JP2021040059A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2021040059A
JP2021040059A JP2019160906A JP2019160906A JP2021040059A JP 2021040059 A JP2021040059 A JP 2021040059A JP 2019160906 A JP2019160906 A JP 2019160906A JP 2019160906 A JP2019160906 A JP 2019160906A JP 2021040059 A JP2021040059 A JP 2021040059A
Authority
JP
Japan
Prior art keywords
metal plate
semiconductor chip
semiconductor device
region
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019160906A
Other languages
Japanese (ja)
Other versions
JP7329394B2 (en
Inventor
達也 森本
Tatsuya Morimoto
達也 森本
啓一郎 沼倉
Keiichiro Numakura
啓一郎 沼倉
要介 冨田
Yosuke Tomita
要介 冨田
早見 泰明
Yasuaki Hayami
泰明 早見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Nissan Motor Co Ltd
Original Assignee
Renault SAS
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS, Nissan Motor Co Ltd filed Critical Renault SAS
Priority to JP2019160906A priority Critical patent/JP7329394B2/en
Publication of JP2021040059A publication Critical patent/JP2021040059A/en
Application granted granted Critical
Publication of JP7329394B2 publication Critical patent/JP7329394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a semiconductor device in which the stress applied to a joint of a semiconductor chip is relaxed and an increase in thermal resistance of a heat dissipation path is suppressed.SOLUTION: A semiconductor device 1 includes an insulating heat conductive substrate 40 placed in parallel with a semiconductor chip 20 whose main surface is bonded to a first metal plate 10 and a second metal plate 30 and bonded to the first metal plate 10 and the second metal plate 30. At least one of a joint between the heat conductive substrate 40 and the first metal plate 10 and a joint between the heat conductive substrate 40 and the second metal plate 30 is a joint in which a high strength region with high joint strength and a low strength region with low joint strength are mixed. The low strength region is sandwiched between a high strength region located near the semiconductor chip 20 and a high strength region located far from the semiconductor chip 20.SELECTED DRAWING: Figure 1

Description

本発明は、半導体装置に関するものである。 The present invention relates to a semiconductor device.

半導体チップに形成した半導体素子に電流が流れると、内部抵抗により半導体チップが発熱する。半導体チップで発生する熱を放出するために、種々の対策が検討されている。例えば、半導体素子の主面に冷却器を接合し、冷却器に流れる冷却水により半導体チップを冷却する。また、半導体チップの上面と下面に熱伝導性の高い導電部材を接続し、それぞれの導電部材に絶縁性部材を介して冷却器を接合する構造により、半導体チップを上面と下面から冷却する方法がある(特許文献1参照。)。 When a current flows through a semiconductor element formed on a semiconductor chip, the semiconductor chip generates heat due to internal resistance. Various measures are being studied to release the heat generated by the semiconductor chip. For example, a cooler is joined to the main surface of the semiconductor element, and the semiconductor chip is cooled by the cooling water flowing through the cooler. Further, there is a method of cooling the semiconductor chip from the upper surface and the lower surface by a structure in which conductive members having high thermal conductivity are connected to the upper surface and the lower surface of the semiconductor chip and a cooler is joined to each conductive member via an insulating member. Yes (see Patent Document 1).

特開2004−40899号公報Japanese Unexamined Patent Publication No. 2004-40899

しかしながら、半導体チップ、導電部材および絶縁性部材に異なる材料を用いると、これらの材料の熱膨張率の差に起因して、半導体チップの温度変化によって導電部材が接合されている冷却器などの金属板に反りが生じる。この反りにより発生する力が導電部材を経由して半導体チップと導電部材との接合部に伝わることによって、半導体チップと導電部材との接合部に応力がかかる。このため、接合部の劣化や剥離が生じ、半導体チップと導電部材の間の熱抵抗や電気抵抗が増大するなどの問題が生じる。 However, when different materials are used for the semiconductor chip, the conductive member and the insulating member, a metal such as a cooler to which the conductive member is bonded due to a temperature change of the semiconductor chip due to the difference in the coefficient of thermal expansion of these materials. The board warps. The force generated by this warp is transmitted to the joint between the semiconductor chip and the conductive member via the conductive member, so that stress is applied to the joint between the semiconductor chip and the conductive member. For this reason, deterioration or peeling of the joint portion occurs, and problems such as an increase in thermal resistance and electrical resistance between the semiconductor chip and the conductive member occur.

一方、導電部材を変形しやすくして、半導体チップと導電部材との接合部にかかる応力を緩和する方法がある。例えば、半導体チップとの接合面に垂直な断面の面積が小さい導電部材を使用することにより、導電部材を変形しやすくすることができる。しかし、導電部材の断面積を小さくすると、導電部材での熱の移動が制限され、熱が移動する経路(以下において、「放熱経路」という。)の熱抵抗が増大する。このように、導電部材の断面積の減少と放熱経路の熱抵抗の増大とはトレードオフの関係がある。 On the other hand, there is a method of making the conductive member easily deformed to relieve the stress applied to the joint portion between the semiconductor chip and the conductive member. For example, by using a conductive member having a small cross-sectional area perpendicular to the joint surface with the semiconductor chip, the conductive member can be easily deformed. However, when the cross-sectional area of the conductive member is reduced, the transfer of heat in the conductive member is restricted, and the thermal resistance of the path through which heat is transferred (hereinafter, referred to as "heat dissipation path") increases. As described above, there is a trade-off relationship between the decrease in the cross-sectional area of the conductive member and the increase in the thermal resistance of the heat dissipation path.

本発明は、上記課題に鑑みてなされたものであり、その目的は、半導体チップの接合部にかかる応力を緩和し、且つ放熱経路の熱抵抗の増大が抑制された半導体装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device that relieves stress applied to a joint portion of a semiconductor chip and suppresses an increase in thermal resistance of a heat dissipation path. is there.

本発明の一態様に係る半導体装置は、熱伝導基板と第1の金属板の接合部および熱伝導基板と第2の金属板の接合部の少なくともいずれかが、接合強度が高い高強度領域と低い低強度領域とが混在する接合部であることを要旨とする。低強度領域は、半導体チップに近い位置の高強度領域と遠い位置の高強度領域に挟まれている。 In the semiconductor device according to one aspect of the present invention, at least one of the joint portion between the heat conductive substrate and the first metal plate and the joint portion between the heat conductive substrate and the second metal plate has a high strength region having high joint strength. The gist is that the joint is a mixture of low-strength regions. The low-strength region is sandwiched between a high-strength region located near the semiconductor chip and a high-strength region located far from the semiconductor chip.

本発明によれば、半導体チップの接合部にかかる応力を緩和し、且つ放熱経路の熱抵抗の増大が抑制された半導体装置を提供することができる。 According to the present invention, it is possible to provide a semiconductor device in which the stress applied to the joint portion of the semiconductor chip is relaxed and the increase in thermal resistance of the heat dissipation path is suppressed.

第1の実施形態に係る半導体装置の構成を示す模式的な断面図である。It is a schematic cross-sectional view which shows the structure of the semiconductor device which concerns on 1st Embodiment. 第1の実施形態に係る半導体装置の構成を示す模式的な平面図である。It is a schematic plan view which shows the structure of the semiconductor device which concerns on 1st Embodiment. 第1の実施形態に係る半導体装置の他の構成を示す模式的な平面図である。It is a schematic plan view which shows the other structure of the semiconductor device which concerns on 1st Embodiment. 第1の実施形態の変形例に係る半導体装置の構成を示す模式的な断面図である。It is a schematic cross-sectional view which shows the structure of the semiconductor device which concerns on the modification of 1st Embodiment. 第1の実施形態の変形例に係る半導体装置の構成を示す模式的な平面図である。It is a schematic plan view which shows the structure of the semiconductor device which concerns on the modification of 1st Embodiment. 第1の実施形態の変形例に係る半導体装置の他の構成を示す模式的な平面図である。It is a schematic plan view which shows the other structure of the semiconductor device which concerns on the modification of 1st Embodiment. 第1の実施形態の変形例に係る半導体装置の更に他の構成を示す模式的な断面図である。It is a schematic cross-sectional view which shows the other structure of the semiconductor device which concerns on the modification of 1st Embodiment. 第2の実施形態に係る半導体装置の構成を示す模式的な平面図である。It is a schematic plan view which shows the structure of the semiconductor device which concerns on 2nd Embodiment. 第2の実施形態に係る半導体装置の構成を示す模式的な断面図である。It is a schematic cross-sectional view which shows the structure of the semiconductor device which concerns on 2nd Embodiment. 第3の実施形態に係る半導体装置の構成を示す模式的な平面図である。It is a schematic plan view which shows the structure of the semiconductor device which concerns on 3rd Embodiment. 第3の実施形態に係る半導体装置の構成を示す模式的な断面図である。It is a schematic cross-sectional view which shows the structure of the semiconductor device which concerns on 3rd Embodiment. 第4の実施形態に係る半導体装置の構成を示す模式的な断面図である。It is a schematic cross-sectional view which shows the structure of the semiconductor device which concerns on 4th Embodiment. 第4の実施形態に係る半導体装置の構成を示す模式的な平面図である。It is a schematic plan view which shows the structure of the semiconductor device which concerns on 4th Embodiment. 第4の実施形態に係る半導体装置の他の構成を示す模式的な平面図である。It is a schematic plan view which shows the other structure of the semiconductor device which concerns on 4th Embodiment. 第5の実施形態に係る半導体装置の構成を示す模式的な断面図である。It is a schematic cross-sectional view which shows the structure of the semiconductor device which concerns on 5th Embodiment.

以下に、図面を参照して実施形態を説明する。図面の記載において同一部分には同一符号を付して説明を省略する。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各部の厚みの比率などは現実のものとは異なる部分を含む。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。 Hereinafter, embodiments will be described with reference to the drawings. In the description of the drawings, the same parts are designated by the same reference numerals and the description thereof will be omitted. However, the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each part, and the like include parts that are different from the actual ones. In addition, there are parts in which the relations and ratios of the dimensions of the drawings are different from each other.

(第1の実施形態)
第1の実施形態に係る半導体装置1は、図1に示すように、第1の金属板10、半導体チップ20、第2の金属板30および絶縁性の熱伝導基板40を備える。半導体チップ20の第1主面が第1の金属板10に接合され、第1主面に対向する半導体チップ20の第2主面が第2の金属板30に接合されている。熱伝導基板40は、半導体チップ20と並列に配置され、第1の金属板10と第2の金属板30に主面が接合されている。
(First Embodiment)
As shown in FIG. 1, the semiconductor device 1 according to the first embodiment includes a first metal plate 10, a semiconductor chip 20, a second metal plate 30, and an insulating heat conductive substrate 40. The first main surface of the semiconductor chip 20 is joined to the first metal plate 10, and the second main surface of the semiconductor chip 20 facing the first main surface is joined to the second metal plate 30. The heat conductive substrate 40 is arranged in parallel with the semiconductor chip 20, and its main surface is joined to the first metal plate 10 and the second metal plate 30.

第1の金属板10および第2の金属板30には、例えば、アルミニウム板や銅板などが使用される。第1の金属板10は、半導体チップ20に発生する熱を外部に放出する放熱板の機能を有する。 For the first metal plate 10 and the second metal plate 30, for example, an aluminum plate or a copper plate is used. The first metal plate 10 has a function of a heat radiating plate that releases heat generated in the semiconductor chip 20 to the outside.

第1の金属板10や第2の金属板30は、半導体チップ20に形成された半導体素子の電極として使用されてもよい。例えば、第1主面に露出する第1主電極および第2主面に露出する第2主電極を有する半導体素子が形成された半導体チップ20において、第1の金属板10と第2の金属板30は電極として使用される。すなわち、半導体素子の第1主電極は第1の金属板10と電気的に接続し、第2主電極は第2の金属板30と電気的に接続する。そして、第1の金属板10と第2の金属板30を経由して、半導体素子に主電流が流れる。 The first metal plate 10 and the second metal plate 30 may be used as electrodes of a semiconductor element formed on the semiconductor chip 20. For example, in a semiconductor chip 20 in which a semiconductor element having a first main electrode exposed on a first main surface and a second main electrode exposed on a second main surface is formed, a first metal plate 10 and a second metal plate are formed. 30 is used as an electrode. That is, the first main electrode of the semiconductor element is electrically connected to the first metal plate 10, and the second main electrode is electrically connected to the second metal plate 30. Then, the main current flows through the semiconductor element via the first metal plate 10 and the second metal plate 30.

半導体チップ20と第1の金属板10は、第1のチップ接合材51により接合されている。また、半導体チップ20と第2の金属板30は、第2のチップ接合材52により接合されている。第1の金属板10や第2の金属板30が電極として使用される場合には、第1のチップ接合材51や第2のチップ接合材52に、例えば、はんだや焼結型金属接合材などの導電性の接合材が使用される。このとき、半導体チップ20と第1の金属板10および第2の金属板30とは金属接合される。なお、以下において、半導体チップ20と第1の金属板10の接合部および半導体チップ20と第2の金属板30との接合部を総称して、半導体チップ20の接合部とも称する。 The semiconductor chip 20 and the first metal plate 10 are joined by a first chip bonding material 51. Further, the semiconductor chip 20 and the second metal plate 30 are joined by a second chip bonding material 52. When the first metal plate 10 or the second metal plate 30 is used as an electrode, the first chip bonding material 51 or the second chip bonding material 52 may be, for example, a solder or a sintered metal bonding material. Conductive bonding materials such as are used. At this time, the semiconductor chip 20, the first metal plate 10, and the second metal plate 30 are metal-bonded. In the following, the joint portion between the semiconductor chip 20 and the first metal plate 10 and the joint portion between the semiconductor chip 20 and the second metal plate 30 are also collectively referred to as a joint portion of the semiconductor chip 20.

第1の金属板10と第2の金属板30の間で半導体チップ20と並列に配置された熱伝導基板40は、一方の主面が第1の金属板10と第1の基板接合材61により接合されている。また、熱伝導基板40の他方の主面と第2の金属板30は、第2の基板接合材62により接合されている。 The heat conductive substrate 40 arranged in parallel with the semiconductor chip 20 between the first metal plate 10 and the second metal plate 30 has one main surface of the first metal plate 10 and the first substrate bonding material 61. It is joined by. Further, the other main surface of the heat conductive substrate 40 and the second metal plate 30 are bonded by a second substrate bonding material 62.

第1の金属板10と第2の金属板30の間で熱の移動が可能であるように、熱伝導性を有する材料が、熱伝導基板40、第1の基板接合材61および第2の基板接合材62に使用される。なお、熱伝導基板40は、第1の金属板10と第2の金属板30の間で電流経路が形成されない程度の絶縁性を有する。例えば、窒化ケイ素基板などが熱伝導基板40に使用される。 The materials having thermal conductivity are the heat conductive substrate 40, the first substrate bonding material 61 and the second, so that heat can be transferred between the first metal plate 10 and the second metal plate 30. Used for the substrate bonding material 62. The heat conductive substrate 40 has an insulating property to the extent that a current path is not formed between the first metal plate 10 and the second metal plate 30. For example, a silicon nitride substrate or the like is used for the heat conductive substrate 40.

第2の金属板30と対向する主面に金属パターンが形成された熱伝導基板40を使用してもよい。これにより、第2の金属板30を半導体チップ20の電極として使用した場合などに、第2の基板接合材62および熱伝導基板40に形成された金属パターンを電流経路として使用することができる。この場合、第2の基板接合材62には、はんだや焼結型金属接合材などの導電性の接合材が使用される。なお、熱伝導基板40の主面に金属膜を形成し、熱伝導基板40と第1の金属板10および第2の金属板30とを金属接合してもよい。 A heat conductive substrate 40 having a metal pattern formed on a main surface facing the second metal plate 30 may be used. As a result, when the second metal plate 30 is used as an electrode of the semiconductor chip 20, the metal pattern formed on the second substrate bonding material 62 and the heat conductive substrate 40 can be used as the current path. In this case, as the second substrate bonding material 62, a conductive bonding material such as solder or a sintered metal bonding material is used. A metal film may be formed on the main surface of the heat conductive substrate 40, and the heat conductive substrate 40 may be metal-bonded to the first metal plate 10 and the second metal plate 30.

半導体装置1では、半導体チップ20が発熱すると、半導体チップ20から第1の金属板10への直接の熱移動と、第2の金属板30と熱伝導基板40を経由する半導体チップ20から第1の金属板10への熱移動が生じる。これら2経路の熱移動により、半導体装置1の放熱経路の熱抵抗を下げることができる。 In the semiconductor device 1, when the semiconductor chip 20 generates heat, direct heat transfer from the semiconductor chip 20 to the first metal plate 10 and the semiconductor chip 20 to the first via the second metal plate 30 and the heat conductive substrate 40. Heat transfer to the metal plate 10 occurs. The heat transfer of these two paths can reduce the thermal resistance of the heat dissipation path of the semiconductor device 1.

図1に示すように、熱伝導基板40と第2の金属板30の接合部には、第2の基板接合材62が配置された領域と、第2の基板接合材62が配置されていない領域が混在している。一方、熱伝導基板40と第1の金属板10との接合部には、第1の基板接合材61が一様に配置されている。 As shown in FIG. 1, in the joint portion between the heat conductive substrate 40 and the second metal plate 30, the region where the second substrate bonding material 62 is arranged and the second substrate bonding material 62 are not arranged. Areas are mixed. On the other hand, the first substrate bonding material 61 is uniformly arranged at the bonding portion between the heat conductive substrate 40 and the first metal plate 10.

熱伝導基板40と第2の金属板30との接合部において、第2の基板接合材62が配置された領域は、第2の基板接合材62が配置されていない領域に比べて、接合強度が相対的に高い領域(以下、「高強度領域」という。)である。一方、第2の基板接合材62が配置された領域の残余の領域は、第2の基板接合材62が配置された領域に比べて、接合強度が相対的に低い領域(以下、「低強度領域」という。)である。そして、低強度領域は、半導体チップ20に近い位置の高強度領域と半導体チップ20から遠い位置の高強度領域に挟まれた領域である。 In the joint portion between the heat conductive substrate 40 and the second metal plate 30, the region where the second substrate bonding material 62 is arranged is stronger than the region where the second substrate bonding material 62 is not arranged. Is a relatively high region (hereinafter referred to as "high strength region"). On the other hand, the remaining region of the region where the second substrate bonding material 62 is arranged is a region where the bonding strength is relatively low as compared with the region where the second substrate bonding material 62 is arranged (hereinafter, "low strength"). It is called "area"). The low-strength region is a region sandwiched between a high-strength region located near the semiconductor chip 20 and a high-strength region located far from the semiconductor chip 20.

熱伝導基板40と第2の金属板30との接合部に第2の基板接合材62が配置されていない空間を設けることにより、第2の金属板30に変形しやすい部分が生じる。つまり、第2の基板接合材62が配置されていない空間である低強度領域が、第2の金属板30が変形しやすい領域である。 By providing a space in which the second substrate bonding material 62 is not arranged at the joint portion between the heat conductive substrate 40 and the second metal plate 30, a portion easily deformed is generated in the second metal plate 30. That is, the low-strength region, which is the space where the second substrate bonding material 62 is not arranged, is the region where the second metal plate 30 is easily deformed.

半導体装置1では、第1の金属板10の反りにより発生して第2の金属板30に伝わる力が、半導体チップ20に近い位置の高強度領域と半導体チップ20から遠い位置の高強度領域に分散される。このため、半導体チップ20の接合部にかかる応力の力点の位置が、熱伝導基板40と第2の金属板30の接合強度が接合部で一様の場合に比べて、半導体チップ20から遠くなる。更に、低強度領域において第2の金属板30の曲げ剛性が弱いため、第2の金属板30に力が伝わると第2の金属板30が曲がる。このため、半導体装置1では、半導体チップ20の温度変化などにより半導体装置1に反りが発生しても、反りの影響は、第2の金属板30が変形することにより吸収される。したがって、半導体装置1によれば、半導体チップ20の接合部にかかる応力を緩和することができる。 In the semiconductor device 1, the force generated by the warp of the first metal plate 10 and transmitted to the second metal plate 30 is applied to the high-strength region near the semiconductor chip 20 and the high-strength region far from the semiconductor chip 20. Be distributed. Therefore, the position of the stress force point applied to the joint portion of the semiconductor chip 20 is farther from the semiconductor chip 20 than in the case where the joint strength between the heat conductive substrate 40 and the second metal plate 30 is uniform at the joint portion. .. Further, since the bending rigidity of the second metal plate 30 is weak in the low strength region, the second metal plate 30 bends when a force is transmitted to the second metal plate 30. Therefore, in the semiconductor device 1, even if the semiconductor device 1 is warped due to a temperature change of the semiconductor chip 20, the influence of the warp is absorbed by the deformation of the second metal plate 30. Therefore, according to the semiconductor device 1, the stress applied to the joint portion of the semiconductor chip 20 can be relaxed.

更に、半導体装置1では、第2の金属板30を変形しやすくするために第2の金属板30の断面積を小さくする必要がない。このため、半導体装置1によれば、放熱経路の熱抵抗の増大を抑制することができる。 Further, in the semiconductor device 1, it is not necessary to reduce the cross-sectional area of the second metal plate 30 in order to make the second metal plate 30 easily deformed. Therefore, according to the semiconductor device 1, it is possible to suppress an increase in the thermal resistance of the heat dissipation path.

図2に、半導体装置1の平面図を示す。図2では、第2のチップ接合材52を表示しておらず、第2の金属板30を透過して半導体チップ20、第2の基板接合材62、熱伝導基板40および第1の金属板10が表示されている。図1は、図2のI−I方向に沿った断面図に相当する。図2に示した半導体装置1では、第2の基板接合材62が環形状に形成されている。すなわち、第2の基板接合材62に周囲を囲まれた領域が低強度領域である。 FIG. 2 shows a plan view of the semiconductor device 1. In FIG. 2, the second chip bonding material 52 is not displayed, and the semiconductor chip 20, the second substrate bonding material 62, the heat conductive substrate 40, and the first metal plate pass through the second metal plate 30. 10 is displayed. FIG. 1 corresponds to a cross-sectional view taken along the I-I direction of FIG. In the semiconductor device 1 shown in FIG. 2, the second substrate bonding material 62 is formed in a ring shape. That is, the region surrounded by the second substrate bonding material 62 is the low strength region.

図3に、半導体装置1の他の例の平面図を示す。図1は、図3のI−I方向に沿った断面図に相当する。図3に示した半導体装置1では、相互に離間して配置された2つの第2の基板接合材62に挟まれた領域が低強度領域である。つまり、半導体チップ20に近い位置の高強度領域と遠い位置の高強度領域のそれぞれが、半導体チップ20から熱伝導基板40に向かう方向と垂直に延在する帯形状である。このように、半導体チップ20に近い位置の高強度領域と半導体チップ20から遠い位置の高強度領域を分離して配置することにより、半導体チップ20の接合部にかかる応力をより緩和することができる。 FIG. 3 shows a plan view of another example of the semiconductor device 1. FIG. 1 corresponds to a cross-sectional view taken along the I-I direction of FIG. In the semiconductor device 1 shown in FIG. 3, the region sandwiched between the two second substrate bonding members 62 arranged apart from each other is the low strength region. That is, each of the high-strength region near the semiconductor chip 20 and the high-strength region far from the semiconductor chip 20 has a band shape extending perpendicular to the direction from the semiconductor chip 20 toward the heat conductive substrate 40. In this way, by separately arranging the high-strength region located near the semiconductor chip 20 and the high-strength region located far from the semiconductor chip 20, the stress applied to the joint portion of the semiconductor chip 20 can be further relaxed. ..

半導体装置1は、温度サイクルのある厳しい条件で使用される電力変換装置などに好適に使用される。例えば、自動車に搭載される車載電力変換装置では、半導体素子に流れる電流が大きく、半導体チップでの発熱が大きい。更に、車載電力変換装置は、温度サイクルの厳しい環境で使用される。しかし、半導体装置1を適用することにより、車載電力変換装置において、半導体チップの接合部にかかる応力を緩和し、且つ放熱経路の熱抵抗の増大を抑制することができる。 The semiconductor device 1 is suitably used for a power conversion device or the like used under severe conditions having a temperature cycle. For example, in an in-vehicle power converter mounted on an automobile, a large amount of current flows through a semiconductor element and a large amount of heat is generated by a semiconductor chip. In addition, in-vehicle power converters are used in environments with harsh temperature cycles. However, by applying the semiconductor device 1, it is possible to alleviate the stress applied to the joint portion of the semiconductor chip and suppress the increase in the thermal resistance of the heat dissipation path in the in-vehicle power conversion device.

<変形例>
図4に示す第1の実施形態の変形例に係る半導体装置1では、熱伝導基板40と第1の金属板10を接合する第1の基板接合材61に、低強度領域として空間が設けられている。つまり、熱伝導基板40と第1の金属板10との接合部に、高強度領域と低強度領域が混在している。一方、熱伝導基板40と第2の金属板30との接合部には、第2の基板接合材62が一様に配置されている。
<Modification example>
In the semiconductor device 1 according to the modified example of the first embodiment shown in FIG. 4, a space is provided as a low strength region in the first substrate bonding material 61 for bonding the heat conductive substrate 40 and the first metal plate 10. ing. That is, a high-strength region and a low-strength region coexist at the joint portion between the heat conductive substrate 40 and the first metal plate 10. On the other hand, the second substrate bonding material 62 is uniformly arranged at the bonding portion between the heat conductive substrate 40 and the second metal plate 30.

図4に示す半導体装置1では、熱伝導基板40と第1の金属板10の接合強度の高い領域が、半導体チップ20に近い位置と半導体チップ20から遠い位置に分散されている。このため、第1の金属板10に発生する反りの影響により半導体チップ20の接合部にかかる応力の力点の位置が、熱伝導基板40と第1の金属板10の接合強度が接合部で一様の場合に比べて、半導体チップ20から遠くなる。更に、低強度領域で第1の金属板10の曲げ剛性が弱いため、第1の金属板10が曲がる。このため、半導体装置1の反りの影響が、第1の金属板10が変形することにより吸収される。その結果、図4に示した半導体装置1によれば、半導体チップ20の接合部にかかる応力を緩和することができる。 In the semiconductor device 1 shown in FIG. 4, a region having high bonding strength between the heat conductive substrate 40 and the first metal plate 10 is dispersed at a position close to the semiconductor chip 20 and a position far from the semiconductor chip 20. Therefore, the position of the point of stress applied to the joint portion of the semiconductor chip 20 due to the influence of the warp generated on the first metal plate 10 is the same as the joint strength between the heat conductive substrate 40 and the first metal plate 10 at the joint portion. It is farther from the semiconductor chip 20 than in the case of the above. Further, since the bending rigidity of the first metal plate 10 is weak in the low strength region, the first metal plate 10 bends. Therefore, the influence of the warp of the semiconductor device 1 is absorbed by the deformation of the first metal plate 10. As a result, according to the semiconductor device 1 shown in FIG. 4, the stress applied to the joint portion of the semiconductor chip 20 can be relaxed.

図5に、図4に示した半導体装置1の平面図を示す。図5では、熱伝導基板40を透過して、第1の基板接合材61が表示されている。図4は、図5のIV−IV方向に沿った断面図である。図5に示した半導体装置1では、第1の基板接合材61が環形状に形成されている。すなわち、第1の基板接合材61に周囲を囲まれた領域が低強度領域である。 FIG. 5 shows a plan view of the semiconductor device 1 shown in FIG. In FIG. 5, the first substrate bonding material 61 is displayed through the heat conductive substrate 40. FIG. 4 is a cross-sectional view taken along the IV-IV direction of FIG. In the semiconductor device 1 shown in FIG. 5, the first substrate bonding material 61 is formed in a ring shape. That is, the region surrounded by the first substrate bonding material 61 is the low strength region.

図6に、図4に示した半導体装置1の他の例の平面図を示す。図6に示した半導体装置1では、相互に離間して配置された2つの帯形状の第1の基板接合材61に挟まれた領域が低強度領域である。 FIG. 6 shows a plan view of another example of the semiconductor device 1 shown in FIG. In the semiconductor device 1 shown in FIG. 6, a region sandwiched between two strip-shaped first substrate bonding members 61 arranged apart from each other is a low-strength region.

なお、熱伝導基板40と第1の金属板10との接合部および熱伝導基板40と第2の金属板30との接合部の両方に、高強度領域と低強度領域を混在させてもよい。即ち、図7に示すように、熱伝導基板40と第2の金属板30との接合部に第2の基板接合材62に挟まれた空間を低強度領域として設け、且つ、熱伝導基板40と第1の金属板10との接合部に第1の基板接合材61に挟まれた空間を低強度領域として設ける。これにより、第1の金属板10と第2の金属板30の両方の曲げ剛性が弱くなる。このため、半導体チップ20の接合部にかかる応力を低減することができる。 A high-strength region and a low-strength region may be mixed in both the joint portion between the heat conductive substrate 40 and the first metal plate 10 and the joint portion between the heat conductive substrate 40 and the second metal plate 30. .. That is, as shown in FIG. 7, a space sandwiched between the second substrate bonding material 62 is provided as a low strength region at the joint portion between the heat conductive substrate 40 and the second metal plate 30, and the heat conductive substrate 40 is provided. A space sandwiched between the first substrate bonding material 61 and the joint portion between the metal plate 10 and the first metal plate 10 is provided as a low-strength region. As a result, the bending rigidity of both the first metal plate 10 and the second metal plate 30 is weakened. Therefore, the stress applied to the joint portion of the semiconductor chip 20 can be reduced.

(第2の実施形態)
第2の実施形態に係る半導体装置1では、図8に示すように、平面視で矩形状の第2の金属板30が、半導体チップ20から熱伝導基板40に向かう行方向Xの長さが、平面視で行方向Xに垂直な列方向Yの長さより長い形状である。他の構成は、第1の実施形態と同様である。
(Second Embodiment)
In the semiconductor device 1 according to the second embodiment, as shown in FIG. 8, the length of the second metal plate 30 which is rectangular in a plan view is the length X in the row direction X from the semiconductor chip 20 toward the heat conductive substrate 40. , The shape is longer than the length of the column direction Y perpendicular to the row direction X in a plan view. Other configurations are the same as in the first embodiment.

図8に示す半導体装置1によれば、第2の金属板30を、行方向Xを長手方向とする細長い形状にすることにより、第2の金属板30の曲げ剛性が弱くなる。このため、第2の金属板30が曲がることにより、第1の金属板10の反りの影響が吸収される。その結果、半導体チップ20の接合部にかかる応力を低減することができる。 According to the semiconductor device 1 shown in FIG. 8, the bending rigidity of the second metal plate 30 is weakened by forming the second metal plate 30 into an elongated shape with the row direction X as the longitudinal direction. Therefore, by bending the second metal plate 30, the influence of the warp of the first metal plate 10 is absorbed. As a result, the stress applied to the joint portion of the semiconductor chip 20 can be reduced.

図9に、熱伝導基板40と第2の金属板30との接合部に、第2の基板接合材62が配置されていない空間を低強度領域として設けた例を示した。なお、熱伝導基板40と第1の金属板10との接合部に第1の基板接合材61が配置されていない空間を低強度領域として設けてもよい。また、熱伝導基板40と第2の金属板30との接合部および熱伝導基板40と第1の金属板10との接合部の両方に、低強度領域を設けてもよい。 FIG. 9 shows an example in which a space in which the second substrate bonding material 62 is not arranged is provided as a low strength region at the joint portion between the heat conductive substrate 40 and the second metal plate 30. A space in which the first substrate bonding material 61 is not arranged may be provided as a low strength region at the joint portion between the heat conductive substrate 40 and the first metal plate 10. Further, a low strength region may be provided at both the joint portion between the heat conductive substrate 40 and the second metal plate 30 and the joint portion between the heat conductive substrate 40 and the first metal plate 10.

(第3の実施形態)
第3の実施形態に係る半導体装置1は、図10および図11に示すように、半導体チップ20の第2主面に、第2のチップ接合材52によって第1部分電極板31および第2部分電極板32がそれぞれ接続された構成である。第1部分電極板31および第2部分電極板32には、熱伝導基板40に相当する第1熱伝導基板41と第2熱伝導基板42とが個別に接合されている。つまり、第2の金属板30が、第1部分電極板31および第2部分電極板32に分割されている点が、図1の半導体装置1と異なる点である。他の構成は、第1の実施形態と同様である。
(Third Embodiment)
As shown in FIGS. 10 and 11, in the semiconductor device 1 according to the third embodiment, the first partial electrode plate 31 and the second portion are formed on the second main surface of the semiconductor chip 20 by the second chip bonding material 52. The electrode plates 32 are connected to each other. The first heat conductive substrate 41 and the second heat conductive substrate 42, which correspond to the heat conductive substrate 40, are individually bonded to the first partial electrode plate 31 and the second partial electrode plate 32. That is, the difference from the semiconductor device 1 of FIG. 1 is that the second metal plate 30 is divided into the first partial electrode plate 31 and the second partial electrode plate 32. Other configurations are the same as in the first embodiment.

第3の実施形態に係る半導体装置1は、半導体チップ20から第1の金属板10への直接の放熱経路、第1部分電極板31と第1熱伝導基板41を経由する放熱経路、および第2部分電極板32と第2熱伝導基板42を経由する放熱経路を有する。これら複数の放熱経路での熱移動により、半導体装置1の放熱経路の熱抵抗を下げることができる。また、第1部分電極板31と第2部分電極板32を細長い形状にすることにより、第1部分電極板31と第2部分電極板32の曲げ剛性を弱くしてもよい。これにより、半導体チップ20の接合部にかかる応力を低減することができる。 The semiconductor device 1 according to the third embodiment has a direct heat dissipation path from the semiconductor chip 20 to the first metal plate 10, a heat dissipation path via the first partial electrode plate 31 and the first heat conductive substrate 41, and a first heat conduction path. It has a heat dissipation path via the two-part electrode plate 32 and the second heat conduction substrate 42. By heat transfer in these plurality of heat dissipation paths, the thermal resistance of the heat dissipation paths of the semiconductor device 1 can be reduced. Further, the bending rigidity of the first partial electrode plate 31 and the second partial electrode plate 32 may be weakened by forming the first partial electrode plate 31 and the second partial electrode plate 32 into an elongated shape. As a result, the stress applied to the joint portion of the semiconductor chip 20 can be reduced.

なお、図11では、第1熱伝導基板41と第1部分電極板31の接合部および第2熱伝導基板42と第2部分電極板32の接合部に、第2の基板接合材62が配置されていない空間を低強度領域として設けた例を示した。しかし、第1熱伝導基板41および第2熱伝導基板42と第1の金属板10とを接合する第1の基板接合材61に、低強度領域として空間が設けてもよい。或いは、これらの接合部のすべてに低強度領域を設けてもよい。 In FIG. 11, the second substrate bonding material 62 is arranged at the joint portion between the first heat conductive substrate 41 and the first partial electrode plate 31 and the joint portion between the second heat conductive substrate 42 and the second partial electrode plate 32. An example is shown in which a space that is not provided is provided as a low-intensity region. However, a space may be provided as a low-strength region in the first substrate bonding material 61 for bonding the first heat conductive substrate 41, the second heat conductive substrate 42, and the first metal plate 10. Alternatively, a low-strength region may be provided in all of these joints.

(第4の実施形態)
第4の実施形態に係る半導体装置1は、図12に示すように、第2の基板接合材62が配置された領域の残余の領域に、第2の基板接合材62よりもヤング率が低く、且つ熱伝導性を有する低弾性材70を配置した構成である。すなわち、図12に示す半導体装置1では、第2の基板接合材62が配置された高強度領域に挟まれた低強度領域に、低弾性材70が配置されている。その他の構成については、図1に示す第1の実施形態と同様である。
(Fourth Embodiment)
As shown in FIG. 12, the semiconductor device 1 according to the fourth embodiment has a Young's modulus lower than that of the second substrate bonding material 62 in the remaining region of the region where the second substrate bonding material 62 is arranged. In addition, the low elastic material 70 having thermal conductivity is arranged. That is, in the semiconductor device 1 shown in FIG. 12, the low elastic material 70 is arranged in the low strength region sandwiched between the high strength regions in which the second substrate bonding material 62 is arranged. Other configurations are the same as those of the first embodiment shown in FIG.

低弾性材70に、少なくとも空気よりも熱伝導性が高い材料を使用する。これにより、第2の金属板30および熱伝導基板40を経由する放熱経路の熱抵抗が低減し、半導体チップ20から第1の金属板10までの熱の移動量が増大する。 For the low elastic material 70, a material having at least a higher thermal conductivity than air is used. As a result, the thermal resistance of the heat dissipation path via the second metal plate 30 and the heat conductive substrate 40 is reduced, and the amount of heat transferred from the semiconductor chip 20 to the first metal plate 10 is increased.

上記のように、図12に示す半導体装置1によれば、熱伝導性を有する低弾性材70を第2の基板接合材62の配置されていない空間に埋め込むことにより、放熱経路の熱抵抗を更に下げることができる。そして、ヤング率が低い低弾性材70を用いることにより、低強度領域において第2の金属板30の曲げ剛性を弱くできる。このため、第2の基板接合材62に空間を設ける場合に対して、半導体チップ20の接合部にかかる応力を低減する効果の低下を抑制できる。他は、第1の実施形態と実質的に同様であり、重複した記載を省略する。 As described above, according to the semiconductor device 1 shown in FIG. 12, the thermal resistance of the heat dissipation path is increased by embedding the low elastic material 70 having thermal conductivity in the space where the second substrate bonding material 62 is not arranged. It can be further lowered. Then, by using the low elastic material 70 having a low Young's modulus, the bending rigidity of the second metal plate 30 can be weakened in the low strength region. Therefore, when a space is provided in the second substrate bonding material 62, it is possible to suppress a decrease in the effect of reducing the stress applied to the bonding portion of the semiconductor chip 20. Others are substantially the same as those in the first embodiment, and duplicate description will be omitted.

図13に、図12に示した半導体装置1の平面図を示す。図13に示した半導体装置1では、第2の基板接合材62が環形状に形成されている。すなわち、第2の基板接合材62に周囲を囲まれて低弾性材70が配置された領域が低強度領域である。 FIG. 13 shows a plan view of the semiconductor device 1 shown in FIG. In the semiconductor device 1 shown in FIG. 13, the second substrate bonding material 62 is formed in a ring shape. That is, the region in which the low elastic material 70 is arranged so as to be surrounded by the second substrate bonding material 62 is the low strength region.

図14に、図12に示した半導体装置1の他の例の平面図を示す。図14に示した半導体装置1では、半導体チップ20に近い位置と遠い位置に離間して配置された2つの第2の基板接合材62に挟まれて低弾性材70が配置された領域が低強度領域である。 FIG. 14 shows a plan view of another example of the semiconductor device 1 shown in FIG. In the semiconductor device 1 shown in FIG. 14, the region where the low elastic material 70 is arranged is low, sandwiched between two second substrate bonding materials 62 arranged at positions close to and far from the semiconductor chip 20. It is a strength region.

なお、熱伝導基板40と第1の金属板10との接合部において、第1の基板接合材61が配置された領域の残余の領域に、第1の基板接合材61よりもヤング率が低く且つ熱伝導性を有する低弾性材を配置してもよい。或いは、熱伝導基板40と第1の金属板10との接合部および熱伝導基板40と第2の金属板30との接合部の両方において、接合材が配置された領域の残余の領域に低弾性材70を配置してもよい。 In the joint portion between the heat conductive substrate 40 and the first metal plate 10, the Young's modulus is lower than that of the first substrate bonding material 61 in the remaining region of the region where the first substrate bonding material 61 is arranged. Moreover, a low elastic material having thermal conductivity may be arranged. Alternatively, both the joint portion between the heat conductive substrate 40 and the first metal plate 10 and the joint portion between the heat conductive substrate 40 and the second metal plate 30 are low in the remaining region of the region where the bonding material is arranged. The elastic material 70 may be arranged.

(第5の実施形態)
第5の実施形態に係る半導体装置1は、図15に示すように、半導体チップ20が配置された主面に対向する第1の金属板10の他の主面に、第1の金属板10よりも曲げ剛性の高い補強板80を接合した構成である。他の構成は、第1の実施形態と同様である。
(Fifth Embodiment)
As shown in FIG. 15, the semiconductor device 1 according to the fifth embodiment has a first metal plate 10 on another main surface of the first metal plate 10 facing the main surface on which the semiconductor chip 20 is arranged. It is a configuration in which a reinforcing plate 80 having a higher bending rigidity than that of the reinforcing plate 80 is joined. Other configurations are the same as in the first embodiment.

図15に示す半導体装置1によれば、補強板80を第1の金属板10に接合することにより、第1の金属板10の反りを抑制できる。例えば、半導体チップ20に接合する主面に対向する第1の金属板10の他の主面に冷却器や金属構成部品などの反りの影響を大きく受ける部品を配置した場合にも、補強板80によって半導体装置1全体の反りが抑制される。 According to the semiconductor device 1 shown in FIG. 15, the warp of the first metal plate 10 can be suppressed by joining the reinforcing plate 80 to the first metal plate 10. For example, even when parts that are greatly affected by warpage, such as a cooler and metal components, are arranged on the other main surface of the first metal plate 10 facing the main surface to be joined to the semiconductor chip 20, the reinforcing plate 80 This suppresses the warp of the entire semiconductor device 1.

図15に示す半導体装置1においても、半導体チップ20の接合部に高強度領域と低強度領域を混在させることにより、半導体チップ20の接合部にかかる応力が緩和される。図15に示すように熱伝導基板40と第2の金属板30との接合部に第2の基板接合材62が配置されていない空間を低強度領域として設けてもよいし、この空間を低弾性材70で埋め込んでもよい。或いは、熱伝導基板40と第1の金属板10との接合部に第1の基板接合材61が配置されていない空間を低強度領域として設けてもよいし、この空間を低弾性材70で埋め込んでもよい。また、熱伝導基板40と第2の金属板30との接合部および熱伝導基板40と第1の金属板10との接合部の両方に、低強度領域を設けてもよい。 Also in the semiconductor device 1 shown in FIG. 15, the stress applied to the joint portion of the semiconductor chip 20 is relaxed by mixing the high-strength region and the low-strength region in the joint portion of the semiconductor chip 20. As shown in FIG. 15, a space in which the second substrate bonding material 62 is not arranged may be provided as a low strength region at the joint portion between the heat conductive substrate 40 and the second metal plate 30, or this space may be provided as a low strength region. It may be embedded with an elastic material 70. Alternatively, a space in which the first substrate bonding material 61 is not arranged may be provided as a low-strength region at the joint portion between the heat conductive substrate 40 and the first metal plate 10, and this space may be provided by the low elastic material 70. It may be embedded. Further, a low strength region may be provided at both the joint portion between the heat conductive substrate 40 and the second metal plate 30 and the joint portion between the heat conductive substrate 40 and the first metal plate 10.

1…半導体装置
10…第1の金属板
20…半導体チップ
30…第2の金属板
40…熱伝導基板
51…第1のチップ接合材
52…第2のチップ接合材
61…第1の基板接合材
62…第2の基板接合材
70…低弾性材
80…補強板
1 ... Semiconductor device 10 ... First metal plate 20 ... Semiconductor chip 30 ... Second metal plate 40 ... Heat conductive substrate 51 ... First chip bonding material 52 ... Second chip bonding material 61 ... First substrate bonding Material 62 ... Second substrate bonding material 70 ... Low elastic material 80 ... Reinforcing plate

Claims (6)

第1の金属板と
前記第1の金属板に第1主面が接合された半導体チップと、
前記第1主面に対向する前記半導体チップの第2主面に接合された第2の金属板と、
前記半導体チップと並列に配置され、前記第1の金属板と前記第2の金属板に接合された絶縁性の熱伝導基板と
を備え、
前記熱伝導基板と前記第1の金属板との接合部および前記熱伝導基板と前記第2の金属板との接合部の少なくともいずれかが、接合強度が相対的に高い高強度領域と相対的に低い低強度領域とが混在する接合部であり、
前記低強度領域が、前記半導体チップに近い位置の前記高強度領域と遠い位置の前記高強度領域に挟まれている
ことを特徴とする半導体装置。
A first metal plate and a semiconductor chip in which a first main surface is bonded to the first metal plate,
A second metal plate joined to the second main surface of the semiconductor chip facing the first main surface, and
It is provided with an insulating heat conductive substrate arranged in parallel with the semiconductor chip and bonded to the first metal plate and the second metal plate.
At least one of the joint portion between the heat conductive substrate and the first metal plate and the joint portion between the heat conductive substrate and the second metal plate is relative to a high strength region where the joint strength is relatively high. It is a joint with a mixture of low-strength regions and low strength regions.
A semiconductor device characterized in that the low-strength region is sandwiched between the high-strength region at a position close to the semiconductor chip and the high-strength region at a position far from the semiconductor chip.
前記高強度領域が、接合材が配置された領域であり、
前記低強度領域が、前記接合材が配置された領域の残余の領域である
ことを特徴とする請求項1に記載の半導体装置。
The high-strength region is a region where the bonding material is arranged.
The semiconductor device according to claim 1, wherein the low-strength region is a residual region of a region in which the bonding material is arranged.
前記低強度領域に、前記接合材よりもヤング率が低く且つ熱伝導性を有する低弾性材が配置されていることを特徴とする請求項2に記載の半導体装置。 The semiconductor device according to claim 2, wherein a low elastic material having a Young's modulus lower than that of the bonding material and having thermal conductivity is arranged in the low strength region. 前記第2の金属板が平面視で矩形状であり、
前記半導体チップが接合された領域から前記熱伝導基板が接合された領域に向かう行方向に沿った前記第2の金属板の長さが、前記行方向に垂直な列方向に沿った前記第2の金属板の長さよりも長い
ことを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置。
The second metal plate has a rectangular shape in a plan view and has a rectangular shape.
The length of the second metal plate along the row direction from the region where the semiconductor chips are joined to the region where the heat conductive substrate is joined is the second along the column direction perpendicular to the row direction. The semiconductor device according to any one of claims 1 to 3, wherein the length is longer than the length of the metal plate of the above.
前記半導体チップが配置された主面と対向する前記第1の金属板の他の主面に、前記第1の金属板より曲げ剛性の高い補強板が接合されている
ことを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置。
The claim is characterized in that a reinforcing plate having a bending rigidity higher than that of the first metal plate is joined to another main surface of the first metal plate facing the main surface on which the semiconductor chip is arranged. The semiconductor device according to any one of 1 to 4.
前記半導体チップに近い位置の前記高強度領域と遠い位置の前記高強度領域のそれぞれが、前記半導体チップから前記熱伝導基板に向かう方向に対して垂直に延在する帯形状であり、相互に離間して配置されていることを特徴とする請求項1乃至5のいずれか1項に記載の半導体装置。 Each of the high-strength region located near the semiconductor chip and the high-strength region located far from the semiconductor chip have a strip shape extending perpendicular to the direction from the semiconductor chip toward the heat conductive substrate and are separated from each other. The semiconductor device according to any one of claims 1 to 5, wherein the semiconductor device is arranged.
JP2019160906A 2019-09-04 2019-09-04 semiconductor equipment Active JP7329394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019160906A JP7329394B2 (en) 2019-09-04 2019-09-04 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019160906A JP7329394B2 (en) 2019-09-04 2019-09-04 semiconductor equipment

Publications (2)

Publication Number Publication Date
JP2021040059A true JP2021040059A (en) 2021-03-11
JP7329394B2 JP7329394B2 (en) 2023-08-18

Family

ID=74847359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019160906A Active JP7329394B2 (en) 2019-09-04 2019-09-04 semiconductor equipment

Country Status (1)

Country Link
JP (1) JP7329394B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134669A (en) * 2000-10-30 2002-05-10 Kyocera Corp Semiconductor device
JP2003046027A (en) * 2001-07-27 2003-02-14 Sumitomo Metal Electronics Devices Inc Heat-radiating type bga package and manufacturing method therefor
JP2007184351A (en) * 2006-01-05 2007-07-19 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2010103338A (en) * 2008-10-24 2010-05-06 Nec Electronics Corp Semiconductor device and method of manufacturing same
JP2013247274A (en) * 2012-05-28 2013-12-09 Fujitsu Ltd Semiconductor package and wiring board unit
JP2015162497A (en) * 2014-02-26 2015-09-07 Necプラットフォームズ株式会社 Semiconductor device and electronic apparatus using the same
JP2017073483A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 Heat sink-attached power module substrate and power module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134669A (en) * 2000-10-30 2002-05-10 Kyocera Corp Semiconductor device
JP2003046027A (en) * 2001-07-27 2003-02-14 Sumitomo Metal Electronics Devices Inc Heat-radiating type bga package and manufacturing method therefor
JP2007184351A (en) * 2006-01-05 2007-07-19 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2010103338A (en) * 2008-10-24 2010-05-06 Nec Electronics Corp Semiconductor device and method of manufacturing same
JP2013247274A (en) * 2012-05-28 2013-12-09 Fujitsu Ltd Semiconductor package and wiring board unit
JP2015162497A (en) * 2014-02-26 2015-09-07 Necプラットフォームズ株式会社 Semiconductor device and electronic apparatus using the same
JP2017073483A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 Heat sink-attached power module substrate and power module

Also Published As

Publication number Publication date
JP7329394B2 (en) 2023-08-18

Similar Documents

Publication Publication Date Title
JP4867793B2 (en) Semiconductor device
US7732916B2 (en) Semiconductor package
US7961474B2 (en) Heat dissipation device and power module
WO2007072700A1 (en) Semiconductor module
US11232991B2 (en) Semiconductor apparatus
JPWO2017130512A1 (en) Power module
JPWO2017168756A1 (en) Semiconductor device
WO2016158020A1 (en) Semiconductor module
JP7163583B2 (en) semiconductor equipment
JPWO2020105075A1 (en) Semiconductor device
JP6834815B2 (en) Semiconductor module
JP4046623B2 (en) Power semiconductor module and fixing method thereof
JP7329394B2 (en) semiconductor equipment
JPWO2014141399A1 (en) Semiconductor device
JP2007173301A (en) Dissipator for cooling semiconductor element, semiconductor device, and manufacturing process of dissipator for cooling semiconductor element
JP2019212809A (en) Semiconductor device
JP6316219B2 (en) Power semiconductor module
JP6759784B2 (en) Semiconductor module
JP7257977B2 (en) Semiconductor equipment and semiconductor modules
JP2007142472A (en) Inverter
JP2007184424A (en) Semiconductor device
JP7192469B2 (en) Mounting structure of insulated circuit board with heat sink to housing
WO2010024343A1 (en) Semiconductor device
JP7050487B2 (en) Electronic device
JP5793295B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230807

R150 Certificate of patent or registration of utility model

Ref document number: 7329394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150