JP2021032514A - Throttle device and refrigeration cycle system - Google Patents

Throttle device and refrigeration cycle system Download PDF

Info

Publication number
JP2021032514A
JP2021032514A JP2019154738A JP2019154738A JP2021032514A JP 2021032514 A JP2021032514 A JP 2021032514A JP 2019154738 A JP2019154738 A JP 2019154738A JP 2019154738 A JP2019154738 A JP 2019154738A JP 2021032514 A JP2021032514 A JP 2021032514A
Authority
JP
Japan
Prior art keywords
refrigerant
throttle
liquid storage
retention portion
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019154738A
Other languages
Japanese (ja)
Other versions
JP7175247B2 (en
Inventor
佐藤 祐一
Yuichi Sato
祐一 佐藤
雄一郎 當山
Yuichiro Toyama
雄一郎 當山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2019154738A priority Critical patent/JP7175247B2/en
Priority to CN202010820371.XA priority patent/CN112444010B/en
Publication of JP2021032514A publication Critical patent/JP2021032514A/en
Application granted granted Critical
Publication of JP7175247B2 publication Critical patent/JP7175247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Abstract

To provide a throttle device that can stabilize an amount of liquid component to be supplied to a throttle part, and to provide a refrigeration cycle system including the throttle device.SOLUTION: Exchanging heat between a refrigerant residence part A1 and a low-pressure refrigerant passing part A3 can cool the refrigerant residence part A1, accordingly a gas component of the refrigerant in the refrigerant residence part A1 is condensed and facilitated converting into a liquid component and the liquid component can be stably supplied to a throttle part 311; thus, performance of a throttle device 10A can be stabilized.SELECTED DRAWING: Figure 2

Description

本発明は、絞り装置および該絞り装置を備えた冷凍サイクルシステムに関する。 The present invention relates to a squeezing device and a refrigeration cycle system including the squeezing device.

従来、空気調和装置等の冷凍サイクル装置に設けられ、流入した気液二相冷媒を所定比率に分配する流体分配器が提案されている(例えば、特許文献1参照)。特許文献1に記載された流体分配器では、1つの流入部と3つの流出部とが設けられ、弁体取付穴に弁体が取り付けられることにより、流出部から流出させる流体の量が調節されるようになっている。 Conventionally, a fluid distributor which is provided in a refrigeration cycle device such as an air conditioner and distributes an inflowing gas-liquid two-phase refrigerant at a predetermined ratio has been proposed (see, for example, Patent Document 1). In the fluid distributor described in Patent Document 1, one inflow portion and three outflow portions are provided, and the valve body is attached to the valve body mounting hole to adjust the amount of fluid flowing out from the outflow portion. It has become so.

特開2010−223445号公報Japanese Unexamined Patent Publication No. 2010-223445

しかしながら、特許文献1に記載された流体分配器を冷凍サイクルシステムに設ける際、外気温が高かったり近傍に発熱体が存在したりすると、凝縮器の熱交換不足等により凝縮不足となり、気液二相冷媒において気体成分の割合が高くなることがあった。このとき、分配される冷媒の体積の比率を一定に保っても、分配後の冷媒の気液比率が互いに異なると、実際の冷媒の量(物質量)のバランスが変化してしまい、所望の冷却能力が得られないことがあった。 However, when the fluid distributor described in Patent Document 1 is provided in the refrigeration cycle system, if the outside air temperature is high or a heating element is present in the vicinity, the condensation becomes insufficient due to insufficient heat exchange of the condenser, etc. The proportion of gas components in the phase refrigerant was sometimes high. At this time, even if the volume ratio of the distributed refrigerant is kept constant, if the gas-liquid ratio of the distributed refrigerant is different from each other, the balance of the actual amount (material amount) of the refrigerant changes, which is desired. Sometimes the cooling capacity could not be obtained.

このような気液比率の変動は、流体分配器に限らず、冷媒を膨張させる絞り装置においても生じうる。即ち、外気温等によって冷媒の気体成分の割合が高くなると、絞り部に供給される液体成分の量が低下してしまう可能性がある。また、このような不都合は、冷媒を膨張させるとともに分配する絞り装置であっても、単に冷媒を膨張させて分配しない絞り装置であっても生じうる。 Such fluctuations in the gas-liquid ratio can occur not only in the fluid distributor but also in the throttle device that expands the refrigerant. That is, if the proportion of the gas component of the refrigerant increases due to the outside air temperature or the like, the amount of the liquid component supplied to the throttle portion may decrease. Further, such an inconvenience may occur in a drawing device that expands and distributes the refrigerant, or a drawing device that simply expands and does not distribute the refrigerant.

本発明の目的は、絞り部に供給される液体成分の量を安定化することができる絞り装置、および、該絞り装置を備えた冷凍サイクルシステムを提供することである。 An object of the present invention is to provide a drawing device capable of stabilizing the amount of liquid components supplied to the drawing section, and a refrigeration cycle system provided with the drawing device.

本発明の絞り装置は、高圧の冷媒を受け入れる一次ポートと、前記一次ポートから流入した冷媒を通過させる絞り部と、前記一次ポートと前記絞り部との間に形成されて冷媒が滞留する冷媒滞留部と、前記絞り部を通過した冷媒を送り出す二次ポートと、前記絞り部から前記二次ポートにかけて冷媒が通過する低圧冷媒通過部と、前記冷媒滞留部と前記低圧冷媒通過部との間で熱交換する熱交換手段と、を備えることを特徴とする。 In the throttle device of the present invention, a refrigerant retention that is formed between a primary port that receives a high-pressure refrigerant, a throttle portion that allows the refrigerant that has flowed in from the primary port to pass through, and the primary port and the throttle portion, and the refrigerant stays there. Between the unit, the secondary port that sends out the refrigerant that has passed through the throttle portion, the low-pressure refrigerant passage portion through which the refrigerant passes from the throttle portion to the secondary port, and the refrigerant retention portion and the low-pressure refrigerant passage portion. It is characterized by comprising a heat exchange means for heat exchange.

以上のような本発明によれば、冷媒滞留部と低圧冷媒通過部との間で熱交換する熱交換手段が設けられていることで、絞り部を通過した冷媒によって冷媒滞留部を冷却することができる。これにより、冷媒滞留部中の冷媒の気体成分を凝縮させて液体成分に変化させやすくすることができ、絞り部に供給される液体成分の量を安定化することができる。 According to the present invention as described above, since the heat exchange means for heat exchange between the refrigerant retention portion and the low-pressure refrigerant passage portion is provided, the refrigerant retention portion is cooled by the refrigerant that has passed through the throttle portion. Can be done. As a result, the gas component of the refrigerant in the refrigerant retention portion can be easily condensed into a liquid component, and the amount of the liquid component supplied to the throttle portion can be stabilized.

この際、本発明の絞り装置では、前記冷媒滞留部に滞留した冷媒のうち液体成分を貯留して前記絞り部に供給する液貯留部をさらに備えることが好ましい。このような構成によれば、冷媒の気体成分を凝縮させた液体成分を液貯留部に貯留し、絞り部に供給される液体成分の量を安定化することができる。 At this time, it is preferable that the throttle device of the present invention further includes a liquid storage unit that stores the liquid component of the refrigerant staying in the refrigerant retention unit and supplies the liquid component to the throttle unit. According to such a configuration, the liquid component obtained by condensing the gas component of the refrigerant can be stored in the liquid storage section, and the amount of the liquid component supplied to the throttle section can be stabilized.

また、本発明の絞り装置では、前記絞り部および前記二次ポートのそれぞれを複数備え、前記液貯留部が複数の前記絞り部に対して共通して設けられ、前記一次ポートから受け入れた冷媒を前記複数の二次ポートに分配することが好ましい。このような構成によれば、上記のように液貯留部に液体成分を貯留しやすいことから、複数の絞り部に対して安定して液体成分を供給することができる。従って、複数の二次ポートに対して冷媒を所定の比率で分配しやすくすることができる。 Further, the throttle device of the present invention is provided with a plurality of each of the throttle portion and the secondary port, and the liquid storage portion is commonly provided for the plurality of the throttle portions, and the refrigerant received from the primary port is received. It is preferable to distribute to the plurality of secondary ports. According to such a configuration, since the liquid component can be easily stored in the liquid storage portion as described above, the liquid component can be stably supplied to the plurality of throttle portions. Therefore, it is possible to easily distribute the refrigerant to the plurality of secondary ports at a predetermined ratio.

さらに、本発明の絞り装置では、前記熱交換手段は、前記冷媒滞留部を囲む壁部に設けられるとともに、当該冷媒滞留部側の面に凹凸部を有することが好ましい。このような構成によれば、冷媒滞留部において熱交換面の表面積を大きくし、熱交換効率を向上させることができる。 Further, in the drawing device of the present invention, it is preferable that the heat exchange means is provided on the wall portion surrounding the refrigerant retention portion and has an uneven portion on the surface on the refrigerant retention portion side. According to such a configuration, it is possible to increase the surface area of the heat exchange surface in the refrigerant retention portion and improve the heat exchange efficiency.

また、本発明の絞り装置では、前記熱交換手段は、前記冷媒滞留部内に配置されるとともに冷媒が通過可能な伝熱部材を有していてもよい。このような構成によれば、冷媒滞留部において熱交換効率を向上させることができる。 Further, in the drawing device of the present invention, the heat exchange means may have a heat transfer member that is arranged in the refrigerant retaining portion and allows the refrigerant to pass through. According to such a configuration, the heat exchange efficiency can be improved in the refrigerant retention portion.

このとき、本発明の絞り装置では、前記伝熱部材が、多孔質体またはメッシュ部材によって構成されていることが好ましい。このような構成によれば、伝熱部材の表面積を大きくして熱交換効率を向上させることができる。 At this time, in the drawing device of the present invention, it is preferable that the heat transfer member is made of a porous body or a mesh member. According to such a configuration, the surface area of the heat transfer member can be increased to improve the heat exchange efficiency.

このとき、本発明の絞り装置では、前記伝熱部材が、前記冷媒滞留部から前記液貯留部に亘って設けられていることが好ましい。このような構成によれば、伝熱部材の表面および内部において凝縮した液体を液貯留部に導入しやすくすることができる。 At this time, in the drawing device of the present invention, it is preferable that the heat transfer member is provided from the refrigerant retention portion to the liquid storage portion. According to such a configuration, the liquid condensed on the surface and inside of the heat transfer member can be easily introduced into the liquid storage portion.

また、本発明の絞り装置では、前記熱交換手段は、前記冷媒滞留部を囲む壁部に設けられ、前記壁部における前記冷媒滞留部側の面には、前記液貯留部に向かって延びる溝部が形成されていてもよい。このような構成によれば、壁部の表面において凝縮した液体を液貯留部に導入しやすくすることができる。 Further, in the drawing device of the present invention, the heat exchange means is provided on a wall portion surrounding the refrigerant retention portion, and a groove portion extending toward the liquid storage portion is provided on the surface of the wall portion on the refrigerant retention portion side. May be formed. According to such a configuration, the liquid condensed on the surface of the wall portion can be easily introduced into the liquid storage portion.

また、本発明の絞り装置では、前記熱交換手段は、前記冷媒滞留部を囲む壁部に設けられ、前記壁部における前記冷媒滞留部側の面には、撥水処理が施されていてもよい。このような構成によれば、壁部の表面において凝縮した液体を流れやすくし、液貯留部に導入しやすくすることができる。 Further, in the drawing device of the present invention, the heat exchange means is provided on the wall portion surrounding the refrigerant retention portion, and even if the surface of the wall portion on the refrigerant retention portion side is subjected to water repellent treatment. Good. According to such a configuration, the condensed liquid can easily flow on the surface of the wall portion and can be easily introduced into the liquid storage portion.

また、本発明の絞り装置では、前記一次ポートが鉛直方向上方側に開口し、前記液貯留部が、前記冷媒滞留部の下方側に並ぶように配置されていることが好ましい。このような構成によれば、冷媒滞留部において凝縮した液体が重力によって下方に向かうようにし、液貯留部に導入しやすくすることができる。 Further, in the throttle device of the present invention, it is preferable that the primary port is opened on the upper side in the vertical direction and the liquid storage portion is arranged so as to be arranged on the lower side of the refrigerant retention portion. According to such a configuration, the liquid condensed in the refrigerant retention portion can be directed downward by gravity, and can be easily introduced into the liquid storage portion.

また、本発明の絞り装置では、前記一次ポートが、鉛直方向下方側に開口し、前記一次ポートから上方側に向かって延びる冷媒導入筒をさらに備え、前記冷媒導入筒よりも上方側の空間と、筒上側部の径方向外側の空間と、が前記冷媒滞留部となり、前記冷媒導入筒の筒下側部を含む下方側空間が前記液貯留部となってもよい。このような構成によれば、絞り装置に対して下方側から冷媒を導入し、上方側に向かって進行した冷媒のうち液体成分を下降させて液貯留部に導入することができる。 Further, in the drawing device of the present invention, the primary port is further provided with a refrigerant introduction cylinder that opens downward in the vertical direction and extends upward from the primary port, and has a space above the refrigerant introduction cylinder. , The space on the outer side in the radial direction of the upper portion of the cylinder may be the refrigerant retention portion, and the space on the lower side including the lower portion of the cylinder of the refrigerant introduction cylinder may be the liquid storage portion. According to such a configuration, the refrigerant can be introduced from the lower side to the drawing device, and the liquid component of the refrigerant that has progressed toward the upper side can be lowered and introduced into the liquid storage unit.

本発明の冷凍サイクルシステムは、冷媒を圧縮する圧縮機と、圧縮した冷媒を凝縮する凝縮器と、凝縮した冷媒を膨張させて減圧する上記いずれかに記載の絞り装置と、減圧した冷媒を蒸発させる1又は複数の蒸発器と、を備えることを特徴とする。このような本発明によれば、上記のように絞り装置の性能を安定化することで、蒸発器の冷却性能を安定化することができる。 The refrigeration cycle system of the present invention evaporates a compressor for compressing a refrigerant, a condenser for condensing the compressed refrigerant, a drawing device according to any one of the above for expanding and depressurizing the condensed refrigerant, and a decompressed refrigerant. It is characterized by comprising one or a plurality of evaporators. According to the present invention as described above, by stabilizing the performance of the throttle device as described above, the cooling performance of the evaporator can be stabilized.

本発明の絞り装置および冷凍サイクルシステムによれば、冷媒滞留部と低圧冷媒通過部との間で熱交換することで、絞り部に供給される液体成分の量を安定化することができる。 According to the drawing device and the refrigerating cycle system of the present invention, the amount of the liquid component supplied to the drawing part can be stabilized by exchanging heat between the refrigerant retention part and the low-pressure refrigerant passing part.

本発明の第1実施形態に係る冷凍サイクルシステムを示すシステム図である。It is a system diagram which shows the refrigeration cycle system which concerns on 1st Embodiment of this invention. 前記冷凍サイクルシステムに設けられる絞り装置を示す断面図である。It is sectional drawing which shows the drawing device provided in the refrigerating cycle system. 本発明の第2実施形態に係る冷凍サイクルシステムに設けられる絞り装置を示す断面図である。It is sectional drawing which shows the drawing apparatus provided in the refrigerating cycle system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る冷凍サイクルシステムに設けられる絞り装置を示す断面図である。It is sectional drawing which shows the drawing apparatus provided in the refrigerating cycle system which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る冷凍サイクルシステムに設けられる絞り装置を示す断面図である。It is sectional drawing which shows the drawing apparatus provided in the refrigerating cycle system which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る冷凍サイクルシステムに設けられる絞り装置を示す断面図である。It is sectional drawing which shows the drawing apparatus provided in the refrigerating cycle system which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る冷凍サイクルシステムに設けられる絞り装置を示す断面図である。It is sectional drawing which shows the drawing apparatus provided in the refrigerating cycle system which concerns on 6th Embodiment of this invention. 変形例に係る絞り装置を示す断面図である。It is sectional drawing which shows the drawing device which concerns on a modification.

本発明の各実施形態について、図面を参照して説明する。尚、第2〜6実施形態においては、第1実施形態で説明する構成部材と同じ構成部材及び同様な機能を有する構成部材には、第1実施形態と同じ符号を付すとともに説明を省略する。 Each embodiment of the present invention will be described with reference to the drawings. In the second to sixth embodiments, the same components as those described in the first embodiment and the components having the same functions are designated by the same reference numerals as those in the first embodiment, and the description thereof will be omitted.

[第1実施形態]
本実施形態の冷凍サイクルシステム100Aは、図1に示すように、冷媒(流体)を膨張させて減圧する絞り装置10Aと、冷媒を圧縮する圧縮機11と、冷媒を凝縮する凝縮器12と、冷媒を蒸発させる蒸発器13と、を備える。この冷凍サイクルシステム100Aは、例えば、冷蔵庫、冷凍庫、空気調和機等に用いられる。また、本実施形態では、鉛直方向をZ方向とし、水平面に沿うとともに互いに直交する2方向をX方向およびY方向とする。
[First Embodiment]
As shown in FIG. 1, the refrigeration cycle system 100A of the present embodiment includes a throttle device 10A that expands and depressurizes the refrigerant (fluid), a compressor 11 that compresses the refrigerant, and a condenser 12 that condenses the refrigerant. An evaporator 13 for evaporating the refrigerant is provided. This refrigeration cycle system 100A is used in, for example, refrigerators, freezers, air conditioners, and the like. Further, in the present embodiment, the vertical direction is the Z direction, and the two directions along the horizontal plane and orthogonal to each other are the X direction and the Y direction.

絞り装置10Aは、図2に示すように、1つのハウジング2と、2つの絞りユニット3A、3Bと、を有し、冷媒を膨張させるとともに分配する装置である。尚、絞り装置に設けられる絞りユニットの数および後述する二次ポートの数は、蒸発器の数に応じたものであればよく、3以上であってもよい。 As shown in FIG. 2, the drawing device 10A is a device having one housing 2 and two drawing units 3A and 3B, and expands and distributes the refrigerant. The number of diaphragm units provided in the diaphragm device and the number of secondary ports described later may be 3 or more as long as they correspond to the number of evaporators.

ハウジング2は、金属部材によって全体が円筒状に形成されるとともに、Z方向上方側に開口した一次ポート21と、X方向の両側それぞれに開口した二次ポート22と、Z方向上方側に開口した2つの収容部23と、を有する。 The housing 2 is formed entirely of a metal member into a cylindrical shape, and has a primary port 21 that opens upward in the Z direction, a secondary port 22 that opens on both sides in the X direction, and a housing 2 that opens upward in the Z direction. It has two housing units 23 and.

一次ポート21は、ハウジング2の天面の中央部に形成されており、一次ポート21をX方向から挟む位置に円筒状の収容部23が形成されている。各収容部23の内側と二次ポート22とが連通している。 The primary port 21 is formed in the central portion of the top surface of the housing 2, and a cylindrical accommodating portion 23 is formed at a position sandwiching the primary port 21 from the X direction. The inside of each accommodating portion 23 and the secondary port 22 communicate with each other.

ハウジング2は、一次ポート21の下方側の空間と収容部23とを区画する隔壁24を有する。隔壁24は、ハウジング2の底面部まで届いておらず、これらの間に隙間が形成されている。ハウジング2の内部空間のうち、隔壁24によって囲まれた空間が冷媒滞留部A1となり、隔壁24の先端部を含んで下方側の空間が液貯留部A2となる。隔壁24の内面(冷媒滞留部A1側の面)には、例えばフッ素樹脂コーティング等の撥水処理が施されている。液貯留部A2は、後述する2つの絞り部311の両方に液体成分を供給可能であり、2つの絞り部311に対して共通して設けられている。 The housing 2 has a partition wall 24 that partitions the space below the primary port 21 and the accommodating portion 23. The partition wall 24 does not reach the bottom surface of the housing 2, and a gap is formed between them. Of the internal space of the housing 2, the space surrounded by the partition wall 24 becomes the refrigerant retention portion A1, and the space on the lower side including the tip portion of the partition wall 24 becomes the liquid storage portion A2. The inner surface of the partition wall 24 (the surface on the side of the refrigerant retention portion A1) is subjected to a water repellent treatment such as a fluororesin coating. The liquid storage portion A2 can supply a liquid component to both of the two throttle portions 311 described later, and is provided in common with the two throttle portions 311.

絞りユニット3A、3Bは、金属部材によって構成されるとともに両端が閉塞された円筒状に形成され、底面部31に貫通孔状の絞り部311を有し、側面部32に開口部321を有する。絞りユニット3A、3Bを収容部23に収容すると、側面部32が隔壁24に重なるとともに、開口部321と二次ポート22とが連通する。絞り部311を通過した冷媒が二次ポート22に向かうようになっており、円筒状の絞りユニット3A、3Bの内側の空間が低圧冷媒通過部A3となる。低圧冷媒通過部A3は、絞り部311を介して液貯留部A2と連通する。隔壁24の下端部と底面部31とがZ方向において略同一高さに配置される。尚、本実施形態では絞りユニット3A、3Bの絞り部311の内径が互いに略等しく、2つの二次ポート22に対して冷媒が均等に分配されるものとするが、分配比率は適宜に設定されればよく、弁ポートの内径は分配比率に応じた大きさであればよい。 The diaphragm units 3A and 3B are formed of a metal member and are formed in a cylindrical shape with both ends closed, and have a through-hole-shaped diaphragm portion 311 on the bottom surface portion 31 and an opening portion 321 on the side surface portion 32. When the aperture units 3A and 3B are accommodated in the accommodating portion 23, the side surface portion 32 overlaps the partition wall 24, and the opening 321 and the secondary port 22 communicate with each other. The refrigerant that has passed through the throttle portion 311 is directed toward the secondary port 22, and the space inside the cylindrical throttle units 3A and 3B becomes the low-pressure refrigerant passage portion A3. The low-pressure refrigerant passing portion A3 communicates with the liquid storage portion A2 via the throttle portion 311. The lower end portion of the partition wall 24 and the bottom surface portion 31 are arranged at substantially the same height in the Z direction. In the present embodiment, the inner diameters of the drawing portions 311 of the drawing units 3A and 3B are substantially equal to each other, and the refrigerant is evenly distributed to the two secondary ports 22, but the distribution ratio is appropriately set. The inner diameter of the valve port may be as large as the distribution ratio.

冷媒滞留部A1と低圧冷媒通過部A3とは、X方向に並んで配置され、これらの間には隔壁24および側面部32が設けられている。ハウジング2および絞りユニット3A、3Bは熱伝導率の高い金属部材によって構成されており、隔壁24および側面部32が、冷媒滞留部A1と低圧冷媒通過部A3との間で熱交換する熱交換手段として機能する。 The refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3 are arranged side by side in the X direction, and a partition wall 24 and a side surface portion 32 are provided between them. The housing 2 and the drawing units 3A and 3B are made of metal members having high thermal conductivity, and the partition wall 24 and the side surface portion 32 are heat exchange means for exchanging heat between the refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3. Functions as.

ここで、絞り装置10Aにおける冷媒の流れについて説明する。まず、絞り装置10Aは、一次ポート21から冷媒を受け入れ、この冷媒が冷媒滞留部A1に導入される。導入された冷媒のうち液体成分がZ方向下方側に移動して液貯留部A2に貯留され、気体成分は冷媒滞留部A1に滞留する。 Here, the flow of the refrigerant in the drawing device 10A will be described. First, the throttle device 10A receives the refrigerant from the primary port 21, and this refrigerant is introduced into the refrigerant retention portion A1. Of the introduced refrigerant, the liquid component moves downward in the Z direction and is stored in the liquid storage section A2, and the gas component stays in the refrigerant retention section A1.

液貯留部A2に貯留された液体成分は、絞り部311に供給され、絞り部311を通過することで減圧されるとともに温度低下し、二次ポート22から蒸発器13に送り出される。このとき、絞り部311を通過した冷媒の流路となる低圧冷媒通過部A3は、冷媒によって冷却され、冷媒滞留部A1よりも低温となる。これにより、冷媒滞留部A1の熱が隔壁24および側面部32を介して低圧冷媒通過部A3に伝達され、冷媒滞留部A1の冷媒(気体成分)が冷却される。 The liquid component stored in the liquid storage section A2 is supplied to the throttle section 311 and passes through the throttle section 311 to reduce the pressure and lower the temperature, and is sent out from the secondary port 22 to the evaporator 13. At this time, the low-pressure refrigerant passage portion A3, which is the flow path of the refrigerant that has passed through the throttle portion 311, is cooled by the refrigerant and becomes lower in temperature than the refrigerant retention portion A1. As a result, the heat of the refrigerant retention portion A1 is transferred to the low-pressure refrigerant passage portion A3 via the partition wall 24 and the side surface portion 32, and the refrigerant (gas component) of the refrigerant retention portion A1 is cooled.

冷媒滞留部A1において冷却された冷媒の一部が凝縮して液体成分となり、液貯留部A2に導入される。特に、隔壁24の表面において凝縮した液体成分は、液滴28として隔壁24を伝って下降し、液貯留部A2に導入される。 A part of the cooled refrigerant in the refrigerant retention portion A1 is condensed into a liquid component, which is introduced into the liquid storage portion A2. In particular, the liquid component condensed on the surface of the partition wall 24 descends as droplets 28 along the partition wall 24 and is introduced into the liquid storage portion A2.

以上の本実施形態によれば、冷媒滞留部A1と低圧冷媒通過部A3との間で熱交換することで、冷媒滞留部A1を冷却することができる。これにより、冷媒滞留部A1の冷媒の気体成分を凝縮させて液体成分に変化させやすくすることができ、絞り部311に供給される液体成分の量を安定化することができる。 According to the above embodiment, the refrigerant retention portion A1 can be cooled by exchanging heat between the refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3. As a result, the gas component of the refrigerant in the refrigerant retention portion A1 can be easily condensed into a liquid component, and the amount of the liquid component supplied to the throttle portion 311 can be stabilized.

また、絞り装置10Aが、冷媒滞留部A1に滞留した冷媒のうち液体成分を貯留して絞り部311に供給する液貯留部A2を備えることで、冷媒の気体成分を凝縮させた液体成分を液貯留部A2に貯留することができ、絞り部311に供給される液体成分の量を安定化することができる。 Further, the drawing device 10A includes a liquid storage section A2 that stores the liquid component of the refrigerant staying in the refrigerant staying section A1 and supplies the liquid component to the drawing section 311 so that the liquid component obtained by condensing the gas component of the refrigerant is liquid. It can be stored in the storage unit A2, and the amount of the liquid component supplied to the throttle unit 311 can be stabilized.

また、1つの一次ポート21に対して2つの二次ポート22が設けられ、液貯留部A2が2つの絞り部311に対して共通して設けられており、上記のように液貯留部A2に液体成分を貯留しやすいことから、2つの絞り部311に対して安定して液体を供給することができる。従って、各絞り部311を通過する冷媒の物質量の差を小さくし、2つの二次ポート22に対して冷媒を所定の割合(本実施形態では1:1)で分配しやすくすることができる。 Further, two secondary ports 22 are provided for one primary port 21, and a liquid storage unit A2 is provided in common for the two throttle units 311. As described above, the liquid storage unit A2 is provided. Since the liquid component can be easily stored, the liquid can be stably supplied to the two drawing portions 311. Therefore, the difference in the amount of substance of the refrigerant passing through each throttle portion 311 can be reduced, and the refrigerant can be easily distributed to the two secondary ports 22 at a predetermined ratio (1: 1 in the present embodiment). ..

また、冷媒滞留部A1を囲む壁部である隔壁24に撥水処理が施されていることから、隔壁24の内面において凝縮した液体の液滴28を流れやすくし、液貯留部A2に導入しやすくすることができる。 Further, since the partition wall 24, which is a wall portion surrounding the refrigerant retention portion A1, is water-repellent, the condensed liquid droplets 28 on the inner surface of the partition wall 24 can easily flow and are introduced into the liquid storage portion A2. Can be made easier.

また、液貯留部A2が冷媒滞留部A1の下方に並ぶように配置されていることから、冷媒滞留部A1において凝縮した液体が重力によって下方に向かうようにし、液貯留部A2に導入しやすくすることができる。 Further, since the liquid storage portion A2 is arranged so as to be arranged below the refrigerant retention portion A1, the liquid condensed in the refrigerant retention portion A1 is directed downward by gravity, which facilitates introduction into the liquid storage portion A2. be able to.

[第2実施形態]
本実施形態の冷凍サイクルシステムは、図3に示すような絞り装置10Bを備える。本実施形態の絞り装置10Bでは、第1実施形態の絞り装置10Aに対し、隔壁24の内面に凹凸部24Aが形成されている点で相違している。尚、凹凸部24Aは、隔壁24の内面全体(Z方向から見て周方向全体)に形成されていてもよいし、隔壁24の内面のうち低圧冷媒通過部A3と隣り合う部分のみ(Z方向から見て周方向の一部)に形成されていてもよい。また、凹凸部24Aを構成する凸部は、点状であってもよいし周方向に沿って延びていてもよいし、Z方向に沿って延びていてもよい。また、凹凸部は、サンドブラスト等で隔壁24の内面を粗面化することで形成された微少凹凸であってもよいし、隔壁24の内面にディンプル加工を施すことで形成されたものであってもよい。
[Second Embodiment]
The refrigeration cycle system of the present embodiment includes a drawing device 10B as shown in FIG. The drawing device 10B of the present embodiment is different from the drawing device 10A of the first embodiment in that an uneven portion 24A is formed on the inner surface of the partition wall 24. The uneven portion 24A may be formed on the entire inner surface of the partition wall 24 (the entire circumferential direction when viewed from the Z direction), or only the portion of the inner surface of the partition wall 24 adjacent to the low-pressure refrigerant passing portion A3 (Z direction). It may be formed in a part in the circumferential direction when viewed from the viewpoint. Further, the convex portion constituting the concave-convex portion 24A may be point-shaped, may extend along the circumferential direction, or may extend along the Z direction. Further, the uneven portion may be a fine uneven portion formed by roughening the inner surface of the partition wall 24 by sandblasting or the like, or may be formed by performing dimple processing on the inner surface of the partition wall 24. May be good.

以上の本実施形態によれば、前期第1実施形態と同様に、冷媒滞留部A1と低圧冷媒通過部A3との間で熱交換することで、絞り装置10Bの性能を安定化することができる。また、隔壁24の内面に凹凸部24Aが形成されていることで、冷媒滞留部A1において熱交換面の表面積を大きくし、熱交換効率を向上させることができる。 According to the above embodiment, the performance of the drawing device 10B can be stabilized by exchanging heat between the refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3, as in the first embodiment of the previous term. .. Further, since the uneven portion 24A is formed on the inner surface of the partition wall 24, the surface area of the heat exchange surface in the refrigerant retention portion A1 can be increased and the heat exchange efficiency can be improved.

[第3実施形態]
本実施形態の冷凍サイクルシステムは、図4に示すような絞り装置10Cを備える。本実施形態の絞り装置10Cでは、第1実施形態の絞り装置10Aに対し、伝熱部材4が設けられている点で相違している。
[Third Embodiment]
The refrigeration cycle system of the present embodiment includes a drawing device 10C as shown in FIG. The drawing device 10C of the present embodiment is different from the drawing device 10A of the first embodiment in that a heat transfer member 4 is provided.

伝熱部材4は、円柱状のメッシュ部材によって形成され、冷媒滞留部A1に充填されるように配置され、隔壁24および側面部32とともに熱交換手段として機能する。即ち、隔壁24と伝熱部材4との間で熱が伝達され、伝熱部材4内部を通過した冷媒が冷却されるようになっている。尚、伝熱部材4の下端部は液貯留部A2まで到達していない。 The heat transfer member 4 is formed of a columnar mesh member, is arranged so as to be filled in the refrigerant retention portion A1, and functions as a heat exchange means together with the partition wall 24 and the side surface portion 32. That is, heat is transferred between the partition wall 24 and the heat transfer member 4, and the refrigerant that has passed through the inside of the heat transfer member 4 is cooled. The lower end of the heat transfer member 4 does not reach the liquid storage portion A2.

以上の本実施形態によれば、前期第1実施形態と同様に、冷媒滞留部A1と低圧冷媒通過部A3との間で熱交換することで、絞り装置10Cの性能を安定化することができる。また、伝熱部材4が設けられていることで、冷媒滞留部A1において熱交換効率を向上させることができる。さらに、伝熱部材4がメッシュ部材によって構成されていることで、表面積を大きくして熱交換効率を向上させることができる。 According to the above embodiment, the performance of the drawing device 10C can be stabilized by exchanging heat between the refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3, as in the first embodiment of the previous term. .. Further, by providing the heat transfer member 4, the heat exchange efficiency can be improved in the refrigerant retention portion A1. Further, since the heat transfer member 4 is composed of the mesh member, the surface area can be increased and the heat exchange efficiency can be improved.

[第4実施形態]
本実施形態の冷凍サイクルシステムは、図5に示すような絞り装置10Dを備える。本実施形態の絞り装置10Dでは、第3実施形態の絞り装置10Cに対し、伝熱部材4に代えて伝熱部材5が設けられている点で相違している。
[Fourth Embodiment]
The refrigeration cycle system of the present embodiment includes a drawing device 10D as shown in FIG. The drawing device 10D of the present embodiment is different from the drawing device 10C of the third embodiment in that a heat transfer member 5 is provided instead of the heat transfer member 4.

伝熱部材5は、円柱状のメッシュ部材によって形成され、冷媒滞留部A1に充填されるように配置され、隔壁24および側面部32とともに熱交換手段として機能する。即ち、隔壁24と伝熱部材5との間で熱が伝達され、伝熱部材5内部を通過した冷媒が冷却されるようになっている。伝熱部材5の下端部の一部が、液貯留部A2まで到達しており、伝熱部材5が冷媒滞留部A1から液貯留部A2に亘って設けられている。 The heat transfer member 5 is formed of a columnar mesh member, is arranged so as to be filled in the refrigerant retention portion A1, and functions as a heat exchange means together with the partition wall 24 and the side surface portion 32. That is, heat is transferred between the partition wall 24 and the heat transfer member 5, and the refrigerant that has passed through the inside of the heat transfer member 5 is cooled. A part of the lower end of the heat transfer member 5 reaches the liquid storage section A2, and the heat transfer member 5 is provided from the refrigerant retention section A1 to the liquid storage section A2.

以上の本実施形態によれば、前期第1実施形態と同様に、冷媒滞留部A1と低圧冷媒通過部A3との間で熱交換することで、絞り装置10Dの性能を安定化することができる。また、伝熱部材5が設けられていることで、冷媒滞留部A1において熱交換効率を向上させることができる。さらに、伝熱部材5がメッシュ部材によって構成されていることで、表面積を大きくして熱交換効率を向上させることができる。 According to the above embodiment, the performance of the drawing device 10D can be stabilized by exchanging heat between the refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3, as in the first embodiment of the previous term. .. Further, by providing the heat transfer member 5, the heat exchange efficiency can be improved in the refrigerant retention portion A1. Further, since the heat transfer member 5 is composed of a mesh member, the surface area can be increased and the heat exchange efficiency can be improved.

さらに、伝熱部材5が冷媒滞留部A1から液貯留部A2に亘って設けられていることで、伝熱部材5の表面および内部において凝縮した液体を液貯留部A2に導入しやすくすることができる。尚、伝熱部材5の表面とは、円柱の表面に相当する部分であり、伝熱部材5の内部とは、円柱の内部(冷媒が通過する部分)に相当する部分である。 Further, since the heat transfer member 5 is provided from the refrigerant retention portion A1 to the liquid storage portion A2, the liquid condensed on the surface and inside of the heat transfer member 5 can be easily introduced into the liquid storage portion A2. it can. The surface of the heat transfer member 5 is a portion corresponding to the surface of the cylinder, and the inside of the heat transfer member 5 is a portion corresponding to the inside of the cylinder (a portion through which the refrigerant passes).

[第5実施形態]
本実施形態の冷凍サイクルシステムは、図6に示すような絞り装置10Eを備える。本実施形態の絞り装置10Eでは、第1実施形態の絞り装置10Aに対し、隔壁24の内面に溝部24Bが形成されている点で相違している。
[Fifth Embodiment]
The refrigeration cycle system of the present embodiment includes a drawing device 10E as shown in FIG. The drawing device 10E of the present embodiment is different from the drawing device 10A of the first embodiment in that a groove portion 24B is formed on the inner surface of the partition wall 24.

溝部24Bは、Z方向に沿って延びるとともに、冷媒滞留部A1から液貯留部A2に亘って形成されており、即ち冷媒滞留部A1から液貯留部A2に向かって延びている。図示の例では、溝部24Bが奥側(隔壁24のうち低圧冷媒通過部A3と隣り合わない部分)に形成されているが、隔壁24のうち低圧冷媒通過部A3と隣り合う部分に溝部が形成されていてもよい。 The groove portion 24B extends along the Z direction and is formed from the refrigerant retention portion A1 to the liquid storage portion A2, that is, extends from the refrigerant retention portion A1 toward the liquid storage portion A2. In the illustrated example, the groove portion 24B is formed on the back side (the portion of the partition wall 24 that is not adjacent to the low-pressure refrigerant passing portion A3), but the groove portion is formed in the portion of the partition wall 24 that is adjacent to the low-pressure refrigerant passing portion A3. It may have been done.

以上の本実施形態によれば、前期第1実施形態と同様に、冷媒滞留部A1と低圧冷媒通過部A3との間で熱交換することで、絞り装置10Eの性能を安定化することができる。さらに、隔壁24の内面に溝部24Bが形成されていることで、隔壁24の内面において凝縮した液体の液滴28を液貯留部に導入しやすくすることができる。 According to the above embodiment, the performance of the drawing device 10E can be stabilized by exchanging heat between the refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3, as in the first embodiment of the previous term. .. Further, since the groove portion 24B is formed on the inner surface of the partition wall 24, it is possible to easily introduce the liquid droplet 28 condensed on the inner surface of the partition wall 24 into the liquid storage portion.

[第6実施形態]
本実施形態の冷凍サイクルシステムは、図7に示すような絞り装置10Fを備える。本実施形態の絞り装置10Fでは、第1実施形態の絞り装置10Aに対し、ハウジング2Fが、Z方向下方側に開口した一次ポート25と、一次ポート25から上方側に向かって延びる冷媒導入筒26と、を有する点で相違している。
[Sixth Embodiment]
The refrigeration cycle system of the present embodiment includes a drawing device 10F as shown in FIG. In the throttle device 10F of the present embodiment, the housing 2F has a primary port 25 opened downward in the Z direction and a refrigerant introduction cylinder 26 extending upward from the primary port 25 with respect to the throttle device 10A of the first embodiment. And, the difference is that it has.

本実施形態においては、ハウジング2Fのうち隔壁24の内側かつ冷媒導入筒26よりも上方側の空間と、隔壁24の内側かつ冷媒導入筒26の筒上側部(絞りユニット3A、3Bの底面部31よりもZ方向において上方に位置する部分)26Aの径方向外側の空間と、が冷媒滞留空間A4となる。また、冷媒導入筒26の径方向外側空間のうち筒下側部26Bを含んで下方側の空間が液貯留部A5となる。 In the present embodiment, the space inside the partition wall 24 and above the refrigerant introduction cylinder 26 in the housing 2F, and the inside of the partition wall 24 and the upper portion of the refrigerant introduction cylinder 26 (bottom portions 31 of the drawing units 3A and 3B). The space outside the radial direction of 26A (the portion located above in the Z direction) is the refrigerant retention space A4. Further, in the radial outer space of the refrigerant introduction cylinder 26, the space on the lower side including the cylinder lower side portion 26B becomes the liquid storage portion A5.

一次ポート25から冷媒滞留部A4に導入された冷媒は、上方側に向かうことでハウジング2の天面部27に衝突し、径方向外側に向かうことで液体成分が液貯留部A5に導入される。このとき、前記第1実施形態と同様に、熱交換手段としての隔壁24および側面部32によって、冷媒滞留部A4と低圧冷媒通過部A3との間で熱交換される。 The refrigerant introduced into the refrigerant retention portion A4 from the primary port 25 collides with the top surface portion 27 of the housing 2 by going upward, and the liquid component is introduced into the liquid storage portion A5 by going outward in the radial direction. At this time, as in the first embodiment, heat is exchanged between the refrigerant retention portion A4 and the low-pressure refrigerant passage portion A3 by the partition wall 24 and the side surface portion 32 as heat exchange means.

以上の本実施形態によれば、前期第1実施形態と同様に、冷媒滞留部A4と低圧冷媒通過部A3との間で熱交換することで、絞り装置10Fの性能を安定化することができる。また、絞り装置10Fに対して下方側から冷媒を導入し、上方側に向かって進行した冷媒のうち液体成分を下降させて液貯留部A5に導入することができる。 According to the above embodiment, the performance of the drawing device 10F can be stabilized by exchanging heat between the refrigerant retention portion A4 and the low-pressure refrigerant passage portion A3, as in the first embodiment of the previous term. .. Further, the refrigerant can be introduced into the throttle device 10F from the lower side, and the liquid component of the refrigerant that has progressed toward the upper side can be lowered and introduced into the liquid storage unit A5.

なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的が達成できる他の構成等を含み、以下に示すような変形等も本発明に含まれる。例えば、前記第1実施形態では、1つの一次ポート21に対して2つの二次ポート22が設けられ、冷媒が分配されるものとしたが、冷媒を分配しない絞り装置としてもよい。即ち、図8に例示する絞り装置10Gのように、1つの絞りユニット3Aを備え、ハウジング2Gに1つの収容部23のみが形成されている構成としてもよい。 The present invention is not limited to the above-described embodiment, but includes other configurations and the like that can achieve the object of the present invention, and the following modifications and the like are also included in the present invention. For example, in the first embodiment, two secondary ports 22 are provided for one primary port 21 to distribute the refrigerant, but a throttle device that does not distribute the refrigerant may be used. That is, as in the diaphragm device 10G illustrated in FIG. 8, a configuration may be configured in which one diaphragm unit 3A is provided and only one housing portion 23 is formed in the housing 2G.

また、前記第2〜第5実施形態における特徴部分(凹凸部24A、伝熱部材4、5及び溝部24B)は適宜に組み合わされてもよく、前記第6実施形態のように一次ポート25が下方側に開口した構成において、前記第2〜第5実施形態における特徴部分を適宜に採用してもよい。 Further, the characteristic portions (concavo-convex portion 24A, heat transfer members 4, 5 and groove portion 24B) in the second to fifth embodiments may be appropriately combined, and the primary port 25 is downward as in the sixth embodiment. In the configuration opened to the side, the characteristic portions in the second to fifth embodiments may be appropriately adopted.

また、前記第3、第4実施形態において伝熱部材4、5がメッシュ部材によって構成されているものとしたが、伝熱部材は、冷媒が通過可能なものであればよく、例えば多孔質体によって構成されていてもよい。 Further, although the heat transfer members 4 and 5 are made of mesh members in the third and fourth embodiments, the heat transfer members may be any as long as the refrigerant can pass through, for example, a porous body. It may be composed of.

また、前記第1実施形態では、絞り部311が単なる貫通孔状であり、冷媒が通過可能な断面積が不変であるものとしたが、冷媒が通過可能な断面積が可変な絞り部としてもよい。即ち、絞り部としての弁ポートに対し、駆動手段によって弁体を進退させることで弁ポートの開度が可変となっている構成としてもよい。例えば、絞り部を、温度式膨張弁や電動弁、電磁弁等としてもよい。 Further, in the first embodiment, it is assumed that the throttle portion 311 is merely a through hole and the cross-sectional area through which the refrigerant can pass is unchanged, but the throttle portion may also have a variable cross-sectional area through which the refrigerant can pass. Good. That is, the opening degree of the valve port may be variable by moving the valve body forward and backward with respect to the valve port as the throttle portion. For example, the throttle portion may be a temperature type expansion valve, an electric valve, a solenoid valve, or the like.

また、前記第1実施形態では、冷媒滞留部A1と低圧冷媒通過部A3とを区画する壁部(ハウジング2の隔壁24および絞りユニット3A、3Bの側面部32)が熱交換手段として機能するものとしたが、このような構成に限定されない。例えば、冷媒滞留部を構成する筐体と、低圧冷媒通過部を構成する筐体と、が離隔して配置され、これらの間に金属製の熱伝達部材を挟み込むことで熱交換する構成としてもよい。 Further, in the first embodiment, the wall portion (the partition wall 24 of the housing 2 and the side surface portions 32 of the drawing units 3A and 3B) that separates the refrigerant retention portion A1 and the low-pressure refrigerant passage portion A3 functions as heat exchange means. However, it is not limited to such a configuration. For example, the housing constituting the refrigerant retention portion and the housing constituting the low-pressure refrigerant passage portion may be arranged apart from each other, and heat may be exchanged by sandwiching a metal heat transfer member between them. Good.

また、前記第1実施形態では、冷媒滞留部A1と液貯留部A2とが明確に区別されているものとしたが、これらは明確に区別されていなくてもよく(即ち絞り装置は少なくとも冷媒滞留部を備えていればよく)、冷媒滞留部に滞留した冷媒(特に液体成分)が絞り部に供給されるようになっていればよい。 Further, in the first embodiment, the refrigerant retention portion A1 and the liquid storage portion A2 are clearly distinguished, but these may not be clearly distinguished (that is, the throttle device at least retains the refrigerant). It suffices if the part is provided), and the refrigerant (particularly the liquid component) staying in the refrigerant retention part may be supplied to the throttle part.

以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the design changes, etc. within the range not deviating from the gist of the present invention, etc. Even if there is, it is included in the present invention.

100A 冷凍サイクルシステム
10A〜10G 絞り装置
11 圧縮機
12 凝縮器
13 蒸発器
2 ハウジング
21、25 一次ポート
22 二次ポート
24 隔壁(壁部、熱交換手段)
24A 凹凸部
24B 溝部
26 冷媒導入筒
26A 筒上側部
26B 筒下側部
311 絞り部
32 側面部(熱交換手段)
4、5 伝熱部材
A1、A4 冷媒滞留部
A2、A5 液貯留部
A3 低圧冷媒通過部
100A Refrigeration Cycle System 10A-10G Squeezer 11 Compressor 12 Condenser 13 Evaporator 2 Housing 21, 25 Primary Port 22 Secondary Port 24 Partition (Wall, Heat Exchange Means)
24A Concavo-convex part 24B Groove part 26 Refrigerant introduction cylinder 26A Cylinder upper part 26B Cylinder lower side part 311 Squeezing part 32 Side part (heat exchange means)
4, 5 Heat transfer members A1, A4 Refrigerant retention part A2, A5 Liquid storage part A3 Low pressure refrigerant passage part

Claims (12)

高圧の冷媒を受け入れる一次ポートと、
前記一次ポートから流入した冷媒を通過させる絞り部と、
前記一次ポートと前記絞り部との間に形成されて冷媒が滞留する冷媒滞留部と、
前記絞り部を通過した冷媒を送り出す二次ポートと、
前記絞り部から前記二次ポートにかけて冷媒が通過する低圧冷媒通過部と、
前記冷媒滞留部と前記低圧冷媒通過部との間で熱交換する熱交換手段と、を備えることを特徴とする絞り装置。
A primary port that accepts high-pressure refrigerant,
A throttle part that allows the refrigerant that has flowed in from the primary port to pass through, and
A refrigerant retention portion formed between the primary port and the throttle portion to retain the refrigerant, and a refrigerant retention portion.
A secondary port that sends out the refrigerant that has passed through the throttle,
A low-pressure refrigerant passing portion through which the refrigerant passes from the throttle portion to the secondary port, and a low-pressure refrigerant passing portion.
A throttle device including a heat exchange means for exchanging heat between the refrigerant retention portion and the low-pressure refrigerant passage portion.
前記冷媒滞留部に滞留した冷媒のうち液体成分を貯留して前記絞り部に供給する液貯留部をさらに備えることを特徴とする請求項1に記載の絞り装置。 The throttle device according to claim 1, further comprising a liquid storage portion that stores a liquid component of the refrigerant staying in the refrigerant retention portion and supplies the liquid component to the throttle portion. 前記絞り部および前記二次ポートのそれぞれを複数備え、
前記液貯留部が複数の前記絞り部に対して共通して設けられ、
前記一次ポートから受け入れた冷媒を前記複数の二次ポートに分配することを特徴とする請求項1又は2に記載の絞り装置。
A plurality of each of the throttle portion and the secondary port are provided.
The liquid storage unit is commonly provided for the plurality of the throttle units, and the liquid storage unit is provided in common.
The throttle device according to claim 1 or 2, wherein the refrigerant received from the primary port is distributed to the plurality of secondary ports.
前記熱交換手段は、前記冷媒滞留部を囲む壁部に設けられるとともに、当該冷媒滞留部側の面に凹凸部を有することを特徴とする請求項1〜3のいずれか1項に記載の絞り装置。 The throttle according to any one of claims 1 to 3, wherein the heat exchange means is provided on a wall portion surrounding the refrigerant retention portion and has an uneven portion on the surface on the refrigerant retention portion side. apparatus. 前記熱交換手段は、前記冷媒滞留部内に配置されるとともに冷媒が通過可能な伝熱部材を有することを特徴とする請求項1〜4のいずれか1項に記載の絞り装置。 The throttle device according to any one of claims 1 to 4, wherein the heat exchange means is arranged in the refrigerant retention portion and has a heat transfer member through which the refrigerant can pass. 前記伝熱部材が、多孔質体またはメッシュ部材によって構成されていることを特徴とする請求項5に記載の絞り装置。 The drawing device according to claim 5, wherein the heat transfer member is made of a porous body or a mesh member. 前記伝熱部材が、前記冷媒滞留部から前記液貯留部に亘って設けられていることを特徴とする請求項5又は6に記載の絞り装置。 The throttle device according to claim 5 or 6, wherein the heat transfer member is provided from the refrigerant retention portion to the liquid storage portion. 前記熱交換手段は、前記冷媒滞留部を囲む壁部に設けられ、
前記壁部における前記冷媒滞留部側の面には、前記液貯留部に向かって延びる溝部が形成されていることを特徴とする請求項1〜7のいずれか1項に記載の絞り装置。
The heat exchange means is provided on a wall portion surrounding the refrigerant retention portion.
The throttle device according to any one of claims 1 to 7, wherein a groove extending toward the liquid storage portion is formed on the surface of the wall portion on the side of the refrigerant retention portion.
前記熱交換手段は、前記冷媒滞留部を囲む壁部に設けられ、
前記壁部における前記冷媒滞留部側の面には、撥水処理が施されていることを特徴とする請求項1〜8のいずれか1項に記載の絞り装置。
The heat exchange means is provided on a wall portion surrounding the refrigerant retention portion.
The squeezing device according to any one of claims 1 to 8, wherein the surface of the wall portion on the side of the refrigerant retention portion is subjected to a water repellent treatment.
前記一次ポートが鉛直方向上方側に開口し、
前記液貯留部が、前記冷媒滞留部の下方側に並ぶように配置されていることを特徴とする請求項1〜9のいずれか1項に記載の絞り装置。
The primary port opens upward in the vertical direction,
The throttle device according to any one of claims 1 to 9, wherein the liquid storage portion is arranged so as to be arranged below the refrigerant retention portion.
前記一次ポートが、鉛直方向下方側に開口し、
前記一次ポートから上方側に向かって延びる冷媒導入筒をさらに備え、
前記冷媒導入筒よりも上方側の空間と、筒上側部の径方向外側の空間と、が前記冷媒滞留部となり、
前記冷媒導入筒の筒下側部を含む下方側空間が前記液貯留部となることを特徴とする請求項1〜9のいずれか1項に記載の絞り装置。
The primary port opens downward in the vertical direction.
Further provided with a refrigerant introduction cylinder extending upward from the primary port.
The space above the refrigerant introduction cylinder and the space on the radial outer side of the upper portion of the cylinder serve as the refrigerant retention portion.
The throttle device according to any one of claims 1 to 9, wherein the lower space including the lower side portion of the refrigerant introduction cylinder serves as the liquid storage portion.
冷媒を圧縮する圧縮機と、圧縮した冷媒を凝縮する凝縮器と、凝縮した冷媒を膨張させて減圧する請求項1〜11のいずれか1項に記載の絞り装置と、減圧した冷媒を蒸発させる1又は複数の蒸発器と、を備えることを特徴とする冷凍サイクルシステム。 The compressor for compressing the refrigerant, a condenser for condensing the compressed refrigerant, a squeezing device according to any one of claims 1 to 11 for expanding and depressurizing the condensed refrigerant, and evaporating the decompressed refrigerant. A refrigeration cycle system comprising one or more evaporators.
JP2019154738A 2019-08-27 2019-08-27 Throttle device and refrigeration cycle system Active JP7175247B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019154738A JP7175247B2 (en) 2019-08-27 2019-08-27 Throttle device and refrigeration cycle system
CN202010820371.XA CN112444010B (en) 2019-08-27 2020-08-14 Throttling device and refrigeration cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019154738A JP7175247B2 (en) 2019-08-27 2019-08-27 Throttle device and refrigeration cycle system

Publications (2)

Publication Number Publication Date
JP2021032514A true JP2021032514A (en) 2021-03-01
JP7175247B2 JP7175247B2 (en) 2022-11-18

Family

ID=74675652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019154738A Active JP7175247B2 (en) 2019-08-27 2019-08-27 Throttle device and refrigeration cycle system

Country Status (2)

Country Link
JP (1) JP7175247B2 (en)
CN (1) CN112444010B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272970A (en) * 1980-02-04 1981-06-16 Hobbs James R Compression refrigeration system
JPS6113269U (en) * 1984-06-29 1986-01-25 株式会社土屋製作所 Condenser
JPS6171871U (en) * 1984-10-18 1986-05-16
JPH03115362U (en) * 1990-03-06 1991-11-28
JPH10176897A (en) * 1996-12-16 1998-06-30 Osaka Gas Co Ltd Horizontal condenser
JP2004093016A (en) * 2002-08-30 2004-03-25 Daikin Ind Ltd Expansion valve and refrigeration device
JP2004278968A (en) * 2003-03-18 2004-10-07 Fuji Electric Retail Systems Co Ltd Cold heat transferring device for stirling refrigerating machine
JP2008032380A (en) * 2006-06-29 2008-02-14 Daikin Ind Ltd Expansion valve of structure integrated with refrigerant flow divider, and refrigeration unit using the same
JP2010038455A (en) * 2008-08-05 2010-02-18 Denso Corp Expansion valve and vapor compression refrigerating cycle equipped with the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466986A (en) * 2006-06-29 2009-06-24 大金工业株式会社 Expansion valve with refrigerant flow dividing structure and refrigeration unit utilizing the same
JP2009127920A (en) * 2007-11-22 2009-06-11 Topre Corp Refrigerating apparatus
JP5153701B2 (en) * 2009-03-19 2013-02-27 三菱電機株式会社 Fluid distributor and method for manufacturing the same
CN103673722A (en) * 2013-12-20 2014-03-26 哈尔滨锅炉厂有限责任公司 Inner throttling device of heat exchanger
CN107120741A (en) * 2017-06-23 2017-09-01 Tcl空调器(中山)有限公司 Heat abstractor and air conditioner
KR102046634B1 (en) * 2018-01-19 2019-11-19 엘지전자 주식회사 Refrigerant distributor for air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272970A (en) * 1980-02-04 1981-06-16 Hobbs James R Compression refrigeration system
JPS6113269U (en) * 1984-06-29 1986-01-25 株式会社土屋製作所 Condenser
JPS6171871U (en) * 1984-10-18 1986-05-16
JPH03115362U (en) * 1990-03-06 1991-11-28
JPH10176897A (en) * 1996-12-16 1998-06-30 Osaka Gas Co Ltd Horizontal condenser
JP2004093016A (en) * 2002-08-30 2004-03-25 Daikin Ind Ltd Expansion valve and refrigeration device
JP2004278968A (en) * 2003-03-18 2004-10-07 Fuji Electric Retail Systems Co Ltd Cold heat transferring device for stirling refrigerating machine
JP2008032380A (en) * 2006-06-29 2008-02-14 Daikin Ind Ltd Expansion valve of structure integrated with refrigerant flow divider, and refrigeration unit using the same
JP2010038455A (en) * 2008-08-05 2010-02-18 Denso Corp Expansion valve and vapor compression refrigerating cycle equipped with the same

Also Published As

Publication number Publication date
JP7175247B2 (en) 2022-11-18
CN112444010B (en) 2023-01-31
CN112444010A (en) 2021-03-05

Similar Documents

Publication Publication Date Title
JP3628612B2 (en) Refrigeration cooler, condenser and method of operating a centrifugal compressor in a refrigeration cooler
US10371422B2 (en) Condenser with tube support structure
JP4887213B2 (en) Refrigerant distributor and air conditioner
JP6894520B2 (en) Condenser
US10655894B2 (en) Refrigeration cycle of refrigerator
US10935288B2 (en) Condenser
JP2018162900A (en) Heat exchanger and air conditioner including the same
KR20110071167A (en) Refrigerator
JP6678235B2 (en) Heat exchanger
JP2021032514A (en) Throttle device and refrigeration cycle system
JP2012021679A (en) Refrigerant distribution device, heat exchange device with the same, and air conditioning apparatus with the heat exchange device
WO2017150221A1 (en) Heat exchanger and air conditioner
JP2013148284A (en) Throttle device and air conditioning device provided with the same
WO2018051611A1 (en) Heat exchanger and heat pump system using same
JP6763381B2 (en) Cooling device, refrigerant treatment device, and refrigerant treatment method
JP7412446B2 (en) refrigerator
JP2019163893A (en) Heat exchanger and refrigeration cycle device
JP7134147B2 (en) Expansion valve and refrigeration cycle system
KR20120116333A (en) Expansion valve
JP6977184B1 (en) Air conditioners, refrigerators and distributors
KR20170093513A (en) Refrigerant distributor and plate type heat exchanger for evaporator of air conditioning system having the same
KR100522882B1 (en) apparatus for expansion of freezing material using multi-capillary tube
KR20150098141A (en) Heat exchanger and air conditional having the same
CN117249623A (en) Supercooled water type ice making system and ice making and melting control method thereof
WO2021205063A1 (en) Device for use in refrigeration or heat pump system, and refrigeration or heat pump system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221108

R150 Certificate of patent or registration of utility model

Ref document number: 7175247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150