加圧装置に供して、熱間静水圧加圧装置の下部の低温部に設けられた断熱材を有する支持具により前記密封部を囲撓して支持した状態で熱間静水圧加圧処理を行うことを特徴とする熱間静水圧加圧方法が記載されている。(特に請求項1参照)。
特開平2−294407号公報
ところで、HIP法を用いることで、異なる金属部材同士を接合(例えば拡散接合)できる。以下、このような接合を「HIP接合」という。しかし、特許文献1に記載の技術では、HIP接合可能な金属部材は、熱間等方圧加圧を行う高圧容器に収容可能な大きさに制限される。従って、従来の高圧容器には収容できない大型の金属部材に対してもHIP接合可能な新たな技術が望まれる。
本発明が解決しようとする課題は、大型の金属部材であってもHIP接合可能な原子力設備部材の製造方法及び原子力設備部材を提供することである。
本発明は、第1金属部材と、金属焼結体を介して前記第1金属部材に接合される第2金属部材とを備える原子力設備部材の製造方法であって、前記第1金属部材の第1接合面と前記第2金属部材の第2接合面との双方の接合面を臨む画成空間を画成する、可撓性を有する画成部材を配置する配置工程と、前記画成空間に金属原料を充填する充填工程と、前記画成部材の前記画成空間とは反対側に形成されるガス空間にガスを注入し、前記画成部材を介した前記金属原料へのガス圧の伝播によって前記画成空間内で前記金属原料の熱間等方圧加圧を行うことで前記画成空間内に前記金属焼結体を形成するHIP工程と、を含む原子力設備部材の製造方法に関する。その他の解決手段は発明を実施するための形態において後記する。
本発明によれば、大型の金属部材であってもHIP接合可能な原子力設備部材の製造方法及び原子力設備部材を提供できる。
本実施形態の製造方法を示すフローチャートである。 本実施形態の製造方法により製造される原子力設備部材を示す図である。 配置工程を説明する図であり、第1金属部材と一体に形成された反応部に第2金属部材を嵌めた状態を示す図である。 図3のB−B線断面図である。 第1圧力調整工程を説明する図であり、画成部材をガス空間の側に張り出した状態を示す図である。 第2圧力調整工程を説明する図であり、金属原料を充填した画成空間を減圧する様子を示す図である。 HIP工程を説明する図であり、ガス空間にガスを注入する様子を示す図である。 HIP工程を説明する図であり、金属原料を加熱する様子を示す図である。 冷却工程を説明する図であり、HIP工程で使用した加熱機構及び断熱材を第1金属部材及び第2金属部材から取り外した状態を示す図である。 切除工程を説明する図であり、図2のA部拡大図である。 図10Aの金属焼結体を拡大して示す図である。 別の実施形態に係る図であり、金属鍛造部材を画成空間に配置した反応部を示す図である。 別の実施形態に係る図であり、冷却機構を備える温度制御機構を示す図である。
以下、本発明を実施するための形態(本実施形態)を説明する。ただし、本発明は以下の内容及び図示の内容になんら限定されず、本発明の効果を著しく損なわない範囲で任意に変形して実施できる。本発明は、異なる実施形態同士を組み合わせて実施できる。以下の記載において、異なる実施形態において同じ部材については同じ符号を付し、重複する説明は省略する。
図1は、本実施形態の製造方法を示すフローチャートである。また、図2は、本実施形態の製造方法により製造される原子力設備部材を示す図である。図1に示す製造方法は、図2に示す原子力設備部材10を製造する方法である。
原子力設備部材10は、第1金属部材1と、金属焼結体3を介して第1金属部材1に接合される第2金属部材2とを備える。図2に示す例では、円管状の第1金属部材1と円管状の第2金属部材2とが金属焼結体3により接合される。金属焼結体3は、詳細は後記するが、HIP法により生成したものである。
原子力設備部材10は、例えば圧力容器(図示しない)である。圧力容器は、例えば圧力容器本体部(図示しない)、ノズル、隔離弁を備え、第1金属部材1は例えば圧力容器本体部に接合されるノズルであり、第2金属部材2はノズルに接合される隔離弁である。ノズル及び隔離弁はいずれも端部を円管状に構成され、端部の円管同士がHIP接合される。原子力設備部材10は、圧力容器の他にも、例えば、原子炉、格納容器、圧力制御室、タービン、発電機、復水器、これらを接続する長大配管、この長大配管に接続される弁等、比較的大型で従来のHIP法における高圧容器に収容が難しい原子力設備に適用可能である。
なお、図2のA部については、図3、図10A等を参照しながら後記する。
配置工程S1は、後記する図3に示すように、第1金属部材1の第1接合面1aと第2金属部材2の第2接合面2aとの双方の接合面を臨む画成空間30を画成する、可撓性を有する画成部材40を配置する工程である。配置工程S1について、図3を参照しながら説明する。
図3は、配置工程S1を説明する図であり、第1金属部材1と一体に形成された反応部60に第2金属部材2を嵌めた状態を示す図である。図3は、上記のように例えば円管で構成された第1金属部材1及び第2金属部材2の接合部分を拡大して図示したものである。具体的には、図3に示す部分に対し、後記するHIP工程S5、切除工程S7等を経ることにより上記図2のA部が形成される。即ち、図3に示す部分において第1金属部材1と第2金属部材2とがHIP接合されることで、図2のA部に示すように、これらが金属焼結体3を介してHIP接合される。
第1金属部材1は反応部60を備え、反応部60は第1金属部材1の端部で連続的に形成される。反応部60は、第1金属部材1の端部において張り出すように形成される。反応部60は、第1金属部材1の延びる側とは反対側に嵌合部61を備える。嵌合部61は、図3では図示しないが、本実施形態では、円管状の第1金属部材1の全周に亘って形成される。また、第2金属部材2の端部は、フランジのように張り出した張り出し部2bを備える。張り出し部2bも、図3では図示しないが、円管状の第2金属部材2の全周に亘って形成される。張り出し部2bの径方向長さ(図3での紙面上下方向長さ)は嵌合部61の径方向長さ(図3での紙面上下方向長さ)とほぼ一致しており、張り出し部2bは嵌合部61に嵌合可能である。
嵌合部61と張り出し部2bとの嵌合部分には、これらの隙間を埋めるように、仮溶接部70が形成される。仮溶接部70により、詳細は後記するが、画成空間30の減圧状態を維持できる。
反応部60は、画成空間30及びガス空間31を内部に備える。画成空間30は、第1金属部材1の第1接合面1aと第2金属部材2の第2接合面2aとの双方の接合面を臨む空間である。画成空間30は、第1接合面1a及び第2接合面2aに沿って円環状に形成される。反応部60は開口53及び連通路54を備える。画成空間30は連通路54により外部と連通しており、外部に露出した開口53を通じ、例えば粉末状の金属原料80(図3では図示しない)が充填可能である(後記する)。
ガス空間31は、画成空間30の径方向内側及び外側に形成される。反応部60は開口51及び連通路52を備える。ガス空間31は連通路52により外部と連通しており、外部に露出した開口51を通じ、高圧の不活性ガス(後記する)がガス空間31に注入可能である(後記する)。
反応部60は、画成空間30とガス空間31とを区画するように配置された画成部材40を備える。画成部材40は、例えばロウ付け、溶接等により、反応部60の内壁60aに周方向全域に亘って固定される。画成部材40は、画成空間30の径方向内側の内壁60a及び外側の内壁60aのそれぞれに配置され、いずれも画成空間30とガス空間31とを気密にするように配置される。従って、画成空間30は、主に、画成部材40,40と第1接合面1aと第2接合面2aとにより画成される。画成部材40の配置場所について、図4を参照しながら説明する。
図4は、図3のB−B線断面図である。画成部材40,40は、図示のように、円環状の第1金属部材1の周方向に延在する。画成部材40,40の間には、画成空間30が形成される。画成空間30には、連通路54を通じて金属原料80(図4では図示しない)が充填可能である。画成部材40と連通路52との間には、ガス空間31が形成される。ガス空間31は、径方向外側及び内側にそれぞれ形成される。
図3に戻って、画成部材40は、可撓性を有する金属材料により構成され、例えば金属箔である。画成部材40を金属箔で構成することで、画成空間30とガス空間31との圧力差に応じて金属箔を変形でき、ガス空間31のガス圧を金属箔を介して画成空間30内部の金属原料80に伝播できる。画成部材40の金属材料としては例えばSUSであり、画成部材40の厚さは例えば5μm以上100μm以下である。
なお、図3の例では、反応部60は第1金属部材1と一体に形成されているが、第2金属部材2と一体に形成されてもよい。
図1に戻って、第1圧力調整工程S2は、配置工程S1後であって充填工程S3前に、画成空間30の圧力をガス空間31の圧力よりも高くする工程である。第1圧力調整工程S2を含むことで、画成部材40がダイアフラムのように撓み、画成部材40をガス空間31の側に張り出させることができる。第1圧力調整工程S2について、図5を参照しながら説明する。
図5は、第1圧力調整工程S2を説明する図であり、画成部材40をガス空間31の側に張り出した状態を示す図である。第1圧力調整工程S2は、例えば、ガス空間31を減圧することで行うことができる。ガス空間31の減圧は、例えば、開口51にホース90を接続し、実線矢印で示すようにホース90及び連通路52を介した脱気により行うことができる。ただし、開口53及び連通路54を介したガス空間31への注気により、画成空間30を昇圧してもよい。
脱気は、例えば真空ポンプ(図示しない)を用いることができる。減圧の程度は特に制限されないが、ガス空間31の圧力は例えば750hPa程度にできる。減圧速度は、例えば50Pa/分以下、好ましくは10Pa/分以下にできる。圧力及び減圧速度をこの程度にすることで、画成部材40の大きな変形を抑制でき、画成部材40の破損を抑制できる。
図1に戻って、充填工程S3は、画成空間30に金属原料80を充填する工程である。画成空間30への金属原料80の充填は、上記のように、開口53及び連通路54を通じて行うことができる。充填は、画成空間30に隙間が発生しないようにできるだけ密に充填することが好ましい。これにより、焼成後に生成する金属焼結体3での気孔3b(後記する)の含有量を減らすことができる。
ここで、上記の第1圧力調整工程S2での減圧後、画成部材40が撓んだ状態(例えばガス空間31の減圧状態)を維持することが好ましい。従って、充填工程S3は、画成空間30の圧力がガス空間31の圧力よりも高い状態で行われることが好ましい。これにより、画成部材40をガス空間31の側に張り出すことで内容積が大きくなった画成空間30に金属原料80を充填でき、画成空間30への金属原料80の充填量を多くできる。なお、充填後、ガス空間31の減圧状態を解除し、圧力を例えば大気圧等に戻すことが好ましい。
充填する金属原料80の物性及び成分は特に制限されない。ただし、金属原料80は、後記するHIP工程S5での熱間等方圧加圧が進行し易い物性及び成分のものを使用することが好ましい。具体的には例えば、レーザ回折式粒度分布測定装置により測定される平均粒径が例えば100μm以下、好ましくは50μm以下の粒径を有するチタン−ニッケル基合金粉末により構成される金属原料80を使用できるが、これに限られるものではない。
充填は、例えば第1金属部材1及び第2金属部材2の全体を振動させながら行うことが好ましい。これにより、画成空間30の周方向全域において密に金属原料80を充填できる。また、充填する金属原料80は、予め乾燥させておくことが好ましい。乾燥により、金属原料80を画成空間30の周方向全域において密に充填し易くできる。
第2圧力調整工程S4は、充填工程S3後であってHIP工程S5前に、画成空間30を減圧する工程である。第2圧力調整工程S4について、図6を参照しながら説明する。
図6は、第2圧力調整工程S4を説明する図であり、金属原料80を充填した画成空間30を減圧する様子を示す図である。画成空間30の減圧は、例えば、開口53にホース91を接続し、実線矢印で示すようにホース91及び連通路54を介した脱気により行うことができる。減圧は、例えば真空ポンプを用いることができる。減圧の程度は真空又は真空に近いことが好ましく、画成空間30の圧力は例えば10Pa以下、好ましくは1Pa以下、より好ましくは0.1Pa以下である。減圧速度は、例えば50Pa/分以下、好ましくは10Pa/分以下にできる。
第2圧力調整工程S4により、HIP工程前に画成空間30を減圧でき、HIP工程後に生成する金属焼結体3中の気孔3b(後記する)の含有量を減らすことができる。また、充填工程S3後の減圧により、充填した金属原料80に沿ってガス空間31の側に張り出していた画成部材40は、画成空間30の側に張り出そうと金属原料80に密着し、画成部材40の変形が制限される。これにより、画成部材40の大きな変形を抑制でき、画成部材40の破損を抑制できる。
画成空間30の減圧後、開口53に仮溶接部71(図7参照)が形成され、画成空間30が密封される。
図1に戻って、HIP工程S5は、画成部材40の画成空間30とは反対側に形成されるガス空間31にガスを注入し、画成部材40を介した金属原料80へのガス圧の伝播によって画成空間30内で金属原料80の熱間等方圧加圧を行うことで画成空間30内に金属焼結体3を形成する工程である。HIP工程S5について、図7及び図8を参照しながら説明する。
図7は、HIP工程S5を説明する図であり、ガス空間31にガスを注入する様子を示す図である。ガス空間31へのガスの注入は、開口51にホース90を接続し、実線矢印で示すようにホース90及び連通路52を介した注入により行うことができる。注入は、例えば高圧ポンプ(図示しない)を用いて行うことができる。注入するガスは不活性ガスであることが好ましく、例えばアルゴンガス、窒素ガス等である。
ここで、金属原料80は、ガス空間31の側に張り出した画成部材40に沿って画成空間30に密に充填されている。このため、ガス空間31にガスが注入されても、画成部材40の変形が制限されることから、画成部材40は図示のようにガス空間31の側に張り出したままになっている。
ガスの注入は、ガス空間31の圧力が金属原料80の熱間等方圧加圧を行う所定圧力になるように行うことが好ましい。ここでいう所定圧力は、第1金属部材1及び第2金属部材の構成金属及び金属原料80の構成金属によっても異なるが、概ね75MPa以上250MPa以下に含まれる圧力値である。即ち、HIP工程S5は、ガス空間31での圧力として75MPa以上250MPa以下の圧力で行われることが好ましい。ガス空間31の圧力をこの範囲にすることで、画成部材40を介したガス圧の伝播により、75MPa以上250MPa以下の圧力で金属原料80の熱間等方圧加圧を行うことができる。なお、ガス空間31の圧力は、好ましくは100MPa以上200MPa以下である。
反応部60では、金属原料80に対し、円管状の第1金属部材1及び第2金属部材2の軸方向(紙面左右方向)からの圧力はかからない。即ち、金属原料80に対し、画成部材40を介して径方向(紙面上下方向)からの圧力がかかるが、軸方向(紙面左右方向)からの圧力はかからない。これは、金属原料80から見て、第1金属部材1の第1接合面1a及び第2金属部材2の第2接合面2aは固定端であることに起因する。このため、画成部材40を介してガス圧が伝播された金属原料80の移動は、第1接合面1a及び第2接合面2aにより制限される。従って、画成部材40を介したガス圧により、金属原料80は第1接合面1a及び第2接合面2aで押し返される(作用反作用の法則)。この結果、金属原料80は全方向から概ね同程度の圧力で加圧され、HIP接合が実現される。
図示の例では、金属原料80からみて径方向に対象になるように(紙面上下方向で対象になるように)、画成部材40が配置される。配置される画成部材40の数は1つのみ、即ち、金属原料80へのガス圧の伝播を行う部分は1箇所のみでもよいが、より同じ圧力で金属原料80を全方向から加圧する観点から、図示のように複数の画成部材40を配置することが好ましく、中でも、図示のように金属原料80からみて対称になるように画成部材40を配置することが好ましい。
ガスの注入は、ガス空間31での昇圧速度が10Pa/分以上50Pa以下/分以下になるように行うことが好ましい。ガス空間31の圧力を、金属原料80の熱間等方圧加圧を行う所定圧力まで上記昇圧速度で上昇させることで、画成空間30とガス空間31との圧力差に起因して変動する画成部材40の変形を緩やかにできる。これにより、画成部材40の破損を抑制できる。
ガス空間に供給されるガスの温度は、5℃以上40℃以下であることが好ましい。常温又は常温に近い温度である5℃以上40℃以下のガスを用いることで、常温で使用可能な汎用の高圧ポンプを使用できる。
HIP工程S5は、画成空間30の外部に配置された加熱機構100の熱による加熱によって行われることが好ましい。外部に配置された加熱機構100の熱による加熱を行うことで、簡便な方法で金属原料80を加熱できる。加熱機構100について、図8を参照しながら説明する。
図8は、HIP工程S5を説明する図であり、金属原料80を加熱する様子を示す図である。図8では、図示の都合上、加熱機構100の内側にホース90が配置されるが、ホース90は加熱機構100の外側に配置されてもよい。
HIP工程S5での反応部60の加熱は、加熱機構100を備える温度制御機構65によって行われる。加熱機構100は、画成空間30を覆うように反応部60の外表面に配置される。具体的には、加熱機構100は例えば高周波誘導加熱用コイルであり、高周波誘導用加熱コイルは、画成空間30を覆うように、円管状の第1金属部材1の周方向全域に亘って第1金属部材1に巻回される。高周波誘導加熱用コイルには電源装置(図示しない)が接続され、電源装置による通電によって、加熱機構100が画成空間30内の金属原料80を加熱できる。
加熱機構100と第1金属部材1との間には、断熱材101(保温材)が設置される。断熱材101は、第1金属部材1及び第2金属部材2の表面において、少なくとも画成空間30を覆うように設置される。断熱材101の設置により、加熱機構100による加熱効率を高めることができる。
加熱温度は、第1金属部材1及び第2金属部材2の構成金属及び金属原料80の構成金属によっても異なるが、概ね800℃以上1200℃以下であることが好ましい。即ち、HIP工程S5は、所定の加熱温度である800℃以上1200℃以下での加熱により行われることが好ましい。この温度範囲にすることで、画成空間30で金属原料80を焼結できる。加熱時間は、上記温度範囲の温度になる時間として、例えば1時間以上10時間以下にできる。
所定の加熱温度までの加熱は、画成空間30の昇温速度を、例えば2℃/分以上好ましくは5℃/分以上、上限として例えば10℃/分以下好ましくは7℃/分以下の速度で昇温することによって行われることが好ましい。昇温速度を上記範囲にすることで昇温に伴う画成空間30の圧力変動を小さくできる。
加熱は、高圧ポンプ(図示しない)に接続されたホース90を開口51に接続し、ガス空間31でのガス圧を所定圧力(上記の例では75MPa以上250MPa以下)に維持した状態で行うことが好ましい。即ち、HIP工程S5は、ガス空間31でのガス圧を所定圧力に維持した状態で行われることが好ましい。これにより、加熱によって金属原料80、周囲の部材等が熱伸縮して画成空間30の圧力が変動しそうになっても、画成空間30の圧力変動に応じて画成部材40が撓み、画成空間30の圧力をガス空間31の圧力に維持できる。
金属原料80の加圧及び加熱により、金属原料80が画成空間30で熱間等方加圧状態となり、第1接合面1aと第2接合面2aとが金属焼結体3によってHIP接合される。
図1に戻って、冷却工程S6は、加熱機構100による加熱後、例えば自然冷却によって第1金属部材1及び第2金属部材2を冷却する工程である。冷却は、加熱機構100及び断熱材101を第1金属部材1及び第2金属部材2から取り外し、例えば室温で放置することで、行うことができる。
図9は、冷却工程S6を説明する図であり、HIP工程S5で使用した加熱機構100及び断熱材101を第1金属部材1及び第2金属部材2から取り外した状態を示す図である。図示のように、画成空間30の金属原料(図8等参照)は加熱及び加圧によって焼結し、画成空間30には金属焼結体3が生成する。金属焼結体3は、第1金属部材1の第1接合面1aと、第2金属部材2の第2接合面とを接合する。
図示の例では、第1金属部材1における反応部60の形成部分以外の外延(即ち、外側に張り出した部分以外の外延)と、第2金属部材2における張り出し部2bの形成部分以外の外延(即ち外側に張り出した部分以外の外延)とは、いずれも、二点鎖線で示す同一直線C上に位置する。円管状の第1金属部材1及び第2金属部材2の径方向外側に位置する直線Cの外側、及び、径方向内側に位置する直線Cの内側には、それぞれ、連通路54、仮溶接部70,71、画成部材40等が存在する。従って、後記する切除工程S7において、直線C,Cでの切除により、周方向外側の直線Cの更に外側の部分、及び、周方向内側の直線Cの更に内側の部分である不要な部分が除去される。
冷却工程S6後、後記する切除工程S7の前に、必要に応じて再度の熱処理工程を行ってもよい。この場合、加圧が不要であれば、ホース90は開口51から取り外してもよい。
図1に戻って、切除工程S7は、不要部分の切除により原子力設備部材10を形成する工程である。具体的には、図9を参照して説明したように、図9の直線C,Cの部分で周方向外側及び内側がそれぞれ切除される。
図10Aは、切除工程S7を説明する図であり、図2のA部拡大図である。上記図9において直線C,Cの部分で周方向外側及び内側がそれぞれ切除されると、図10Aに示す原子力設備部材10が形成する。図10Aに示す部分は、上記の図2におけるA部拡大図に相当する。
図10Bは、図10Aの金属焼結体3を拡大して示す図である。金属焼結体3は、金属の結晶粒3aの集合により構成される。金属焼結体3はHIP法により生成した金属焼結体である。従って、金属焼結体3に含まれる気孔3bの大きさは、鋳造、鍛造、溶接等により得られる金属組織中の気孔と比べて小さい。具体的には、原子力設備部材10において、電子顕微鏡による金属焼結体3の観察断面(例えば図10Bに示す断面)において、金属焼結体3に含まれる気孔3bの大きさは50nm以上200nm以下、好ましくは100nm以下である。このため、金属焼結体3が密になっており、第1金属部材1と第2金属部材2との接合強度を高めることができる。この結果、原子力設備部材10の信頼性を高めることができる。
金属焼結体3に含まれる気孔3bの大きさは、例えば走査型電子顕微鏡等によって金属焼結体3の任意の断面を観察し、観察された断面における気孔3bの大きさ(最も長い部分の大きさ)を測定することで、決定できる。
上記の観察断面において、金属焼結体3に含まれる気孔3bのうちの70%以上の気孔3bの大きさは50nm以上100nm以下であることが好ましい。これにより、全ての気孔3bのうち特に小さな気孔3bの数を70%以上にでき、第1金属部材1と第2金属部材2との接合強度を更に高めることができる。この結果、原子力設備部材10の信頼性を更に高めることができる。
観察断面における70%以上の気孔3bとは、任意の1つの観察断面で観察される全ての気孔3bのうち、70%以上の個数の気孔3bの大きさが上記範囲であることを意味する。
金属焼結体3の気孔率は好ましくは0.5%以下であり、より好ましくは0.3%以下であり、特に好ましくは0.1%以下である。気孔率がこの範囲にあることで、気孔3bの含有率を小さくでき、金属焼結体3の強度を向上できる。これにより、原子力設備部材10の強度を向上できる。
気孔率は、外部と連通する気孔(開気孔)の容積と、内部に封入された気孔(閉気孔)の容積との和を、全容積で割ることで決定できる。
本実施形態の製造方法、特に配置工程S1、充填工程S3及びHIP工程S5を含む製造方法によれば、画成部材40の配置によって形成された画成空間30内に金属焼結体3が生成し、生成した金属焼結体3(HIP焼結体)により、第1接合面1aと第2接合面2aとを接合できる。これにより、第1金属部材1及び第2金属部材2を高圧容器に収容せずに、第1金属部材1と第2金属部材2とをHIP接合できる。このため、第1金属部材1及び第2金属部材2が従来の高圧容器に収容できないほどの大型であっても、これらをHIP接合できる。
特に、HIP法により生成した金属焼結体3の気孔3bの大きさは小さく、金属焼結体3は密である。このため、第1金属部材1と第2金属部材2の接合強度が高く、信頼性に優れた原子力設備部材10を製造できる。
図11は、別の実施形態に係る図であり、金属鍛造部材120を画成空間30に配置した反応部60Aを示す図である。反応部60Aは、鍛造により形成した金属鍛造部材120を備える。金属鍛造部材120は、例えば断面矩形状であり、画成空間30の周方向全域に亘って画成空間30に収容可能な環状に構成される。上記図1を参照しながら説明した充填工程S3は、金属鍛造部材120を収容した画成空間30への金属原料80の収容によって行われる。
予め金属鍛造部材120を収容した画成空間30に金属原料80を充填することで、画成空間30の充填可能容積が減るため充填時間を短縮できる。これに加えて、コアとなる金属鍛造部材120によって、金属焼結体3の強度を高めることができる。
図12は、別の実施形態に係る図であり、冷却機構130を備える温度制御機構65Aを示す図である。温度制御機構65Aは、上記加熱機構100及び冷却機構130を備える。上記HIP工程S5は、温度制御機構65Aを用いて行われる。
図示の例では、冷却機構130は金属製の放熱フィンである。冷却機構130は、加熱機構100の配置部位以外の、第1金属部材1及び第2金属部材2(いずれか一方でもよい)の外表面に配置される。具体的には、冷却機構130は、第1金属部材1及び第2金属部材2のそれぞれにおいて、円管状の第1金属部材1及び第2金属部材2の軸方向に向かって延在する。従って、図示の例では、軸方向への放熱が促進される。
上記のように、加熱機構100は画成空間30を覆うように配置される。これにより、加熱機構100による画成空間30内部の金属原料80の加熱が促進される。しかし、画成空間30以外の部分では、加熱を行う必要が無い。そこで、画成空間30から離れた部分、即ち、加熱機構100の配置部位以外の部位では、放熱を促すために、冷却機構130が設置される。これにより、画成空間30以外の部分での熱影響を抑制できる。
1 第1金属部材
10 原子力設備部材
100 加熱機構
101 断熱材
120 金属鍛造部材
130 冷却機構
1a 第1接合面
2 第2金属部材
2a 第2接合面
2b 張り出し部
3 金属焼結体
30 画成空間
31 ガス空間
3a 結晶粒
3b 気孔
40 画成部材
51 開口
52 連通路
53 開口
54 連通路
60,60A 反応部
60a 内壁
61 嵌合部
65,65A 温度制御機構
70 仮溶接部
71 仮溶接部
90 ホース
91 ホース
C 直線
S1 配置工程
S2 第1圧力調整工程
S3 充填工程
S4 第2圧力調整工程
S5 HIP工程
S6 冷却工程
S7 切除工程

Claims (15)

  1. 第1金属部材と、金属焼結体を介して前記第1金属部材に接合される第2金属部材とを備える原子力設備部材の製造方法であって、
    前記第1金属部材の第1接合面と前記第2金属部材の第2接合面との双方の接合面を臨む画成空間を画成する、可撓性を有する画成部材を配置する配置工程と、
    前記画成空間に金属原料を充填する充填工程と、
    前記画成部材の前記画成空間とは反対側に形成されるガス空間にガスを注入し、前記画成部材を介した前記金属原料へのガス圧の伝播によって前記画成空間内で前記金属原料の熱間等方圧加圧を行うことで前記画成空間内に前記金属焼結体を形成するHIP工程と、を含む
    原子力設備部材の製造方法。
  2. 前記HIP工程は、前記ガス空間でのガス圧を所定圧力に維持した状態で行われる
    請求項1に記載の原子力設備部材の製造方法。
  3. 前記HIP工程は、前記ガス空間での圧力として75MPa以上250MPa以下の圧力で行われる
    請求項1又は2に記載の原子力設備部材の製造方法。
  4. 前記ガスの注入は、前記ガス空間での昇圧速度が10Pa/分以上50Pa以下/分以下になるように行う
    請求項3に記載の原子力設備部材の製造方法。
  5. 前記HIP工程は、前記画成空間の外部に配置された加熱機構の熱による加熱によって行われる
    請求項1又は2に記載の原子力設備部材の製造方法。
  6. 前記ガス空間に供給されるガスの温度は、5℃以上40℃以下である
    請求項5に記載の原子力設備部材の製造方法。
  7. 前記HIP工程は、
    前記画成空間を覆うように配置された前記加熱機構と、前記加熱機構の配置部位以外の、前記第1金属部材及び前記第2金属部材の少なくともいずれか一方の外表面に配置された冷却機構とを備える温度制御機構を用いて行われる
    請求項5に記載の原子力設備部材の製造方法。
  8. 前記HIP工程は、800℃以上1200℃以下での加熱により行われる
    請求項1又は2に記載の原子力設備部材の製造方法。
  9. 前記加熱は、前記画成空間の昇温速度を2℃/分以上10℃/分以下の速度で昇温することによって行われる
    請求項8に記載の原子力設備部材の製造方法。
  10. 前記配置工程後であって前記充填工程前に、前記画成空間の圧力を前記ガス空間の圧力よりも高くする第1圧力調整工程を含み、
    前記充填工程は、前記画成空間の圧力が前記ガス空間の圧力よりも高い状態で行われる
    請求項1又は2に記載の原子力設備部材の製造方法。
  11. 前記充填工程後であって前記HIP工程前に、前記画成空間を減圧する第2圧力調整工程を含む
    請求項1又は2に記載の原子力設備部材の製造方法。
  12. 前記画成部材は金属箔である
    請求項1又は2に記載の原子力設備部材の製造方法。
  13. 前記充填工程は、金属鍛造部材を収容した前記画成空間への前記金属原料の収容によって行われる
    請求項1又は2に記載の原子力設備部材の製造方法。
  14. 第1金属部材と、金属焼結体を介して前記第1金属部材に接合される第2金属部材とを備える原子力設備部材であって、
    電子顕微鏡による前記金属焼結体の観察断面において、前記金属焼結体に含まれる気孔の大きさは50nm以上200nm以下である
    原子力設備部材。
  15. 前記金属焼結体の気孔率は0.5%以下である
    請求項14に記載の原子力設備部材。
JP2019174714A 2019-09-25 2019-09-25 原子力設備部材の製造方法及び原子力設備部材 Active JP7264784B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019174714A JP7264784B2 (ja) 2019-09-25 2019-09-25 原子力設備部材の製造方法及び原子力設備部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019174714A JP7264784B2 (ja) 2019-09-25 2019-09-25 原子力設備部材の製造方法及び原子力設備部材

Publications (2)

Publication Number Publication Date
JP2021050395A true JP2021050395A (ja) 2021-04-01
JP7264784B2 JP7264784B2 (ja) 2023-04-25

Family

ID=75156089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019174714A Active JP7264784B2 (ja) 2019-09-25 2019-09-25 原子力設備部材の製造方法及び原子力設備部材

Country Status (1)

Country Link
JP (1) JP7264784B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243701A (ja) * 1986-04-15 1987-10-24 Toshiba Corp 異種材料接合方法
US5060374A (en) * 1989-06-05 1991-10-29 Electric Power Research Institute, Inc. Method for fabricating a valve
JP2005014052A (ja) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst 異種材の無溶解接合方法
JP2015175034A (ja) * 2014-03-17 2015-10-05 日立金属株式会社 スパッタリングターゲット材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243701A (ja) * 1986-04-15 1987-10-24 Toshiba Corp 異種材料接合方法
US5060374A (en) * 1989-06-05 1991-10-29 Electric Power Research Institute, Inc. Method for fabricating a valve
JP2005014052A (ja) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst 異種材の無溶解接合方法
JP2015175034A (ja) * 2014-03-17 2015-10-05 日立金属株式会社 スパッタリングターゲット材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUSION ENGINEERING AND DESIGN, vol. Volumes 61-62, JPN6023011912, 16 November 2002 (2002-11-16), pages 103 - 110, ISSN: 0005021568 *

Also Published As

Publication number Publication date
JP7264784B2 (ja) 2023-04-25

Similar Documents

Publication Publication Date Title
JP2020033649A (ja) 粉末製品を使用して物体を製造するための方法
CN111093864B (zh) 用于热等静压的封壳
JP2006140435A (ja) 金属ワイヤメッシュの微小構造を備えた屈曲可能なヒートスプレッダーとヒートスプレッダーの製造方法
CN102672174A (zh) 一种采用热等静压成型工艺制作整体环形机匣件的方法
CN110216277B (zh) 一种难熔金属复合管材的制备方法
EP2995398B1 (en) Article manufacturing method from powders
EP3187283B1 (en) Dynamic bonding of powder metallurgy materials
JP2013032244A5 (ja)
CN105441881B (zh) 铬靶材及其组合的制造方法
JP6598538B2 (ja) 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
US11253916B2 (en) Method of production using melting and hot isostatic pressing
JP2020525643A5 (ja)
JP2011041981A (ja) 調節可能な容積及び隅部を有する熱間等方圧加圧容器のための改良機器及び方法
JP2012117125A (ja) 粉末焼結体の製造方法および製造装置
EP3482848B1 (en) Multi-layer susceptor design for magnetic flux shielding in directional solidification furnaces
JP2011041983A (ja) 熱間等方圧加圧容器用装置及び方法
JP2021050395A (ja) 原子力設備部材の製造方法及び原子力設備部材
US10946444B2 (en) Method of heat-treating additively manufactured ferromagnetic components
JP5818137B2 (ja) R−t−b系焼結磁石の製造方法
CN109807338B (zh) 一种铼铌复合喷管的分段式制备方法
KR102524107B1 (ko) 실린더 타겟의 제조방법
JP4916367B2 (ja) 水素吸蔵合金容器の活性化装置
JP6293878B2 (ja) 粉体状金属性物質を焼結させることによって機械的部品を製造するための方法及びアセンブリー
SG180124A1 (en) A mould assembly for a hot isostatic pressing process
CN108326525B (zh) 一种充填气凝胶的钛合金三维点阵防热结构制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7264784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150