JP2021044107A - 燃料電池システム及び排出弁の開閉方法 - Google Patents

燃料電池システム及び排出弁の開閉方法 Download PDF

Info

Publication number
JP2021044107A
JP2021044107A JP2019164106A JP2019164106A JP2021044107A JP 2021044107 A JP2021044107 A JP 2021044107A JP 2019164106 A JP2019164106 A JP 2019164106A JP 2019164106 A JP2019164106 A JP 2019164106A JP 2021044107 A JP2021044107 A JP 2021044107A
Authority
JP
Japan
Prior art keywords
gas
anode
fuel cell
discharge
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019164106A
Other languages
English (en)
Other versions
JP7243538B2 (ja
Inventor
裕介 西田
Yusuke Nishida
裕介 西田
智隆 石川
Tomotaka Ishikawa
智隆 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019164106A priority Critical patent/JP7243538B2/ja
Priority to US16/919,646 priority patent/US11258084B2/en
Publication of JP2021044107A publication Critical patent/JP2021044107A/ja
Application granted granted Critical
Publication of JP7243538B2 publication Critical patent/JP7243538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】目標とする量のアノードオフガスを排出する。【解決手段】燃料電池システムは、アノードガスとカソードガスの供給を受けて発電する燃料電池と、燃料電池に供給されるアノードガスが流れる供給流路と、燃料電池から排出されるアノードオフガスが流れる排出流路と、排出流路上に設けられ、開かれることでアノードオフガスを排出する排出弁と、排出弁の開閉を制御する制御部と、を備える。制御部は、排出弁の開弁により排出されるアノードオフガスの第1排出量から求められる排出流路の開口率と、アノードオフガスの排出量の目標値と、を用いて目標値に対応する排出弁の開弁時間を算出し、開弁時間に基づいて前記排出弁を閉じる。【選択図】図2

Description

本開示は燃料電池システム及び燃料電池システムにおける排出弁の開閉方法に関する。
燃料電池システムにおいて、燃料電池から排出されるアノードオフガスの流れる流路に設けられた排出弁を開くことで、アノードオフガスや燃料電池の発電によって生じた水を外部へ排出する技術が知られている。特許文献1には、燃料電池システムの起動時に、排出弁の温度から排出弁が凍結しているか否かを判定し、判定結果を用いてシステムを制御する技術が記載されている。
特開2008−059974号公報
排出弁を開くことが可能であっても、例えば、排出流路の一部に氷が存在する場合等には、アノードオフガスが流れることのできる流路断面積が減少するので、アノードオフガスの排出量が低減する。このような場合を考慮し、目標とする量のアノードオフガスを排出するための技術が望まれている。
本開示は、上述の課題を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本開示の一形態によれば、燃料電池システムが提供される。この燃料電池システムは、アノードガスとカソードガスの供給を受けて発電する燃料電池と、前記燃料電池に供給されるアノードガスが流れる供給流路と、前記燃料電池から排出されるアノードオフガスが流れる排出流路と、前記排出流路上に設けられ、開かれることで前記アノードオフガスを排出する排出弁と、前記排出弁の開閉を制御する制御部と、を備え、前記制御部は、前記排出弁の開弁により排出される前記アノードオフガスの予め定められた期間における第1排出量から求められる前記排出流路の開口率と、前記アノードオフガスの排出量の目標値と、を用いて前記目標値に対応する前記排出弁の開弁時間を算出し、前記開弁時間に基づいて前記排出弁を閉じる。
この形態によれば、排出弁から排出されるアノードオフガスの第1排出量から得られる開口率と、アノードオフガス排出量の目標値とを用いて排出弁の開弁時間を算出し、算出した開弁時間に基づいて排出弁を閉じるので、排出流路の一部が凍結等によって閉塞している場合であっても、目標とする量のアノードオフガスを排出することができる。そのため、排出弁の上流側におけるアノードガス濃度を所望の値に保つことができる。
(2)上記形態において、前記排出弁よりも上流側に配置された圧力センサを備え、前記制御部は、前記圧力センサにより測定された圧力値の変化量を用いて前記第1排出量を算出し、算出した前記第1排出量から前記開口率を求めてもよい。
この形態によれば、圧力値の変化量を用いて算出した第1排出量から開口率を求め、開弁時間を算出することができる。
(3)上記形態において、前記制御部は、前記開口率を、前記燃料電池の非発電時における前記第1排出量から求めてもよい。
この形態によれば、開口率を求めるための圧力値の変化量が、排出弁から排出されるアノードオフガスの排出速度以外の影響を受けることを抑制できるので、開口率を精度良く算出することができる。そのため、目標とする量のアノードオフガスを精度良く排出することができる。
(4)本開示の第2の形態によれば、アノードガスとカソードガスの供給を受けて発電する燃料電池を備える燃料電池システムにおいて、前記燃料電池から排出されるアノードオフガスの排出流路に設けられた排出弁の開閉方法が提供される。この方法は、前記排出弁の開弁により排出される前記アノードオフガスの予め定められた期間における第1排出量から求められる前記排出流路の開口率と、前記アノードオフガスの排出量の目標値と、を用いて前記目標値に対応する前記排出弁の開弁時間を算出する工程と、前記開弁時間に基づいて前記排出弁を閉じる工程と、を備える。
この形態によれば、排出弁から排出されるアノードオフガスの第1排出量から得られる開口率と、アノードオフガス排出量の目標値とを用いて排出弁の開弁時間を算出し、算出した開弁時間に基づいて排出弁を閉じるので、排出流路の一部が凍結等によって閉塞している場合であっても、目標とする量のアノードオフガスを排出することができる。そのため、排出弁の上流側におけるアノードガス濃度を所望の値に保つことができる。
本開示は、上述した燃料電池システム、排出弁の開閉方法以外の種々の形態で実現することも可能である。例えば、燃料電池システムにおける開弁時間の算出方法、燃料電池システムを備える車両等の形態で実現することができる。
燃料電池システムの概略構成図。 排出弁の開閉処理を示すフローチャート。 開口率取得処理を示すフローチャート。 開弁時間とアノードオフガス排出量との関係を示す図。 開口率取得処理の他の態様について説明するための図。
1.実施形態
図1は、本開示の一実施形態としての燃料電池システム100の概略構成図である。燃料電池システム100は、車両110に搭載され、運転者からの要求に応じて車両110の動力源となる電力を出力する。
燃料電池システム100は、燃料電池スタック10と、制御装置20と、カソードガス供給排出部30と、アノードガス供給排出部50と、冷却媒体循環部70と、DC/DCコンバータ80と、パワーコントロールユニット(以下、「PCU」という)81と、負荷82と、を備える。制御装置20は、CPUと、メモリと、インターフェイスと、を備えるECUであり、メモリに記憶されたプログラムを展開して実行することにより、制御部21として機能する。
燃料電池スタック10は、燃料電池セル11が積層されて構成されている。各燃料電池セル11は、電解質膜と、電解質膜の各々の面に配置されたアノード側電極及びカソード側電極と、を有する膜電極接合体と、膜電極接合体を挟持する1組のセパレータとを有し、アノードガスとカソードガスとの供給を受けて発電する。アノードガスは例えば水素であり、カソードガスは例えば空気である。
カソードガス供給排出部30は、カソードガス配管31と、エアフローメータ32と、カソードガスコンプレッサ33と、第1開閉弁34と、バイパス配管35と、分流弁36と、カソードオフガス配管41と、第1レギュレータ42と、を備える。
エアフローメータ32は、カソードガス配管31に設けられており、取り込んだ空気の流量を測定する。カソードガスコンプレッサ33は、カソードガス配管31を介して燃料電池スタック10と接続されている。カソードガスコンプレッサ33は、制御部21の制御により、外部から取り入れたカソードガスを圧縮し、燃料電池スタック10に供給する。
第1開閉弁34は、カソードガスコンプレッサ33と燃料電池スタック10との間に設けられ、制御部21の制御により開閉する。バイパス配管35は、カソードガス配管31におけるカソードガスコンプレッサ33と第1開閉弁34の間と、カソードオフガス配管41における第1レギュレータ42の下流とを接続する配管である。分流弁36は、バイパス配管35に設けられており、制御部21の制御により、燃料電池スタック10とカソードオフガス配管41への空気の流量を調節する。
カソードオフガス配管41は、燃料電池スタック10から排出されたカソードオフガスを燃料電池システム100の外部へと排出する。第1レギュレータ42は、制御部21の制御により、燃料電池スタック10のカソードガス出口の圧力を調整する。カソードオフガス配管41のうち、後述するアノードオフガス配管61との接続箇所よりも下流側を「アノードオフガスの排出流路」と呼ぶこともできる。
アノードガス供給排出部50は、アノードガス配管51と、アノードガスタンク52と、第2開閉弁53と、第2レギュレータ54と、インジェクタ55と、アノードオフガス配管61と、気液分離器62と、排出弁63と、循環配管64と、アノードガスポンプ65と、圧力センサ67と、を備える。
アノードガス配管51は、燃料電池スタック10にアノードガスを供給するための供給流路である。アノードガスタンク52は、アノードガス配管51を介して燃料電池スタック10のアノードガス入口に接続されており、内部に充填されているアノードガスを燃料電池スタック10に供給する。第2開閉弁53、第2レギュレータ54、インジェクタ55は、アノードガス配管51に、この順序で上流側、つまりアノードガスタンク52に近い側、から設けられている。第2開閉弁53は、制御部21の制御により開閉する。第2レギュレータ54は、制御部21の制御により、インジェクタ55の上流側におけるアノードガスの圧力を調整する。インジェクタ55は、制御部21によって設定された駆動周期や開弁時間に応じて、電磁的に駆動する開閉弁であり、燃料電池スタック10に供給されるアノードガス供給量を調整する。インジェクタ55は、アノードガス配管51に複数設けられていてもよい。
アノードオフガス配管61は、燃料電池スタック10のアノードオフガス出口に接続され、燃料電池スタック10と燃料電池システム100の外部とを連通する。アノードオフガス配管61は、燃料電池スタック10から排出されるアノードオフガスが流れる排出流路である。気液分離器62は、アノードオフガス配管61上に設けられている。気液分離器62は、発電反応に用いられることのなかったアノードガスや窒素ガスなどを含むアノードオフガスから、水を分離して貯留する。
排出弁63は、アノードオフガス配管61上において気液分離器62の鉛直下方に設けられ、制御部21の制御により開閉する。排出弁63が開かれると、排出弁63からは、気液分離器62内の水とアノードオフガスとが排出される。排出弁63から排出された水及びアノードオフガスは、カソードオフガス配管41を通じて外部へ排出される。排出弁63が閉じられている場合、アノードガスは発電で消費される一方、アノードガス以外の不純物は消費されない。不純物は、例えばカソード側からアノード側に透過した窒素などを含む。このため、アノードオフガス中の不純物濃度は徐々に増大する。このとき、排出弁63が開かれると、アノードオフガスは、カソードオフガスと共に、燃料電池システム100の外部に排出される。排出弁63の開弁中も、インジェクタ55によるアノードガスの供給が継続することにより、インジェクタ55の下流におけるアノードガス濃度が次第に高まる。
循環配管64は、気液分離器62と、アノードガス配管51におけるインジェクタ55の下流とを接続する配管である。循環配管64には、アノードガスポンプ65が設けられている。アノードガスポンプ65は、制御部21の制御により駆動され、気液分離器62によって水が分離されたアノードオフガスを、アノードガス配管51へと送り出す。この燃料電池システム100では、アノードガスを含むアノードオフガスを循環させて、再び燃料電池スタック10に供給することにより、アノードガスの利用効率を向上させている。
圧力センサ67は、排出弁63よりも上流側のアノードオフガス配管61に設けられている。圧力センサ67は、インジェクタ55の下流におけるアノードガス配管51と、排出弁63よりも上流側のアノードオフガス配管61と、循環配管64とのいずれかに設けられていればよい。圧力センサ67は測定結果を制御部21に送信する。
冷却媒体循環部70は、冷媒供給管71と、冷媒排出管72と、ラジエータ73と、冷媒ポンプ74と、三方弁75と、バイパス配管76と、温度センサ77と、を備える。冷却媒体循環部70は、燃料電池スタック10内に冷却媒体を循環させることにより、燃料電池スタック10の温度を調整する。冷媒としては、例えば、水、エチレングリコール、空気などが用いられる。
冷媒供給管71は、燃料電池スタック10内の冷却媒体入口に接続され、冷媒排出管72は、燃料電池スタック10の冷却媒体出口に接続されている。ラジエータ73は、冷媒排出管72と冷媒供給管71とに接続されており、冷媒排出管72から流入する冷却媒体を、電動ファンの送風等により冷却してから冷媒供給管71へと排出する。冷媒ポンプ74は、冷媒供給管71に設けられており、冷媒を燃料電池スタック10に圧送する。三方弁75は、制御部21の制御により、ラジエータ73とバイパス配管76への冷媒の流量を調節する。温度センサ77は、燃料電池スタック10から排出される冷媒の温度を測定し、その測定値を制御部21へ送信する。
DC/DCコンバータ80は、燃料電池スタック10の出力電圧を昇圧してPCU81に供給する。PCU81は、インバータを内蔵し、制御部21の制御によりインバータを介して負荷82に電力を供給する。燃料電池スタック10及び図示しない2次電池の電力は、PCU81を含む電源回路を介して、車輪(図示せず)を駆動するためのトラクションモータ(図示せず)等の負荷82や、カソードガスコンプレッサ33、アノードガスポンプ65、各種弁に供給される。電流センサ83は、燃料電池スタック10の出力電流値を測定し、その測定値を制御部21へ送信する。
制御部21は、要求電力に応じて燃料電池システム100の各部を制御し、燃料電池スタック10の出力を制御する。要求電力には、燃料電池システム100が搭載される車両110の運転者などによる外的発電要求と、燃料電池システム100の補機類に対して電力を供給するための内的発電要求と、が含まれる。外的発電要求は、車両110の図示しないアクセルペダルの踏込量の増大につれ、増大する。
制御部21は、排出弁63の開弁条件が成立した場合に排出弁63を開き、排出弁63の閉弁条件が成立した場合に排出弁63を閉じる、開閉処理を実行する。より具体的には、制御部21は、排出弁63の備える図示しないモータ等に対し、開弁条件が成立した場合には排出弁63に開信号を供給し、閉弁条件が成立した場合には閉信号を供給する。開弁条件は、例えば、気液分離器62に貯留された水が規定値に達したことや、インジェクタ55下流側の窒素濃度が規定値以上であることである。排出弁63が閉じられている間における、気液分離器62に貯留される水の量や、インジェクタ55下流側の窒素濃度は、例えば、電流センサ83の測定値を用いて算出される、燃料電池スタック10の発電量に基づいて算出される。閉弁条件は、排出弁63が開かれてから、後述する開弁時間算出処理において算出された開弁時間が経過したことである。
図2は、制御部21が実行する排出弁63の開閉処理を示すフローチャートである。開閉処理は、燃料電池システム100の始動中、繰り返し実行される。ステップS10では、制御部21は、排出弁63の開弁条件が成立したか否かを判定する。上述した開弁条件のいずれかが成立している場合には、制御部21は、処理をステップS20に進め、排出弁63を開く。開弁条件が成立していない場合には、制御部21は、本ルーチンを抜ける。
ステップS30では、制御部21は、アノードオフガスの排出流路の開口率ARを取得する。本実施形態において、開口率ARは、排出弁63の下流側におけるアノードオフガス配管61の流路断面積に対する、アノードオフガスが流れる面積の割合である。排出流路の一部に氷が存在する場合等には、開口率ARは100%よりも小さくなる。流路断面積に開口率ARを乗じた値は、アノードオフガスにとっての有効断面積でもある。
図3は、開口率取得処理を示すフローチャートである。ステップS31では、制御部21は、排出弁63が開かれた時刻t0から時刻t1までの予め定められた期間Δtにおいて排出弁63から排出された、アノードオフガスの第1排出量Q1を算出する。本実施形態では、制御部21は、時刻t0から時刻t1までの圧力センサ67の圧力値の変化量ΔPと気体の状態方程式とからモル変化量を算出し、算出したモル変化量を用いて第1排出量Q1を算出する。期間Δtは、開口率が100%の状態において目標値Qnのアノードオフガスを排出するための開弁時間Taよりも、短い時間である。期間Δtは、例えば、開弁時間Taの2分の1〜10分の1の間のいずれかの時間であってもよい。
ステップS32では、制御部21は、排出弁63が開かれた時刻t0から時刻t1までの予め定められた期間Δtに対応する、開口率ARが基準状態である場合のアノードオフガスの第2排出量Q2を算出する。本実施形態では、制御部21は、開口率が基準状態である場合における、排出弁63が開かれてからの経過時間とアノードオフガス排出量とを規定したマップを参照して、期間Δtにおける第2排出量Q2を算出する。マップは、開口率を変化させた場合のアノードオフガス排出量を求める実験やシミュレーションにより、求めることができる。制御部21は、マップに代えて、開口率が基準状態である場合における、排出弁63が開かれてからの経過時間とアノードオフガス排出量とを規定した関係式を参照してもよい。基準状態は、本実施形態では、開口率が100%の状態である。すなわち、本実施形態における基準状態は、排出流路が全く閉塞していない状態である。
ステップS33では、制御部21は、第1排出量Q1と第2排出量Q2とを用いて、開口率ARを取得する。本実施形態では、制御部21は、第2排出量Q2に対する第1排出量Q1の比(Q1/Q2)を、現在の開口率ARとして取得する。第1排出量Q1と第2排出量Q2は、それぞれ、同じ期間Δtに対するアノードオフガス排出量である。そのため、第1排出量Q1と第2排出量Q2とを用いて開口率を取得することは、実際のアノードオフガス排出速度(第1排出速度V1)と、開口率ARが基準状態である場合におけるアノードオフガス排出速度(第2排出速度V2)と、の比に基づいて開口率ARを取得することでもある。
ステップS34では、制御部21は、取得した開口率ARが閾値より大きいか否かを判定する。閾値は、排出弁63が開かれていないと判断される場合の開口率ARであり、例えば、5%以下の値である。排出弁63が開かれていない場合とは、例えば、排出弁63が凍結している場合である。開口率ARが閾値未満である場合には、ステップS35において、制御部21は、第1処理を実行した後、図2のステップS50からステップS70をスキップして、開閉処理を終了する。第1処理は、排出弁63が開かれない場合に実行される公知の処理である。第1処理は、例えば、排出弁63が開かれていないことを示す情報を、図示しない表示装置や音声出力装置により報知させる処理であってもよい。開口率ARが閾値以上である場合には、制御部21は処理をステップS40に進める。
図2に戻り、ステップS40では、制御部21はアノードオフガス排出量の目標値Qnを取得する。アノードオフガス排出量の目標値Qnは、低減すべきアノードオフガス中の窒素等の不純物濃度に基づいて定められる。
ステップS50では、制御部21は、ステップS30で取得した開口率ARと、ステップS40で取得した目標値Qnと、を用いて、目標値Qnに対応する排出弁63の開弁時間を算出する。
図4は、開弁時間とアノードオフガス排出量との関係を示す図である。図4にはアノードオフガス排出量の目標値Qnと、グラフLaと、グラフLbとが示されている。グラフLaは、開口率が100%である場合における、開弁時間とアノードオフガス排出量の関係を示す。グラフLbは、現在の開口率ARに対応する、開弁時間とアノードオフガス排出量の関係を示す。本実施形態では、ステップS50において、制御部21は、目標値QnとグラフLaとから、開口率が100%である場合の開弁時間Taを求める。制御部21は、求めた開弁時間Taと、ステップS30で取得した開口率ARとを用いて、現在の開口率ARに対応する開弁時間Tbを求める。具体的には、制御部21は、開弁時間Taを取得した開口率ARで割った時間(Q2/Q1)Taを、開弁時間Tbとして算出する。ステップS30、ステップS40、ステップS50の一連の処理を、「開弁時間算出処理」とも呼ぶ。
図2に戻り、ステップS60では、制御部21は、排出弁63を開いてからステップS50で算出した開弁時間Tbが経過したか否かを判定する。制御部21は、開弁時間Tbが経過するまでは排出弁63の開弁状態を保持する。制御部21は、開弁時間Tbが経過した場合には、処理をステップS70に進め、排出弁63を閉じる。他の形態において、制御部21は、開弁時間Tbから補正時間αを減らした時間、あるいは増やした時間が経過した場合に、排出弁63を閉じてもよい。補正時間αは、例えば、第1排出量Q1と第2排出量Q2を算出する場合の排出弁63の構成の差異等に基づいて規定されてもよい。
この形態によれば、排出弁63から排出されるアノードオフガスの第1排出量Q1から得られる開口率ARと、アノードオフガス排出量の目標値Qnとを用いて開弁時間Tbを算出し、開弁時間Tbに基づいて排出弁63を閉じるので、排出流路の一部が凍結等によって閉塞している場合であっても、目標とする量のアノードオフガスを排出することができる。そのため、排出弁63の上流側におけるアノードガス濃度を所望の値に保つことができる。したがって、燃料電池スタック10による発電を安定させることができる。また、開弁時間Tbに基づいて排出弁63を閉じるので、実際のアノードオフガスの排出量を逐次算出し、算出した排出量の総量が目標値に達した場合に排出弁を閉じる制御を行う場合と比較して、開閉処理に係る制御部21の処理負荷を軽減することができる。
この形態によれば、排出弁63の上流側に配置された圧力センサ67の圧力値の変化量ΔPを用いて第1排出量Q1を算出し、開口率ARを取得することができる。
2.他の実施形態
2−1.他の実施形態1
図5を用いて、開口率取得処理(図2、ステップS30)の他の態様について説明する。図5には、開弁時間と、アノードオフガス排出量と、開口率との関係を示すマップが示されている。図5において異なるハッチングで示された領域R1、R2、R3、R4、R5、R6は、それぞれ、開口率が約100%、約80%、約60%、約40%、約20%、約5%以下である場合における、開弁時間に対する第2排出量Q2の取り得る値の範囲を示している。すなわち、図5には、基準状態として、約100%、約80%、約60%、約40%、約20%、約5%以下の開口率と、開口率に対応する第2排出量Q2とが示されている。グラフLcは、開弁してからの時間tcと第1排出量Q1cの関係を示す。制御部21は、開口率取得処理において、排出弁63を開いてから所定期間が経過した後の第1排出量Q1を算出し、複数の基準状態と、各基準状態に対応する第2排出量Q2との関係を参照して、現在の開口率ARを取得してもよい。図5に示す例では、制御部21は、排出弁63を開いてから期間tcが経過した後の第1排出量Q1cを算出し、第1排出量Q1cの存在する領域R3に対応する開口率60%を、現在の開口率ARとして取得してもよい。この形態によっても、上述の実施形態と同様の効果を奏する。
2−2.他の実施形態2
上記形態において、制御部21は、図3に示す開口率取得処理を、燃料電池スタック10の非発電時に実行してもよい。非発電時は、例えば、燃料電池システム100が起動された後、燃料電池スタック10の発電前の時である。この形態によれば、開口率ARを取得するための圧力値の変化量ΔPは、インジェクタ55によるアノードガスの供給や、燃料電池スタック10の発電によるアノードガスの消費等による圧力値の変化を含まない。そのため、変化量ΔPが、アノードオフガス排出速度以外の影響を受けることを抑制できるので、開口率ARをより精度良く算出することができ、目標とする量のアノードオフガスを排出するための開弁時間をより精度良く算出することができる。そのため、目標とする量のアノードオフガスをより精度良く排出することができる。
2−3.他の実施形態3
上記形態において、制御部21は、以前に取得した排出弁63の開口率ARを、今回の開弁時間算出処理において使用してもよい。つまり、今回の開弁時間算出処理におけるステップS30(図2)では、図3に示したステップS31からステップS34の処理を実行することに代えて、メモリに記憶された開口率ARを取得し、当該開口率ARを用いてステップS50において開弁時間を算出してもよい。この形態によれば、今回の開弁時間算出処理において、図3のステップS31からステップS34の処理にかかる時間を短縮することができる。そのため、算出される開弁時間が短い場合であっても、開弁時間の経過時に排出弁63を閉じることができる。また、開口率を算出する処理にかかる制御部21の負荷を低減することができる。
2−4.他の実施形態4
上記他の実施形態2と他の実施形態3とは組み合わせられてもよい。制御部21は、ステップS30(図2)において、非発電時に取得された開口率ARをメモリから取得し、ステップS50では、当該開口率ARを用いて開弁時間を算出してもよい。燃料電池スタック10への要求電力が比較的大きい高負荷の状態では、圧力値の変化量ΔPは、インジェクタ55によるアノードガスの供給や、燃料電池スタック10の発電によるアノードガスの消費等、アノードオフガス排出速度以外の影響を受ける。この形態によれば、変化量ΔPが、アノードオフガス排出速度以外の影響を受けにくい状態で取得された開口率ARを用いて開弁時間を算出するので、高負荷の状態においても、目標値Qnに対応する開弁時間をより精度良く算出することができる。そのため、目標とする量のアノードオフガスをより精度良く排出することができる。したがって、高負荷の状態においても、燃料電池スタック10による発電を安定して継続させることができる。
2−5.他の実施形態5
上記実施形態において、燃料電池システムは、アノードオフガス配管61における排出弁63の下流に、アノードオフガス排出流量を測定可能なセンサを備えていてもよい。制御部21は、当該センサの測定値を取得して、第1排出量Q1を算出してもよい。
2−6.他の実施形態6
上記形態において、アノードガス供給排出部50における循環配管64とアノードガスポンプ65とは設けられていなくてもよい。すなわち、燃料電池システム100の構成は、アノードオフガスを循環させない構成であってもよい。
2−7.他の実施形態7
上記形態において、ステップS34において第1排出量Q1と第2排出量Q2とから開口率ARを算出する際には、アノードオフガス中のガス密度を考慮してもよい。例えば、第1排出量Q1中における窒素密度を、基準となる第2排出量Q2と略等しくなるように、温度に関連付けられた、予め定められた補正式を用いて補正してもよい。ガス密度を求める際の温度としては、温度センサ77から取得した燃料電池スタック10の温度を用いることができる。
2−8.他の実施形態8
上記実施形態において、燃料電池システム100は、車両110に搭載されているが、燃料電池システム100は、船舶、電車、ロボット等の車両110以外の移動体に搭載されてもよいし、定置されるものであってもよい。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、他の実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組合せを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
10…燃料電池スタック、11…燃料電池セル、20…制御装置、21…制御部、30…カソードガス供給排出部、31…カソードガス配管、32…エアフローメータ、33…カソードガスコンプレッサ、34…第1開閉弁、35…バイパス配管、36…分流弁、41…カソードオフガス配管、42…第1レギュレータ、50…アノードガス供給排出部、51…アノードガス配管、52…アノードガスタンク、53…第2開閉弁、54…第2レギュレータ、55…インジェクタ、61…アノードオフガス配管、62…気液分離器、63…排出弁、64…循環配管、65…アノードガスポンプ、67…圧力センサ、70…冷却媒体循環部、71…冷媒供給管、72…冷媒排出管、73…ラジエータ、74…冷媒ポンプ、75…三方弁、76…バイパス配管、77…温度センサ、80…DC/DCコンバータ、81…PCU、82…負荷、83…電流センサ、100…燃料電池システム、110…車両

Claims (4)

  1. 燃料電池システムであって、
    アノードガスとカソードガスの供給を受けて発電する燃料電池と、
    前記燃料電池に供給されるアノードガスが流れる供給流路と、
    前記燃料電池から排出されるアノードオフガスが流れる排出流路と、
    前記排出流路上に設けられ、開かれることで前記アノードオフガスを排出する排出弁と、
    前記排出弁の開閉を制御する制御部と、を備え、
    前記制御部は、
    前記排出弁の開弁により排出される前記アノードオフガスの予め定められた期間における第1排出量から求められる前記排出流路の開口率と、前記アノードオフガスの排出量の目標値と、を用いて前記目標値に対応する前記排出弁の開弁時間を算出し、前記開弁時間に基づいて前記排出弁を閉じる、
    燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記排出弁よりも上流側に配置された圧力センサを備え、
    前記制御部は、前記圧力センサにより測定された圧力値の変化量を用いて前記第1排出量を算出し、前記第1排出量から前記開口率を求める、燃料電池システム。
  3. 請求項2に記載の燃料電池システムであって、
    前記制御部は、前記開口率を、前記燃料電池の非発電時における前記第1排出量から求める、燃料電池システム。
  4. アノードガスとカソードガスの供給を受けて発電する燃料電池を備える燃料電池システムにおいて、前記燃料電池から排出されるアノードオフガスの排出流路に設けられた排出弁の開閉方法であって、
    前記排出弁の開弁により排出される前記アノードオフガスの予め定められた期間における第1排出量から求められる前記排出流路の開口率と、前記アノードオフガスの排出量の目標値と、を用いて前記目標値に対応する前記排出弁の開弁時間を算出する工程と、
    前記開弁時間に基づいて前記排出弁を閉じる工程と、を備える方法。
JP2019164106A 2019-09-10 2019-09-10 燃料電池システム及び排出弁の開閉方法 Active JP7243538B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019164106A JP7243538B2 (ja) 2019-09-10 2019-09-10 燃料電池システム及び排出弁の開閉方法
US16/919,646 US11258084B2 (en) 2019-09-10 2020-07-02 Fuel cell system and opening/closing method for discharge valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019164106A JP7243538B2 (ja) 2019-09-10 2019-09-10 燃料電池システム及び排出弁の開閉方法

Publications (2)

Publication Number Publication Date
JP2021044107A true JP2021044107A (ja) 2021-03-18
JP7243538B2 JP7243538B2 (ja) 2023-03-22

Family

ID=74851425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019164106A Active JP7243538B2 (ja) 2019-09-10 2019-09-10 燃料電池システム及び排出弁の開閉方法

Country Status (2)

Country Link
US (1) US11258084B2 (ja)
JP (1) JP7243538B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332774B1 (ko) * 2021-08-18 2021-12-01 주식회사 케이알엔지니어링 배터리모듈의 오프가스 배출구조
JP7441870B2 (ja) 2022-03-11 2024-03-01 本田技研工業株式会社 燃料電池システム及び燃料電池システムの弁制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243491A (ja) * 2004-02-27 2005-09-08 Toyota Motor Corp 燃料電池システム
JP2006179469A (ja) * 2004-11-29 2006-07-06 Toyota Motor Corp ガス漏れ検知装置および燃料電池システム
JP2006310182A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 燃料電池システム及びパージ弁制御方法
JP2008047353A (ja) * 2006-08-11 2008-02-28 Toyota Motor Corp 燃料電池システム
JP2016103466A (ja) * 2014-11-12 2016-06-02 トヨタ自動車株式会社 燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059974A (ja) 2006-09-01 2008-03-13 Toyota Motor Corp 燃料電池システム
US9653740B2 (en) * 2014-11-12 2017-05-16 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP7139754B2 (ja) 2018-07-26 2022-09-21 トヨタ自動車株式会社 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243491A (ja) * 2004-02-27 2005-09-08 Toyota Motor Corp 燃料電池システム
JP2006179469A (ja) * 2004-11-29 2006-07-06 Toyota Motor Corp ガス漏れ検知装置および燃料電池システム
JP2006310182A (ja) * 2005-04-28 2006-11-09 Toyota Motor Corp 燃料電池システム及びパージ弁制御方法
JP2008047353A (ja) * 2006-08-11 2008-02-28 Toyota Motor Corp 燃料電池システム
JP2016103466A (ja) * 2014-11-12 2016-06-02 トヨタ自動車株式会社 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332774B1 (ko) * 2021-08-18 2021-12-01 주식회사 케이알엔지니어링 배터리모듈의 오프가스 배출구조
JP7441870B2 (ja) 2022-03-11 2024-03-01 本田技研工業株式会社 燃料電池システム及び燃料電池システムの弁制御方法

Also Published As

Publication number Publication date
JP7243538B2 (ja) 2023-03-22
US20210075045A1 (en) 2021-03-11
US11258084B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
US10305127B2 (en) Wet state control method for fuel cell system and wet state control device for the same
US10199666B2 (en) Fuel cell system
CN109768303B (zh) 燃料电池系统和控制燃料电池系统的方法
CN110783602B (zh) 燃料电池系统
JP7087925B2 (ja) 燃料電池システム
US11171347B2 (en) Fuel cell system to control output of a fuel cell stack
US10892503B2 (en) Fuel cell system
CN108878929B (zh) 燃料电池系统及燃料电池系统的控制方法
JP7243538B2 (ja) 燃料電池システム及び排出弁の開閉方法
JP6907894B2 (ja) 燃料電池システム
US11362355B2 (en) Fuel cell system and anode off-gas discharge amount estimation system
US20180375119A1 (en) Inspection method for fuel cell stack
US20210075036A1 (en) Fuel cell system
JP6973216B2 (ja) 燃料電池システム及び燃料電池システムの制御方法
US10811708B2 (en) Fuel cell system and control method thereof
JP6972920B2 (ja) 燃料電池システム
US11508978B2 (en) Fuel cell system
US11476477B2 (en) Fuel cell system, control method of fuel cell system, and storage medium
JP2019053875A (ja) 燃料電池システム
JP2016149260A (ja) 燃料電池システム
JP2019087357A (ja) 燃料電池システム
JP7124751B2 (ja) 燃料電池システム
JP2021180076A (ja) 燃料電池システム
JP2021026848A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R151 Written notification of patent or utility model registration

Ref document number: 7243538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151