JP2021046969A - 燃焼装置 - Google Patents

燃焼装置 Download PDF

Info

Publication number
JP2021046969A
JP2021046969A JP2019169504A JP2019169504A JP2021046969A JP 2021046969 A JP2021046969 A JP 2021046969A JP 2019169504 A JP2019169504 A JP 2019169504A JP 2019169504 A JP2019169504 A JP 2019169504A JP 2021046969 A JP2021046969 A JP 2021046969A
Authority
JP
Japan
Prior art keywords
oxygen concentration
air
fuel
burner
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019169504A
Other languages
English (en)
Other versions
JP7379981B2 (ja
Inventor
航 伊東
Ko Ito
航 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2019169504A priority Critical patent/JP7379981B2/ja
Publication of JP2021046969A publication Critical patent/JP2021046969A/ja
Application granted granted Critical
Publication of JP7379981B2 publication Critical patent/JP7379981B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Abstract

【課題】バーナに供給する混合気の空気比に変動が生じた場合に、速やかに混合気を所望の状態に制御することが可能な燃焼装置を提供すること。【解決手段】バーナと、前記バーナに燃料を供給する燃料供給部と、前記バーナに燃焼用空気を供給する空気供給部と、前記バーナで燃焼した排ガスの酸素濃度を検出する酸素濃度検出部と、前記バーナに供給する燃料及び燃焼用空気の量を制御する制御部とを備えた燃焼装置であって、前記制御部は、前記酸素濃度検出部が検出した排ガスの酸素濃度の変化速度に基づいて前記バーナに供給する混合気を制御するように構成されていることを特徴とする。【選択図】図3

Description

本発明は、バーナに供給する混合気を排ガスの酸素濃度に基づいて制御する燃焼装置に関する。
周知のように、燃料(以下、燃料ガスという)と燃焼用空気を所定の比率で混合した混合気をバーナで燃焼させる燃焼装置として、缶体内の水を加熱して、蒸気を生成するボイラ装置が広く用いられている。
このようなボイラ装置(燃焼装置)は、例えば、要求負荷に基づいて、バーナに一定の空気比の混合気が供給されるように、燃焼用空気の流量と燃料ガスの流量が調整されている。
空気比は、燃焼装置によって設定される数値であり、空気比が変動すると、過剰空気によって生じた熱損失により燃焼効率が低下したり、不完全燃焼によってエネルギー損失が増大する可能性があり、燃焼装置にとって重要な条件の一つである。したがって、可能な限り設定範囲(又は一定)に維持することが望ましい。
ところで、近年、環境意識の高まりから、燃料ガスとしてLNG(Liquefied Natural Gas)が広く普及しており、LNGを供給する方法の一形態として、LNGを液体のまま消費企業等に輸送し、消費企業においてLNGを気化して燃焼装置に供給するLNGサテライト供給がある。
LNGサテライト供給は、導入コストを低く抑えることができることから種々の分野で用いられているものの、パイプラインを通じて燃料ガスを輸送するパイプライン供給方法に比べて燃料ガスが外部環境等の影響を受け易い傾向がある。
外部環境等の影響を受けた燃料ガスは、例えば、LNGを気化する過程で生じた成分変動によって燃料ガスの熱量が変化して燃焼に必要な空気量(理論空気量)が変化する可能性がある。
また、燃料ガスに温度変動や圧力変動によって質量流量に変動が生じると、たとえ燃料ガスの体積流量が一定であっても、燃料ガスの燃焼に必要な燃焼用空気の理論空気量が変化して空気比が変動する。
そこで、空気比の変動に対応するために、ボイラ(燃焼装置)の排ガスの酸素濃度に基づいて混合気をフィードバック制御することで、混合気の空気比を一定とするOトリミング技術が実用化されており、ボイラの燃焼状態を空気比に精度よく反映させる種々の技術が開示されている(例えば、特許文献1、2参照。)。
特公昭63−008368号公報 特開2016−008803号公報
しかしながら、特許文献1、2に記載された発明は、排ガスの酸素濃度に基づいて空気比を調整する際に、燃焼状態が排ガスの酸素濃度に反映されるまでのタイムラグが発生するという問題がある。
そこで、燃焼装置において、排ガスの酸素濃度に基づいて混合気を所望の状態に制御する際にタイムラグが発生するのを抑制する技術が望まれている。
本発明は、このような事情に鑑みてなされたものであって、バーナに供給する混合気の状態(例えば、空気比)に変動が生じた場合に、速やかに混合気を所望の状態に制御することが可能な燃焼装置を提供することを目的とする。
上記課題を解決するために、この発明は以下の手段を提案している。
請求項1記載の発明は、バーナと、前記バーナに燃料を供給する燃料供給部と、前記バーナに燃焼用空気を供給する空気供給部と、前記バーナで燃焼した排ガスの酸素濃度を検出する酸素濃度検出部と、前記バーナに供給する燃料及び燃焼用空気の量を制御する制御部と、を備えた燃焼装置であって、前記制御部は、前記酸素濃度検出部が検出した排ガスの酸素濃度の変化速度に基づいて前記バーナに供給する混合気を制御するように構成されていることを特徴とする。
この発明に係る燃焼装置によれば、制御部が、酸素濃度検出部が検出した排ガスの酸素濃度の変化速度に基づいて混合気を制御するので、バーナに供給する混合気の状態(例えば、空気比等)を排ガスの酸素濃度に速やかに反映して混合気を制御することができる。
その結果、バーナに供給する混合気の状態に変動が生じた場合に、速やかに混合気を所望の状態に制御することができる。
この明細書において、酸素濃度検出部が検出した排ガスの酸素濃度の変化速度とは、予め設定した時間間隔(2つのタイミング)で検出した酸素濃度の差に基づいて算出される(酸素濃度の差/検出した時間間隔)のほか、3つ以上のタイミングで検出した酸素濃度により構成される種々の変化速度(例えば、酸素濃度曲線、多項式等)を含むものとする。
この明細書において、バーナに供給する混合気を制御するとは、例えば、バーナに供給する混合気を目標とする空気比(混合気が含有する空気量/理論空気量)が維持されるように制御すること、混合気の空気比を設定した範囲内に制御すること等を含むものとする。
また、混合気に係る空気比の代用特性である燃料と燃焼用空気の比率(空燃比)等を制御することを含むものとする。
請求項2に記載の発明は、請求項1に記載の燃焼装置であって、前記制御部は、前記酸素濃度検出部が検出した排ガスの酸素濃度の変化速度から所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいて前記バーナに供給する燃料と燃焼用空気の少なくともいずれか一方を調整するように構成されていることを特徴とする。
この発明に係る燃焼装置によれば、制御部が、酸素濃度検出部が検出した排ガスの酸素濃度の変化速度から所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいてバーナに供給する混合気を制御するので、混合気を安定して制御することができる。
また、燃料と燃焼用空気の少なくともいずれか一方を調整するように構成されているので混合気を効率的に所望の状態に調整することができる。
請求項3に記載の発明は、請求項2に記載の燃焼装置であって、前記制御部は、前記酸素濃度検出部が検出した排ガスの酸素濃度の変化速度が閾値を超えた場合に、所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいて前記バーナに供給する燃料と燃焼用空気の少なくともいずれか一方を調整するように構成されていることを特徴とする。
この発明に係る燃焼装置によれば、制御部が、酸素濃度検出部が検出した排ガスの酸素濃度の変化速度が閾値を超えた場合に、所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいてバーナに供給する混合気を制御をするので、例えば、急変動時の酸素濃度(空気比)の安定化及びハンチングが発生するのを抑制することができる。その結果、混合気を効率的かつ安定して制御することができる。
本発明に係る燃焼装置によれば、バーナに供給する混合気の状態(例えば、空気比等)に変動が生じた場合に、速やかに混合気を所望の状態に制御することができる。
本発明の一実施形態に係るボイラ装置の概略構成の一例を説明する概略構成図である。 本発明の一実施形態に係るボイラ装置の制御部における空気比の予測制御の概略構成の一例を説明するブロック図である。 本発明の一実施形態に係るボイラ装置における混合気制御の概略の一例を説明するフローチャートである。
<一実施形態>
以下、図1〜図3を参照して、本発明の一実施形態について説明する。
図1は、一実施形態に係るボイラ装置の概略構成の一例を説明する概略構成図である。図において、符号100はボイラ装置(燃焼装置)を、符号10はボイラ本体を、符号20は燃焼用空気供給部を、符号30は燃料供給部を、符号50は制御部を、符号60は酸素濃度検出センサ(酸素濃度検出部)を示している。また、符号Aは燃焼用空気を、符号Gは燃料ガス(燃料)を、符号Fは混合気を示している。
ボイラ装置(燃焼装置)100は、図1に示すように、例えば、ボイラ本体10と、ボイラ本体10に燃焼用空気を供給する燃焼用空気供給部20と、ボイラ本体10に燃料ガス(燃料)を供給する燃料供給部30と、制御部50と、酸素濃度検出センサ(酸素濃度検出部)60とを備えている。
また、ボイラ装置100は、この実施形態において、例えば、酸素濃度検出センサ60が検出した排ガスの酸素濃度に基づいて、燃焼用空気供給部20と燃料供給部30を制御して、ボイラ本体10に供給する混合気を制御可能に構成されている。
ボイラ本体10は、例えば、図1に示すように、ボイラ筐体11と、バーナ12と、缶体13と、排気ダクト14とを備えている。
ボイラ筐体11は、例えば、缶体13の外形を構成する平面視矩形形状の直方体に形成されている。
そして、ボイラ筐体11の長手方向の一端側に位置する第1側面11Aには、バーナ12が配置され、ボイラ筐体11の長手方向の他端側に位置する第2側面11Bには排気ダクト14が配置されている。
バーナ12は、例えば、混合気流通路12Aとバーナエレメント12Bとを備え、混合気流通路12Aには、上流側において、燃焼用空気供給部20から供給された燃焼用空気Aと燃料供給部30から供給された燃料ガスGが混合して生成された混合気Fが送り込まれ、この混合気Fをバーナエレメント12Bに供給するようになっている。
バーナエレメント12Bは、混合気流通路12Aを介して供給された混合気Fを燃焼して燃焼ガスを生成するようになっている。
缶体13は、例えば、複数の水管からなる水管群13Aと、水管群13Aの下方に位置する下部管寄せ13Bと、水管群13Aの上方に位置する上部管寄せ13Cとを備え、水管群13Aを構成する水管の間には燃焼ガス通路が形成されている。
そして、バーナ12で生成された燃焼ガスが水管群13A内に形成された燃焼ガス通路を通じて排気ダクト14に移動するようになっている。
その結果、給水源(不図示)から下部管寄せ13Bに供給された水が水管群13A内で加熱されて蒸気が生成され、生成された蒸気は上部管寄せ13Cを通じて負荷機器(不図示)に供給されるようになっている。
また、水管群13Aには、水管の温度(缶水温度)を測定するための温度センサ13Tが配置されている。
また、上部管寄せ13Cには、上部管寄せ13C内の蒸気の圧力を検出する圧力センサ13Pが配置されている。
そして、温度センサ13T及び圧力センサ13Pは、電気的に制御部50と接続されている。
排気ダクト14は、例えば、断面矩形とされた排ガス流路を画成していて、水管群13A内の燃焼ガス通路を流通してきた燃焼ガスをボイラ本体10の外部に排ガスとして排出するようになっている。
また、この実施形態において、排気ダクト14には、酸素濃度検出センサ(酸素濃度検出部)60が配置されている。
酸素濃度検出センサ(酸素濃度検出部)60は、制御部50と電気的に接続され、制御部50に、検出した排気ダクト14内を流通する排ガス(燃焼ガス)の酸素濃度を酸素濃度検出データとして出力するようになっている。
以下、燃焼用空気供給部20について説明する。
燃焼用空気供給部20は、図1に示すように、例えば、送風機21と、送風機21を制御するインバータ22と、送風機21とバーナ12とを接続し燃焼用空気をバーナ12に流通させる給気ダクト23と、ダンパ24と、パンチングメタル25と、燃焼用空気差圧センサ(空気流量検知部)26とを備えている。
また、この実施形態において、燃焼用空気供給部20は燃料供給部30と協働して、設定された空気比の混合気Fを生成するようになっている。
送風機21は、ファン(不図示)と、ファンを回転させるモータ(不図示)とを備えている。
また、送風機21は、この実施形態において、ボイラ装置100が蒸気を供給している負荷機器(不図示)からの要求負荷に応じて制御部50が燃焼用空気Aの流量を設定し、送風機21は制御部50からインバータ22に入力される周波数信号に基づいてファン(モータ)の回転数を増減するように構成されている。
給気ダクト23は、上流側が送風機21に接続され、下流側がバーナ12に接続されていて、送風機21から送られた燃焼用空気Aを下流側に向かって流通させるようになっている。
ダンパ24は、給気ダクト23の内部に配置され、給気ダクト23の内部の燃焼用空気Aが流通する流路を閉塞した閉状態と、閉状態から90°回動された位置すなわち給気ダクト23の内部の燃焼用空気Aの流路を開放した開状態との間で回動するように構成されている。
パンチングメタル25は、例えば、複数の貫通孔が形成された金属板からなり、給気ダクト23の内部のダンパ24の下流側に配置された燃焼用空気減圧部材とされている。
そして、ダンパ24を通じて給気ダクト23に流れてきた燃焼用空気Aを減圧するように構成されている。
燃焼用空気差圧センサ26は、この実施形態において、例えば、パンチングメタル25の上流側と下流側に接続され、パンチングメタル25の上流側と下流側の燃焼用空気Aの差圧によって給気ダクト23を流れる燃焼用空気Aの流量を測定する空気流量測定部とされている。
また、燃焼用空気差圧センサ26は、制御部50と電気的に接続されており、パンチングメタル25の上流側の圧力と下流側の差圧を燃焼用空気差圧データとして制御部50に出力するようなっている。
そして、制御部50は、取得した燃焼用空気差圧データに基づいて給気ダクト23を流れる燃焼用空気Aの流量を算出するように構成されている。
以下、燃料供給部30について説明する。
燃料供給部30は、図1に示すように、例えば、燃料供給ライン31と、燃料ガス流量計32と、開閉弁33と、ガバナ34と、流量調整弁35と、燃料ガス温度センサ36と、燃料ガス圧力センサ37と、オリフィス38と、燃料ガス差圧センサ39と、燃料ガスノズル40と、を備え、適切な流量の燃料ガスGをボイラ本体10に供給するように構成されている。
燃料供給ライン31は、上流側が燃料供給源(不図示)に接続され、下流側は、給気ダクト23におけるダンパ24よりも下流側に接続されている。
また、この実施形態において、例えば、燃料供給ライン31を流通する燃料ガスGはLNGとされ、LNGサテライト供給によってLNG貯蔵施設に貯蔵されたLNGを気化したものが燃料供給ライン31に供給されている。
燃料ガス流量計32は、この実施形態において、例えば、燃料供給ライン31の最も上流側に配置され、燃料供給ライン31を流れる燃料ガスGの流量を測定するように構成されている。
そして、燃料ガス流量計32は、制御部50と電気的に接続され、測定した測定値を制御部50に出力するようになっている。
開閉弁33は、燃料供給ライン31を開放又は閉止することにより燃料ガスGの供給及び停止を行うように構成されている。
開閉弁33は、この実施形態において、燃料供給ライン31における燃料ガス流量計32の下流側に配置されている。
ガバナ34は、この実施形態において、燃料供給ライン31における開閉弁33の下流側に配置されていて、燃料供給ライン31を流れる燃料ガスGの圧力が瞬間的に大きくなる場合等の急激な圧力変動を抑制する調圧手段とされている。
流量調整弁35は、この実施形態において、燃料供給ライン31におけるガバナ34の下流側に配置されている。
また、流量調整弁35は、制御部50と電気的に接続されており、制御部50の指示に基づいて開度が調節され、燃料供給ライン31を流れる燃料ガスGの流量を調整するように構成されている。
燃料ガス温度センサ36は、燃料供給ライン31における流量調整弁35の下流側に配置され、燃料供給ライン31を流れる燃料ガスGの温度を流量調整弁35の下流側で検出するようになっている。
また、燃料ガス温度センサ36は、制御部50と電気的に接続されており、検出した温度データを制御部50に出力するように構成されている。
燃料ガス圧力センサ37は、この実施形態において、燃料供給ライン31における燃料ガス温度センサ36の下流側に配置されていて、燃料供給ライン31を流れる燃料ガスGの圧力を流量調整弁35の下流側で検出するように構成されている。
また、燃料ガス圧力センサ37は、制御部50と電気的に接続されており、燃料ガス圧力データを制御部50に出力するようになっている。
オリフィス38は、この実施形態において、燃料供給ライン31における燃料ガス圧力センサ37の下流側に配置される燃料ガス減圧部材とされていて、燃料供給ライン31を流れる燃料ガスGを減圧するように構成されている。
燃料ガス差圧センサ39は、この実施形態において、オリフィス38の上流側と下流側に接続され、オリフィス38の上流側と下流側の圧力の差圧を検出して燃料ガスGの流量を測定する燃料ガス流量検出部とされている。
また、燃料ガス差圧センサ39は、制御部50と電気的に接続されており、制御部50に燃料ガス差圧データを出力するようになっている。
そして、制御部50は、燃料ガス差圧センサ39から取得した燃料ガス差圧データに基づいて流量調整弁35の下流側における燃料ガスGの流量を算出するように構成されている。
燃料ガスノズル40は、例えば、燃料供給ライン31の下流側端部に配置されていて、給気ダクト23内に燃料ガスGを噴出するように構成されている。
また、燃料ガスノズル40から噴出される燃料ガスGは、流量調整弁35によって調整されるようになっている。
そして、燃料ガスノズル40から噴出された燃料ガスGは燃焼用空気Aと混合されて混合気Fが生成され、バーナ12の混合気流通路12Aに送られる。
以下、制御部50の概略構成の一例について説明する。
制御部50は、ボイラ装置100が蒸気を供給する負荷機器(不図示)からの要求負荷に基づいて送風機21によって供給する燃焼用空気Aの流量を調整するとともに、供給ダクト23を流れる燃焼用空気Aに応じて、混合気Fが所定の空気比となるように供給する燃料ガスGの流量を調整するように構成されている。
制御部50は、負荷機器(不図示)から取得した要求負荷に基づいて算出した要求負荷と対応する周波数信号をインバータ22に出力し、送風機21が送る燃焼用空気Aの流量を調整するように構成されている。
また、制御部50は、燃焼用空気差圧センサ26から取得した燃焼用空気差圧データに基づいて給気ダクト23を流れる燃焼用空気Aの流量を算出するように構成されている。
また、制御部50は、給気ダクト23を流れる燃焼用空気Aの流量に基づいて、燃焼用空気Aの流量と対応する流量の燃料ガスGが、バーナ12に供給されるように流量調整弁35の開度を調整するように構成されている。
また、制御部50は、燃料ガス温度センサ36から取得した温度データに基づいて算出した燃料ガスGの温度と、燃料ガス圧力センサ37から取得した燃料ガス圧力データに基づいて算出した燃料ガスGの圧力に基づいて燃料供給ライン31を流れる燃料ガスGの流量(例えば、質量流量)を補正するように構成されている。
また、制御部50は、燃料ガスGの流量調整に際して、燃料ガス差圧センサ39から取得した燃料ガス差圧データに基づいて算出した流量調整弁35の下流側における燃料ガスGの流量に基づいて、流量調整弁35の開度をフィードバック制御するように構成されている。
また、制御部50は、酸素濃度検出センサ60から取得した酸素濃度検出データに基づいて算出した排ガスの酸素濃度に基づいて、混合気Fが所定の空気比を維持するように混合気を制御する構成とされている。
また、排ガスの酸素濃度に基づいて混合気Fの空気比を制御する際には、排ガスの酸素濃度に基づいて予測制御するように構成されている。
次に、図2、図3を参照して、制御部50における酸素濃度に基づいた空気比の予測制御の概略構成の一例について説明する。図2は一実施形態に係る制御部の概略構成の一例を説明するブロック図であり、図3はボイラ装置における混合気制御の概略の一例を説明するフローチャートである。
制御部50は、算出した酸素濃度の変化速度に基づいて、混合気を目標とする空気比に維持するように構成されている。
制御部50は、図2に示すように、例えば、燃焼用空気差圧データ入力部51と、燃料ガス差圧データ入力部52と、酸素濃度検出データ入力部53と、演算部54と、データテーブル55と、送風機制御部56と、燃料ガス流量制御部57とを備えている。
また、制御部50は、燃焼用空気差圧センサ26、燃料ガス差圧センサ39、酸素濃度検出センサ60、インバータ22、流量調整弁35と、電気的に接続されている。
燃焼用空気差圧データ入力部51は、燃焼用空気差圧センサ26が検出した燃焼用空気差圧データが入力され、受け取った燃焼用空気差圧データを演算部54に出力するようになっている。
燃料ガス差圧データ入力部52は、燃料ガス差圧センサ39が検出した燃料ガス差圧データが入力され、受け取った燃料ガス差圧データを演算部54に出力するようになっている。
酸素濃度検出データ入力部53は、酸素濃度検出センサ60が検出した酸素濃度検出データが入力され、受け取った酸素濃度検出データを演算部54に出力するようになっている。
データテーブル55には、燃焼用空気Aの流量及び燃料ガスGの流量を算出するための各種の情報が格納されている。この実施形態において、例えば、燃焼用空気Aの流量に基づいて送風機21のファン(モータ)の回転数を算出するための演算式の比例定数、及び燃焼用空気Aの流量や酸素濃度偏差に基づいて流量調整弁35の開度を算出するための演算式の比例定数が格納されている。
演算部54は、負荷機器(不図示)からの要求負荷に基づいて、必要とする燃焼用空気Aの流量を算出する。
ここで、燃焼用空気Aの流量は、例えば、(燃料種に応じて定まる理論空気量)×(空気比)×(要求負荷に応じた燃料使用量)によって算出することが可能である。
そして、演算部54は、例えば、データテーブル55に参照して、燃焼用空気Aの流量と、データテーブル55から得られた演算式の比例定数を、演算式(例えば、多項式)にあてはめて、送風機21のファン(モータ)の回転数を取得する。そして、送風機21のファン(モータ)の回転数を送風機制御部56に出力する。
なお、例えば、データテーブル55に格納されたデータを参照することなく、演算式によって、燃焼用空気Aの流量に基づいて送風機21のファン(モータ)の回転数を算出してもよい。
また、演算部54は、例えば、給気ダクト23を流れる燃焼用空気Aの流量に対応する流量の燃料ガスGを供給するための流量調整弁35の開度を算出する。
具体的には、演算部54は、例えば、燃焼用空気差圧データ入力部51から受け取った燃焼用空気差圧データに基づいて給気ダクト23を流れる燃焼用空気Aの流量を算出する。
次いで、演算部54は、例えば、燃焼用空気Aをデータテーブル55に参照して、燃焼用空気Aの流量と、データテーブル55から得られた演算式の比例定数を、予め設定した演算式(例えば、多項式)にあてはめて、流量調整弁35の開度を算出する。
そして、演算部54は、流量調整弁35の開度を燃料ガス流量制御部57に出力する。
以下、演算部54における排ガスの酸素濃度に基づく混合気の制御として、燃料ガスGの流量を制御する場合について説明する。
演算部54は、例えば、酸素濃度検出データ入力部53から入力された酸素濃度検出データに基づいて排ガスの酸素濃度を算出する。
そして、算出した酸素濃度に基づいて酸素濃度の変化速度を算出する。
また、演算部54は、算出した酸素濃度の変化速度を記憶部(不図示)に記憶された変化速度閾値と比較して、酸素濃度の変化速度>変化速度閾値 であるかどうかを判断する。
そして、酸素濃度の変化速度>変化速度閾値 である場合は、まず、所定時間経過後における排ガスの酸素濃度(以下「予測酸素濃度」ともいう。)を算出し、次いで、記憶部(不図示)に記憶された目標酸素濃度と予測酸素濃度に基づいて酸素濃度偏差を算出する。
そして、酸素濃度偏差がゼロに近づくように流量調整弁35の開度を算出する。
また、酸素濃度の変化速度>変化速度閾値 でない(酸素濃度の変化速度≦変化速度閾値 である)場合は、目標酸素濃度と、酸素濃度検出データに基づいて算出した酸素濃度に基づいて酸素濃度偏差を算出する。
そして、酸素濃度偏差がゼロに近づくように流量調整弁35の開度を算出する。
酸素濃度偏差に基づく流量調整弁35の開度は、例えば、データテーブル55に参照して、酸素濃度偏差と、データテーブル55から得られた演算式の比例定数を、予め設定した演算式(例えば、多項式)にあてはめて燃料ガス流量補正値を算出し、燃料ガス流量補正値をデータテーブル55に参照して流量調整弁35の開度補正量を算出する。そして、燃料ガス流量制御部57に出力する。
なお、例えば、データテーブル55に格納されたデータを参照することなく、演算式によって、酸素濃度偏差に基づく流量調整弁35の開度を算出する構成としてもよい。
なお、例えば、データテーブル55に、演算式と対応する比例定数に代えて、燃焼用空気Aの流量や種々のパラメータと対応して参照可能な送風機21のファン(モータ)の回転数、酸素濃度偏差や種々のパラメータと対応して参照可能な流量調整弁35の開度を格納してもよい。
このとき、データテーブル55に格納する対応データは、実験やシミュレーションによって得られたデータを重回帰分析等によって定義することが好適である。
送風機制御部56は、演算部54から受け取った送風機21のファン(モータ)の回転数と対応する周波数信号をインバータ22に出力して燃焼用空気Aの流量を調整するように構成されている。
燃料ガス流量制御部57は、演算部54から受け取った流量調整弁35の開度データを流量調整弁35に出力して、流量調整弁35の開度を調整することにより、燃料ガスノズル40に供給する燃料ガスGの流量を調整するように構成されている。
以下、図3を参照して、一実施形態に係るボイラ装置における混合気制御の概略について説明する。
(1)まず、バーナが燃焼しているかどうかを判断する(S01)。
S01において、バーナが燃焼していない場合(S01:No)はS01に移行し、バーナが燃焼している場合(S01:Yes)はS02に移行する。
(2)酸素濃度検出センサから酸素濃度検出データを取得する(S02)。
(3)酸素濃度検出データに基づいて、排ガスの酸素濃度を算出する(S03)。
(4)S03において算出した酸素濃度に基づいて酸素濃度の変化速度を算出するための変化速度算出用酸素濃度(変化速度を算出するために設定した周期だけ前に検出した酸素濃度)が存在するかどうかを判断する(S04)。
S04において、変化速度算出用酸素濃度が存在する場合(S04:Yes)はS05に移行し、変化速度算出用酸素濃度が存在しない場合(S04:No)はS02に移行にする。
(5)S03において算出した酸素濃度と変化速度算出用酸素濃度に基づいて、排ガスの酸素濃度の変化速度(酸素濃度が変化速度算出時間で変化した変動量)を算出する(S05)。
任意のタイミングTにおける酸素濃度の変化速度は、例えば、以下に示す数式(1)を適用して算出する。
酸素濃度の変化速度V(T)=((酸素濃度C(T)−変化速度算出用酸素濃度C(Tn−1))/(T‐Tn−1)) ・・・(1)
ここで、Tは酸素濃度を検出したタイミングを、Tn−1は変化速度算出用酸素濃度を検出したタイミングを示している。
また、酸素濃度C(T)、変化速度算出用酸素濃度C(Tn−1)は、タイミングT、タイミングTn−1における酸素濃度を示している。
また、この実施形態において、変化速度を算出する際の分母である((T)−(Tn−1))は、酸素濃度を検出した時間間隔(変化速度算出時間)を示している。
なお、酸素濃度の変化速度を算出する際に用いる時間間隔は、酸素濃度検出センサ60によって酸素濃度を検出する周期に関わらず任意に設定することができる。すなわち、酸素濃度を検出するごとに変化速度を逐次算出してもよいし、酸素濃度を検出するより長い時間間隔で酸素濃度の変化速度を算出してもよい。
(6)S05において算出した酸素濃度の変化速度が、変化速度閾値(閾値)を超えているかどうか(酸素濃度の変化速度V(T)>変化速度閾値S)を判断する(S06)。
S06において、変化速度V(T)>変化速度閾値Sである場合(S06:Yes)はS07に移行し、変化速度V(T))≦変化速度閾値Sである場合(S06:No)はS08に移行する。
なお、変化速度閾値Sを用いるかどうか、変化速度閾値を用いる場合にどのように用いるかは任意に設定することが可能である。例えば、燃焼用空気Aの流量や燃料ガスGの流量のほか、変化する種々のパラメータに基づいて、変化速度閾値を適宜変化させてもよい。
(7)予測酸素濃度を算出する(S07)。
予測酸素濃度の算出については、任意に設定することが可能であるが、以下に例示する。
所定時間tが経過した後における予測酸素濃度C(t)は、例えば、以下に示す数式(2)を適用して算出してもよい。
予測酸素濃度C(t)
=酸素濃度C(T)+α・t+β+K(t+γ)δ
・・・(2)
α、β、γ、δ:一定条件下の測定において近似に適合可能な定数
K:可変パラメータ
なお、α、β、γ、δ、Kは、燃焼装置の燃焼容量、型式、燃料供給形態、燃料の仕様(燃料を構成する物質の種類、混合比等)等の使用条件に応じて、パラメータをチューニングして設定することが好適であり、例えば、実験した結果に基づいて設定することが可能である。
また、数式(2)は、変化速度が閾値を超えた時を開始点として、経過時間に基づいて積算することにより、収束値として予測酸素濃度を算出することが可能である。
また、例えば、酸素濃度の濃度変化加速度、濃度変化速度、濃度で定義される、以下に示す数式(3)(例えば、3項からなる多項式(二次式)を適用してもよい。
予測酸素濃度C=α・dC(Tn)/dt+β・dC(Tn)/dt+γ・C
・・・(3)
Cは酸素濃度である。
なお、数式(2)、(3)は一例であり、他の多項式によって算出してもよいし、実験やシミュレーションによって得られたデータを重回帰分析等によって定数を定義してもよい。また、得られた数値をデータテーブルとして格納して用いてもよい。
(8)酸素濃度偏差を算出する(S08)。
予測酸素濃度を算出した場合は、算出した予測酸素濃度と目標酸素濃度に基づいて酸素濃度偏差を算出し、予測酸素濃度を算出していない場合は、目標酸素濃度とS03において算出した酸素濃度に基づいて酸素濃度偏差を算出する。
酸素濃度偏差D(T)は、例えば、以下に示す数式(4)によって算出する。
酸素濃度偏差D(T)=目標酸素濃度−酸素濃度又は予測酸素濃度・・・(4)
なお、酸素濃度偏差D(T)を適用するかどうか任意に設定することができる。
(9)燃料ガス流量補正値を算出する(S09)。
この実施形態では、燃料ガス流量補正値Eは、例えば、酸素濃度偏差D(T)をデータテーブル55に参照し、酸素濃度偏差D(T)と、データテーブル55から得られた演算式の比例定数を、予め設定した演算式(例えば、多項式)にあてはめて算出する。
なお、燃料ガス流量補正値Eの算出に関しては、上記手順に限定されることなく任意に設定することが可能である。
(10)燃料ガス流量補正値に基づいて燃料ガス流量を制御する(S10)。
燃料ガス流量の制御は、例えば、S09で算出した燃料ガス流量補正値Eをデータテーブルに参照して流量調整弁35の開度補正量を取得して、燃料ガス流量制御部57を介して流量調整弁35に出力する。
S10を実行したらフローチャートを終了する。そして、所定周期で、上記S01からS10を繰り返して実行する。
一実施形態に係るボイラ装置(燃焼装置)100によれば、制御部50が、酸素濃度検出センサ60が検出した排ガスの酸素濃度の変化速度に基づいて所定時間経過後の排ガスの酸素濃度を算出して混合気を制御するので、バーナ12に供給する混合気Fの空気比に変動が生じた場合に、速やかに混合気Fを設定した空気比(所望の状態)に制御することができる。
また、一実施形態に係るボイラ装置100によれば、制御部50が、排ガスの酸素濃度の変化速度から所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいて、流量調整弁35によって燃料ガスGの流量を制御するので混合気Fの空気比を安定して調整することができる。
また、制御部50が、流量調整弁35によって燃料ガスGの流量を制御するので混合気Fの空気比を効率的に調整することができる。
また、一実施形態に係るボイラ装置100によれば、制御部50が、酸素濃度検出センサ60が検出した排ガスの酸素濃度の変化速度が変化速度閾値(閾値)を超えた場合に、所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいて混合気Fを制御するので、急変動時の酸素濃度(空気比)の安定化及びハンチングが発生するのを抑制することができる。
その結果、混合気Fを効率的かつ安定して制御することができる。
なお、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態においては、燃焼装置がボイラ装置100である場合について説明したが、ボイラ装置に限定されることなく、バーナに供給する混合気を酸素濃度検出部が検出した排ガスの酸素濃度の変化速度に基づいて制御することが可能な種々の燃焼装置に適用してもよい。
また、ボイラ本体10、燃焼用空気供給部20、燃料供給部30等の構成は一例であり任意に設定することができる。
また、上記実施形態においては、酸素濃度検出部が検出した排ガスの酸素濃度の変化速度が変化速度閾値(閾値)を超えた場合に、予測酸素濃度を算出する場合について説明したが、変化速度閾値(閾値)を設定するかどうかは任意に設定することができる。また、変化速度閾値(閾値)については、例えば、変化速度閾値をゼロに設定して予測酸素濃度を逐次算出する構成としてもよい。
また、酸素濃度の変化速度が変化速度閾値(閾値)以下である場合においても、排ガスの酸素濃度を予測するように構成してもよい。この場合、複数の閾値によって、種々の算出方法(例えば、複数の演算式等)によって予測酸素濃度を算出する構成としてもよい。
また、上記実施形態においては、酸素濃度検出部が検出した排ガスの酸素濃度の変化速度から所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との酸素濃度偏差Dに基づいてバーナに供給する混合気を制御する場合について説明したが、予測酸素濃度を算出するかどうかは任意に設定することが可能であり、例えば、予測酸素濃度や酸素濃度偏差Dを算出することなく、排ガスの酸素濃度の変化速度と酸素濃度等を、演算式やデータテーブル55によって混合気を制御する構成としてもよい。
また、上記実施形態においては、予測酸素濃度を算出する場合に、演算式とデータテーブルに格納された比例定数によって予測酸素濃度を算出する場合について説明したが、例えば、酸素濃度と酸素濃度の変化速度等を演算式のみによって算出し、又はデータテーブルに参照して算出してもよい。
また、上記実施形態においては、数式(1)を用いて排ガスの変化濃度速度を算出し、数式(2)又は(3)に基づいて予測酸素濃度を算出し、数式(4)に基づいて酸素濃度偏差を算出する場合について説明したが、これら数式については任意に設定してもよい。
例えば、上記実施形態においては、予測酸素濃度を算出する場合に、所定時間経過後の酸素濃度を予測酸素濃度とする場合について説明したが、例えば、現時点より先の平衡状態における酸素濃度を予測酸素濃度としてもよく、予測酸素濃度の構成については任意に設定することができる。
また、上記実施形態においては、予測酸素濃度に基づいて算出した酸素濃度偏差Dに基づいて混合気を制御する場合について説明したが、酸素濃度偏差Dを算出するかどうかは任意に設定することが可能であり、例えば、酸素濃度偏差Dを算出することなく、予測酸素濃度と対応する燃焼用空気の流量と燃料ガスの流量のいずれか一方又は双方に係る制御量に基づいて、混合気を制御する構成としてもよい。
また、酸素濃度偏差Dを算出することなく、算出した予測酸素濃度基づいて演算式によって混合気を制御する構成としてもよい。
また、上記実施形態においては、酸素濃度検出センサ60が検出した排ガスの酸素濃度の変化速度を、予め設定した2つのタイミングT、Tn−1における酸素濃度に基づいて算出する場合について説明したが、3つ以上のタイミングで検出した酸素濃度により構成される種々の変化速度(例えば、酸素濃度曲線、多項式等)により混合気を制御する構成としてもよい。
また、上記実施形態においては、例えば、混合気の制御が、所定の空気比(一定の空気比)の混合気Fを生成する場合について説明したが、混合気を制御することに関しては任意に設定することが可能であり、例えば、混合気Fの空気比を設定範囲内に制御してもよいし、空気比の代用特性である空燃比(燃料と燃焼用空気の比率)を一定又は設定範囲内とするように混合気Fを制御する構成としてもよい。
また、上記実施形態においては、図3に示すフローチャートによって混合気を制御する場合について説明したが、図3に示すフローチャートは一例であり、混合気を制御するアルゴリズムについては任意に設定することが可能である。
また、上記実施形態においては、制御部50が、予測酸素濃度を目標酸素濃度(予め設定した酸素濃度)と等しくする際に、燃料ガスGの流量を調整する場合について説明したが、燃料ガスGと燃焼用空気Aの双方の流量を調整し、又は燃焼用空気Aの流量を調整する構成としてもよい。
また、上記実施形態においては、LNGサテライト供給によって供給される場合について説明したが、例えば、パイプラインをはじめとする気化された状態の燃料ガスに本発明の燃焼装置を適用してもよい。
また、上記実施形態においては、燃料ガスがLNGである場合について説明したが、例えば、液化石油ガス(Liquefied Petroleum Gas)をはじめとする種々の燃料に適用してもよい。
この発明に係る燃焼装置によれば、バーナに供給する混合気の空気比に変動が生じた場合に、速やかに混合気を所望の状態に制御することができるので、産業上利用可能である。
10 ボイラ本体
12 バーナ
13 缶体
20 燃焼用空気供給部
30 燃料供給部
50 制御部
60 酸素濃度検出センサ(酸素濃度検出部)
100 ボイラ装置(燃焼装置)

Claims (3)

  1. バーナと、
    前記バーナに燃料を供給する燃料供給部と、
    前記バーナに燃焼用空気を供給する空気供給部と、
    前記バーナで燃焼した排ガスの酸素濃度を検出する酸素濃度検出部と、
    前記バーナに供給する燃料及び燃焼用空気の量を制御する制御部と、
    を備えた燃焼装置であって、
    前記制御部は、
    前記酸素濃度検出部が検出した排ガスの酸素濃度の変化速度に基づいて前記バーナに供給する混合気を制御するように構成されていることを特徴とする燃焼装置。
  2. 請求項1に記載の燃焼装置であって、
    前記制御部は、
    前記酸素濃度検出部が検出した排ガスの酸素濃度の変化速度から所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいて前記バーナに供給する燃料と燃焼用空気の少なくともいずれか一方を調整するように構成されていることを特徴とする燃焼装置。
  3. 請求項2に記載の燃焼装置であって、
    前記制御部は、
    前記酸素濃度検出部が検出した排ガスの酸素濃度の変化速度が閾値を超えた場合に、所定時間経過後の排ガスの酸素濃度を算出し、算出した酸素濃度と目標酸素濃度との偏差に基づいて前記バーナに供給する燃料と燃焼用空気の少なくともいずれか一方を調整するように構成されていることを特徴とする燃焼装置。
JP2019169504A 2019-09-18 2019-09-18 燃焼装置 Active JP7379981B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019169504A JP7379981B2 (ja) 2019-09-18 2019-09-18 燃焼装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019169504A JP7379981B2 (ja) 2019-09-18 2019-09-18 燃焼装置

Publications (2)

Publication Number Publication Date
JP2021046969A true JP2021046969A (ja) 2021-03-25
JP7379981B2 JP7379981B2 (ja) 2023-11-15

Family

ID=74878235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019169504A Active JP7379981B2 (ja) 2019-09-18 2019-09-18 燃焼装置

Country Status (1)

Country Link
JP (1) JP7379981B2 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303756A (ja) * 1996-05-07 1997-11-28 Nippon Sekiyu Seisei Kk 加熱炉の燃焼制御方法およびその装置
JP2012021678A (ja) * 2010-07-13 2012-02-02 Rinnai Corp 燃焼装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303756A (ja) * 1996-05-07 1997-11-28 Nippon Sekiyu Seisei Kk 加熱炉の燃焼制御方法およびその装置
JP2012021678A (ja) * 2010-07-13 2012-02-02 Rinnai Corp 燃焼装置

Also Published As

Publication number Publication date
JP7379981B2 (ja) 2023-11-15

Similar Documents

Publication Publication Date Title
CN101910727B (zh) 流量控制装置
US8636024B2 (en) Fuel supply device
CN110207392B (zh) 一种风机和比例阀电流函数关系的修正方法
JP2018091331A (ja) ガスタービンに使用される燃料のための燃料組成を決定するためのシステムおよび方法
KR20060087071A (ko) 풍량센서를 이용한 오일 버너의 적정 공연비 제어 시스템및 그 제어방법
CA2642980A1 (en) Assured compliance mode of operating a combustion system
EA031938B1 (ru) Устройство для регулирования горения горелки
JP2018004140A (ja) ボイラ装置
JP2021046969A (ja) 燃焼装置
JP2016020791A (ja) ボイラ装置
JP2016008803A (ja) ボイラ装置
JP6409382B2 (ja) ボイラ装置
US10746404B2 (en) Hydrogen gas burner device
JP6492434B2 (ja) ボイラ装置
JP2007107442A (ja) ガス燃料供給装置
ITMI20120427A1 (it) Metodo perfezionato per la regolazione elettronica di una miscela combustibile, ad esempio gas, inviata ad un bruciatore
JP6413415B2 (ja) ボイラ装置
JP2016020789A (ja) ボイラ装置
US20210055018A1 (en) Method for detecting unusual condition of gas appliance, and water-heating device
KR102202296B1 (ko) 보일러 공기비 피드백 제어시스템 및 피드백 제어방법
JP2023093147A (ja) ボイラ装置
RU2647940C1 (ru) Способ автоматической оптимизации процесса сжигания топлива переменного состава
JP6209980B2 (ja) ボイラ及びボイラシステム
JP7210126B2 (ja) 燃焼設備
JP6107391B2 (ja) ボイラ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R150 Certificate of patent or registration of utility model

Ref document number: 7379981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150