JP2021021129A - Carburized steel member made of machine structural steel with excellent pitching resistance on ground surface - Google Patents

Carburized steel member made of machine structural steel with excellent pitching resistance on ground surface Download PDF

Info

Publication number
JP2021021129A
JP2021021129A JP2019140161A JP2019140161A JP2021021129A JP 2021021129 A JP2021021129 A JP 2021021129A JP 2019140161 A JP2019140161 A JP 2019140161A JP 2019140161 A JP2019140161 A JP 2019140161A JP 2021021129 A JP2021021129 A JP 2021021129A
Authority
JP
Japan
Prior art keywords
steel member
steel
depth
mass
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019140161A
Other languages
Japanese (ja)
Other versions
JP7378889B2 (en
Inventor
太一 渕上
Taichi Fuchigami
太一 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2019140161A priority Critical patent/JP7378889B2/en
Publication of JP2021021129A publication Critical patent/JP2021021129A/en
Application granted granted Critical
Publication of JP7378889B2 publication Critical patent/JP7378889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

To improve pitching resistance life of a steel member such as power transmission parts of automobiles.SOLUTION: There is provided a carburized steel member of machine structural steel which contains C: 0.10 to 0.30%, Si: 0.51 to 0.80%, Mn: 0.10 to 0.40%, P: 0.005 to 0.025%, S: 0.005 to 0.025%, Ni: 0.05 to 0.20%, Cr: 1.30 to 2.00%, Al: 0.025 to 0.050%, N: 0.0100 to 0.0250% in terms of mass%, balance Fe and unavoidable impurities. The hardness, C concentration and residual austenite amount at a depth of 0.05 mm from the surface of the steel member subjected to grinding process are hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass%, residual austenite amount (hereinafter, also referred to as residual γ amount): 20 to 45% by volume. In a case where the steel member subjected to grinding process has average grain size number : No. 8 or more at the depth 0.4 mm depth from the surface and formula A represents 2.1×[Si%] + [Cr%], the carburized steel member made of machine structural steel with excellent pitching resistance on ground surface satisfies 2.8 or more as the value of the formula A.SELECTED DRAWING: None

Description

この出願は、研削状態で用いられる動力伝達部品用の機械構造用鋼、特に研削肌での耐ピッチング特性に優れる動力伝達部品用の機械構造用鋼に関する。 This application relates to mechanical structural steels for power transmission parts used in a ground state, particularly mechanical structural steels for power transmission parts having excellent pitching resistance on a ground surface.

自動車などの動力伝達部品では、静粛性や燃費向上の観点から、動力伝達部品である歯車の歯面は研削された状態で使用されることがある。このような動力伝達部品の使用環境は、高面圧の部品同士の周速差による「すべり」が生じる、過酷なものであり、過酷環境下における耐ピッチング寿命の向上が望まれている。 In power transmission parts such as automobiles, the tooth surface of a gear, which is a power transmission part, may be used in a ground state from the viewpoint of quietness and improvement of fuel efficiency. The usage environment of such a power transmission component is harsh, in which "slip" occurs due to the difference in peripheral speed between the components having high surface pressure, and it is desired to improve the pitching resistance life in the harsh environment.

ところで、耐ピッチング寿命向上のために、浸炭層の表面硬さや焼戻し硬さ、熱伝導率、炭化物面積率などを規定した、耐焼付性に優れた浸炭部材に関する発明がある(例えば、特許文献1参照。)。この発明は、後述の本願発明が解決しようとする課題に記載するように、使用環境での鋼材の軟化に関するものにとどまっており、不均一摩耗の抑制に関しては対策がはかられていなかった。
なお、この発明では浸炭層の表面硬さは750HV以上が好ましいとされている。
By the way, there is an invention relating to a carburized member having excellent seizure resistance, which defines the surface hardness, tempering hardness, thermal conductivity, carbide area ratio, etc. of the carburized layer in order to improve the pitching resistance life (for example, Patent Document 1). reference.). As described in the problem to be solved by the present invention described later, the present invention is limited to the softening of the steel material in the usage environment, and no measures have been taken for suppressing uneven wear.
In the present invention, the surface hardness of the carburized layer is preferably 750 HV or more.

また、耐ピッチング寿命向上のために、粒界酸化や不完全焼入層の最大深さ、不完全焼入層の面積率を制御した発明が開示されている(例えば、特許文献2参照。)。この発明は、不完全焼入層の摩耗により粒界酸化を消失させることでピッチング寿命を伸ばすという着想に基づいて、研削せずに「浸炭まま」の表面状態での使用を前提として発明されたものである。これは、浸炭ままを念頭にしているため、表面を研削する場合には適用できず、研削肌状態での鋼材の軟化に関しては不完全焼入層を利用するものではないので、この文献では技術思想の対象外であることから考慮されていなかった。 Further, an invention in which grain boundary oxidation, the maximum depth of the incompletely hardened layer, and the area ratio of the incompletely hardened layer are controlled in order to improve the pitching resistance life is disclosed (see, for example, Patent Document 2). .. This invention was invented on the premise of use in a "carburized state" surface state without grinding, based on the idea of extending the pitching life by eliminating intergranular oxidation due to wear of the incompletely hardened layer. It is a thing. Since this is intended to be carburized, it cannot be applied when grinding the surface, and the incompletely hardened layer is not used for softening the steel material in the ground surface state. It was not considered because it was outside the scope of the idea.

特許第6410613号公報Japanese Patent No. 6410613 特開2016−222982JP 2016-222982

上記の背景技術において記載したように、自動車などの動力伝達部品等の鋼部材においては、耐ピッチング寿命の向上が志向されている。耐ピッチング寿命を向上させるべく発明者が鋭意行った調査・研究によれば、たとえば歯車を例にとると、歯車の摺動開始から初期なじみが進行する段階では、歯車同士の不均一接触により、歯車の表面に微小なき裂が生じて不均一摩耗が促進されることが判明した。このような歯車の不均一摩耗が促進されると、耐ピッチング寿命が短くなる。そこで、これらの歯車の耐ピッチング寿命を高めるためには、(1)歯車の歯面の不均一摩耗を抑制する必要がある。 As described in the above background technology, in steel members such as power transmission parts of automobiles, improvement of pitching resistance life is aimed at. According to a study and research conducted by the inventor to improve the pitching resistance life, for example, in the case of gears, at the stage where the initial familiarity progresses from the start of sliding of the gears, uneven contact between the gears causes It was found that minute cracks were generated on the surface of the gear and uneven wear was promoted. If such non-uniform wear of the gear is promoted, the pitching resistance life is shortened. Therefore, in order to extend the pitching resistance life of these gears, it is necessary to (1) suppress non-uniform wear of the tooth surface of the gears.

さらに、歯車同士の初期なじみが完了すると、次の段階では、歯車である鋼部材の表面に境界潤滑膜が生成し、それ以降に摺動回数が増していくと該鋼部材の表面の軟化が起こってくる。このような軟化が起こると、歯車などの動力伝達部品等において、耐ピッチング寿命が低下する。そこで、この歯車などの動力伝達部品等における耐ピッチング寿命の低下を防止するためには、(2)使用環境下での歯車などの鋼部材の軟化を抑制する必要がある。
このように、動力伝達部品等に用いられる機械構造用鋼における耐ピッチング寿命を向上させるためには、不均一摩耗の抑制と、軟化の抑制の双方を改善することが必要である。
Further, when the initial familiarization between the gears is completed, a boundary lubricating film is formed on the surface of the steel member which is the gear in the next stage, and when the number of slidings increases thereafter, the surface of the steel member softens. It will happen. When such softening occurs, the pitching resistance life of power transmission parts such as gears is shortened. Therefore, in order to prevent a decrease in the pitching resistance of the power transmission component such as a gear, it is necessary to (2) suppress the softening of the steel member such as the gear under the usage environment.
As described above, in order to improve the pitching resistance life of the mechanical structural steel used for power transmission parts and the like, it is necessary to improve both the suppression of non-uniform wear and the suppression of softening.

上記の課題を解決するための手段は、第1の手段では、質量%で、C:0.10〜0.30%、Si:0.51〜0.80%、Mn:0.10〜0.40%、P:0.005〜0.025%、S:0.005〜0.025%、Ni:0.05〜0.20%、Cr:1.30〜2.00%、Al:0.025〜0.050%、N:0.0100〜0.0250%を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留オーステナイト量(以下、残留γ量ともいう。):20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式A:2.1×[Si%]+[Cr%](なお[元素%]は全て質量%で示す数値)とするとき、式Aの値が2.8以上であること、を特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材である。 In the first means, the means for solving the above problems is C: 0.10 to 0.30%, Si: 0.51 to 0.80%, Mn: 0.10 to 0 in mass%. .40%, P: 0.005 to 0.025%, S: 0.005 to 0.025%, Ni: 0.05 to 0.20%, Cr: 1.30 to 2.00%, Al: A carburized steel member of machine structural steel containing 0.025 to 0.050%, N: 0.0100 to 0.0250%, and consisting of the balance Fe and unavoidable impurities, and ground steel. The hardness, C concentration and residual austenite amount at a depth of 0.05 mm from the surface of the member are hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass%, and residual austenite amount (hereinafter, also referred to as residual γ amount). ): 20 to 45% by volume, average crystal grain size number from the surface of the ground steel member to a depth of 0.4 mm: No. When the value is 8 or more and the formula A is: 2.1 × [Si%] + [Cr%] (note that [element%] are all numerical values indicated by mass%), the value of formula A is 2.8. It is a carburized steel member made of mechanical structural steel having excellent pitching resistance on a ground surface, which is characterized by the above.

第2の手段では、第1の手段の化学成分に加えて、質量%で、Mo:0.10〜0.90%を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留γ量:20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式B:2.1×[Si%]+[Cr%]+3.3×[Mo%](なお[元素%]は全て質量%で示す数値)とするとき、式Bの値が2.8以上であること、を特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材である。 In the second means, in addition to the chemical components of the first means, the mechanical structural steel containing Mo: 0.10 to 0.90% by mass% and consisting of the balance Fe and unavoidable impurities is carburized. The hardness, C concentration, and residual austenite amount at a depth of 0.05 mm from the surface of the ground steel member are: hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass. %, Residual γ content: 20 to 45% by volume, and average crystal grain size number from the surface of the ground steel member to a depth of 0.4 mm: No. When it is 8 or more and the formula B: 2.1 × [Si%] + [Cr%] + 3.3 × [Mo%] (note that [element%] are all numerical values indicated by mass%), It is a carburized steel member made of mechanical structural steel having excellent pitching resistance on a ground surface, which is characterized in that the value of the formula B is 2.8 or more.

第3の手段では、第1の手段の化学成分に加えて、質量%で、V:0.02〜0.10%、Ti:0.02〜0.10%、Nb:0.02〜0.10%のいずれか1種以上を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留γ量:20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式Aを2.1×[Si%]+[Cr%](なお[元素%]は全て質量%で示す数値)とするとき、式Aの値が2.8以上であること、を特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材である。 In the third means, in addition to the chemical components of the first means, V: 0.02 to 0.10%, Ti: 0.02 to 0.10%, Nb: 0.02 to 0 in% by mass. .A carburized steel member of mechanical structural steel containing any one or more of 10% and consisting of the balance Fe and unavoidable impurities, at a depth of 0.05 mm from the surface of the ground steel member. The hardness, C concentration and residual austenite amount are hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass%, residual γ content: 20 to 45% by volume, and the ground steel member has a hardness. Average crystal grain size number from the surface to a depth of 0.4 mm: No. When the value is 8 or more and the formula A is 2.1 × [Si%] + [Cr%] (note that [element%] are all numerical values indicated by mass%), the value of the formula A is 2.8. It is a carburized steel member made of mechanical structural steel having excellent pitching resistance on a ground surface, which is characterized by the above.

第4の手段では、第2の手段の化学成分に加えて、質量%で、V:0.02〜0.10%、Ti:0.02〜0.10%、Nb:0.02〜0.10%のいずれか1種以上を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留γ量:20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式Bを2.1×[Si%]+[Cr%]+3.3×[Mo%](なお[元素%]は全て質量%で示す数値)とするとき、式Bの値が2.8以上であること、を特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材である。 In the fourth means, in addition to the chemical components of the second means, V: 0.02 to 0.10%, Ti: 0.02 to 0.10%, Nb: 0.02 to 0 in% by mass. .A carburized steel member of mechanical structural steel containing any one or more of 10% and consisting of the balance Fe and unavoidable impurities, at a depth of 0.05 mm from the surface of the ground steel member. The hardness, C concentration and residual austenite amount are hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass%, residual γ content: 20 to 45% by volume, and the ground steel member has a hardness. Average crystal grain size number from the surface to a depth of 0.4 mm: No. When it is 8 or more and the formula B is 2.1 × [Si%] + [Cr%] + 3.3 × [Mo%] (note that [element%] are all numerical values indicated by mass%). It is a carburized steel member made of mechanical structural steel having excellent pitching resistance on a ground surface, which is characterized in that the value of the formula B is 2.8 or more.

本願の発明に係る第1〜4の手段における機械構造用鋼からなる浸炭された鋼部材は、自動車などの動力伝達部品である歯車などとして浸炭処理され表面研削された状態で、ローラーピッチング試験における耐ピッチング寿命のL50寿命比が、n=5における評価で、SCM420相当鋼を基準とする値の2.0〜3.4倍と、大幅に向上しており、本発明の機械構造用鋼からなる浸炭された鋼部材は、研削肌での耐ピッチング特性に優れたものとなっている。 In the roller pitching test, the carburized steel member made of mechanical structural steel in the first to fourth means according to the present invention is carburized and surface-ground as a gear or the like which is a power transmission component of an automobile or the like. L 50 life ratio of pitting life, in the evaluation of n = 5, and 2.0 to 3.4 times the value relative to the SCM420 equivalent steel, has greatly improved, steel for mechanical structure of the present invention The carburized steel member made of the material has excellent pitching resistance on the ground surface.

ローラーピッチング試験の概念図である。大ローラー側は相手材(2)であり、小ローラー側がローラーピッチング試験片(1)である。It is a conceptual diagram of a roller pitching test. The large roller side is the mating material (2), and the small roller side is the roller pitching test piece (1).

まず、本願の発明に係る手段における(1)機械構造用鋼の化学成分の限定理由と、(2)該機械構造用鋼の浸炭された鋼部材について、研削処理された鋼部材の表面から0.05mm深さの、硬さ、C濃度、および残留γ量の数値範囲の限定理由と、(3)該機械構造用鋼の浸炭された鋼部材について、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号を規定する理由と、(4)式Aの値または式Bの値について、以下に説明する。次いで、ローラーピッチング試験におけるL50寿命比、並びに該機械構造用鋼からなる鋼部材を冷間加工したときの割れ発生確率についても説明する。 First, (1) the reason for limiting the chemical composition of the mechanical structural steel in the means according to the present invention, and (2) the carburized steel member of the mechanical structural steel is 0 from the surface of the ground steel member. Reasons for limiting the numerical range of hardness, C concentration, and residual γ content at a depth of .05 mm, and (3) 0 from the surface of the ground steel member of the carburized steel member of the machine structural steel. The reason for defining the average grain size number up to a depth of .4 mm and the value of equation A or the value of equation B in (4) will be described below. Then, L 50 life ratio in the roller pitting test, as well as the cracking probability when a steel member made of the machine structural steel cold working is described.

まず、本願の発明に係る手段における(1)機械構造用鋼の化学成分についての成分限定理由について説明する。なお、ここでの説明における%は質量%である。 First, (1) the reason for limiting the chemical composition of the mechanical structural steel in the means according to the invention of the present application will be described. In addition,% in the description here is mass%.

C:0.10〜0.30%
Cは、鋼部材の焼入性、鍛造性、機械加工性に影響する元素である。Cが0.10%より少ないと、鋼部材はその芯部硬さの低下による強度不足となる。一方、Cが0.30%より多いと、鋼部材の素材の硬さが上昇して鋼部材の被削性や冷間加工性等の加工性が低下する。そこで、Cは、0.10〜0.30%とする。
C: 0.10 to 0.30%
C is an element that affects the hardenability, forgeability, and machinability of steel members. When C is less than 0.10%, the strength of the steel member becomes insufficient due to the decrease in the hardness of the core portion. On the other hand, when C is more than 0.30%, the hardness of the material of the steel member increases and the workability such as machinability and cold workability of the steel member decreases. Therefore, C is set to 0.10 to 0.30%.

Si:0.51〜0.80%
Siは、製鋼時の脱酸に必要な元素であり、焼戻し軟化抵抗性を高め、耐ピッチング特性の向上にも有効な元素である。Siが0.51%より少ないと、脱酸剤として不足し、焼戻し軟化抵抗が不足する。一方、Siが0.80%より多いと鋼部材の素材の硬さが上昇し、被削性や鍛造性などの加工性が低下する。また、浸炭阻害が起こり、耐ピッチング強度の劣化に繋がる。そこで、Siは0.51〜0.80%とする。
Si: 0.51 to 0.80%
Si is an element necessary for deoxidation during steelmaking, and is an element effective in increasing temper softening resistance and improving pitching resistance. If the amount of Si is less than 0.51%, it is insufficient as a deoxidizing agent and the temper softening resistance is insufficient. On the other hand, if Si is more than 0.80%, the hardness of the material of the steel member increases, and the workability such as machinability and forgeability decreases. In addition, carburizing inhibition occurs, leading to deterioration of pitching resistance. Therefore, Si is set to 0.51 to 0.80%.

Mn:0.10〜0.40%
Mnは、製鋼時の脱酸に必要な元素でかつ焼入性を向上させる元素である。ところで、Mnが0.10%より少ない場合は、脱酸剤として不足しかつ焼入性が低下する。一方、Mnが0.40%より多いと、素材硬さが上昇して加工性が低下する。そこで、Mnは0.10〜0.40%とする。
Mn: 0.10 to 0.40%
Mn is an element necessary for deoxidation during steelmaking and an element for improving hardenability. By the way, when Mn is less than 0.10%, it is insufficient as a deoxidizing agent and the hardenability is lowered. On the other hand, if Mn is more than 0.40%, the hardness of the material increases and the workability decreases. Therefore, Mn is set to 0.10 to 0.40%.

P:0.005〜0.025%
Pは、製鋼上の不可避不純物である。ところで、Pを0.005%より少なくして過度に低減することはコストアップとなる。一方、Pは0.025%より多く含有されると、疲労強度が低下する。そこで、Pは0.005〜0.025%とする。
P: 0.005 to 0.025%
P is an unavoidable impurity in steelmaking. By the way, reducing P to less than 0.005% and reducing it excessively increases the cost. On the other hand, when P is contained in an amount of more than 0.025%, the fatigue strength decreases. Therefore, P is set to 0.005 to 0.025%.

S:0.005〜0.025%
Sは、製鋼上の不可避不純物である。ところで、Sを0.005%より少なくして過度に低減することはコストアップとなる。一方、Sは、0.025%より多く含有されると、MnとMnSを形成し、冷間加工性を低下し、かつ疲労強度を低下する。そこで、Sは0.005〜0.025%とする。
S: 0.005 to 0.025%
S is an unavoidable impurity in steelmaking. By the way, reducing S to less than 0.005% and reducing it excessively increases the cost. On the other hand, when S is contained in an amount of more than 0.025%, Mn and MnS are formed, the cold workability is lowered, and the fatigue strength is lowered. Therefore, S is set to 0.005 to 0.025%.

Ni:0.05〜0.20%
Niは、製鋼上の不可避不純物である。ところで、Niを0.05%より少なくして過度に低減することはコストアップとなる。一方、Niは高価な元素であり、0.20%より多く含有されるとコストアップとなる。そこで、Niは0.05〜0.20%とする。
Ni: 0.05 to 0.20%
Ni is an unavoidable impurity in steelmaking. By the way, reducing Ni to less than 0.05% and reducing it excessively increases the cost. On the other hand, Ni is an expensive element, and if it is contained in an amount of more than 0.20%, the cost will increase. Therefore, Ni is set to 0.05 to 0.20%.

Cr:1.30〜2.00%
Crは、鋼部材の焼入性の確保に必要な元素であり、焼戻し軟化抵抗性を高める元素である。ところで、Crは1.30%より少ないと焼入性が低下し、さらに焼戻し軟化抵抗が不足する。一方、Crは2.00%より多いと、浸炭阻害が発生し、さらに炭化物が過剰に生成されることで、加工性が低下する。そこで、Crは1.30〜2.00%とする。
Cr: 1.30 to 2.00%
Cr is an element necessary for ensuring the hardenability of the steel member, and is an element that enhances the temper softening resistance. By the way, if Cr is less than 1.30%, the hardenability is lowered, and the temper softening resistance is insufficient. On the other hand, if Cr is more than 2.00%, carburizing inhibition occurs and carbides are excessively generated, so that processability is lowered. Therefore, Cr is set to 1.30 to 2.00%.

Al:0.025〜0.050%
Alは、製鋼時の脱酸剤として作用する元素であり、さらに微細な炭窒化物を形成する元素である。ところで、Alが0.025%より少ないと、製鋼時の脱酸が十分でなく、さらに微細な炭窒化物の形成が十分でないため結晶粒が粗大化する結果、耐ピッチング寿命が低下する。一方、Alが0.050%より多いと、粗大な炭窒化物が形成されて、加工性が低下する。そこで、Alは0.025〜0.050%添加するものとする。
Al: 0.025 to 0.050%
Al is an element that acts as a deoxidizer during steelmaking, and is an element that forms finer carbonitrides. By the way, if Al is less than 0.025%, deoxidation during steelmaking is not sufficient, and the formation of fine carbonitrides is not sufficient, resulting in coarse crystal grains and a decrease in pitching resistance. On the other hand, if Al is more than 0.050%, coarse carbonitride is formed and the workability is lowered. Therefore, it is assumed that 0.025 to 0.050% of Al is added.

N:0.0100〜0.0250%
Nは、微細な炭窒化物を形成する元素である。ところで、Nが0.0100%より少ないと、微細な炭窒化物の形成が十分でないため結晶粒が粗大化する結果、耐ピッチング寿命が低下する。一方、Nが0.0250%より多いと、窒化物の生成が過剰となって、加工性が低下する。そこで、Nは0.0100〜0.0250%添加するものとする。
N: 0.0100 to 0.0250%
N is an element that forms a fine carbonitride. By the way, if N is less than 0.0100%, the formation of fine carbonitrides is not sufficient, and the crystal grains become coarse, resulting in a decrease in the pitching resistance life. On the other hand, if N is more than 0.0250%, the nitride is excessively produced and the workability is lowered. Therefore, it is assumed that N is added in an amount of 0.0100 to 0.0250%.

Mo:0.10〜0.90%
Moは、高価な元素で素材コストが大きく増加する元素であるが、焼入性を高め、硬さ向上に寄与し、焼戻し軟化抵抗性を向上する元素である。ところで、Moが0.10%より少ないと、焼入性の向上および焼戻し軟化抵抗性の向上が得られない。一方、Moが0.90%より多いとコストアップとなると共に、鋼部材の素材硬さが上昇し、加工性が低下する。そこで、Moは、0.10〜0.90%とする。
Mo: 0.10 to 0.90%
Mo is an expensive element that greatly increases the material cost, but is an element that enhances hardenability, contributes to hardness improvement, and improves temper softening resistance. By the way, if Mo is less than 0.10%, improvement in hardenability and improvement in temper softening resistance cannot be obtained. On the other hand, if Mo is more than 0.90%, the cost increases, the material hardness of the steel member increases, and the workability decreases. Therefore, Mo is set to 0.10 to 0.90%.

V:0.02〜0.10%
Vは、浸炭時に炭化物を形成し、結晶粒を微細化するために有効な元素である。ところで、Vが0.02%より少ないと、結晶粒を微細化する効果が得られない。一方、Vが0.10%より多く含有されると、炭化物が過剰に生成されて加工性が低下するとともに、コストアップとなる。そこで、Vは0.02〜0.10%とする。
V: 0.02 to 0.10%
V is an element effective for forming carbides during carburizing and refining crystal grains. By the way, if V is less than 0.02%, the effect of refining the crystal grains cannot be obtained. On the other hand, if V is contained in an amount of more than 0.10%, carbides are excessively generated, the processability is lowered, and the cost is increased. Therefore, V is set to 0.02 to 0.10%.

Nb:0.02〜0.10%
Nbは、浸炭時に炭化物を形成し、結晶粒を微細化するために有効な元素である。ところで、Nbが0.02%より少ないと、結晶粒を微細化する効果が得られない。一方、Nbが0.10%より多く含有されると、炭化物が過剰に生成されて加工性が低下するとともに、コストアップとなる。そこで、Nbは0.02〜0.10%とする。
Nb: 0.02 to 0.10%
Nb is an element effective for forming carbides during carburizing and refining crystal grains. By the way, if Nb is less than 0.02%, the effect of refining the crystal grains cannot be obtained. On the other hand, if Nb is contained in an amount of more than 0.10%, carbides are excessively generated, the processability is lowered, and the cost is increased. Therefore, Nb is set to 0.02 to 0.10%.

Ti:0.02〜0.10%
Tiは、浸炭時に炭化物を形成し、結晶粒を微細化するために有効な元素である。ところで、Tiが0.02%より少ないと、結晶粒を微細化する効果が得られない。一方、Tiが0.10%より多く含有されると、炭化物が過剰に生成されて加工性が低下するとともに、コストアップとなる。そこで、Tiは0.02〜0.10%とする。
Ti: 0.02 to 0.10%
Ti is an element effective for forming carbides during carburizing and refining crystal grains. By the way, if Ti is less than 0.02%, the effect of refining the crystal grains cannot be obtained. On the other hand, if Ti is contained in an amount of more than 0.10%, carbides are excessively generated, the processability is lowered, and the cost is increased. Therefore, Ti is set to 0.02 to 0.10%.

なお、V、Nb、Tiは、選択的付加元素であって、添加する場合は、いずれか1種以上を添加することができる。 In addition, V, Nb, and Ti are selective addition elements, and when they are added, any one or more of them can be added.

続いて、上記(2)の本願の発明に係る手段における機械構造用鋼からなる自動車などの動力伝達部品などの浸炭された鋼部材について、研削処理された鋼部材の表面から0.05mm深さの、硬さ、C濃度、および残留γ量について説明する。 Subsequently, the carburized steel member such as a power transmission component of an automobile or the like made of mechanical structural steel in the means according to the invention of the present application (2) has a depth of 0.05 mm from the surface of the ground steel member. The hardness, C concentration, and residual γ amount of the above will be described.

浸炭後に研削処理された鋼部材の0.05mm深さの硬さ:680〜750HV
浸炭後に研削処理された鋼部材の0.05mm深さの硬さが680HV未満であると、浸炭された鋼部材の摩耗が促進される結果、ローラーピッチング試験における耐ピッチング寿命のL50寿命比が比較鋼13のSCM420相当鋼を基準とした値の2.0倍より低くなる。すなわち、680HV未満であると、不均一摩耗が促進して負荷面圧に耐えられず、耐ピッチング寿命が低下する。一方、硬さが750HVより大きくなると、接線力(すべりによって接線方向に生じる力)が増大する結果、耐ピッチング寿命が低下する。そこで、浸炭後に研削処理された鋼部材の表面から0.05mm深さの硬さは680〜750HVとする。
Hardness of 0.05 mm depth of steel member ground after carburizing: 680-750 HV
When 0.05mm depth hardness of grinding steel member after the carburization is less than 680HV, the result wear is accelerated carburizing steel member, L 50 life ratio of pitting life of the roller pitching test It is lower than 2.0 times the value based on the SCM420 equivalent steel of the comparative steel 13. That is, if it is less than 680 HV, non-uniform wear is promoted and the load surface pressure cannot be withstood, and the pitching resistance life is shortened. On the other hand, when the hardness is larger than 750 HV, the tangential force (force generated in the tangential direction due to sliding) increases, and as a result, the pitching resistance life decreases. Therefore, the hardness at a depth of 0.05 mm from the surface of the steel member ground after carburizing is set to 680 to 750 HV.

浸炭後に研削処理された鋼部材の0.05mm深さのC濃度:0.5〜0.9%
浸炭後に研削処理された鋼部材の0.05mm深さのC濃度は、0.5%より少ないと、固溶C量の不足により、硬いマルテンサイトが得られず、目的の硬さが得られない結果、耐ピッチング寿命が低下する。一方、C濃度は、0.9%より多くなると、C量の過多により残留γが過剰に増加し、さらに粗大な炭化物が生成することで、耐ピッチング寿命が低下する。そこで、浸炭後に研削処理された鋼部材の0.05mm深さのC濃度は0.5〜0.9%とする。
C concentration at a depth of 0.05 mm for steel members ground after carburizing: 0.5 to 0.9%
If the C concentration at a depth of 0.05 mm of the steel member ground after carburizing is less than 0.5%, hard martensite cannot be obtained due to the insufficient amount of solid solution C, and the desired hardness can be obtained. As a result, the pitching resistance life is reduced. On the other hand, when the C concentration is more than 0.9%, the residual γ is excessively increased due to the excessive amount of C, and coarser carbides are generated, so that the pitching resistance life is lowered. Therefore, the C concentration at a depth of 0.05 mm of the steel member ground after carburizing is set to 0.5 to 0.9%.

浸炭後に研削処理された鋼部材の0.05mm深さの残留γ量:20〜45容量%
浸炭後に研削処理された鋼部材の0.05mm深さの残留γ量は、20容量%より少ないと、硬さが過剰となり、すべりによって接線方向に生じる接線力が増大する結果、耐ピッチング寿命が低下する。一方、残留γ量は、45容量%より多いと、硬さが不足し、摩耗が促進されることにより、耐ピッチング寿命が低下する。そこで、浸炭後に研削処理された鋼部材の0.05mm深さの残留γ量は20〜45容量%とする。
Residual γ content at a depth of 0.05 mm of steel members ground after carburizing: 20 to 45% by volume
If the residual γ content at a depth of 0.05 mm of the steel member ground after carburizing is less than 20% by volume, the hardness becomes excessive and the tangential force generated in the tangential direction due to slippage increases, resulting in a long pitching resistance. descend. On the other hand, if the amount of residual γ is more than 45% by volume, the hardness is insufficient and wear is promoted, so that the pitching resistance life is shortened. Therefore, the residual γ content at a depth of 0.05 mm of the steel member ground after carburizing is set to 20 to 45% by volume.

さらに、上記(3)の本願の発明に係る手段における機械構造用鋼の浸炭された鋼部材について、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号について説明する。 Further, regarding the carburized steel member of the mechanical structural steel in the means according to the invention of the present application (3), the average particle size number from the surface of the ground steel member to a depth of 0.4 mm will be described.

浸炭後に研削処理された鋼部材の表面から0.4mm深さまでの結晶粒度番号:No.8以上
浸炭後に研削処理された鋼部材の表面から0.4mm深さまでの結晶粒度番号は、No.8未満で結晶粒が大きいと、不均一変形によって不均一摩耗が促進される結果、耐ピッチング寿命が低下する。そこで、浸炭後に研削処理された鋼部材の表面から0.4mm深さまでの結晶粒度番号は、No.8以上とする。
Crystal grain size number from the surface of the steel member ground after carburizing to a depth of 0.4 mm: No. The crystal grain size numbers from the surface of the steel member ground after carburizing to a depth of 0.4 mm are No. If it is less than 8 and the crystal grains are large, the non-uniform deformation promotes non-uniform wear, resulting in a decrease in the pitching resistance life. Therefore, the crystal grain size numbers from the surface of the steel member ground after carburizing to a depth of 0.4 mm are No. 8 or more.

なお、さらに、上記(4)の式Aの値または式Bの値について説明する。 Further, the value of the formula A or the value of the formula B of the above (4) will be described.

式A=2.1×[Si%]+[Cr%]の値:2.8以上、
式A=2.1×[Si%]+[Cr%]([元素%]は質量%で示す元素の含有量の数値である。)の値は、2.8未満であると、ローラーピッチング試験中に鋼部材の焼戻しが進み易く、軟化が促進されて、耐ピッチング寿命が低下する。
そこで、式A=2.1×[Si%]+[Cr%]の値は2.8以上とする。
Value of formula A = 2.1 × [Si%] + [Cr%]: 2.8 or more,
When the value of the formula A = 2.1 × [Si%] + [Cr%] ([element%] is a numerical value of the content of the element represented by mass%) is less than 2.8, the roller pitching Tempering of the steel member is likely to proceed during the test, softening is promoted, and the pitching resistance life is shortened.
Therefore, the value of the formula A = 2.1 × [Si%] + [Cr%] is set to 2.8 or more.

式B=2.1×[Si%]+[Cr%]+3.3×[Mo%]の値:2.8以上、
式B=2.1×[Si%]+[Cr%]+3.3×[Mo%]([元素%]は質量%で示す元素の含有量の数値である。)の値は、2.8未満であると、ローラーピッチング試験中に鋼部材の焼戻しが進み易く、軟化が促進されて、耐ピッチング寿命が低下し、ローラーピッチング試験におけるL50寿命比が、下記の表4に示すように、2.0未満となる。
そこで、式B=2.1×[Si%]+[Cr%]+3.3×[Mo%]の値は2.8以上とする。
Value of formula B = 2.1 × [Si%] + [Cr%] + 3.3 × [Mo%]: 2.8 or more,
The value of the formula B = 2.1 × [Si%] + [Cr%] + 3.3 × [Mo%] ([element%] is a numerical value of the content of the element represented by mass%) is 2. If it is less than 8, easily proceeds tempered steel member in the roller pitting test, softening is facilitated, pitting life is reduced, L 50 life ratio in the roller pitting test, as shown in Table 4 below , Less than 2.0.
Therefore, the value of the formula B = 2.1 × [Si%] + [Cr%] + 3.3 × [Mo%] is set to 2.8 or more.

ここで、本願の発明に係る手段における機械構造用鋼の製造工程について説明する。
表1は発明鋼におけるNo.1〜22の、質量%で示す化学成分と、残部のFeおよび不可避的不純物とで合計100%となる機械構造用鋼の成分組成を示すものである。これらの成分組成からなる各発明鋼100kgを、まずVIM(真空誘導溶解炉)で溶解してインゴットを製造した。次いで、これらの各インゴットを1250℃に加熱して、さらに、発明鋼のNo.1〜22のφ60mmの棒鋼に鍛伸した。
Here, the manufacturing process of steel for machine structure in the means according to the invention of the present application will be described.
Table 1 shows No. 1 in the invention steel. It shows the composition of the mechanical structural steel in which the total of 1 to 22 of the chemical components represented by mass% and the remaining Fe and unavoidable impurities is 100%. First, 100 kg of each invention steel having these component compositions was melted in a VIM (vacuum induction melting furnace) to produce an ingot. Next, each of these ingots was heated to 1250 ° C., and further, the invention steel No. It was forged to 1 to 22 φ60 mm steel bars.

表2は比較鋼におけるNo.1〜23の、質量%で示す化学成分と、残部のFeおよび不可避的不純物とで合計100%となる機械構造用鋼の成分組成を示すものである。これらの成分組成の各比較鋼100kgをVIM(真空誘導溶解炉)で溶解してインゴットを製造した。次いで、これらの各インゴットを1250℃に加熱して、さらに、比較鋼のNo.1〜23のφ60mmの棒鋼に鍛伸した。 Table 2 shows No. in comparative steel. It shows the composition of the mechanical structural steel in which the total of 1 to 23 of the chemical components represented by mass% and the remaining Fe and unavoidable impurities is 100%. An ingot was produced by melting 100 kg of each comparative steel having these component compositions in a VIM (vacuum induction melting furnace). Next, each of these ingots was heated to 1250 ° C., and further, the comparative steel No. It was forged into 1 to 23 φ60 mm steel bars.

Figure 2021021129
Figure 2021021129

Figure 2021021129
Figure 2021021129

さらに、これらの発明鋼および比較鋼の各φ60mmの棒鋼に900℃で1時間の焼ならしを行った後、これらの各棒鋼のD/4(Dは直径を表す。)近傍の素材からφ14mmで長さ21mmの各棒状試験片を作製して冷間加工性の評価用の試験片とした。 Further, after normalizing each of the invention steel and the comparative steel having a diameter of 60 mm at 900 ° C. for 1 hour, φ14 mm from the material in the vicinity of D / 4 (D represents the diameter) of each of these steel bars. Each rod-shaped test piece having a length of 21 mm was prepared and used as a test piece for evaluation of cold workability.

さらに、その他の試験片として、上記の発明鋼および比較鋼の各φ60mmの棒鋼を、さらにφ30mmに鍛伸し、900℃で1時間の焼ならしを行った後、各試験片に粗加工し、さらに粗加工した各試験片を、浸炭温度930℃で狙いCp=0.90%で浸炭し、焼入焼戻しを行った後、各試験片に仕上げ加工を施し、次の1.〜7.の各試験を発明鋼および比較鋼毎に実施した。 Further, as other test pieces, each of the above-mentioned invention steel and comparative steel having a diameter of 60 mm was further forged to φ30 mm, tempered at 900 ° C. for 1 hour, and then roughly processed into each test piece. Each of the rough-processed test pieces was carburized at a carburizing temperature of 930 ° C. at a target Cp = 0.90%, and after quenching and tempering, each test piece was finished. ~ 7. Each test was carried out for each of the invention steel and the comparative steel.

次の1.〜7.は上記の発明鋼および比較鋼毎の各試験の評価項目と各試験の評価結果を示している。
1.表面から0.05mm深さの硬さ測定
上記で作製した試験片を用い、長さ方向に垂直な断面であるT面で切断し、マイクロビッカース硬さ試験機により表面から0.05mm深さの位置の硬さを測定した。n=5回の試験の平均値を表面から0.05mm深さの硬さとした。
2.表面から0.05mm深さのC濃度測定
上記で作製した試験片を用い、長さ方向に垂直な断面であるT面で切断し、電子線マイクロアナライザー(EPMA)により、表面から0.05mm深さの位置のC濃度を測定した。n=3回の試験の平均値を表面から0.05mm深さのC濃度の値とした。
3.表面から0.05mm深さの残留γ量の測定
上記で作製した試験片を用い、表面から0.05mm深さまで電解研磨を施し、XRD(X線回折)により表面から0.05mmの位置の残留γ量を測定した。n=3回の試験の平均値を表面から0.05mmの位置の残留γ量の値とした。
4.表面から0.4mm深さまでの結晶粒度番号の判定
上記で作製した試験片を用い、長さ方向に垂直な断面であるT面で切断し、飽和ピクリン酸により旧γ粒界を現出して観察する試験を行ない、0.4mm深さまでの結晶粒度番号を判定し、n=5回の判定の平均値を結晶粒度番号の値とした。
5.式Aあるいは式Bの値
式Aを2.1×[Si%]+[Cr%](なお[元素%]は全て質量%で示す数値)とし、式Bを2.1×[Si%]+[Cr%]+3.3×[Mo%](なお[元素%]は全て質量%で示す数値)とするとき、発明鋼あるいは比較鋼に含有される化学成分に応じて式Aの値あるいは式Bの値とした。
6.耐ピッチング寿命の評価(ローラーピッチング試験におけるL50寿命比)
上記で作製した試験片を耐ピッチング寿命の評価のためのローラーピッチング試験片とし、相手材:SCM420鋼の浸炭研削材、滑り率:−40%、面圧:3.3GPa、潤滑油温度:80℃として、図1に示すようなローラーピッチング試験を実施した。試験片のL50寿命は、SCM420相当鋼の比較鋼No.13のL50寿命の値を基準値の1.0としたときに、その基準値の何倍に相当するかで評価することとし、n=5回の試験の評価値の平均値をL50寿命比とした。なお、本発明において、耐ピッチング寿命に優れている場合は、L50寿命比が2.0倍以上の値であるものとした。
7.冷間加工時の割れ発生の確率
φ14mmで長さ21mmの棒状試験片に冷間にて70%の据込みを行なって、試験片の表面に長さ方向のき裂の発生の有無を調査した。冷間加工時の割れ発生数を求め、n=5回の冷間加工時の割れ発生数の割合を割れ発生確率とした。なお、本発明においては、割れ発生確率が80%未満を、冷間加工時の割れ発生に優れている場合とした。
Next 1. ~ 7. Shows the evaluation items of each test and the evaluation results of each test for each of the above-mentioned invention steels and comparative steels.
1. 1. Hardness measurement at a depth of 0.05 mm from the surface Using the test piece prepared above, cut at the T-plane, which is a cross section perpendicular to the length direction, and use a Micro Vickers hardness tester to measure the hardness at a depth of 0.05 mm from the surface. The hardness of the position was measured. The average value of n = 5 tests was defined as a hardness of 0.05 mm depth from the surface.
2. 2. C concentration measurement at a depth of 0.05 mm from the surface Using the test piece prepared above, cut at the T-plane, which is a cross section perpendicular to the length direction, and use an electron probe microanalyzer (EPMA) to a depth of 0.05 mm from the surface. The C concentration at the vertical position was measured. The average value of n = 3 tests was taken as the value of C concentration at a depth of 0.05 mm from the surface.
3. 3. Measurement of residual γ content at a depth of 0.05 mm from the surface Using the test piece prepared above, electrolytic polishing is performed to a depth of 0.05 mm from the surface, and residual at a position of 0.05 mm from the surface by XRD (X-ray diffraction). The amount of γ was measured. The average value of n = 3 tests was taken as the value of the residual γ amount at a position 0.05 mm from the surface.
4. Determining the grain size number from the surface to a depth of 0.4 mm Using the test piece prepared above, cut at the T-plane, which is a cross section perpendicular to the length direction, and observe by revealing the old γ grain boundaries with saturated picric acid. The crystal grain size number up to a depth of 0.4 mm was determined, and the average value of n = 5 determinations was taken as the value of the crystal grain size number.
5. Value of formula A or B Formula A is 2.1 × [Si%] + [Cr%] (note that [element%] are all numerical values indicated by mass%), and formula B is 2.1 × [Si%]. When + [Cr%] + 3.3 x [Mo%] ([element%] are all numerical values indicated by mass%), the value of the formula A or the value of the formula A depends on the chemical composition contained in the invention steel or the comparative steel. The value of the formula B was used.
6. Evaluation of pitting life (L 50 life ratio in the roller pitting test)
The test piece prepared above was used as a roller pitching test piece for evaluation of pitching resistance, and the mating material: SCM420 steel carburized abrasive, slip ratio: -40%, surface pressure: 3.3 GPa, lubricating oil temperature: 80. A roller pitching test as shown in FIG. 1 was carried out at ° C. L 50 life of the specimen, SCM420 comparison of corresponding steel Steel No. When the value of L 50 life of 13 is set to 1.0 of the reference value, it is evaluated by how many times the reference value is equivalent, and the average value of the evaluation values of n = 5 tests is L 50. The life ratio was used. In the present invention, if has excellent resistance to pitting life was assumed L 50 life ratio is 2.0 times or more.
7. Probability of cracking during cold working A 70% cold installation was performed on a rod-shaped test piece with a diameter of 14 mm and a length of 21 mm, and the presence or absence of cracks in the length direction was investigated on the surface of the test piece. .. The number of cracks generated during cold working was determined, and the ratio of the number of cracks generated during cold working n = 5 times was defined as the crack occurrence probability. In the present invention, a crack occurrence probability of less than 80% is defined as a case where crack generation during cold working is excellent.

発明鋼のNo.1〜22についての上記の評価結果を表3に示す。また、比較鋼のNo.1〜21についての評価結果示を表4に示す。 Invention Steel No. The above evaluation results for 1 to 22 are shown in Table 3. In addition, the comparative steel No. Table 4 shows the evaluation results for 1 to 21.

Figure 2021021129
Figure 2021021129

Figure 2021021129
Figure 2021021129

表1に示す発明鋼のNo.1〜22の化学成分は、全て本願の請求項に記載する範囲のものであり、その鋼材の特性は、表3のNo.1〜22に示すとおりで、0.5mm硬さは680〜750HV、0.5mmC濃度は0.5〜0.9%、0.5mm残留γ量は24〜45容量%、0.4mmまでの結晶粒度番号は8〜11、式Aor式Bの値は2.82〜5.88、ローラーピッチング試験におけるL50寿命比は基準の比較鋼のNo.13の値の2.0〜3.4倍であり、さらに冷間加工時の割れ発生確率は0〜60%であり、発明鋼No.1〜22におけるこれら特性は、いずれも全て優れている。 なお、この表3に示す発明鋼では、ローラーピッチング試験におけるL50寿命比は2倍以上のものを優れているとしている。また、表3と下記の表4では、「研削処理された鋼部材の表面から0.05mm深さにおける」を略して「0.05mm」と記載し、さらに「研削処理された鋼部材の表面から0.4mm深さまでの平均」を略して「0.4mmまでの」と記載し、また、さらに「式Aの値あるいは式Bの値」を略して「式Aor式B」と記載している。 No. of invention steels shown in Table 1. The chemical components 1 to 22 are all within the range described in the claims of the present application, and the characteristics of the steel material are described in No. 1 of Table 3. As shown in 1 to 22, 0.5 mm hardness is 680 to 750 HV, 0.5 mm C concentration is 0.5 to 0.9%, 0.5 mm residual γ amount is 24 to 45 volume%, up to 0.4 mm. the value of the grain size number is 8-11, wherein Aor type B is 2.82 to 5.88, No. L 50 life ratio in the roller pitting test is the reference comparison steel The value of 13 is 2.0 to 3.4 times, and the probability of cracking during cold working is 0 to 60%. All of these characteristics in 1 to 22 are excellent. In the invention steels shown in Table 3, L 50 life ratio in the roller pitting test are to be superior to more than 2 times. Further, in Table 3 and Table 4 below, "at a depth of 0.05 mm from the surface of the ground steel member" is abbreviated as "0.05 mm", and further, "the surface of the ground steel member" is described as "0.05 mm". "Average from to 0.4 mm depth" is abbreviated as "up to 0.4 mm", and "value of formula A or value of formula B" is abbreviated as "formula A or formula B". There is.

比較鋼No.1〜21は、表2に示す化学成分であって、その各鋼材の特性は、表4に示すとおりである。表2の比較鋼では、下線で示す化学成分が、表1の発明鋼の範囲から外れている。そして、表4では、下線で示される個所の特性が、本発明の特性の範囲から外れている。 Comparative Steel No. 1 to 21 are the chemical components shown in Table 2, and the characteristics of each steel material are as shown in Table 4. In the comparative steels of Table 2, the chemical components shown by the underline are out of the range of the invention steels of Table 1. Then, in Table 4, the characteristics of the underlined parts are out of the range of the characteristics of the present invention.

比較鋼のNo.1では、Cの含有量が0.08%と低いものであり、式Aの値が2.67と低く、L50寿命比が1.8倍と低いものとなった。
No.2では、Cの含有量が0.33%と高く、冷間加工時の割れ発生確率が80%と高くなった。
No.3では、Siの含有量が0.42%と低いものであり、式Aの値が2.33と低く、L50寿命比が1.1と低い。
No.4では、Siの含有量が0.89%と高いものであり、0.05mm深さにおける硬さが664HVと低く、C濃度も0.42%と低く、残留γ量も18容量%と低く、浸炭阻害が発生した。
No.5では、Mnの含有量が0.41%と高いものであり、冷間加工時の割れ発生確率が100%と高い。
No.6では、Crの含有率が1.15%と低いものであり、式Aの値が2.20と低く、L50寿命比が1.3倍と低い。
No.7では、Crの含有率が2.24%と高いものであり、0.05mm深さにおける硬さが650HVと低く、C濃度も0.39質量%と低い。また浸炭阻害が発生した。
No.8では、Alの含有量が0.020%と低いものであり、0.4mmまでの結晶粒度番号が6と小さいので結晶粒が大きく、L50寿命比が1.7倍と低い。
No.9では、Alの含有量が0.054%と高いものであり、冷間加工時の割れ発生確率が80%と高い。
No.10では、Nの含有量が0.0097%と低いものであり、0.4mmまでの結晶粒度番号が6と小さいので結晶粒が大きく、冷間加工時の割れ発生確率が80%と高い。
No.11では、Siの含有量が0.37%と低いものであり、Crの含有率が1.02%と低く、式Aの値が1.80%と低い。
No.12では、Mnの含有量が0.78%と高いものであり、Alの含有量が0.094%と高く、Nの含有量が0.0080%と低く、0.4mmまでの結晶粒度番号が7と小さいので結晶粒が大きく、冷間加工時の割れ発生確率が100%と高い。
Comparative steel No. In 1, are those the C content 0.08% and lower, the value of the formula A is as low as 2.67, L 50 life ratio becomes as 1.8 times as low.
No. In No. 2, the C content was as high as 0.33%, and the probability of cracking during cold working was as high as 80%.
No. In 3 are those content of Si 0.42% of a low, low value of the expression A is 2.33, low and L 50 life ratio is 1.1.
No. In No. 4, the Si content is as high as 0.89%, the hardness at a depth of 0.05 mm is as low as 664 HV, the C concentration is as low as 0.42%, and the residual γ content is as low as 18% by volume. , Carburizing inhibition occurred.
No. In No. 5, the Mn content is as high as 0.41%, and the probability of cracking during cold working is as high as 100%.
No. In 6 are those of Cr content 1.15 percent lower, the value of the formula A is as low as 2.20, L 50 life ratio is 1.3 times as low.
No. In No. 7, the Cr content is as high as 2.24%, the hardness at a depth of 0.05 mm is as low as 650 HV, and the C concentration is as low as 0.39 mass%. In addition, carburizing inhibition occurred.
No. In 8 are those Al content 0.020% or as low as the grain is large because the grain size number of up to 0.4mm is small and 6, L 50 life ratio is 1.7 times as low.
No. In No. 9, the Al content is as high as 0.054%, and the probability of cracking during cold working is as high as 80%.
No. In No. 10, the N content is as low as 0.0097%, and the crystal grain size number up to 0.4 mm is as small as 6, so the crystal grains are large and the probability of cracking during cold working is as high as 80%.
No. In No. 11, the Si content is as low as 0.37%, the Cr content is as low as 1.02%, and the value of the formula A is as low as 1.80%.
No. In No. 12, the Mn content is as high as 0.78%, the Al content is as high as 0.094%, the N content is as low as 0.0080%, and the grain size numbers up to 0.4 mm. Since the value is as small as 7, the crystal grains are large, and the probability of cracking during cold working is as high as 100%.

さらに、比較鋼のNo.13はSCM420相当鋼であり、Siの含有量が0.32%と低く、Mnの含有量が0.84%と高く、Crの含有率が1.10%と低く、また、式Bの値が2.43と低い。L50寿命比は1.0と、発明鋼の2.0倍に比して低い。
No.14では、Moの含有量が1.01%と高いものであり、Nを含有しておらず、冷間加工時の割れ発生確率が80%と高い。
No.15では、Cの含有量が0.35%と高く、Moの含有量が1.12%と高いものであり、冷間加工時の割れ発生確率が100%と高い。
Further, the comparative steel No. Reference numeral 13 denotes a steel equivalent to SCM420, which has a low Si content of 0.32%, a high Mn content of 0.84%, a low Cr content of 1.10%, and a value of Formula B. Is as low as 2.43. L 50 life ratio is 1.0, less than 2.0 times of the invention steels.
No. In No. 14, the Mo content is as high as 1.01%, N is not contained, and the probability of cracking during cold working is as high as 80%.
No. In No. 15, the C content is as high as 0.35%, the Mo content is as high as 1.12%, and the probability of cracking during cold working is as high as 100%.

さらに、No.16では、式Bの値が2.78と低く、軟化が促進しやすいことから、L50寿命比が1.4倍と低かった。
No.17では、Vの含有量が0.15%と多く、冷間加工時の割れ発生確率が80%と高いものとなった。
No.18では、Tiの含有量が0.20%と多く、冷間加工時の割れ発生確率が100%と高いものとなった。
No.19では、Nbの含有量が0.14%と多く、冷間加工時の割れ発生確率が80%と高いものとなった。
No.20では、Siが1.07%およびMnが0.82%と化学成分がともに規定量より多く、硬さが661HVと低く、C濃度が0.41質量%と低い。また浸炭阻害が発生した。
No.21では、Siが0.24%と化学成分が規定より低く、Crが2.41%と化学成分が規定量より多く、さらにNの化学成分を規定より多く有し、硬さが638HVと低く、C濃度が0.40質量%と低く、残留γ量が17容量%と低い。また浸炭阻害が発生した。
Furthermore, No. In 16, the value of the formula B is as low as 2.78, because the softened is likely to accelerate, L 50 life ratio was as low as 1.4 times.
No. In No. 17, the V content was as high as 0.15%, and the probability of cracking during cold working was as high as 80%.
No. In No. 18, the Ti content was as high as 0.20%, and the probability of cracking during cold working was as high as 100%.
No. In No. 19, the Nb content was as high as 0.14%, and the probability of cracking during cold working was as high as 80%.
No. In No. 20, Si is 1.07% and Mn is 0.82%, both of which have more chemical components than the specified amounts, the hardness is as low as 661 HV, and the C concentration is as low as 0.41 mass%. In addition, carburizing inhibition occurred.
No. In No. 21, Si is 0.24%, which is lower than the specified amount, Cr is 2.41%, which is more than the specified amount, and N is more than specified, and the hardness is as low as 638 HV. , C concentration is as low as 0.40% by mass, and residual γ amount is as low as 17% by mass. In addition, carburizing inhibition occurred.

1 ローラーピッチング試験片(小ローラー)
2 相手材(大ローラー)
1 Roller pitching test piece (small roller)
2 Opposite material (large roller)

Claims (4)

質量%で、C:0.10〜0.30%、Si:0.51〜0.80%、Mn:0.10〜0.40%、P:0.005〜0.025%、S:0.005〜0.025%、Ni:0.05〜0.20%、Cr:1.30〜2.00%、Al:0.025〜0.050%、N:0.0100〜0.0250%を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留オーステナイト量(以下、残留γ量ともいう。):20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式A:2.1×[Si%]+[Cr%](なお[元素%]は全て質量%で示す数値)とするとき、式Aの値が2.8以上を満足することを特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材。 By mass%, C: 0.10 to 0.30%, Si: 0.51 to 0.80%, Mn: 0.10 to 0.40%, P: 0.005 to 0.025%, S: 0.005 to 0.025%, Ni: 0.05 to 0.20%, Cr: 1.30 to 2.00%, Al: 0.025 to 0.050%, N: 0.0100 to 0. A carburized steel member of mechanical structural steel containing 0250% and consisting of the balance Fe and unavoidable impurities. The hardness, C concentration and retained austenite at a depth of 0.05 mm from the surface of the ground steel member. The amounts were: hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass%, residual austenite amount (hereinafter, also referred to as residual γ amount): 20 to 45% by volume, and were ground. Average grain size number from the surface of the steel member to a depth of 0.4 mm: No. When the value is 8 or more and the formula A is: 2.1 × [Si%] + [Cr%] (note that [element%] are all numerical values indicated by mass%), the value of formula A is 2.8. A carburized steel member made of machine structural steel having excellent pitching resistance on a ground surface, which is characterized by satisfying the above. 請求項1の化学成分に加えて、質量%で、Mo:0.10〜0.90%を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留γ量:20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式B:2.1×[Si%]+[Cr%]+3.3×[Mo%](なお[元素%]は全て質量%で示す数値)とするとき、式Bの値が2.8以上を満足することを特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材。 A carburized steel member of mechanical structural steel containing Mo: 0.10 to 0.90% in mass% in addition to the chemical component of claim 1 and composed of the balance Fe and unavoidable impurities. The hardness, C concentration and residual austenite amount at a depth of 0.05 mm from the surface of the ground steel member are hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass%, residual γ content: 20. Average crystal grain size number from the surface of the ground steel member to a depth of 0.4 mm, which is ~ 45% by volume: No. When it is 8 or more and the formula B: 2.1 × [Si%] + [Cr%] + 3.3 × [Mo%] (note that [element%] are all numerical values indicated by mass%), A carburized steel member made of machine structural steel having excellent pitching resistance on a ground surface, which satisfies the value of the formula B of 2.8 or more. 請求項1の化学成分に加えて、質量%で、V:0.02〜0.10%、Ti:0.02〜0.10%、Nb:0.02〜0.10%のいずれか1種以上を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留γ量:20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式Aを2.1×[Si%]+[Cr%](なお[元素%]は全て質量%で示す数値)とするとき、式Aの値が2.8以上を満足することを特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材。 In addition to the chemical component of claim 1, in mass%, any one of V: 0.02 to 0.10%, Ti: 0.02 to 0.10%, and Nb: 0.02 to 0.10%. A carburized steel member of machine structural steel containing seeds or more and consisting of a balance Fe and unavoidable impurities, such as hardness, C concentration and retained austenite at a depth of 0.05 mm from the surface of the ground steel member. The amount is hardness: 680 to 750 HV, C concentration: 0.5 to 0.9% by mass, residual γ amount: 20 to 45% by volume, and up to a depth of 0.4 mm from the surface of the ground steel member. Average grain size number: No. When the value is 8 or more and the formula A is 2.1 × [Si%] + [Cr%] (note that [element%] are all numerical values indicated by mass%), the value of the formula A is 2.8. A carburized steel member made of machine structural steel having excellent pitching resistance on a ground surface, which is characterized by satisfying the above. 請求項2の化学成分に加えて、質量%で、V:0.02〜0.10%、Ti:0.02〜0.10%、Nb:0.02〜0.10%のいずれか1種以上を含有し、残部Feおよび不可避的不純物からなる機械構造用鋼の浸炭された鋼部材であって、研削処理された鋼部材の表面から0.05mm深さにおける硬さやC濃度や残留オーステナイト量は、硬さ:680〜750HV、C濃度:0.5〜0.9質量%、残留γ量:20〜45容量%であって、研削処理された鋼部材の表面から0.4mm深さまでの平均結晶粒度番号:No.8以上であって、さらに、式Bを2.1×[Si%]+[Cr%]+3.3×[Mo%](なお[元素%]は全て質量%で示す数値)とするとき、式Bの値が2.8以上を満足することを特徴とする研削肌での耐ピッチング特性に優れた機械構造用鋼からなる浸炭された鋼部材。 In addition to the chemical component of claim 2, in mass%, any one of V: 0.02 to 0.10%, Ti: 0.02 to 0.10%, and Nb: 0.02 to 0.10%. A carburized steel member of machine structural steel containing seeds or more and consisting of a balance Fe and unavoidable impurities, such as hardness, C concentration and retained austenite at a depth of 0.05 mm from the surface of the ground steel member. The amount is hardness: 680 to 750 HV, C concentration: 0.5 to 0.9 mass%, residual γ amount: 20 to 45% by volume, and up to a depth of 0.4 mm from the surface of the ground steel member. Average grain size number: No. When it is 8 or more and the formula B is 2.1 × [Si%] + [Cr%] + 3.3 × [Mo%] (note that [element%] are all numerical values indicated by mass%). A carburized steel member made of machine structural steel having excellent pitching resistance on a ground surface, which satisfies the value of the formula B of 2.8 or more.
JP2019140161A 2019-07-30 2019-07-30 Carburized steel parts made of mechanical structural steel with excellent pitting resistance on grinding surfaces Active JP7378889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019140161A JP7378889B2 (en) 2019-07-30 2019-07-30 Carburized steel parts made of mechanical structural steel with excellent pitting resistance on grinding surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019140161A JP7378889B2 (en) 2019-07-30 2019-07-30 Carburized steel parts made of mechanical structural steel with excellent pitting resistance on grinding surfaces

Publications (2)

Publication Number Publication Date
JP2021021129A true JP2021021129A (en) 2021-02-18
JP7378889B2 JP7378889B2 (en) 2023-11-14

Family

ID=74575022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019140161A Active JP7378889B2 (en) 2019-07-30 2019-07-30 Carburized steel parts made of mechanical structural steel with excellent pitting resistance on grinding surfaces

Country Status (1)

Country Link
JP (1) JP7378889B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286115A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Highly strength gear and its producing method
JP2005113168A (en) * 2003-10-03 2005-04-28 Kobe Steel Ltd Steel component for machine structure
JP2009299148A (en) * 2008-06-13 2009-12-24 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2012224928A (en) * 2011-04-21 2012-11-15 Sanyo Special Steel Co Ltd Steel material for machine structural use having excellent contact pressure fatigue strength
JP2014070256A (en) * 2012-09-28 2014-04-21 Daido Steel Co Ltd High surface pressure resistant component
JP2014198877A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Carburized component excellent in surface fatigue strength and method of manufacturing the same
JP2016050350A (en) * 2014-09-01 2016-04-11 山陽特殊製鋼株式会社 Steel component for high strength high toughness machine structure excellent in pitching resistance and abrasion resistance and manufacturing method therefor
JP2019039044A (en) * 2017-08-25 2019-03-14 株式会社ジェイテクト Rolling slide member and rolling bearing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286115A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Highly strength gear and its producing method
JP2005113168A (en) * 2003-10-03 2005-04-28 Kobe Steel Ltd Steel component for machine structure
JP2009299148A (en) * 2008-06-13 2009-12-24 Sanyo Special Steel Co Ltd Method for manufacturing high-strength carburized component
JP2012224928A (en) * 2011-04-21 2012-11-15 Sanyo Special Steel Co Ltd Steel material for machine structural use having excellent contact pressure fatigue strength
JP2014070256A (en) * 2012-09-28 2014-04-21 Daido Steel Co Ltd High surface pressure resistant component
JP2014198877A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Carburized component excellent in surface fatigue strength and method of manufacturing the same
JP2016050350A (en) * 2014-09-01 2016-04-11 山陽特殊製鋼株式会社 Steel component for high strength high toughness machine structure excellent in pitching resistance and abrasion resistance and manufacturing method therefor
JP2019039044A (en) * 2017-08-25 2019-03-14 株式会社ジェイテクト Rolling slide member and rolling bearing

Also Published As

Publication number Publication date
JP7378889B2 (en) 2023-11-14

Similar Documents

Publication Publication Date Title
KR101830017B1 (en) Carburized-steel-component production method, and carburized steel component
JP5862802B2 (en) Carburizing steel
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
JP5669339B2 (en) Manufacturing method of high strength carburized parts
JP4941252B2 (en) Case-hardened steel for power transmission parts
JP5558887B2 (en) Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP4847681B2 (en) Ti-containing case-hardened steel
KR20190008915A (en) Progressive steel and its manufacturing method and manufacturing method of gear parts
JP7013833B2 (en) Carburized parts
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP7378889B2 (en) Carburized steel parts made of mechanical structural steel with excellent pitting resistance on grinding surfaces
JP6922415B2 (en) Carburized parts
JP2016188422A (en) Carburized component
JPH10259450A (en) Case hardening steel excellent in low cycle fatigue strength
JP6256416B2 (en) Case-hardened steel
JP2015045036A (en) Skin hardening steel for gear excellent in pitching resistance under hydrogen environment
JP2019183211A (en) Carburization component
JP3996386B2 (en) Carburizing steel with excellent torsional fatigue properties
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP7417093B2 (en) steel material
KR100913172B1 (en) Ultra high strength carburizing steel with high fatigue resistance
JP7063071B2 (en) Carburized parts
JP2023163967A (en) Bar steel and carburized component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231031

R150 Certificate of patent or registration of utility model

Ref document number: 7378889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150