JP2021022694A - Thermal storage electronic device - Google Patents

Thermal storage electronic device Download PDF

Info

Publication number
JP2021022694A
JP2021022694A JP2019139789A JP2019139789A JP2021022694A JP 2021022694 A JP2021022694 A JP 2021022694A JP 2019139789 A JP2019139789 A JP 2019139789A JP 2019139789 A JP2019139789 A JP 2019139789A JP 2021022694 A JP2021022694 A JP 2021022694A
Authority
JP
Japan
Prior art keywords
heat storage
heat
electronic device
storage material
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019139789A
Other languages
Japanese (ja)
Inventor
陽介 鐙
Yosuke Abumi
陽介 鐙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019139789A priority Critical patent/JP2021022694A/en
Publication of JP2021022694A publication Critical patent/JP2021022694A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a thermal storage electronic device that constitutes a cooling system capable of appropriately controlling the cooling capacity of an electronic device while suppressing an increase in volume of a power source and suppressing an increase in performance and cost of the power source as much as possible.SOLUTION: A first thermoelectric element 17 is an element capable of conducting the heat of a fluid R by being energized, and a heat storage material 18 is capable of storing heat. A communication unit U3 receives the driving states of heating elements 21 and 25 by the other electronic device from other one or more electronic devices 2 and 4 cooled by the fluid R. A control IC 16 controls the heat transfer from the fluid R to the heat storage material 18 by controlling the energization of the first thermoelectric element 17 on the basis of the drive state received by the communication unit U3.SELECTED DRAWING: Figure 1

Description

本発明は、冷却システムを構成する蓄熱電子装置に関する。 The present invention relates to a heat storage electronic device constituting a cooling system.

従来、冷却システムが多数の電子装置を冷却するときに当該電子装置をダクトに設置し、当該ダクトに冷却用の流体を流すことで多数の電子装置を一気に冷却する技術が開発されている。例えば、ダクトの上流側、下流側、その中間にそれぞれ電子装置が設置されている場合を考える。このような場合、上流側に設置された電子装置が、ダクトに流れる流体に放熱することで当該流体の温度が上昇する。この流体が下流側に流れたとしても、流体と下流側に設置された電子装置との温度差が相対的に小さくなり、下流側の電子装置の放熱量は少なくなってしまう。 Conventionally, when a cooling system cools a large number of electronic devices, a technique has been developed in which the electronic devices are installed in a duct and a large number of electronic devices are cooled at once by flowing a cooling fluid through the duct. For example, consider the case where electronic devices are installed on the upstream side, the downstream side, and the middle of the duct. In such a case, the electronic device installed on the upstream side dissipates heat to the fluid flowing through the duct, so that the temperature of the fluid rises. Even if this fluid flows to the downstream side, the temperature difference between the fluid and the electronic device installed on the downstream side becomes relatively small, and the amount of heat radiated from the electronic device on the downstream side becomes small.

例えば、ダクトの下流側に設置された電子装置が十分に冷却されるように流体の流量や温度を設定すると、逆に上流側の電子装置が過冷却となる。しかも、動力源はその性能を向上させる必要を生じるため、コストが増加する。しかも冷却機導入に伴いシステムの体積も大幅に増してしまう。 For example, if the flow rate and temperature of the fluid are set so that the electronic device installed on the downstream side of the duct is sufficiently cooled, the electronic device on the upstream side is supercooled. Moreover, the power source needs to improve its performance, which increases the cost. Moreover, the volume of the system will increase significantly with the introduction of the cooler.

例えば、特許文献1記載の技術では、第1のパワー半導体モジュールを風上に、第2のパワー半導体モジュールを風下に搭載した場合、風上から風下に向かって連続的、直線的にフィンの長さを長くしている。しかし、フィンの長さに制約が設けられることから流体の流量や温度設計に手間を要する。 For example, in the technique described in Patent Document 1, when the first power semiconductor module is mounted on the windward side and the second power semiconductor module is mounted on the leeward side, the fin length is continuously and linearly from the windward side to the leeward side. I'm making it longer. However, since the fin length is restricted, it takes time and effort to design the flow rate and temperature of the fluid.

特開2017−112151号公報Japanese Unexamined Patent Publication No. 2017-112151

本開示の目的は、動力源の体積の増加を抑制しながら当該動力源の性能やコストの上昇を極力抑制しつつ、電子装置に対する冷却能力を適切に制御できるようにした冷却システムを構成する蓄熱電子装置を提供することにある。 An object of the present disclosure is to store heat constituting a cooling system that can appropriately control the cooling capacity of an electronic device while suppressing an increase in the volume of the power source and suppressing an increase in the performance and cost of the power source as much as possible. To provide electronic devices.

請求項1記載の発明は、冷却用の流体(R)により冷却される複数の電子装置(2、3、4;2、203、4;2、303、4)のうちの一の電子装置である蓄熱電子装置(3;203;303)を対象としている。熱電素子(17)は、通電されることで流体の熱を伝導可能な素子であり、蓄熱材(18)は熱を蓄熱可能になっている。受信部(U3)は、流体により冷却される他の一又は複数の電子装置(2、4)から当該他の電子装置の駆動状態を受信する。制御部(16)は、受信部により受信した駆動状態に基づいて熱電素子に通電制御することで流体から蓄熱材への伝熱を制御する。したがって、蓄熱電子装置は、他の電子装置の作動状態に基づいて蓄熱材に流体の熱を吸熱させることができ、流体により冷却可能な他の電子装置の冷却能力を適切に制御できる。 The invention according to claim 1 is an electronic device of one of a plurality of electronic devices (2, 3, 4; 2, 203, 4; 2, 303, 4) cooled by a cooling fluid (R). It targets a certain heat storage electronic device (3; 203; 303). The thermoelectric element (17) is an element capable of conducting heat of a fluid when energized, and the heat storage material (18) is capable of storing heat. The receiving unit (U3) receives the driving state of the other electronic device from the other electronic device (2, 4) cooled by the fluid. The control unit (16) controls heat transfer from the fluid to the heat storage material by controlling the energization of the thermoelectric element based on the drive state received by the receiving unit. Therefore, the heat storage electronic device can make the heat storage material absorb the heat of the fluid based on the operating state of the other electronic device, and can appropriately control the cooling capacity of the other electronic device that can be cooled by the fluid.

また、蓄熱材が蓄熱電子装置に組み込まれているため、システムの体積を大幅に増加させる必要もなくなり、動力源の性能やコストを抑制できる。蓄熱電子装置は、受信部により受信した他の電子装置の駆動状態に基づいて蓄熱材に対し適切に蓄熱制御できる。 Further, since the heat storage material is incorporated in the heat storage electronic device, it is not necessary to significantly increase the volume of the system, and the performance and cost of the power source can be suppressed. The heat storage electronic device can appropriately control the heat storage of the heat storage material based on the driving state of the other electronic device received by the receiving unit.

例えば、発明が解決しようとする課題欄に例示したように、上流側、下流側、その中間にそれぞれ電子装置が設置されている場合を考える。上流側に設置された電子装置の駆動状態が高い場合には、上流側の電子装置の発熱量も多いことが想定されるため、蓄熱電子装置は、蓄熱材への流体の熱の吸熱量を増加させると良い。すると、下流側の電子装置による放熱量の低下を防止できる。また、例えば上流側に設置された電子装置の駆動状態が比較的低い場合には、上流側の電子装置の発熱量が少ないことが想定されるため、蓄熱電子装置は、蓄熱材への流体の熱の吸熱量を低下させると良い。 For example, consider a case where electronic devices are installed on the upstream side, the downstream side, and in the middle, respectively, as illustrated in the problem column to be solved by the invention. When the driving state of the electronic device installed on the upstream side is high, it is assumed that the amount of heat generated by the electronic device on the upstream side is also large. Therefore, the heat storage electronic device determines the amount of heat absorbed by the fluid to the heat storage material. It is good to increase it. Then, it is possible to prevent a decrease in the amount of heat radiation due to the electronic device on the downstream side. Further, for example, when the driving state of the electronic device installed on the upstream side is relatively low, it is assumed that the amount of heat generated by the electronic device on the upstream side is small. Therefore, the heat storage electronic device is used to transfer the fluid to the heat storage material. It is good to reduce the amount of heat absorbed.

第1実施形態における蓄熱電子装置の構造を模式的に示す断面図Sectional drawing which shows typically the structure of the heat storage electronic device in 1st Embodiment 冷却システムの全体構成を模式的に示す断面図Cross-sectional view schematically showing the overall configuration of the cooling system 蓄熱電子装置の構造を具体的に示す断面図Cross-sectional view concretely showing the structure of the heat storage electronic device 他の電子装置の構造を模式的に示す断面図のその1Part 1 of a cross-sectional view schematically showing the structure of another electronic device 他の電子装置の構造を模式的に示す断面図のその2Part 2 of the cross-sectional view schematically showing the structure of other electronic devices 伝熱作用の説明図のその1Part 1 of the explanatory diagram of heat transfer action 伝熱作用の説明図のその2Part 2 of the explanatory diagram of heat transfer action 第2実施形態における蓄熱電子装置の構造を模式的に示す断面図Sectional drawing which shows typically the structure of the heat storage electronic device in 2nd Embodiment 第3実施形態における蓄熱電子装置の構造を模式的に示す断面図Sectional drawing which shows typically the structure of the heat storage electronic device in 3rd Embodiment 伝熱作用の説明図のその1Part 1 of the explanatory diagram of heat transfer action 伝熱作用の説明図のその2Part 2 of the explanatory diagram of heat transfer action 伝熱作用の説明図のその3Part 3 of the explanatory diagram of heat transfer action

以下、幾つかの実施形態を説明する。各実施形態では、その説明において同一機能を備える部分については同一符号を付して必要に応じて説明を省略することがある。 Hereinafter, some embodiments will be described. In each embodiment, the parts having the same function may be designated by the same reference numerals and the description may be omitted as necessary.

(第1実施形態)
図1から図7を参照して第1実施形態を説明する。図2に示すように、冷却システム1は、複数の電子装置2〜4、ダクト5、及び冷却用の流体Rを流す動力源6、を備える。
(First Embodiment)
The first embodiment will be described with reference to FIGS. 1 to 7. As shown in FIG. 2, the cooling system 1 includes a plurality of electronic devices 2 to 4, a duct 5, and a power source 6 for flowing a cooling fluid R.

ダクト5は細長筒状に構成されており、当該ダクト5の内部に動力源6が設置されている。動力源6は、例えば風を流体Rとして送風する送風機9と、駆動装置10とを接続して構成され、駆動装置10が送風機9を駆動することでダクト5の上流から下流にかけて流体Rを流す。流体Rを冷却風とした形態を説明するが、例えばポンプを駆動装置10として用いることで冷却水などを流体Rとして適用しても良い。 The duct 5 has an elongated tubular shape, and a power source 6 is installed inside the duct 5. The power source 6 is configured by connecting, for example, a blower 9 that blows air as a fluid R and a drive device 10, and the drive device 10 drives the blower 9 to flow the fluid R from the upstream to the downstream of the duct 5. .. Although the form in which the fluid R is used as the cooling air will be described, for example, cooling water or the like may be applied as the fluid R by using the pump as the driving device 10.

各電子装置2〜4は、同じダクト5の中にそれぞれの一部が内包されており、流体Rによって冷却可能に設置されている。本実施形態の電子装置2〜4は、図2に示すように外方にフィン11〜13がそれぞれ露出するように構成されている。フィン11〜13は、流体Rとの熱伝導性を高めるために設けられる。電子装置2〜4のフィン11〜13はダクト5の内部に露出するように設置されている。これにより、動力源6がダクト5内に流体Rを流すとフィン11〜13が当該流体Rに接触し、流体Rがフィン11〜13の熱を吸収する。電子装置3は、他の電子装置2、4の設置場所の中間に設置されており、上流側及び下流側に設置された他の電子装置2、4との間でそれぞれハーネス14、15により接続されている。 A part of each of the electronic devices 2 to 4 is contained in the same duct 5, and the electronic devices 2 to 4 are installed so as to be coolable by the fluid R. The electronic devices 2 to 4 of the present embodiment are configured so that the fins 11 to 13 are exposed to the outside as shown in FIG. The fins 11 to 13 are provided to increase the thermal conductivity with the fluid R. The fins 11 to 13 of the electronic devices 2 to 4 are installed so as to be exposed inside the duct 5. As a result, when the power source 6 causes the fluid R to flow in the duct 5, the fins 11 to 13 come into contact with the fluid R, and the fluid R absorbs the heat of the fins 11 to 13. The electronic device 3 is installed in the middle of the installation locations of the other electronic devices 2 and 4, and is connected to the other electronic devices 2 and 4 installed on the upstream side and the downstream side by harnesses 14 and 15, respectively. Has been done.

図1に示すように、電子装置3は、金属又は樹脂からなる下側筐体3aと上側筐体3bとを一体化した筐体を備え、その内部に密閉空間3cを構成している。電子装置3は、その密閉空間3cに、蓄熱装置8と、回路基板19と、回路基板19に実装された制御部としての制御IC16と、を備える。制御IC16は通信ユニットU3を内蔵している。その他、図示しないが、回路基板19にはダイオード、抵抗やコンデンサなどの表面実装部品やディスクリート部品が実装されている。 As shown in FIG. 1, the electronic device 3 includes a housing in which a lower housing 3a made of metal or resin and an upper housing 3b are integrated, and a closed space 3c is formed inside the housing. The electronic device 3 includes a heat storage device 8, a circuit board 19, and a control IC 16 as a control unit mounted on the circuit board 19 in the enclosed space 3c. The control IC 16 has a built-in communication unit U3. In addition, although not shown, surface mount components such as diodes, resistors and capacitors, and discrete components are mounted on the circuit board 19.

下側筐体3aの上端周縁部には段差部が形成されており、その段差部に回路基板19の周縁部が嵌合されている。これにより回路基板19は、密閉空間3c内に位置決め状態で収納されている。電子装置3の下側筐体3a及び上側筐体3bは、例えばアルミニウム(Al)や鉄(Fe)など熱伝導率の比較的高い金属により構成されている。 A step portion is formed on the upper end peripheral portion of the lower housing 3a, and the peripheral edge portion of the circuit board 19 is fitted to the step portion. As a result, the circuit board 19 is housed in the closed space 3c in a positioned state. The lower housing 3a and the upper housing 3b of the electronic device 3 are made of a metal having a relatively high thermal conductivity, such as aluminum (Al) or iron (Fe).

以下、蓄熱装置8を備えた電子装置3を「蓄熱電子装置3」と称する。蓄熱電子装置3は、他の電子装置2、4に比較して比較的発熱量の小さい装置である。また、回路基板19にはハーネス14、15が接続されている。蓄熱装置8は、上側筐体3bに接触した第1熱電素子17、及び第1熱電素子17に接触した蓄熱材18により構成される。第1熱電素子17は、例えばペルチェ素子により構成され、上側筐体3bにねじ(図示せず)を用いて固定されている。第1熱電素子17は、接触したフィン12と蓄熱材18との間で熱伝導可能になっており、これにより流体Rと熱交換可能になっている。回路基板19にはプリント配線(図示せず)が構成されており、制御IC16と第1熱電素子17とは電気的に接続されている。 Hereinafter, the electronic device 3 provided with the heat storage device 8 will be referred to as a “heat storage electronic device 3”. The heat storage electronic device 3 is a device having a relatively small calorific value as compared with the other electronic devices 2 and 4. Further, harnesses 14 and 15 are connected to the circuit board 19. The heat storage device 8 is composed of a first thermoelectric element 17 in contact with the upper housing 3b and a heat storage material 18 in contact with the first thermoelectric element 17. The first thermoelectric element 17 is composed of, for example, a Peltier element, and is fixed to the upper housing 3b with screws (not shown). The first thermoelectric element 17 is capable of conducting heat between the contacted fins 12 and the heat storage material 18, whereby heat can be exchanged with the fluid R. A printed wiring board (not shown) is configured on the circuit board 19, and the control IC 16 and the first thermoelectric element 17 are electrically connected to each other.

蓄熱装置8の蓄熱材18は、例えば回路基板19に実装されており、内部に熱を蓄熱可能になっている。蓄熱材18は樹脂モールドされたコイルなどの素子や他の電装部品と接続するためのコネクタなどにより構成される。蓄熱材18は、回路基板19に実装された素子の中で熱容量が比較的大きい部品により構成されていることが望ましい。蓄熱電子装置3が、他のアクチュエータとの接続など他の機能を実現している場合には、他の機能を実現するために構成することが必要な部品と共用するように構成しても良い。この場合、蓄熱電子装置3は、予め実装されている素子等を蓄熱材18として利用でき、新たな蓄熱材を回路基板19に実装する必要がなくなり、蓄熱電子装置3の体格の増加を抑制できる。 The heat storage material 18 of the heat storage device 8 is mounted on, for example, a circuit board 19, and can store heat inside. The heat storage material 18 is composed of an element such as a resin-molded coil and a connector for connecting to other electrical components. It is desirable that the heat storage material 18 is composed of components having a relatively large heat capacity among the elements mounted on the circuit board 19. When the heat storage electronic device 3 realizes other functions such as connection with other actuators, it may be configured to be shared with parts that need to be configured to realize the other functions. .. In this case, the heat storage electronic device 3 can use a pre-mounted element or the like as the heat storage material 18, eliminates the need to mount a new heat storage material on the circuit board 19, and can suppress an increase in the physique of the heat storage electronic device 3. ..

図3に具体構成例を示すように、第1熱電素子17と蓄熱材18との間や上側筐体3bと第1熱電素子17との間には、それぞれサーマルインターフェースマテリアルG(TIM)が塗布されている。サーマルインターフェースマテリアルGは熱抵抗低減のために塗布されている。第1熱電素子17及び蓄熱材18や、上側筐体3b及び第1熱電素子17が、サーマルインターフェースマテリアルGを介して接触することで効率良く熱伝導可能になっている。 As shown in FIG. 3, a thermal interface material G (TIM) is applied between the first thermoelectric element 17 and the heat storage material 18 and between the upper housing 3b and the first thermoelectric element 17, respectively. Has been done. The thermal interface material G is applied to reduce the thermal resistance. The first thermoelectric element 17 and the heat storage material 18, the upper housing 3b and the first thermoelectric element 17 come into contact with each other via the thermal interface material G, so that heat can be efficiently conducted.

通信ユニットU3は、他の電子装置2、4との間でデータを送受信可能にするユニットであり、他の電子装置2、4から各電子装置2、4における発熱素子21、25の駆動状態の情報をデータとして受信する受信部として機能する。制御IC16は、例えばマイクロコンピュータにより構成され、電子装置3を統括的に制御する。 The communication unit U3 is a unit capable of transmitting and receiving data to and from other electronic devices 2 and 4, and is in a driving state of the heat generating elements 21 and 25 in the other electronic devices 2 and 4 from the other electronic devices 2 and 4. It functions as a receiver that receives information as data. The control IC 16 is composed of, for example, a microcomputer, and controls the electronic device 3 in an integrated manner.

制御IC16が、例えば正極性の電流を第1熱電素子17に印加すると、第1熱電素子17はフィン12から吸熱して蓄熱材18に放熱できる。逆に、制御IC16が例えば負極性の電流を第1熱電素子17に印加すると、第1熱電素子17は蓄熱材18から吸熱してフィン12を通じて流体Rに放熱できる。 When the control IC 16 applies, for example, a positive current to the first thermoelectric element 17, the first thermoelectric element 17 can absorb heat from the fins 12 and dissipate heat to the heat storage material 18. On the contrary, when the control IC 16 applies, for example, a negative current to the first thermoelectric element 17, the first thermoelectric element 17 can absorb heat from the heat storage material 18 and dissipate heat to the fluid R through the fins 12.

同様に、図4に示す電子装置2は、蓄熱電子装置3の上流に設置され、金属又は樹脂からなる下側筐体2aと上側筐体2bとを一体化して構成された筐体を備え、その内部に密閉空間2cを構成している。 Similarly, the electronic device 2 shown in FIG. 4 includes a housing that is installed upstream of the heat storage electronic device 3 and is configured by integrating a lower housing 2a and an upper housing 2b made of metal or resin. A closed space 2c is formed inside the closed space.

電子装置2は、その密閉空間2c内に、回路基板20と、回路基板20に実装された集積回路装置からなる発熱素子21と、制御IC23とを備える。制御IC23は通信ユニットU2を内蔵している。回路基板20には、その他ダイオード、抵抗やコンデンサなどの表面実装部品やディスクリート部品が実装されているが、図示を省略している。 The electronic device 2 includes a circuit board 20, a heat generating element 21 composed of an integrated circuit device mounted on the circuit board 20, and a control IC 23 in the enclosed space 2c. The control IC 23 has a built-in communication unit U2. Other surface mount components such as diodes, resistors and capacitors, and discrete components are mounted on the circuit board 20, but the illustration is omitted.

下側筐体2aの上端周縁部には段差部が形成されており、その段差部に回路基板20の周縁部が嵌合されている。これにより回路基板20は、密閉空間2cに位置決め状態で収納されている。通信ユニットU2は、蓄熱電子装置3との間でデータを送受信可能にするユニットであり、蓄熱電子装置3に発熱素子21の駆動状態をデータとして送信する送信部として機能する。制御IC23は、例えばマイクロコンピュータにより構成され、電子装置2を統括的に制御する。 A step portion is formed on the upper end peripheral portion of the lower housing 2a, and the peripheral edge portion of the circuit board 20 is fitted to the step portion. As a result, the circuit board 20 is housed in the closed space 2c in a positioned state. The communication unit U2 is a unit capable of transmitting and receiving data to and from the heat storage electronic device 3, and functions as a transmission unit that transmits the drive state of the heat generation element 21 as data to the heat storage electronic device 3. The control IC 23 is composed of, for example, a microcomputer, and controls the electronic device 2 in an integrated manner.

電子装置2は、例えば数十W〜数百W程度の消費電力となるエンジン制御ユニット又は自動運転制御ユニットなどにより構成され、車両の走行状態により発熱素子21の駆動状態が変動し、この駆動状態に基づいて発熱量が変動する装置である。発熱素子21は、放熱ゲル又は放熱グリース22を介してフィン11に接触して熱を伝達可能になっている。ハーネス14は、電子装置2の通信ユニットU2と蓄熱電子装置3の通信ユニットU3との間で電気的に接続されている。これにより蓄熱電子装置3は、電子装置2から発熱素子21の駆動状態の情報を受信可能になっている。 The electronic device 2 is composed of, for example, an engine control unit or an automatic driving control unit that consumes about several tens of watts to several hundreds of watts, and the driving state of the heat generating element 21 fluctuates depending on the running state of the vehicle, and this driving state It is a device whose calorific value fluctuates based on. The heat generating element 21 comes into contact with the fins 11 via the heat radiating gel or the heat radiating grease 22 to transfer heat. The harness 14 is electrically connected between the communication unit U2 of the electronic device 2 and the communication unit U3 of the heat storage electronic device 3. As a result, the heat storage electronic device 3 can receive information on the driving state of the heat generating element 21 from the electronic device 2.

図5に示す電子装置4は、蓄熱電子装置3の下流に設置され、金属又は樹脂からなる下側筐体4aと上側筐体4bとを一体化して構成された筐体を備え、その内部に密閉空間4cを構成している。電子装置4は、その密閉空間4c内に、回路基板24と、回路基板24に搭載された制御IC23と、発熱素子25とを備える。制御IC23は通信ユニットU4を内蔵している。 The electronic device 4 shown in FIG. 5 is installed downstream of the heat storage electronic device 3 and includes a housing formed by integrating a lower housing 4a and an upper housing 4b made of metal or resin, and is inside the housing. It constitutes a closed space 4c. The electronic device 4 includes a circuit board 24, a control IC 23 mounted on the circuit board 24, and a heat generating element 25 in the enclosed space 4c. The control IC 23 has a built-in communication unit U4.

通信ユニットU4は、蓄熱電子装置3との間でデータを送受信可能にするユニットであり、蓄熱電子装置3に発熱素子25の駆動状態をデータとして送信する送信部として機能する。制御IC23は、例えばマイクロコンピュータにより構成されており、電子装置4を統括的に制御する。 The communication unit U4 is a unit capable of transmitting and receiving data to and from the heat storage electronic device 3, and functions as a transmission unit that transmits the drive state of the heat generating element 25 as data to the heat storage electronic device 3. The control IC 23 is composed of, for example, a microcomputer, and controls the electronic device 4 in an integrated manner.

発熱素子25は、例えば比較的耐熱温度の低いジャンクション温度定格105℃程度のDRAMなどの素子である。発熱素子25は、放熱ゲル又は放熱グリース25aを介してフィン13に接触して熱を伝達可能になっている。ハーネス15は、蓄熱電子装置3の通信ユニットU3と電子装置4の通信ユニットU4との間で電気的に接続されており、蓄熱電子装置3は、電子装置4から発熱素子25の駆動状態の情報を受信できる。 The heat generating element 25 is, for example, an element such as a DRAM having a junction temperature rating of about 105 ° C., which has a relatively low heat resistant temperature. The heat generating element 25 comes into contact with the fins 13 via the heat radiating gel or the heat radiating grease 25a to transfer heat. The harness 15 is electrically connected between the communication unit U3 of the heat storage electronic device 3 and the communication unit U4 of the electronic device 4, and the heat storage electronic device 3 is information on the driving state of the heat generating element 25 from the electronic device 4. Can be received.

上記構成の動作を説明する。制御IC16は、通信ユニットU3により電子装置2から発熱素子21の駆動状態の情報を受信すると共に、電子装置4から発熱素子25の駆動状態の情報を受信し、これらの駆動状態の情報に応じて蓄熱電子装置3の作動モードを切り替える。蓄熱電子装置3は、流体Rの熱を蓄熱材18に吸熱させる「吸熱モード」、蓄熱材18の熱をダクト5内に放熱する「ダクト内放熱モード」を備える。 The operation of the above configuration will be described. The control IC 16 receives information on the driving state of the heat generating element 21 from the electronic device 2 by the communication unit U3, and also receives information on the driving state of the heat generating element 25 from the electronic device 4, and responds to the information on the driving state. The operation mode of the heat storage electronic device 3 is switched. The heat storage electronic device 3 includes a "heat absorption mode" in which the heat of the fluid R is absorbed by the heat storage material 18, and a "intraduct heat dissipation mode" in which the heat of the heat storage material 18 is dissipated into the duct 5.

電子装置2の制御IC23は、発熱素子21の駆動状態の情報を通信ユニットU2を用いて蓄熱電子装置3に送信する。蓄熱電子装置3の制御IC16は、受信した発熱素子21の駆動状態の情報に基づいて発熱素子21の発熱量が所定上限量より大きいと判断したときに作動モードを「吸熱モード」に切り替える。
このとき制御IC16が、第1熱電素子17に正極性の電流を流すことで、図6に示すように、第1熱電素子17が上側筐体3bを経由してダクト5を流れる流体Rの熱を吸熱し蓄熱材18に放熱する。この結果、蓄熱材18は流体Rの熱を吸熱でき、ダクト5を流れる流体Rの温度上昇を抑制できる。この結果、蓄熱電子装置3の下流側に流れる流体Rの温度が低温化するため、流体Rは電子装置4のフィン13による放熱を吸収でき、下流側に位置する電子装置4の放熱量の低下を防ぐことができる。
The control IC 23 of the electronic device 2 transmits information on the driving state of the heat generating element 21 to the heat storage electronic device 3 using the communication unit U2. The control IC 16 of the heat storage electronic device 3 switches the operation mode to the "endothermic mode" when it is determined that the heat generation amount of the heat generation element 21 is larger than the predetermined upper limit amount based on the received information on the driving state of the heat generation element 21.
At this time, the control IC 16 passes a positive current through the first thermoelectric element 17, and as shown in FIG. 6, the first thermoelectric element 17 passes through the duct 5 via the upper housing 3b to heat the fluid R. Is absorbed and dissipated to the heat storage material 18. As a result, the heat storage material 18 can absorb the heat of the fluid R and suppress the temperature rise of the fluid R flowing through the duct 5. As a result, the temperature of the fluid R flowing downstream of the heat storage electronic device 3 is lowered, so that the fluid R can absorb the heat radiation by the fins 13 of the electronic device 4, and the heat radiation amount of the electronic device 4 located on the downstream side is reduced. Can be prevented.

逆に、蓄熱電子装置3の制御IC16は、受信した発熱素子21の駆動状態の情報に基づいて発熱素子21の発熱量が所定下限量より小さいと判断したときに、蓄熱電子装置3の作動モードを「ダクト内放熱モード」に切り替える。
このとき制御IC16が、第1熱電素子17に逆極性の電流を流すことで、図7に示すように、第1熱電素子17は蓄熱材18に蓄積された熱を上側筐体3bを経由してダクト5内の流体Rに放熱する。この結果、蓄熱材18の温度を低下させることができる。例えば、この後、上流側の電子装置2の発熱素子21の発熱量が増加することがあっても、蓄熱材18の温度を予め低下させているため、流体Rから蓄熱材18への吸熱量を増加させることができる。
On the contrary, when the control IC 16 of the heat storage electronic device 3 determines that the heat generation amount of the heat generation element 21 is smaller than the predetermined lower limit amount based on the received information on the driving state of the heat generation element 21, the operation mode of the heat storage electronic device 3 To "heat dissipation mode in duct".
At this time, the control IC 16 causes a current of opposite polarity to flow through the first thermoelectric element 17, and as shown in FIG. 7, the first thermoelectric element 17 transfers the heat accumulated in the heat storage material 18 via the upper housing 3b. Heat is dissipated to the fluid R in the duct 5. As a result, the temperature of the heat storage material 18 can be lowered. For example, even if the amount of heat generated by the heat generating element 21 of the electronic device 2 on the upstream side increases after this, the amount of heat absorbed from the fluid R to the heat storage material 18 is increased because the temperature of the heat storage material 18 is lowered in advance. Can be increased.

また第1熱電素子17は、通電されることで第1熱電素子17自体が発熱するが、第1熱電素子17の発熱が蓄熱材18の放熱を上回ることが想定されるときには、制御IC16は第1熱電素子17に通電することなく制御を停止させると良い。すなわち、第1熱電素子17に対する通電制御の不感帯を設けると良い。 Further, when the first thermoelectric element 17 is energized, the first thermoelectric element 17 itself generates heat, but when it is assumed that the heat generated by the first thermoelectric element 17 exceeds the heat radiation of the heat storage material 18, the control IC 16 is the first. 1 It is preferable to stop the control without energizing the thermoelectric element 17. That is, it is preferable to provide a dead zone for energization control for the first thermoelectric element 17.

<本実施形態のまとめ>
本実施形態によれば、蓄熱電子装置3は、他の電子装置2から発熱素子21の駆動状態の情報を通信ユニットU3を通じて受信し、受信した駆動状態の情報に基づいて第1熱電素子17に通電制御することで流体Rから蓄熱材18への伝熱を制御している。
<Summary of this embodiment>
According to the present embodiment, the heat storage electronic device 3 receives information on the drive state of the heat generating element 21 from the other electronic device 2 through the communication unit U3, and the first thermoelectric element 17 receives the information on the received drive state. The heat transfer from the fluid R to the heat storage material 18 is controlled by controlling the energization.

特に、蓄熱電子装置3の制御IC16は、「吸熱モード」において他の電子装置2の発熱素子21の駆動状態に応じて第1熱電素子17に通電することで流体Rから蓄熱材18へ伝熱させることで、ダクト5の下流に流す流体Rを低温化できる。これにより流体Rは、電子装置4のフィン13による放熱を吸収でき、電子装置4の放熱量の低下を抑制できる。この結果、電子装置2の制御IC23が、発熱素子21を高負荷駆動していたとしても、蓄熱電子装置3の下流側に設置された電子装置4を十分に冷却できる。 In particular, the control IC 16 of the heat storage electronic device 3 transfers heat from the fluid R to the heat storage material 18 by energizing the first thermoelectric element 17 according to the driving state of the heat generating element 21 of the other electronic device 2 in the “heat absorption mode”. By doing so, the temperature of the fluid R flowing downstream of the duct 5 can be lowered. As a result, the fluid R can absorb heat radiation from the fins 13 of the electronic device 4, and can suppress a decrease in the heat radiation amount of the electronic device 4. As a result, even if the control IC 23 of the electronic device 2 drives the heat generating element 21 with a high load, the electronic device 4 installed on the downstream side of the heat storage electronic device 3 can be sufficiently cooled.

逆に、蓄熱電子装置3は、「ダクト内放熱モード」において第1熱電素子17に通電することで蓄熱材18から流体Rへ熱を逃がしている。例えばこの後、上流側の電子装置2の発熱素子21の発熱量が増加することがあっても、蓄熱材18の温度を予め低下させているため、流体Rからの吸熱量を増加させることができる。 On the contrary, the heat storage electronic device 3 releases heat from the heat storage material 18 to the fluid R by energizing the first thermoelectric element 17 in the “in-duct heat dissipation mode”. For example, even if the amount of heat generated by the heat generating element 21 of the electronic device 2 on the upstream side increases after this, the amount of heat absorbed from the fluid R can be increased because the temperature of the heat storage material 18 is lowered in advance. it can.

これにより、動力源6の体積増加を極力抑制すると共に動力源6の性能やコストの上昇を極力抑制でき、電子装置4に対する冷却能力を適切に制御できる。電子装置2、4に対する冷却能力を極力均一化できる。 As a result, the volume increase of the power source 6 can be suppressed as much as possible, the performance and cost increase of the power source 6 can be suppressed as much as possible, and the cooling capacity of the electronic device 4 can be appropriately controlled. The cooling capacity for the electronic devices 2 and 4 can be made uniform as much as possible.

(第2実施形態)
図8に示す蓄熱電子装置203は、蓄熱電子装置3の構成の他、温度センサ27と第2熱電素子28と他の蓄熱材29とを備える。制御IC16は、温度センサ27及び第2熱電素子28との間で回路基板19に形成されたプリント配線(図示せず)により電気的に接続されている。温度センサ27は、例えばサーミスタにより構成される温度検出部である。温度センサ27は、回路基板19に実装されると共に蓄熱材18に接触して構成され、これにより蓄熱材18の温度を測定することに応じて蓄熱電子装置203の内部温度を測定でき、制御IC16は温度センサ27による検出温度を取得できる。
(Second Embodiment)
The heat storage electronic device 203 shown in FIG. 8 includes a temperature sensor 27, a second thermoelectric element 28, and another heat storage material 29, in addition to the configuration of the heat storage electronic device 3. The control IC 16 is electrically connected to the temperature sensor 27 and the second thermoelectric element 28 by a printed wiring (not shown) formed on the circuit board 19. The temperature sensor 27 is a temperature detection unit composed of, for example, a thermistor. The temperature sensor 27 is mounted on the circuit board 19 and is configured to be in contact with the heat storage material 18, whereby the internal temperature of the heat storage electronic device 203 can be measured in response to measuring the temperature of the heat storage material 18, and the control IC 16 Can acquire the temperature detected by the temperature sensor 27.

制御IC16は、自身の蓄熱電子装置203の内部温度に基づいて蓄熱材18に熱を吸熱させるか否かを判定した判定結果に基づいて、流体Rから蓄熱材18への伝熱を制御すると良い。このとき制御IC16は、蓄熱材18の温度が所定の閾値より高ければ自身の蓄熱電子装置203の内部温度が高いと判定し、蓄熱材18への吸熱を停止すると良い。 The control IC 16 may control the heat transfer from the fluid R to the heat storage material 18 based on the determination result of determining whether or not the heat storage material 18 absorbs heat based on the internal temperature of its own heat storage electronic device 203. .. At this time, if the temperature of the heat storage material 18 is higher than a predetermined threshold value, the control IC 16 may determine that the internal temperature of its own heat storage electronic device 203 is high, and may stop the heat absorption into the heat storage material 18.

また回路基板19には他の蓄熱材29が搭載されている。他の蓄熱材29は、他の電装部品と接続するためのコネクタなどにより構成され、蓄熱材18とは別体で設けられる。蓄熱材29は、回路基板19に実装された素子の中で熱容量が比較的大きい部品により構成されていることが望ましい。蓄熱材18と他の蓄熱材29との間には第2熱電素子28が設置されている。第2熱電素子28は、制御IC16と電気的に接続されており、制御IC16が、第2熱電素子28に通電することで蓄熱材18から他の蓄熱材29に熱を伝達可能になっている。 Further, another heat storage material 29 is mounted on the circuit board 19. The other heat storage material 29 is configured by a connector or the like for connecting to other electrical components, and is provided separately from the heat storage material 18. It is desirable that the heat storage material 29 is composed of components having a relatively large heat capacity among the elements mounted on the circuit board 19. A second thermoelectric element 28 is installed between the heat storage material 18 and the other heat storage material 29. The second thermoelectric element 28 is electrically connected to the control IC 16, and the control IC 16 can transfer heat from the heat storage material 18 to the other heat storage material 29 by energizing the second thermoelectric element 28. ..

制御IC16は、例えば温度センサ27による蓄熱材18の温度測定結果が所定の閾値より大きいときに第2熱電素子28に通電することで蓄熱材18に蓄熱された熱を他の蓄熱材29に伝熱させることができる。これにより蓄熱材18及び29に熱分配できる。したがって、流体Rと蓄熱材18の両者の温度が比較的高くなったとしても、蓄熱材18及び29による吸熱量を増やすことができる。 For example, when the temperature measurement result of the heat storage material 18 by the temperature sensor 27 is larger than a predetermined threshold value, the control IC 16 energizes the second thermoelectric element 28 to transfer the heat stored in the heat storage material 18 to the other heat storage material 29. Can be heated. As a result, heat can be distributed to the heat storage materials 18 and 29. Therefore, even if the temperatures of both the fluid R and the heat storage material 18 become relatively high, the amount of heat absorbed by the heat storage materials 18 and 29 can be increased.

また制御IC16は、通信ユニットU3により受信した他の電子装置2の駆動状態に係る情報に基づいて第2熱電素子28に通電して蓄熱材18の蓄積熱を他の蓄熱材29に放熱するようにしても良い。例えば、制御IC16は、通信ユニットU3により他の電子装置2から受信した発熱素子21の発熱量が所定上限量より大きいと判定したときには、蓄熱材18の蓄積熱を他の蓄熱材29に放熱しながら蓄熱材18に吸熱すると良い。これにより、制御IC16が、蓄熱材18の蓄積熱を必要に応じて他の蓄熱材29に放熱させることで蓄熱材18及び29に蓄積熱容量を分配できる。この場合も、流体Rと蓄熱材18の両者の温度が比較的高くなったとしても、蓄熱材18及び29による吸熱量を増やすことができる。 Further, the control IC 16 energizes the second thermoelectric element 28 based on the information related to the driving state of the other electronic device 2 received by the communication unit U3, and dissipates the accumulated heat of the heat storage material 18 to the other heat storage material 29. You can do it. For example, when the control IC 16 determines that the heat generation amount of the heat generating element 21 received from the other electronic device 2 by the communication unit U3 is larger than the predetermined upper limit amount, the heat storage material 18 dissipates the accumulated heat to the other heat storage material 29. However, it is preferable to absorb heat in the heat storage material 18. As a result, the control IC 16 can distribute the stored heat capacity to the heat storage materials 18 and 29 by dissipating the accumulated heat of the heat storage material 18 to another heat storage material 29 as needed. In this case as well, even if the temperatures of both the fluid R and the heat storage material 18 become relatively high, the amount of heat absorbed by the heat storage materials 18 and 29 can be increased.

また制御IC16は、温度センサ27による検出温度値と予め設定された設定温度との大小関係を判定した判定結果に基づいて、蓄熱材18の蓄積熱を他の蓄熱材29へ放熱する放熱量を制御するようにしても良い。例えば、制御IC16は、予め定められた一定の閾値温度を超えたときに蓄熱材18から他の蓄熱材29へ放熱させることで、流体Rから蓄熱材18への吸熱量の低下を防ぐことができる。これにより、蓄熱材18及び29の蓄積熱を適切に制御できる。 Further, the control IC 16 determines the amount of heat radiated from the accumulated heat of the heat storage material 18 to the other heat storage material 29 based on the determination result of determining the magnitude relationship between the temperature value detected by the temperature sensor 27 and the preset set temperature. It may be controlled. For example, the control IC 16 can prevent a decrease in the amount of heat absorbed from the fluid R to the heat storage material 18 by dissipating heat from the heat storage material 18 to the other heat storage material 29 when the predetermined constant threshold temperature is exceeded. it can. Thereby, the accumulated heat of the heat storage materials 18 and 29 can be appropriately controlled.

(第3実施形態)
図9に示すように、蓄熱電子装置303は、蓄熱電子装置3の構成に加え、蓄熱材18の温度情報を取得する温度センサ27と、第3熱電素子28aと、を備える。下側筐体3aと上側筐体3bとの間には、気密性シール材30が断熱材として介在されており、下側筐体3aは上側筐体3bとの間の断熱性能が保持されている。
(Third Embodiment)
As shown in FIG. 9, the heat storage electronic device 303 includes, in addition to the configuration of the heat storage electronic device 3, a temperature sensor 27 that acquires temperature information of the heat storage material 18, and a third thermoelectric element 28a. An airtight sealing material 30 is interposed between the lower housing 3a and the upper housing 3b as a heat insulating material, and the lower housing 3a maintains the heat insulating performance between the lower housing 3a and the upper housing 3b. There is.

制御IC16は、温度センサ27及び第3熱電素子28aとの間で回路基板19に形成されたプリント配線により電気的に接続されている。温度センサ27は、例えばサーミスタにより構成され、制御IC16は温度センサ27による検出温度を取得できる。温度センサ27は、回路基板19に実装されると共に蓄熱材18に接触して構成され、これにより蓄熱材18の温度を測定することに応じて蓄熱電子装置303の内部温度を測定できる。 The control IC 16 is electrically connected to the temperature sensor 27 and the third thermoelectric element 28a by a printed wiring formed on the circuit board 19. The temperature sensor 27 is composed of, for example, a thermistor, and the control IC 16 can acquire the temperature detected by the temperature sensor 27. The temperature sensor 27 is mounted on the circuit board 19 and is configured to be in contact with the heat storage material 18, whereby the internal temperature of the heat storage electronic device 303 can be measured in response to measuring the temperature of the heat storage material 18.

このとき制御IC16は、自身の蓄熱電子装置303の内部温度に基づいて蓄熱材18に熱を吸熱させるか否かを判定し当該判定結果に基づいて流体Rから蓄熱材18への伝熱を制御すると良い。このとき、制御IC16は、蓄熱材18の温度が所定の閾値より高ければ蓄熱電子装置303の内部温度が高いと判定し、蓄熱材18への吸熱を停止すると良い。 At this time, the control IC 16 determines whether or not the heat storage material 18 absorbs heat based on the internal temperature of its own heat storage electronic device 303, and controls the heat transfer from the fluid R to the heat storage material 18 based on the determination result. Then it is good. At this time, if the temperature of the heat storage material 18 is higher than a predetermined threshold value, the control IC 16 may determine that the internal temperature of the heat storage electronic device 303 is high, and stop absorbing heat to the heat storage material 18.

また第3熱電素子28aは、蓄熱材18に接触すると共に下側筐体3aと接触するように設置されている。第3熱電素子28aはペルチェ素子により構成され、下側筐体3aに対しねじ(図示せず)を用いて固定されている。制御IC16は、第3熱電素子28aと電気的に接続されており、第3熱電素子28aに通電可能に構成されている。その他の構成は、第1実施形態と同一であるため説明を省略する。 Further, the third thermoelectric element 28a is installed so as to come into contact with the heat storage material 18 and also with the lower housing 3a. The third thermoelectric element 28a is composed of a Peltier element and is fixed to the lower housing 3a with screws (not shown). The control IC 16 is electrically connected to the third thermoelectric element 28a, and is configured to be able to energize the third thermoelectric element 28a. Since the other configurations are the same as those of the first embodiment, the description thereof will be omitted.

上記構成の動作を説明する。制御IC16は、受信した電子装置2による発熱素子21の駆動状態の情報に応じて蓄熱電子装置303の作動モードを切り替える。蓄熱電子装置303は、流体Rの熱を蓄熱材18に吸熱させる「吸熱モード」と、蓄熱材18の熱をダクト5の内部に放熱する「ダクト内放熱モード」と、蓄熱材18の熱をダクト5の外部の他の流体R2(図12参照)に放熱する「ダクト外放熱モード」と、に切替可能になっている。流体R2は、空気であっても水などの液体でも良いが、流体Rが流れるダクト5の流路とは別の流路を流れる流体である。 The operation of the above configuration will be described. The control IC 16 switches the operation mode of the heat storage electronic device 303 according to the information on the driving state of the heat generating element 21 by the received electronic device 2. The heat storage electronic device 303 has an "endothermic mode" in which the heat of the fluid R is absorbed by the heat storage material 18, a "heat dissipation mode in the duct" in which the heat of the heat storage material 18 is radiated to the inside of the duct 5, and the heat of the heat storage material 18 is transferred. It is possible to switch to the "external heat dissipation mode" in which heat is dissipated to another fluid R2 (see FIG. 12) outside the duct 5. The fluid R2 may be air or a liquid such as water, but is a fluid that flows in a flow path different from the flow path of the duct 5 through which the fluid R flows.

電子装置2の制御IC23は、発熱素子21の駆動状態の情報を通信ユニットU2を用いて蓄熱電子装置3に送信する。蓄熱電子装置303の制御IC16は、受信した発熱素子21の駆動状態の情報に基づいて発熱素子21の発熱量が所定上限量より大きいと判断したときに作動モードを「吸熱モード」に切り替える。
「吸熱モード」では、制御IC16が、第1熱電素子17に正極性の電流を流すことで、図10に示すように、第1熱電素子17がダクト5を流れる流体Rの熱を吸熱して蓄熱材18に放熱する。この結果、ダクト5を流れる流体Rの温度上昇を抑制でき、蓄熱電子装置3の下流側に流れる流体Rの温度を低く保つことができる。この結果、電子装置4の放熱量の低下を抑制できる。
The control IC 23 of the electronic device 2 transmits information on the driving state of the heat generating element 21 to the heat storage electronic device 3 using the communication unit U2. The control IC 16 of the heat storage electronic device 303 switches the operation mode to the "endothermic mode" when it is determined that the heat generation amount of the heat generation element 21 is larger than the predetermined upper limit amount based on the received information on the driving state of the heat generation element 21.
In the "endothermic mode", the control IC 16 causes the first thermoelectric element 17 to pass a positive current, so that the first thermoelectric element 17 absorbs the heat of the fluid R flowing through the duct 5 as shown in FIG. Heat is dissipated to the heat storage material 18. As a result, the temperature rise of the fluid R flowing through the duct 5 can be suppressed, and the temperature of the fluid R flowing downstream of the heat storage electronic device 3 can be kept low. As a result, it is possible to suppress a decrease in the amount of heat released from the electronic device 4.

逆に、蓄熱電子装置3の制御IC16は、受信した発熱素子21の駆動状態の情報に基づいて発熱素子21の発熱量が所定下限量より小さいと判断したときに、蓄熱電子装置3の作動モードを「ダクト内放熱モード」に切り替える。図11に示すように、「ダクト内放熱モード」では、制御IC16は第1熱電素子17に逆極性の電流を流すことで、蓄熱材18の蓄積熱を上側筐体3bを経由してダクト5の内部の流体Rに放熱する。この結果、蓄熱材18の温度を低下させることができる。例えば、この後、上流側の電子装置2の発熱素子21の発熱量が増加することがあっても、流体Rから蓄熱材18への吸熱量を増加させることができる。 On the contrary, when the control IC 16 of the heat storage electronic device 3 determines that the heat generation amount of the heat generation element 21 is smaller than the predetermined lower limit amount based on the received information on the driving state of the heat generation element 21, the operation mode of the heat storage electronic device 3 To "heat dissipation mode in duct". As shown in FIG. 11, in the "heat dissipation mode in the duct", the control IC 16 passes a current of opposite polarity to the first thermoelectric element 17, so that the accumulated heat of the heat storage material 18 is transferred to the duct 5 via the upper housing 3b. Heat is dissipated to the fluid R inside. As a result, the temperature of the heat storage material 18 can be lowered. For example, after that, even if the amount of heat generated by the heat generating element 21 of the electronic device 2 on the upstream side increases, the amount of heat absorbed from the fluid R to the heat storage material 18 can be increased.

他方、制御IC16は、温度センサ27により蓄熱材18の温度を検出し、蓄熱材18の温度が所定の閾値より大きいか否かを判定する。制御IC16は、蓄熱材18の温度が所定の閾値より大きいときには「ダクト外放熱モード」に切り替える。
図12に示すように、「ダクト外放熱モード」では、制御IC16は第3熱電素子28aに通電することで、蓄熱材18の蓄積熱を下側筐体3aからダクト5の外部へ放熱することで蓄熱材18の温度を低下させる。これにより、蓄熱電子装置3は、流体Rの温度を上昇させることなく蓄熱材18の温度を低下させることができる。したがって、たとえ電子装置2の発熱素子21の発熱量が大きく、流体Rの温度が高くなったとしても流体Rの温度を保持したまま蓄熱材18の温度を低下させることができる。この結果、流体Rと蓄熱材18の両者の温度が比較的高くなったとしても、蓄熱材18による吸熱量を増やすことができる。
On the other hand, the control IC 16 detects the temperature of the heat storage material 18 by the temperature sensor 27 and determines whether or not the temperature of the heat storage material 18 is larger than a predetermined threshold value. When the temperature of the heat storage material 18 is larger than a predetermined threshold value, the control IC 16 switches to the “out-duct heat dissipation mode”.
As shown in FIG. 12, in the "external heat dissipation mode", the control IC 16 energizes the third thermoelectric element 28a to dissipate the accumulated heat of the heat storage material 18 from the lower housing 3a to the outside of the duct 5. Lowers the temperature of the heat storage material 18. As a result, the heat storage electronic device 3 can lower the temperature of the heat storage material 18 without raising the temperature of the fluid R. Therefore, even if the heat generation element 21 of the electronic device 2 generates a large amount of heat and the temperature of the fluid R rises, the temperature of the heat storage material 18 can be lowered while maintaining the temperature of the fluid R. As a result, even if the temperatures of both the fluid R and the heat storage material 18 become relatively high, the amount of heat absorbed by the heat storage material 18 can be increased.

また制御IC16は、通信ユニットU3により受信した他の電子装置2の駆動状態に係る情報に基づいて第3熱電素子28aに通電して、蓄熱材18の蓄積熱を下側筐体3aを通じてダクト5の外部を流れる他の流体R2に放熱するようにしても良い。例えば、制御IC16は、通信ユニットU3により他の電子装置2から受信した発熱素子21の発熱量が所定量より大きいと判定したときには、蓄熱材18の蓄積熱を下側筐体3aを通じてダクト5の外部の他の流体R2に放熱しながら蓄熱材18に吸熱すると良い。これにより、蓄熱材18の蓄積熱を必要に応じて他の流体R2に放熱させることで蓄熱材18の蓄積熱容量を確保できるようになる。 Further, the control IC 16 energizes the third thermoelectric element 28a based on the information related to the driving state of the other electronic device 2 received by the communication unit U3, and transfers the accumulated heat of the heat storage material 18 to the duct 5 through the lower housing 3a. The heat may be dissipated to another fluid R2 flowing outside the. For example, when the control IC 16 determines that the heat generation amount of the heat generating element 21 received from the other electronic device 2 by the communication unit U3 is larger than the predetermined amount, the heat storage material 18 is transferred to the duct 5 through the lower housing 3a. It is preferable to absorb heat to the heat storage material 18 while dissipating heat to another external fluid R2. As a result, the accumulated heat capacity of the heat storage material 18 can be secured by dissipating the accumulated heat of the heat storage material 18 to another fluid R2 as needed.

また制御IC16は、温度センサ27による検出温度値と予め設定された設定温度との大小関係を判定した判定結果に基づいて蓄熱材18の蓄積熱の流体R2への放熱量を制御するようにしても良い。例えば、制御IC16は、予め定められた一定の閾値温度を超えたときに蓄熱材18から流体R2へ放熱させることで、流体Rから蓄熱材18への吸熱量の低下を防ぐことができる。これにより、蓄熱材18の蓄積熱を適切に制御できると共に、ダクト5を流れる流体Rの温度を適切に制御できる。 Further, the control IC 16 controls the amount of heat radiated from the accumulated heat of the heat storage material 18 to the fluid R2 based on the determination result of determining the magnitude relationship between the temperature value detected by the temperature sensor 27 and the preset set temperature. Is also good. For example, the control IC 16 can prevent a decrease in the amount of heat absorbed from the fluid R to the heat storage material 18 by dissipating heat from the heat storage material 18 to the fluid R2 when the temperature exceeds a predetermined constant threshold temperature. As a result, the accumulated heat of the heat storage material 18 can be appropriately controlled, and the temperature of the fluid R flowing through the duct 5 can be appropriately controlled.

(他の実施形態)
前述実施形態に限定されるものではなく、例えば、以下に示す変形又は拡張が可能である。
前述した各実施形態では、制御IC16が、上流側に位置する電子装置2による発熱素子21の駆動状態に係る情報に応じて蓄熱電子装置3、203、303の熱の蓄積状態を変更制御する形態を示したが、これに限定されるものではない。例えば、制御IC16は、下流側に位置する電子装置4による発熱素子25の駆動状態に係る情報に応じて蓄熱電子装置3、203、303の熱の蓄積状態を変更制御するようにしても良い。
(Other embodiments)
The embodiment is not limited to the above, and for example, the following modifications or extensions are possible.
In each of the above-described embodiments, the control IC 16 changes and controls the heat storage state of the heat storage electronic devices 3, 203, and 303 according to the information related to the driving state of the heat generating element 21 by the electronic device 2 located on the upstream side. However, the present invention is not limited to this. For example, the control IC 16 may change and control the heat storage state of the heat storage electronic devices 3, 203, and 303 according to the information related to the driving state of the heat generating element 25 by the electronic device 4 located on the downstream side.

例えば、蓄熱電子装置3の制御IC16は、電子装置4の駆動状態の情報に基づいて電子装置4の内部温度が上限閾値を超えていると想定した場合には、蓄熱材18への放熱量を通常より増加させると良い。これにより、流体Rの温度を通常より低下させることができ、電子装置4の冷却を促進できる。 For example, the control IC 16 of the heat storage electronic device 3 determines the amount of heat radiated to the heat storage material 18 when it is assumed that the internal temperature of the electronic device 4 exceeds the upper limit threshold value based on the information on the driving state of the electronic device 4. It is better to increase it more than usual. As a result, the temperature of the fluid R can be lowered more than usual, and the cooling of the electronic device 4 can be promoted.

前述実施形態では、制御IC16の通信ユニットU3が他の電子装置2、4の駆動状態に基づく情報を受信する形態を示した。前述実施形態では、他の電子装置2、4の駆動状態に基づく情報として、発熱素子21、25の駆動状態の情報を適用した形態を示したが、これに限定されるものではない。例えば、電子装置2、4に温度センサ27が発熱素子21、25の温度を検出するように設置されている場合には、発熱素子21、25の温度情報を駆動状態に基づく情報として適用しても良い。また電子装置2〜4の設置関係は、例示した内容に限られるものではない。 In the above-described embodiment, the communication unit U3 of the control IC 16 receives information based on the driving states of the other electronic devices 2 and 4. In the above-described embodiment, the information on the driving states of the heat generating elements 21 and 25 is applied as the information based on the driving states of the other electronic devices 2 and 4, but the present invention is not limited to this. For example, when the temperature sensors 27 are installed in the electronic devices 2 and 4 so as to detect the temperatures of the heat generating elements 21 and 25, the temperature information of the heat generating elements 21 and 25 is applied as information based on the driving state. Is also good. Further, the installation relationship of the electronic devices 2 to 4 is not limited to the illustrated contents.

また電子装置2による発熱素子21の駆動状態、及び、電子装置4による発熱素子25の駆動状態の両者を考慮して蓄熱電子装置3、203、303の熱の蓄積状態を変更制御しても良い。電子装置2〜4は、その構造全体がダクト5の中に設置されていても良い。
前述した複数の実施形態の構成、機能は必要に応じて組み合わせても良い。
Further, the heat storage state of the heat storage electronic devices 3, 203 and 303 may be changed and controlled in consideration of both the driving state of the heat generating element 21 by the electronic device 2 and the driving state of the heat generating element 25 by the electronic device 4. .. The entire structure of the electronic devices 2 to 4 may be installed in the duct 5.
The configurations and functions of the plurality of embodiments described above may be combined as necessary.

本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with embodiments, it is understood that this disclosure is not limited to such embodiments or structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms including one element, more, or less, are also within the scope of the present disclosure.

図面中、2、4は電子装置(他の電子装置)、3、203、303は電子装置(蓄熱電子装置)、16は制御IC(制御部)、17は熱電素子、18は蓄熱材、27は温度センサ(温度検出部)、28は熱電素子(第2熱電素子)、28aは熱電素子(第3熱電素子)、29は他の蓄熱材、U3は通信ユニット(受信部)、R,R2は流体、である。 In the drawings, 2, 4 are electronic devices (other electronic devices), 3, 203, 303 are electronic devices (heat storage electronic devices), 16 are control ICs (control units), 17 are thermoelectric elements, 18 are heat storage materials, 27. Is a temperature sensor (temperature detection unit), 28 is a thermoelectric element (second thermoelectric element), 28a is a thermoelectric element (third thermoelectric element), 29 is another heat storage material, U3 is a communication unit (receiver), R, R2. Is a fluid.

Claims (9)

冷却用の流体(R)により冷却可能に設置された複数の電子装置(2、3、4;2、203、4;2、303、4)により構成される冷却システム(1)を構成する一の前記電子装置である蓄熱電子装置(3;203;303)であって、
通電されることで前記流体の熱を伝導可能な第1熱電素子(17)と、
前記熱を蓄熱可能な蓄熱材(18)と、
前記流体により冷却される他の一又は複数の電子装置(2、4)から当該他の電子装置の駆動状態に基づく情報を受信する受信部(U3)と、
前記受信部により受信した前記情報に基づいて前記第1熱電素子に通電制御することで前記流体から前記蓄熱材への伝熱を制御する制御部(16)と、
を備える蓄熱電子装置。
One that constitutes a cooling system (1) composed of a plurality of electronic devices (2, 3, 4; 2, 203, 4; 2, 303, 4) installed so as to be able to be cooled by the cooling fluid (R). The heat storage electronic device (3; 203; 303), which is the electronic device of the above.
A first thermoelectric element (17) capable of conducting heat of the fluid when energized,
A heat storage material (18) capable of storing heat and
A receiver (U3) that receives information based on the driving state of the other electronic device from another one or more electronic devices (2, 4) cooled by the fluid.
A control unit (16) that controls heat transfer from the fluid to the heat storage material by controlling energization of the first thermoelectric element based on the information received by the receiving unit.
A heat storage electronic device equipped with.
内部温度を検出する温度検出部(27)をさらに備え、
前記制御部は、前記内部温度に基づいて前記蓄熱材に熱を吸熱させるか否かを判定した判定結果に基づいて前記流体から前記蓄熱材への伝熱を制御する請求項1記載の蓄熱電子装置。
Further equipped with a temperature detection unit (27) for detecting the internal temperature,
The heat storage electron according to claim 1, wherein the control unit controls heat transfer from the fluid to the heat storage material based on a determination result of determining whether or not the heat storage material absorbs heat based on the internal temperature. apparatus.
前記制御部は、前記受信部により受信した前記他の電子装置に係る前記情報に基づいて前記第1熱電素子に通電して前記蓄熱材から前記流体への放熱を制御する請求項1又は2記載の蓄熱電子装置。 The first or second claim, wherein the control unit energizes the first thermoelectric element and controls heat dissipation from the heat storage material to the fluid based on the information related to the other electronic device received by the receiving unit. Heat storage electronic device. 内部温度を検出する温度検出部(27)を備え、
前記制御部は、前記内部温度に基づいて前記第1熱電素子に通電して前記蓄熱材に蓄熱された熱を前記流体へ放熱する請求項1から3の何れか一項に記載の蓄熱電子装置。
It is equipped with a temperature detection unit (27) that detects the internal temperature.
The heat storage electronic device according to any one of claims 1 to 3, wherein the control unit energizes the first thermoelectric element based on the internal temperature and dissipates heat stored in the heat storage material to the fluid. ..
前記蓄熱材とは別体に構成された他の蓄熱材(29)と、
通電されることで前記他の蓄熱材に熱を伝導可能な第2熱電素子(28)と、をさらに備え、
前記制御部は、前記受信部により受信した前記他の電子装置に係る前記情報に基づいて前記第2熱電素子に通電して前記蓄熱材の蓄積熱を前記他の蓄熱材に放熱する請求項1から4の何れか一項に記載の蓄熱電子装置。
With another heat storage material (29) configured separately from the heat storage material,
A second thermoelectric element (28) capable of conducting heat to the other heat storage material by being energized is further provided.
The control unit energizes the second thermoelectric element based on the information related to the other electronic device received by the receiving unit, and dissipates the accumulated heat of the heat storage material to the other heat storage material. The heat storage electronic device according to any one of 4 to 4.
前記蓄熱材とは別体に構成された他の蓄熱材(29)と、
通電されることで前記他の蓄熱材に熱を伝導可能な第2熱電素子(28)と、をさらに備え、
前記制御部は、前記蓄熱電子装置の内部温度に基づいて前記第2熱電素子に通電して前記蓄熱材の蓄積熱を前記他の蓄熱材に放熱する請求項1から5の何れか一項に記載の蓄熱電子装置。
With another heat storage material (29) configured separately from the heat storage material,
A second thermoelectric element (28) capable of conducting heat to the other heat storage material by being energized is further provided.
According to any one of claims 1 to 5, the control unit energizes the second thermoelectric element based on the internal temperature of the heat storage electronic device and dissipates the accumulated heat of the heat storage material to the other heat storage material. The heat storage electronic device described.
通電されることで前記流体とは異なる他の流体(R2)に熱を伝導可能な第3熱電素子(28a)をさらに備え、
前記制御部は、前記受信部により受信した前記他の電子装置に係る前記情報に基づいて前記第3熱電素子に通電して前記蓄熱材の蓄積熱を前記他の流体に放熱する請求項1から6の何れか一項に記載の蓄熱電子装置。
A third thermoelectric element (28a) capable of conducting heat to another fluid (R2) different from the fluid when energized is further provided.
From claim 1, the control unit energizes the third thermoelectric element based on the information related to the other electronic device received by the receiving unit to dissipate the accumulated heat of the heat storage material to the other fluid. The heat storage electronic device according to any one of 6.
内部温度を検出する温度検出部(27)と、
通電されることで前記流体が流れる流路とは別の流路を流れる他の流体(R2)に熱を伝導可能な第3熱電素子(28a)とをさらに備え、
前記制御部は、前記内部温度に基づいて前記第3熱電素子に通電して前記蓄熱材の蓄積熱を前記他の流体に放熱する請求項1から6の何れか一項に記載の蓄熱電子装置。
A temperature detection unit (27) that detects the internal temperature,
A third thermoelectric element (28a) capable of conducting heat to another fluid (R2) flowing through a flow path different from the flow path through which the fluid flows when energized is further provided.
The heat storage electronic device according to any one of claims 1 to 6, wherein the control unit energizes the third thermoelectric element based on the internal temperature and dissipates the accumulated heat of the heat storage material to the other fluid. ..
内部温度を検出する温度検出部(27)をさらに備え、
前記制御部は、前記内部温度と予め設定された設定温度との大小関係を判定した判定結果に基づいて前記蓄熱材の蓄積熱の放熱量を制御する請求項3から8の何れか一項に記載の蓄熱電子装置。
Further equipped with a temperature detection unit (27) for detecting the internal temperature,
The control unit controls the heat dissipation amount of the accumulated heat of the heat storage material based on the determination result of determining the magnitude relationship between the internal temperature and the preset set temperature according to any one of claims 3 to 8. The heat storage electronic device described.
JP2019139789A 2019-07-30 2019-07-30 Thermal storage electronic device Pending JP2021022694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019139789A JP2021022694A (en) 2019-07-30 2019-07-30 Thermal storage electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019139789A JP2021022694A (en) 2019-07-30 2019-07-30 Thermal storage electronic device

Publications (1)

Publication Number Publication Date
JP2021022694A true JP2021022694A (en) 2021-02-18

Family

ID=74574463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019139789A Pending JP2021022694A (en) 2019-07-30 2019-07-30 Thermal storage electronic device

Country Status (1)

Country Link
JP (1) JP2021022694A (en)

Similar Documents

Publication Publication Date Title
ES2216109T3 (en) TEMPERATURE CONTROL OF ELECTRONIC COMPONENTS.
KR101380752B1 (en) computer
US6997241B2 (en) Phase-change heat reservoir device for transient thermal management
US7191820B2 (en) Phase-change heat reservoir device for transient thermal management
KR100610292B1 (en) Electronic equipment provided with co0ling system
US7954332B2 (en) Temperature control systems and methods
US20100186399A1 (en) Thermoelectric facility comprising a thermoelectric generator and means for limiting the temperature on the generator
JP5353577B2 (en) heatsink
US20060028182A1 (en) Thermoelectric methods to control temperature of batteries
JP2011153776A (en) Cooling device
JPS6283154A (en) Thermal recording type printer
JP4231626B2 (en) Motor drive device for automobile
US20030218865A1 (en) Semiconductor thermal management system
JP2021022694A (en) Thermal storage electronic device
JPS63302584A (en) Temperature controller for laser diode
JP2010175835A (en) Camera apparatus
JP2007123541A (en) Device with built-in functional part
JP5453444B2 (en) Environmental control in wireless network nodes
JP4491492B2 (en) Motor drive device for automobile
JP2000286483A (en) Laser light generator
CN210005703U (en) Constant temperature device of temperature sensitive devices
JP4375406B2 (en) Cooling system
KR100979260B1 (en) Temperature Controlling Device for Case
JP2007274565A (en) Imaging apparatus
WO2023021772A1 (en) Temperature measuring device