JP2021019167A - Electronic component built-in substrate and method for manufacturing the same - Google Patents

Electronic component built-in substrate and method for manufacturing the same Download PDF

Info

Publication number
JP2021019167A
JP2021019167A JP2019135916A JP2019135916A JP2021019167A JP 2021019167 A JP2021019167 A JP 2021019167A JP 2019135916 A JP2019135916 A JP 2019135916A JP 2019135916 A JP2019135916 A JP 2019135916A JP 2021019167 A JP2021019167 A JP 2021019167A
Authority
JP
Japan
Prior art keywords
electronic component
metal film
substrate
back surface
covered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019135916A
Other languages
Japanese (ja)
Other versions
JP7443689B2 (en
Inventor
阿部 敏之
Toshiyuki Abe
敏之 阿部
横山 健
Takeshi Yokoyama
健 横山
和俊 露谷
Kazutoshi Tsuyutani
和俊 露谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019135916A priority Critical patent/JP7443689B2/en
Publication of JP2021019167A publication Critical patent/JP2021019167A/en
Application granted granted Critical
Publication of JP7443689B2 publication Critical patent/JP7443689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To prevent separation of an electronic component in an electronic component built-in substrate with an electronic component such as a semiconductor IC buried in a phase-up system.SOLUTION: An electronic component built-in substrate 1 includes: a substrate formed by depositing wiring layers L1 to L4 and insulating layers 11 to 14; and an electronic component 40 having a back surface 44 and a side surface 43 located in an opposite side to a main side 42 where a terminal electrode 41 is formed, the electronic component being buried in the substrate so that the back surface 44 is covered by an insulating layer 13 and the main surface 42 and the side surface 43 are covered by the insulating film 12. The back surface 44 and the side surface 43 of the electronic component 40 are covered with a metal film 50. Since not only the back surface 44 but also the side surface 43 of the electronic component 40 are covered with a metal film 50, it becomes possible to prevent separation in a corner part as the interface between the back surface 44 and the side surface 43.SELECTED DRAWING: Figure 1

Description

本発明は電子部品内蔵基板及びその製造方法に関し、特に、半導体ICなど電子部品がフェースアップ方式で埋め込まれた電子部品内蔵基板及びその製造方法に関する。 The present invention relates to an electronic component-embedded substrate and a method for manufacturing the same, and more particularly to an electronic component-embedded substrate in which electronic components such as a semiconductor IC are embedded by a face-up method and a method for manufacturing the same.

半導体ICなど電子部品がフェースアップ方式で埋め込まれた電子部品内蔵基板としては、特許文献1及び2に記載された電子部品内蔵基板が知られている。しかしながら、半導体ICを構成するシリコン材料は、絶縁層を構成する樹脂材料に対する密着性が低いことから、半導体ICの動作によって温度が上昇すると、熱膨張係数の差に起因する応力が生じ、半導体ICと絶縁層の界面に剥離が生じることがあった。 As an electronic component-embedded substrate in which electronic components such as a semiconductor IC are embedded by a face-up method, the electronic component-embedded substrates described in Patent Documents 1 and 2 are known. However, since the silicon material constituting the semiconductor IC has low adhesion to the resin material constituting the insulating layer, when the temperature rises due to the operation of the semiconductor IC, stress due to the difference in the coefficient of thermal expansion occurs, and the semiconductor IC And peeling may occur at the interface of the insulating layer.

ここで、特許文献2に記載された電子部品内蔵基板は、半導体ICの裏面が金属膜で覆われていることから、この金属膜が密着層として機能し、半導体ICの裏面における剥離が生じにくくなる。 Here, in the electronic component-embedded substrate described in Patent Document 2, since the back surface of the semiconductor IC is covered with a metal film, the metal film functions as an adhesion layer, and peeling on the back surface of the semiconductor IC is unlikely to occur. Become.

特開2011−205853号公報Japanese Unexamined Patent Publication No. 2011-205853 特開2007−150002号公報JP-A-2007-150002

しかしながら、半導体ICをフェースアップ方式で埋め込んだ場合、最も剥離しやすい部分は、半導体ICの裏面と側面の境界となる角部であり、この部分における剥離は単に半導体ICの裏面に金属膜を形成するだけでは防止することが困難であった。 However, when the semiconductor IC is embedded by the face-up method, the portion most easily peeled off is the corner portion that is the boundary between the back surface and the side surface of the semiconductor IC, and the peeling in this portion simply forms a metal film on the back surface of the semiconductor IC. It was difficult to prevent it just by doing it.

したがって、本発明は、半導体ICなど電子部品がフェースアップ方式で埋め込まれた電子部品内蔵基板及びその製造方法において、電子部品の剥離をより効果的に防止することを目的とする。 Therefore, an object of the present invention is to more effectively prevent peeling of electronic components in an electronic component-embedded substrate in which electronic components such as semiconductor ICs are embedded by a face-up method and a method for manufacturing the same.

本発明による電子部品内蔵基板は、複数の配線層と少なくとも第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板と、端子電極が形成された主面と主面の反対側に位置する裏面と主面及び裏面に対して垂直な側面とを有し、裏面が第1の絶縁層で覆われ、主面及び側面が第2の絶縁層で覆われるよう、基板に埋め込まれた電子部品とを備え、電子部品の裏面及び側面は、金属膜で覆われていることを特徴とする。 The substrate for incorporating electronic components according to the present invention is a substrate in which a plurality of wiring layers and a plurality of insulating layers including at least the first and second insulating layers are laminated, and the opposite of the main surface and the main surface on which the terminal electrodes are formed. It has a back surface located on the side and a main surface and a side surface perpendicular to the back surface, and is embedded in the substrate so that the back surface is covered with the first insulating layer and the main surface and the side surface are covered with the second insulating layer. It is characterized in that the back surface and the side surface of the electronic component are covered with a metal film.

本発明によれば、電子部品の裏面だけでなく側面も金属膜で覆われていることから、裏面と側面の境界となる角部における剥離を防止することが可能となる。 According to the present invention, since not only the back surface of the electronic component but also the side surface is covered with the metal film, it is possible to prevent peeling at the corner portion which is the boundary between the back surface and the side surface.

本発明において、電子部品の側面に形成された金属膜の厚みは、裏面側から主面側に向かうにつれて薄くなっていても構わない。これによれば、フィラーが入り込みにくい角部近傍の領域が金属膜で埋められることから、熱膨張係数の差を緩和することが可能となる。 In the present invention, the thickness of the metal film formed on the side surface of the electronic component may become thinner from the back surface side to the main surface side. According to this, since the region near the corner where the filler is difficult to enter is filled with the metal film, it is possible to alleviate the difference in the coefficient of thermal expansion.

本発明において、電子部品の側面は、裏面側に位置し金属膜で覆われた下部領域と、主面側に位置し金属膜で覆われていない上部領域を有するものであっても構わない。これによれば、金属膜が電子部品の主面に回り込むことがなくなる。 In the present invention, the side surface of the electronic component may have a lower region located on the back surface side and covered with a metal film and an upper region located on the main surface side and not covered with the metal film. According to this, the metal film does not wrap around the main surface of the electronic component.

本発明において、上部領域は下部領域から突出していても構わない。かかる構造は、電子部品が形成されたウェーハ又は集合基板を裏面側からハーフカットすることによって得られ、金属膜の主面側への回り込みを確実に防止することが可能となる。 In the present invention, the upper region may protrude from the lower region. Such a structure is obtained by half-cutting a wafer or an assembly substrate on which electronic components are formed from the back surface side, and it is possible to reliably prevent the metal film from wrapping around to the main surface side.

本発明による電子部品内蔵基板の製造方法は、端子電極が形成された主面と、主面の反対側に位置する裏面と、主面及び裏面に対して垂直な側面とを有する電子部品を用意し、裏面及び側面に金属膜を形成する工程と、複数の配線層と少なくとも第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板に、裏面が第1の絶縁層で覆われ、主面及び側面が第2の絶縁層で覆われるよう電子部品を埋め込む工程と、を備えることを特徴とする。 In the method for manufacturing an electronic component-embedded substrate according to the present invention, an electronic component having a main surface on which terminal electrodes are formed, a back surface located on the opposite side of the main surface, and a side surface perpendicular to the main surface and the back surface is prepared. The back surface is a first insulating layer on a substrate in which a metal film is formed on the back surface and the side surface, and a plurality of wiring layers and a plurality of insulating layers including at least the first and second insulating layers are laminated. It is characterized by comprising a step of embedding an electronic component so as to be covered and the main surface and the side surface are covered with a second insulating layer.

本発明によれば、電子部品の裏面だけでなく側面も金属膜で覆われることから、電子部品の角部における剥離を防止することが可能となる。 According to the present invention, not only the back surface of the electronic component but also the side surface thereof is covered with the metal film, so that it is possible to prevent peeling at the corner portion of the electronic component.

本発明において、金属膜を形成する工程は、電子部品が形成されたウェーハ又は集合基板を裏面側からハーフカットすることによって側面の一部を露出させた状態で行っても構わない。これによれば、金属膜の主面側への回り込みを確実に防止することが可能となる。 In the present invention, the step of forming the metal film may be performed in a state where a part of the side surface is exposed by half-cutting the wafer or the collective substrate on which the electronic component is formed from the back surface side. According to this, it is possible to surely prevent the metal film from wrapping around to the main surface side.

このように、本発明によれば、半導体ICなど電子部品がフェースアップ方式で埋め込まれた電子部品内蔵基板及びその製造方法において、電子部品の剥離をより効果的に防止することが可能となる。 As described above, according to the present invention, it is possible to more effectively prevent the peeling of the electronic component in the electronic component built-in substrate in which the electronic component such as the semiconductor IC is embedded by the face-up method and the manufacturing method thereof.

図1は、本発明の好ましい実施形態による電子部品内蔵基板1の構造を説明するための模式的な断面図である。FIG. 1 is a schematic cross-sectional view for explaining the structure of the electronic component built-in substrate 1 according to the preferred embodiment of the present invention. 図2は、電子部品40の構造を説明するための模式的な断面図である。FIG. 2 is a schematic cross-sectional view for explaining the structure of the electronic component 40. 図3は、電子部品40に金属膜50を形成する第1の方法を説明するための模式図である。FIG. 3 is a schematic diagram for explaining a first method of forming the metal film 50 on the electronic component 40. 図4は、電子部品40に金属膜50を形成する第2の方法を説明するための模式図である。FIG. 4 is a schematic diagram for explaining a second method of forming the metal film 50 on the electronic component 40. 図5は、図4に示す方法で作成した電子部品40の形状を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the shape of the electronic component 40 created by the method shown in FIG. 図6は、電子部品40に金属膜50を形成する第3の方法を説明するための模式図である。FIG. 6 is a schematic diagram for explaining a third method of forming the metal film 50 on the electronic component 40. 図7は、電子部品40に金属膜50を形成する第4の方法を説明するための模式図である。FIG. 7 is a schematic diagram for explaining a fourth method of forming the metal film 50 on the electronic component 40. 図8は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 8 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図9は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 9 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図10は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 10 is a process diagram for explaining a method of manufacturing the electronic component built-in substrate 1. 図11は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 11 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図12は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 12 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図13は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 13 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図14は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 14 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図15は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 15 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図16は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 16 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図17は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 17 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図18は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 18 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1. 図19は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 19 is a process diagram for explaining a method of manufacturing the electronic component built-in substrate 1. 図20は、電子部品内蔵基板1の製造方法を説明するための工程図である。FIG. 20 is a process diagram for explaining a manufacturing method of the electronic component built-in substrate 1.

以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の好ましい実施形態による電子部品内蔵基板1の構造を説明するための模式的な断面図である。 FIG. 1 is a schematic cross-sectional view for explaining the structure of the electronic component built-in substrate 1 according to the preferred embodiment of the present invention.

図1に示すように、本実施形態による電子部品内蔵基板1は、4層の絶縁層11〜14と、絶縁層11〜14の表面にそれぞれ形成された配線層L1〜L4と、配線層L2と配線層L3の間に埋め込まれた電子部品40を備える。特に限定されるものではないが、最上層に位置する絶縁層11及び最下層に位置する絶縁層14は、ガラス繊維などの芯材にガラスエポキシなどの樹脂材料を含浸させたコア層であっても構わない。これに対し、絶縁層12,13は、ガラスクロスなどの芯材を含まない樹脂材料からなるものであっても構わない。特に、絶縁層11,14の熱膨張係数は、絶縁層12,13の熱膨張係数よりも小さいことが好ましい。 As shown in FIG. 1, the electronic component-embedded substrate 1 according to the present embodiment has four insulating layers 11 to 14, wiring layers L1 to L4 formed on the surfaces of the insulating layers 11 to 14, and wiring layers L2, respectively. An electronic component 40 embedded between the wiring layer L3 and the wiring layer L3 is provided. Although not particularly limited, the insulating layer 11 located at the top layer and the insulating layer 14 located at the bottom layer are core layers in which a core material such as glass fiber is impregnated with a resin material such as glass epoxy. It doesn't matter. On the other hand, the insulating layers 12 and 13 may be made of a resin material that does not contain a core material such as glass cloth. In particular, the coefficient of thermal expansion of the insulating layers 11 and 14 is preferably smaller than the coefficient of thermal expansion of the insulating layers 12 and 13.

電子部品40の種類については特に限定されないが、例えばベアチップ状態の半導体ICであっても構わない。図1に示す例では、端子電極41が形成された主面42が上側を向くよう、フェースアップ方式で電子部品40が埋め込まれている。このため、電子部品40の主面42及び側面43は絶縁層12で覆われ、電子部品40の裏面44は絶縁層13で覆われる。 The type of the electronic component 40 is not particularly limited, but may be, for example, a semiconductor IC in a bare chip state. In the example shown in FIG. 1, the electronic component 40 is embedded in a face-up manner so that the main surface 42 on which the terminal electrode 41 is formed faces upward. Therefore, the main surface 42 and the side surface 43 of the electronic component 40 are covered with the insulating layer 12, and the back surface 44 of the electronic component 40 is covered with the insulating layer 13.

配線層L1は最上層に位置する配線層であり、その大部分はソルダーレジスト21によって覆われている。配線層L1のうち、ソルダーレジスト21によって覆われていない領域は、チップ部品などが搭載される外部端子E1を構成する。配線層L4は最下層に位置する配線層であり、その大部分はソルダーレジスト22によって覆われている。配線層L4のうち、ソルダーレジスト22によって覆われていない領域は、ハンダを介してマザーボードに接続される外部端子E2を構成する。これに対し、配線層L2,L3は内層に位置する。このうち、配線層L2は絶縁層11と絶縁層12の間に位置し、配線層L3は絶縁層13と絶縁層14の間に位置する。そして、配線層L1と配線層L2はビア導体31を介して接続され、配線層L2と電子部品40の端子電極41はビア導体32を介して接続され、配線層L2と配線層L3はビア導体33を介して接続され、配線層L3と配線層L4はビア導体34を介して接続される。 The wiring layer L1 is a wiring layer located at the uppermost layer, and most of the wiring layer L1 is covered with the solder resist 21. A region of the wiring layer L1 that is not covered by the solder resist 21 constitutes an external terminal E1 on which chip components and the like are mounted. The wiring layer L4 is a wiring layer located at the lowest layer, and most of the wiring layer L4 is covered with the solder resist 22. A region of the wiring layer L4 that is not covered by the solder resist 22 constitutes an external terminal E2 that is connected to the motherboard via solder. On the other hand, the wiring layers L2 and L3 are located in the inner layer. Of these, the wiring layer L2 is located between the insulating layer 11 and the insulating layer 12, and the wiring layer L3 is located between the insulating layer 13 and the insulating layer 14. The wiring layer L1 and the wiring layer L2 are connected via the via conductor 31, the wiring layer L2 and the terminal electrode 41 of the electronic component 40 are connected via the via conductor 32, and the wiring layer L2 and the wiring layer L3 are connected via the via conductor. It is connected via 33, and the wiring layer L3 and the wiring layer L4 are connected via the via conductor 34.

図2は、電子部品40の構造を説明するための模式的な断面図である。 FIG. 2 is a schematic cross-sectional view for explaining the structure of the electronic component 40.

図2に示すように、本実施形態において基板に埋め込まれる電子部品40は、裏面44の全面及び側面43の一部が金属膜50で覆われている。裏面44とは、主面42の反対側に位置し、端子電極41が設けられていない面である。また、側面43とは、主面42及び裏面44に対して垂直な面である。金属膜50は、単層構造又は積層構造を有しており、電子部品40と絶縁層12,13の密着性を高める役割を果たす。金属膜50は、銅(Cu)からなる単層構造であっても構わないし、銅(Cu)の両面に密着性の高いチタン(Ti)などからなる薄い層が設けられた積層構造であっても構わない。このように、本実施形態においては、電子部品40の裏面44の全面及び側面43の一部が金属膜50で覆われていることから、最も剥離が生じやすい裏面44と側面43の境界となる角部近傍における、電子部品40と絶縁層12,13の密着性が高められる。 As shown in FIG. 2, in the electronic component 40 embedded in the substrate in the present embodiment, the entire surface of the back surface 44 and a part of the side surface 43 are covered with the metal film 50. The back surface 44 is a surface located on the opposite side of the main surface 42 and not provided with the terminal electrode 41. The side surface 43 is a surface perpendicular to the main surface 42 and the back surface 44. The metal film 50 has a single-layer structure or a laminated structure, and plays a role of enhancing the adhesion between the electronic component 40 and the insulating layers 12 and 13. The metal film 50 may have a single-layer structure made of copper (Cu), or may have a laminated structure in which thin layers made of titanium (Ti) or the like having high adhesion are provided on both sides of the copper (Cu). It doesn't matter. As described above, in the present embodiment, since the entire surface of the back surface 44 and a part of the side surface 43 of the electronic component 40 are covered with the metal film 50, it is the boundary between the back surface 44 and the side surface 43 where peeling is most likely to occur. The adhesion between the electronic component 40 and the insulating layers 12 and 13 in the vicinity of the corner portion is enhanced.

特に限定されるものではないが、図2に示す例では、電子部品40の側面43が部分的に金属膜50で覆われている。具体的には、電子部品40の側面43は、裏面44側に位置し金属膜50で覆われた下部領域43aと、主面42側に位置し金属膜50で覆われていない上部領域43bを有している。これによれば、金属膜50が主面42側に回り込むことがないため、金属膜50と端子電極41の接触を防止することが可能となる。ここで、密着性をより高めるためには、電子部品40の厚みTに対する下部領域43aの厚みLの割合が大きいことが好ましいが、厚みLの割合が大きすぎると、金属膜50が主面42側に回り込みやすくなる。この点を考慮すれば、L/Tの値は0.7〜0.9の範囲とすることが好ましい。 Although not particularly limited, in the example shown in FIG. 2, the side surface 43 of the electronic component 40 is partially covered with the metal film 50. Specifically, the side surface 43 of the electronic component 40 includes a lower region 43a located on the back surface 44 side and covered with the metal film 50 and an upper region 43b located on the main surface 42 side and not covered with the metal film 50. Have. According to this, since the metal film 50 does not wrap around to the main surface 42 side, it is possible to prevent the metal film 50 from coming into contact with the terminal electrode 41. Here, in order to further improve the adhesion, it is preferable that the ratio of the thickness L of the lower region 43a to the thickness T of the electronic component 40 is large, but if the ratio of the thickness L is too large, the metal film 50 is the main surface 42. It becomes easier to go around to the side. Considering this point, the L / T value is preferably in the range of 0.7 to 0.9.

また、本実施形態においては、電子部品40の側面43に形成された金属膜50の厚みが裏面44側から主面42側に向かうにつれて薄くなっている。その結果、側面43に形成された金属膜50の表面と、裏面44に形成された金属膜50の表面が成す角度θは、90°未満となる。これにより、角度θが垂直である場合と比べ、絶縁層12に含まれるシリカなど熱膨張係数の小さいフィラーが電子部品40のより近傍まで充填されるため、熱膨張係数の差が緩和される。しかも、本実施形態においては、電子部品40の角部を覆う部分において金属膜50の形状がラウンドしていることから、金属膜50と絶縁層12の密着性も高められる。 Further, in the present embodiment, the thickness of the metal film 50 formed on the side surface 43 of the electronic component 40 becomes thinner from the back surface 44 side to the main surface 42 side. As a result, the angle θ formed by the front surface of the metal film 50 formed on the side surface 43 and the front surface of the metal film 50 formed on the back surface 44 is less than 90 °. As a result, as compared with the case where the angle θ is vertical, a filler having a small coefficient of thermal expansion such as silica contained in the insulating layer 12 is filled closer to the electronic component 40, so that the difference in the coefficient of thermal expansion is alleviated. Moreover, in the present embodiment, since the shape of the metal film 50 is rounded at the portion covering the corner portion of the electronic component 40, the adhesion between the metal film 50 and the insulating layer 12 is also enhanced.

電子部品40に金属膜50を形成する方法については特に限定されないが、裏面44のみならず側面43にも金属膜50を形成する必要があることから、ウェーハ又は集合基板を個片化することによって電子部品40を多数個取りする場合には、個片化した後あるいはウェーハ又は集合基板をハーフカットした状態で金属膜50を形成する必要がある。 The method of forming the metal film 50 on the electronic component 40 is not particularly limited, but since it is necessary to form the metal film 50 not only on the back surface 44 but also on the side surface 43, the wafer or the assembly substrate is individually separated. When a large number of electronic components 40 are taken, it is necessary to form the metal film 50 after the electronic components 40 are fragmented or the wafer or the assembly substrate is half-cut.

図3(a)に示す例では、電子部品40を個片化した後、電子部品40の主面42を保護膜90で覆った状態で、矢印Aで示す方向からスパッタリングを行う。これにより、図3(b)に示すように、電子部品40の裏面44及び側面43に金属膜50を選択的に形成することができる。この場合、電子部品40の側面43は、スパッタリング方向に対して水平であることから、裏面44から遠くなるほど金属膜50が成膜されにくくなり、結果的に図2に示す形状を得ることが可能となる。 In the example shown in FIG. 3A, after the electronic component 40 is fragmented, sputtering is performed from the direction indicated by the arrow A in a state where the main surface 42 of the electronic component 40 is covered with the protective film 90. As a result, as shown in FIG. 3B, the metal film 50 can be selectively formed on the back surface 44 and the side surface 43 of the electronic component 40. In this case, since the side surface 43 of the electronic component 40 is horizontal with respect to the sputtering direction, the metal film 50 is less likely to be formed as the distance from the back surface 44 increases, and as a result, the shape shown in FIG. 2 can be obtained. It becomes.

図4(a)に示す例では、電子部品40が形成されたウェーハ60を裏面44側からハーフカットすることにより、ウェーハ60に側面43の一部を露出させる溝61を形成する。この状態で、矢印Aで示す方向からスパッタリングを行うことにより、図4(b)に示すように、電子部品40の裏面44及び溝61の内壁に金属膜50が形成される。その後、溝61内に位置するダイシングライン62に沿ってウェーハ60を切断すれば、電子部品40の裏面44及び側面43に金属膜50を選択的に形成することができる。この場合、電子部品40は、図5に示すように、下部領域43aから上部領域43bが突出した形状となる。 In the example shown in FIG. 4A, the wafer 60 on which the electronic component 40 is formed is half-cut from the back surface 44 side to form a groove 61 on the wafer 60 to expose a part of the side surface 43. In this state, by performing sputtering from the direction indicated by the arrow A, a metal film 50 is formed on the back surface 44 of the electronic component 40 and the inner wall of the groove 61 as shown in FIG. 4 (b). After that, if the wafer 60 is cut along the dicing line 62 located in the groove 61, the metal film 50 can be selectively formed on the back surface 44 and the side surface 43 of the electronic component 40. In this case, as shown in FIG. 5, the electronic component 40 has a shape in which the upper region 43b protrudes from the lower region 43a.

さらに、図6(a)に示すように、ハーフカットによりウェーハ60に形成した溝61の底面にマスクパターン63を形成しておき、図6(b)に示すように、この状態でスパッタリングを行うことにより金属膜50を形成した後、図6(c)に示すようにマスクパターン63を除去すれば、マスクパターン63に付着した金属膜50がリフトオフされる。これにより、溝61の底面には金属膜50の存在しない領域が形成されるため、この領域に沿ってダイシングライン62を設定すれば、ダイシングに用いるブレードと金属膜50の接触を防止することが可能となる。 Further, as shown in FIG. 6A, a mask pattern 63 is formed on the bottom surface of the groove 61 formed in the wafer 60 by half-cutting, and sputtering is performed in this state as shown in FIG. 6B. As a result, if the mask pattern 63 is removed as shown in FIG. 6C after the metal film 50 is formed, the metal film 50 adhering to the mask pattern 63 is lifted off. As a result, a region where the metal film 50 does not exist is formed on the bottom surface of the groove 61. Therefore, if the dicing line 62 is set along this region, contact between the blade used for dicing and the metal film 50 can be prevented. It will be possible.

或いは、図7(a)に示すように、ハーフカットによりウェーハ60に溝61を形成した状態でスパッタリングを行うことにより金属膜50を形成した後、図7(b)に示すように、溝61の底部の一部が露出するようマスクパターン64を形成し、図7(c)に示すように、マスクパターン64から露出する金属膜50を除去しても構わない。これにより、溝61の底面には金属膜50の存在しない領域が形成されるため、この領域に沿ってダイシングライン62を設定すれば、ダイシングに用いるブレードと金属膜50の接触を防止することが可能となる。 Alternatively, as shown in FIG. 7A, after forming the metal film 50 by performing sputtering in a state where the groove 61 is formed in the wafer 60 by half-cut, the groove 61 is formed as shown in FIG. 7B. The mask pattern 64 may be formed so that a part of the bottom portion of the wafer is exposed, and the exposed metal film 50 may be removed from the mask pattern 64 as shown in FIG. 7 (c). As a result, a region where the metal film 50 does not exist is formed on the bottom surface of the groove 61. Therefore, if the dicing line 62 is set along this region, contact between the blade used for dicing and the metal film 50 can be prevented. It will be possible.

このようにして作製した電子部品40は、以下に説明する工程によって基板の内部に埋め込まれる。 The electronic component 40 produced in this way is embedded inside the substrate by the steps described below.

図8〜図20は、本実施形態による電子部品内蔵基板1の製造方法を説明するための工程図である。 8 to 20 are process diagrams for explaining the manufacturing method of the electronic component built-in substrate 1 according to the present embodiment.

まず、図8に示すように、ガラス繊維などの芯材を含む絶縁層14の一方の表面に金属膜L3aが形成され、他方の表面に金属膜L4a,L4bの積層膜が形成された基材(ワークボード)を用意し、剥離層71を介してステンレスなどからなる支持体70に貼り合わせる。 First, as shown in FIG. 8, a base material having a metal film L3a formed on one surface of an insulating layer 14 containing a core material such as glass fiber and a laminated film of metal films L4a and L4b formed on the other surface. (Workboard) is prepared and attached to a support 70 made of stainless steel or the like via a release layer 71.

次に、図9に示すように、フォトリソグラフィー法などを用いて金属膜L3aをパターニングすることによって、配線層L3を形成する。次に、図10に示すように、配線層L3を埋め込むよう、絶縁層14の表面に例えば未硬化(Bステージ状態)の樹脂シート等を真空圧着等によって積層することにより、絶縁層13を形成する。 Next, as shown in FIG. 9, the wiring layer L3 is formed by patterning the metal film L3a by using a photolithography method or the like. Next, as shown in FIG. 10, the insulating layer 13 is formed by laminating, for example, an uncured (B stage state) resin sheet or the like on the surface of the insulating layer 14 by vacuum pressure bonding or the like so as to embed the wiring layer L3. To do.

次に、図11に示すように、絶縁層13の表面に金属膜50が形成された電子部品40を載置する。電子部品40は、例えばベアチップ状態の半導体ICであり、端子電極41が形成された主面42が上側を向くよう、フェースアップ方式で搭載される。このため、電子部品40の裏面44と絶縁層13の間には、金属膜50が介在することになる。 Next, as shown in FIG. 11, an electronic component 40 having a metal film 50 formed on the surface of the insulating layer 13 is placed. The electronic component 40 is, for example, a semiconductor IC in a bare chip state, and is mounted in a face-up manner so that the main surface 42 on which the terminal electrode 41 is formed faces upward. Therefore, the metal film 50 is interposed between the back surface 44 of the electronic component 40 and the insulating layer 13.

次に、図12に示すように、電子部品40を覆うように絶縁層12及び金属膜L2aを形成する。これにより、電子部品40の側面43は、直接或いは金属膜50を介して絶縁層12で覆われる。絶縁層12の形成は、例えば、未硬化又は半硬化状態の熱硬化性樹脂を塗布した後、未硬化樹脂の場合それを加熱して半硬化させ、さらに、プレス手段を用いて金属膜L2aとともに硬化成形することが好ましい。絶縁層12としては、電子部品40の埋め込みを妨げる繊維が含まれない樹脂シートが望ましい。 Next, as shown in FIG. 12, the insulating layer 12 and the metal film L2a are formed so as to cover the electronic component 40. As a result, the side surface 43 of the electronic component 40 is covered with the insulating layer 12 directly or via the metal film 50. The insulating layer 12 is formed, for example, by applying a thermosetting resin in an uncured or semi-cured state, heating the uncured resin to semi-cure it, and further using a pressing means together with the metal film L2a. Curing molding is preferable. As the insulating layer 12, a resin sheet that does not contain fibers that hinder the embedding of the electronic component 40 is desirable.

次に、図13に示すように、例えばフォトリソグラフィー法など公知の手法を用いて金属膜L2aの一部をエッチングにより除去した後に、金属膜L2aが除去された所定の箇所に対して公知のブラスト加工やレーザー加工を行うことにより、ビアホール82,83を形成する。このうち、ビアホール83は絶縁層12,13を貫通して設けられ、ビアホール83の底部には配線層L3が露出する。また、ビアホール82は、電子部品40の端子電極41を露出させる。 Next, as shown in FIG. 13, after removing a part of the metal film L2a by etching using a known method such as a photolithography method, a known blast is applied to a predetermined portion from which the metal film L2a has been removed. Via holes 82 and 83 are formed by processing or laser processing. Of these, the via hole 83 is provided so as to penetrate the insulating layers 12 and 13, and the wiring layer L3 is exposed at the bottom of the via hole 83. Further, the via hole 82 exposes the terminal electrode 41 of the electronic component 40.

次に、図14に示すように、無電解メッキ及び電解メッキを施すことによって、絶縁層12の表面に金属膜L2bを形成するとともに、ビアホール82,83の内部にそれぞれビア導体32,33を形成する。その後、図15に示すように、フォトリソグラフィー法などを用いて金属膜L2bをパターニングすることによって、配線層L2を形成する。 Next, as shown in FIG. 14, by performing electroless plating and electrolytic plating, a metal film L2b is formed on the surface of the insulating layer 12, and via conductors 32 and 33 are formed inside the via holes 82 and 83, respectively. To do. Then, as shown in FIG. 15, the wiring layer L2 is formed by patterning the metal film L2b using a photolithography method or the like.

次に、図16に示すように、配線層L2を埋め込むよう、絶縁層11と金属膜L1a,L1bが積層されたシートを真空熱プレスする。絶縁層11に用いる材料及び厚みは、絶縁層14と同じであっても構わない。次に、図17に示すように、金属膜L1a,L1bの界面を剥離するとともに、金属膜L4a,L4bの界面を剥離することによって、基板を支持体70から分離する。 Next, as shown in FIG. 16, a sheet in which the insulating layer 11 and the metal films L1a and L1b are laminated is vacuum-heat pressed so as to embed the wiring layer L2. The material and thickness used for the insulating layer 11 may be the same as that of the insulating layer 14. Next, as shown in FIG. 17, the substrate is separated from the support 70 by peeling off the interface between the metal films L1a and L1b and peeling off the interface between the metal films L4a and L4b.

次に、図18に示すように、例えばフォトリソグラフィー法など公知の手法を用いて金属膜L1a,L4aの一部をエッチングにより除去した後に、金属膜L1a,L4aが除去された所定の箇所に対して公知のブラスト加工やレーザー加工を行うことにより、絶縁層11にビアホール81を形成し、絶縁層14にビアホール84を形成する。ビアホール81は絶縁層11を貫通して設けられ、ビアホール81の底部には配線層L2が露出する。また、ビアホール84は絶縁層14を貫通して設けられ、ビアホール84の底部には配線層L3が露出する。 Next, as shown in FIG. 18, after a part of the metal films L1a and L4a is removed by etching using a known method such as a photolithography method, the metal films L1a and L4a are removed from the predetermined portion. The via hole 81 is formed in the insulating layer 11 and the via hole 84 is formed in the insulating layer 14 by performing a known blasting process or laser processing. The via hole 81 is provided so as to penetrate the insulating layer 11, and the wiring layer L2 is exposed at the bottom of the via hole 81. Further, the via hole 84 is provided so as to penetrate the insulating layer 14, and the wiring layer L3 is exposed at the bottom of the via hole 84.

次に、図19に示すように、無電解メッキ及び電解メッキを施すことによって、絶縁層11,14の表面にそれぞれ金属膜L1c,L4cを形成するとともに、ビアホール81,84の内部にそれぞれビア導体31,34を形成する。これにより、ビア導体31は配線層L2と接し、ビア導体34は配線層L3と接する。その後、図20に示すように、フォトリソグラフィー法などを用いて金属膜L1c,L4cをパターニングすることによって、配線層L1,L4を形成する。 Next, as shown in FIG. 19, by performing electroless plating and electrolytic plating, metal films L1c and L4c are formed on the surfaces of the insulating layers 11 and 14, respectively, and via conductors are formed inside the via holes 81 and 84, respectively. Form 31, 34. As a result, the via conductor 31 is in contact with the wiring layer L2, and the via conductor 34 is in contact with the wiring layer L3. Then, as shown in FIG. 20, the wiring layers L1 and L4 are formed by patterning the metal films L1c and L4c by using a photolithography method or the like.

そして、絶縁層11,14の表面にそれぞれソルダーレジスト21,22を形成すれば、図1に示す電子部品内蔵基板1が完成する。 Then, if solder resists 21 and 22 are formed on the surfaces of the insulating layers 11 and 14, respectively, the electronic component-embedded substrate 1 shown in FIG. 1 is completed.

このように、本実施形態においては、裏面44及び側面43に金属膜50が形成された電子部品40をフェースアップ方式で絶縁層13の表面に載置した後、絶縁層12によって電子部品40を埋め込んでいることから、剥離が最も生じやすい電子部品40の角部における密着性を高めることが可能となる。これにより、電子部品40の動作によって温度が上昇しても、熱膨張係数の差に起因する電子部品40と絶縁層12,13の剥離を防止することが可能となる。 As described above, in the present embodiment, the electronic component 40 having the metal film 50 formed on the back surface 44 and the side surface 43 is placed on the surface of the insulating layer 13 by a face-up method, and then the electronic component 40 is mounted by the insulating layer 12. Since it is embedded, it is possible to improve the adhesion at the corners of the electronic component 40, which is most likely to be peeled off. As a result, even if the temperature rises due to the operation of the electronic component 40, it is possible to prevent the electronic component 40 and the insulating layers 12 and 13 from peeling off due to the difference in the coefficient of thermal expansion.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention, and these are also the present invention. It goes without saying that it is included in the range.

1 電子部品内蔵基板
11〜14 絶縁層
21,22 ソルダーレジスト
31〜34 ビア導体
40 電子部品
41 端子電極
42 主面
43 側面
43a 下部領域
43b 上部領域
44 裏面
50 金属膜
60 ウェーハ
61 溝
62 ダイシングライン
63,64 マスクパターン
70 支持体
71 剥離層
81〜84 ビアホール
90 保護膜
E1,E2 外部端子
L1〜L4 配線層
L1a〜L1c,L2a,L2b,L3a,L4a〜L4c 金属膜
1 Electronic component built-in substrate 11-14 Insulation layer 21 and 22 Solder resist 31-34 Via conductor 40 Electronic component 41 Terminal electrode 42 Main surface 43 Side surface 43a Lower area 43b Upper area 44 Back surface 50 Metal film 60 Wafer 61 Groove 62 Dicing line 63 , 64 Mask pattern 70 Support 71 Peeling layer 81-84 Via hole 90 Protective film E1, E2 External terminals L1 to L4 Wiring layer L1a to L1c, L2a, L2b, L3a, L4a to L4c Metal film

Claims (6)

複数の配線層と、少なくとも第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板と、
端子電極が形成された主面と、前記主面の反対側に位置する裏面と、前記主面及び裏面に対して垂直な側面とを有し、前記裏面が前記第1の絶縁層で覆われ、前記主面及び側面が前記第2の絶縁層で覆われるよう、前記基板に埋め込まれた電子部品と、を備え、
前記電子部品の前記裏面及び側面は、金属膜で覆われていることを特徴とする電子部品内蔵基板。
A substrate in which a plurality of wiring layers and a plurality of insulating layers including at least the first and second insulating layers are laminated.
It has a main surface on which terminal electrodes are formed, a back surface located on the opposite side of the main surface, and a side surface perpendicular to the main surface and the back surface, and the back surface is covered with the first insulating layer. An electronic component embedded in the substrate so that the main surface and the side surface are covered with the second insulating layer.
An electronic component-embedded substrate, characterized in that the back surface and the side surface of the electronic component are covered with a metal film.
前記電子部品の前記側面に形成された前記金属膜の厚みは、前記裏面側から前記主面側に向かうにつれて薄くなることを特徴とする請求項1に記載の電子部品内蔵基板。 The electronic component-embedded substrate according to claim 1, wherein the thickness of the metal film formed on the side surface of the electronic component decreases from the back surface side toward the main surface side. 前記電子部品の前記側面は、前記裏面側に位置し前記金属膜で覆われた下部領域と、前記主面側に位置し前記金属膜で覆われていない上部領域を有することを特徴とする請求項2に記載の電子部品内蔵基板。 A claim characterized in that the side surface of the electronic component has a lower region located on the back surface side and covered with the metal film and an upper region located on the main surface side and not covered with the metal film. Item 2. The electronic component built-in substrate according to item 2. 前記上部領域は、前記下部領域から突出していることを特徴とする請求項3に記載の電子部品内蔵基板。 The electronic component built-in substrate according to claim 3, wherein the upper region protrudes from the lower region. 端子電極が形成された主面と、前記主面の反対側に位置する裏面と、前記主面及び裏面に対して垂直な側面とを有する電子部品を用意し、前記裏面及び側面に金属膜を形成する工程と、
複数の配線層と、少なくとも第1及び第2の絶縁層を含む複数の絶縁層が積層されてなる基板に、前記裏面が前記第1の絶縁層で覆われ、前記主面及び側面が前記第2の絶縁層で覆われるよう、前記電子部品を埋め込む工程と、を備えることを特徴とする電子部品内蔵基板の製造方法。
An electronic component having a main surface on which terminal electrodes are formed, a back surface located on the opposite side of the main surface, and a side surface perpendicular to the main surface and the back surface is prepared, and a metal film is formed on the back surface and the side surface. The process of forming and
The back surface is covered with the first insulating layer, and the main surface and the side surface are the first surface on a substrate formed by laminating a plurality of wiring layers and a plurality of insulating layers including at least the first and second insulating layers. A method for manufacturing a substrate containing an electronic component, which comprises a step of embedding the electronic component so as to be covered with the insulating layer of 2.
前記金属膜を形成する工程は、前記電子部品が形成されたウェーハ又は集合基板を前記裏面側からハーフカットすることによって前記側面の一部を露出させた状態で行うことを特徴とする請求項5に記載の電子部品内蔵基板の製造方法。 5. The step of forming the metal film is performed in a state where a part of the side surface is exposed by half-cutting the wafer or the assembly substrate on which the electronic component is formed from the back surface side. The method for manufacturing a substrate with built-in electronic components described in 1.
JP2019135916A 2019-07-24 2019-07-24 Manufacturing method of electronic component built-in board Active JP7443689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135916A JP7443689B2 (en) 2019-07-24 2019-07-24 Manufacturing method of electronic component built-in board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135916A JP7443689B2 (en) 2019-07-24 2019-07-24 Manufacturing method of electronic component built-in board

Publications (2)

Publication Number Publication Date
JP2021019167A true JP2021019167A (en) 2021-02-15
JP7443689B2 JP7443689B2 (en) 2024-03-06

Family

ID=74563732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135916A Active JP7443689B2 (en) 2019-07-24 2019-07-24 Manufacturing method of electronic component built-in board

Country Status (1)

Country Link
JP (1) JP7443689B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253642A (en) * 1989-03-27 1990-10-12 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH06169015A (en) * 1992-11-27 1994-06-14 Mitsubishi Electric Corp Semiconductor device
JP2007150002A (en) * 2005-11-29 2007-06-14 Tdk Corp Substrate with built-in semiconductor ic and its manufacturing method
JP2008182024A (en) * 2007-01-24 2008-08-07 Dainippon Printing Co Ltd Wiring board including electronic component and method for removing electromagnetic noise of the same
JP2011119521A (en) * 2009-12-04 2011-06-16 Sharp Corp Semiconductor laser chip, semiconductor laser device, and method of manufacturing semiconductor laser chip
JP2013104931A (en) * 2011-11-11 2013-05-30 Renesas Electronics Corp Semiconductor device and manufacturing method thereof, and liquid crystal display unit
WO2013160989A1 (en) * 2012-04-23 2013-10-31 株式会社日立製作所 Strain sensor chip mounting structure, strain sensor chip, and method for producing strain sensor chip mounting structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02253642A (en) * 1989-03-27 1990-10-12 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH06169015A (en) * 1992-11-27 1994-06-14 Mitsubishi Electric Corp Semiconductor device
JP2007150002A (en) * 2005-11-29 2007-06-14 Tdk Corp Substrate with built-in semiconductor ic and its manufacturing method
JP2008182024A (en) * 2007-01-24 2008-08-07 Dainippon Printing Co Ltd Wiring board including electronic component and method for removing electromagnetic noise of the same
JP2011119521A (en) * 2009-12-04 2011-06-16 Sharp Corp Semiconductor laser chip, semiconductor laser device, and method of manufacturing semiconductor laser chip
JP2013104931A (en) * 2011-11-11 2013-05-30 Renesas Electronics Corp Semiconductor device and manufacturing method thereof, and liquid crystal display unit
WO2013160989A1 (en) * 2012-04-23 2013-10-31 株式会社日立製作所 Strain sensor chip mounting structure, strain sensor chip, and method for producing strain sensor chip mounting structure

Also Published As

Publication number Publication date
JP7443689B2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
CN101189717B (en) Printed wiring board with built-in semiconductor element and method for manufacturing same
JP6130344B2 (en) Printed circuit board
JP2012191204A (en) Manufacturing method of printed wiring board
JP2006173232A (en) Semiconductor apparatus and its manufacturing method
US9922897B1 (en) Method of manufacturing semiconductor package
KR20100104805A (en) A printed circuit board comprising a electronic component
JP2010177596A (en) Semiconductor module, method of manufacturing the same, and portable device
US10515898B2 (en) Circuit board incorporating semiconductor IC and manufacturing method thereof
JP2009272512A (en) Method of manufacturing semiconductor device
JP2011124555A (en) Printed wiring board and method for manufacturing the printed wiring board
TWI685935B (en) Semiconductor device and method of manufacturing semiconductor device
JP2020096153A (en) Semiconductor package structure and manufacturing method of the same
KR101043328B1 (en) Electro device embedded printed circuit board and manufacturing method thereof
JP2018195742A (en) Semiconductor IC built-in substrate and manufacturing method thereof
JP2012044134A (en) Method of manufacturing built-in circuit board
JP6269626B2 (en) Semiconductor device, electronic component built-in substrate, and manufacturing method thereof
JP7443689B2 (en) Manufacturing method of electronic component built-in board
JP2004119730A (en) Method of manufacturing circuit device
KR101842938B1 (en) Method of manufacturing a circuit board having a cavity
JP2006100666A (en) Semiconductor device and manufacturing method thereof
JP4549693B2 (en) Wiring board manufacturing method
KR101618663B1 (en) embedded PCB and method of manufacturing the same
US20240155765A1 (en) Electronic component embedded substrate and manufacturing method therefor
KR20120036037A (en) Method of manufacturing a chip-embedded printed circuit board
JP2013201301A (en) Semiconductor device, electronic component built-in substrate and manufacturing methods of those

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7443689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150