JP2021019061A - Printed wiring board and manufacturing method thereof - Google Patents

Printed wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP2021019061A
JP2021019061A JP2019133339A JP2019133339A JP2021019061A JP 2021019061 A JP2021019061 A JP 2021019061A JP 2019133339 A JP2019133339 A JP 2019133339A JP 2019133339 A JP2019133339 A JP 2019133339A JP 2021019061 A JP2021019061 A JP 2021019061A
Authority
JP
Japan
Prior art keywords
interlayer insulating
insulating layer
printed wiring
wiring board
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019133339A
Other languages
Japanese (ja)
Inventor
和貴 岡田
Kazuki Okada
和貴 岡田
ラメシュ ヴァンダリ
Ramesh Bhandari
ラメシュ ヴァンダリ
竹中 芳紀
Yoshinori Takenaka
芳紀 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2019133339A priority Critical patent/JP2021019061A/en
Publication of JP2021019061A publication Critical patent/JP2021019061A/en
Pending legal-status Critical Current

Links

Abstract

To prevent a seed layer and a wiring layer provided on the surface of an interlayer insulating layer made of a mixture of a thermosetting resin and an inorganic filler from falling off even when the interlayer insulating layer is used, and prevent the side surface of a via provided on the interlayer insulating layer, and the seed layer and a via plating layer provided on the bottom surface from falling off.SOLUTION: In a printed wiring board using a mixture of a thermosetting resin and an inorganic filler as an interlayer insulating layer, the surface of the interlayer insulating layer and the side surfaces and the bottom surface of a via provided in the interlayer insulating layer are made into rough surfaces that have recesses without protrusion of the inorganic filler.SELECTED DRAWING: Figure 2

Description

本発明は、SAP法を用いて製造したプリント配線板およびその製造方法に関する。 The present invention relates to a printed wiring board manufactured by using the SAP method and a method for manufacturing the printed wiring board.

SAP法を用いたプリント配線板の製造において、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層にレーザー(CO、UV−YAG、エキシマなど)でビア形成した後、層間絶縁層の表面およびビアの側面ならびに底面にビア形成で発生した残渣を、CFを用いたプラズマにより除去するデスミア・粗化プロセスが行われている(特許文献1)。 In the production of printed wiring boards using the SAP method, vias are formed on the interlayer insulating layer made of a mixture of thermosetting resin and inorganic filler with a laser (CO 2 , UV-YAG, excimer, etc.), and then the interlayer insulating layer is formed. A desmear / roughening process is performed on the surface, the side surface of the via, and the bottom surface to remove the residue generated by the formation of vias by plasma using CF 4 (Patent Document 1).

特開2004−186598号公報Japanese Unexamined Patent Publication No. 2004-186598

図3(a)〜(d)は、従来のCFプラズマを用いたデスミア・粗化プロセスの問題を説明するための図である。従来のCFプラズマを用いたデスミア・粗化プロセスは小径ビア形成に有利である。しかし、ビア形成後、熱硬化性樹脂52と無機フィラー53との混合物からなる層間絶縁層51(図3(a))に、CFプラズマを用いたデスミア・粗化プロセスを行うと、熱硬化性樹脂52に比べて無機フィラー53のエッチングレートが低いため、無機フィラー53が多く突出した表面(図3(b))となる。この層間絶縁層51の表面に例えば配線層54を形成すると(図3(c))、熱硬化性樹脂52と配線層54との接触部分が少ないため、配線層54のピール強度が低くなり、層間絶縁層51から配線層54が脱落し易くなる(図3(d))。 Figure 3 (a) ~ (d) are diagrams for explaining a conventional CF 4 plasma problems desmear-roughening process using. The desmear-roughening process using a conventional CF 4 plasma is advantageous to small-sized via formation. However, after the vias are formed, the interlayer insulating layer 51 (FIG. 3 (a)) made of a mixture of the thermosetting resin 52 and the inorganic filler 53 is thermally cured by performing a desmear / roughening process using CF 4 plasma. Since the etching rate of the inorganic filler 53 is lower than that of the sex resin 52, the surface has a large amount of the inorganic filler 53 (FIG. 3B). When the wiring layer 54 is formed on the surface of the interlayer insulating layer 51 (FIG. 3C), the peel strength of the wiring layer 54 is lowered because the contact portion between the thermosetting resin 52 and the wiring layer 54 is small. The wiring layer 54 is likely to fall off from the interlayer insulating layer 51 (FIG. 3 (d)).

本発明に係るプリント配線板は、層間絶縁層として熱硬化性樹脂と無機フィラーとの混合物を用いたプリント配線板において、前記層間絶縁層の表面および前記層間絶縁層に設けたビアの側面ならびに底面が、無機フィラーの突出がなく凹部を有する粗面であることを特徴とする。 The printed wiring board according to the present invention is a printed wiring board using a mixture of a thermosetting resin and an inorganic filler as an interlayer insulating layer, and the surface of the interlayer insulating layer and the side surface and the bottom surface of vias provided on the interlayer insulating layer. However, it is characterized in that it is a rough surface having recesses without protrusion of the inorganic filler.

また、本発明に係るプリント配線板の製造方法は、少なくとも、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層にビアを形成するビア形成工程、その後のデスミア・粗化工程、クリーニング工程を含むSAP法によるプリント配線板の製造方法において、前記デスミア・粗化工程は、フルオロカーボン系ガスを含む反応性イオンエッチング(RIE)により、前記層間絶縁層内の前記熱硬化性樹脂より前記無機フィラーを優先的にエッチングする条件で行うことを特徴とする。 Further, the method for manufacturing a printed wiring board according to the present invention is at least a via forming step of forming vias in an interlayer insulating layer made of a mixture of a thermosetting resin and an inorganic filler, a desmear / roughening step, and a cleaning step thereafter. In the method for manufacturing a printed wiring board by the SAP method including the above, the desmear / roughening step is performed by reactive ion etching (RIE) containing a fluorocarbon-based gas to obtain the inorganic filler from the thermosetting resin in the interlayer insulating layer. It is characterized in that it is carried out under the condition of preferentially etching.

本発明の実施形態によれば、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層を用いた場合でも、層間絶縁層の表面およびビアの側面ならびに底面を、無機フィラーの突出がなく凹部を有する粗面とすることで、層間絶縁層の表面に設けたシード層および配線層の脱落を防止できるとともに、層間絶縁層に設けたビアの側面および底面に設けたシード層およびビアめっき層の脱落を防止することができる。その結果、配線層のファインパターン(5μm以下)を達成することができる。 According to the embodiment of the present invention, even when an interlayer insulating layer made of a mixture of a thermosetting resin and an inorganic filler is used, the surface of the interlayer insulating layer and the side surface and the bottom surface of the via are recessed without protrusion of the inorganic filler. The seed layer and the wiring layer provided on the surface of the interlayer insulating layer can be prevented from falling off, and the seed layer and the via plating layer provided on the side surface and the bottom surface of the via provided in the interlayer insulating layer can be prevented from falling off. It can be prevented from falling off. As a result, a fine pattern (5 μm or less) of the wiring layer can be achieved.

また、本発明の実施形態によれば、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層へのビア形成後、ビアにより発生する層間絶縁層の表面およびビアの側面ならびに底面の熱硬化性樹脂の残渣を除去するデスミア・粗化工程を、フルオロカーボン系ガスを含む反応イオンエッチング(RIE)により行うことで、小径ビア形成に有利となる。 Further, according to the embodiment of the present invention, after forming vias on the interlayer insulating layer composed of a mixture of a thermosetting resin and an inorganic filler, the surface of the interlayer insulating layer generated by the vias and the side surfaces and bottom surfaces of the vias are thermally cured. By performing the desmear / roughening step of removing the residue of the sex resin by reactive ion etching (RIE) containing a fluorocarbon-based gas, it is advantageous for forming small-diameter vias.

さらに、好適例として、RIEのプロセスガスとして、CHFまたはCHFおよびOからなり、流量比O/(CHF3+)が0〜5%であるガスを用いた場合は、層間絶縁層の表面およびビアの側面ならびに底面を、安価に、無機フィラーの突出がなく凹部を有する粗面とすることができる。 Further, as a preferred example, when a gas composed of CHF 3 or CHF 3 and O 2 and having a flow rate ratio O 2 / (CHF 3 + O 2 ) of 0 to 5% is used as the RIE process gas, interlayer insulation is used. The surface of the layer and the sides and bottom of the via can be inexpensively roughened with recesses without protrusion of the inorganic filler.

(a)〜(g)は、それぞれ、本発明が対象とするSAP(セミアディティブ法)の一例の工程を説明するための図である。(A) to (g) are diagrams for explaining an example process of SAP (semi-additive method), which is the subject of the present invention, respectively. (a)〜(d)は、それぞれ、本発明のプリント配線板の製造方法の一例の各工程を説明するための図である。(A) to (d) are diagrams for explaining each step of an example of the manufacturing method of the printed wiring board of the present invention, respectively. (a)〜(d)は、それぞれ、従来のCFプラズマを用いたデスミア・粗化プロセスの問題を説明するための図である。(A) ~ (d) are diagrams for explaining a conventional CF 4 plasma problems desmear-roughening process using.

図1(a)〜(g)は、それぞれ、本発明が対象とするSAP(セミアディティブ法)の一例の工程を説明するための図である。まず、図1(a)に示すように、基板1上に、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層2を形成する。次に、図1(b)に示すように、層間絶縁層2にレーザービア加工を施してビア3を形成するとともに、ビア3を形成した層間絶縁層2に対しデスミア・粗化工程を実施する。次に、図1(c)に示すように、デスミア・粗化工程後クリーニング工程を経た、ビア3を有する層間絶縁層2の表面に、無電解銅めっきを施し、シード層4を形成する。次に、図1(d)に示すように、非回路部分にめっきレジスト5を形成し、図1(e)に示すように、ビア3(および層間絶縁層2の表面の回路部分にも)めっき層6を形成する。その後、図1(f)に示すように、めっきレジスト5を剥離し、図1(g)に示すように、シード層4をエッチングして除去する。 1 (a) to 1 (g) are diagrams for explaining an example process of SAP (semi-additive method), which is the subject of the present invention, respectively. First, as shown in FIG. 1A, an interlayer insulating layer 2 made of a mixture of a thermosetting resin and an inorganic filler is formed on the substrate 1. Next, as shown in FIG. 1 (b), the interlayer insulating layer 2 is subjected to laser via processing to form the via 3, and the interlayer insulating layer 2 on which the via 3 is formed is subjected to a desmear / roughening step. .. Next, as shown in FIG. 1C, electroless copper plating is applied to the surface of the interlayer insulating layer 2 having the via 3 which has undergone the desmear / roughening step and then the cleaning step to form the seed layer 4. Next, as shown in FIG. 1 (d), a plating resist 5 is formed in the non-circuit portion, and as shown in FIG. 1 (e), the via 3 (and the circuit portion on the surface of the interlayer insulating layer 2) is also formed. The plating layer 6 is formed. Then, as shown in FIG. 1 (f), the plating resist 5 is peeled off, and as shown in FIG. 1 (g), the seed layer 4 is etched and removed.

本発明のプリント配線板およびその製造方法の特徴は、図1(a)〜(g)に示すSAPの各工程のうち、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層2を、デスミア・粗化工程を実施する工程の改良にある。 The feature of the printed wiring board of the present invention and the manufacturing method thereof is that the interlayer insulating layer 2 made of a mixture of a thermosetting resin and an inorganic filler in each process of SAP shown in FIGS. 1 (a) to 1 (g) is provided. It is in the improvement of the process of carrying out the desmear / roughening process.

すなわち、本発明のプリント配線板は、層間絶縁層2として熱硬化性樹脂と無機フィラーとの混合物を用いたプリント配線板において、層間絶縁層2の表面および層間絶縁層2に設けたビア3の側面ならびに底面が、無機フィラーの突出がなく凹部を有する粗面であることを特徴としている。また、本発明のプリント配線板の製造方法は、少なくとも、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層2にビア3を形成するビア形成工程、その後のデスミア・粗化工程、クリーニング工程を含むSAP法によるプリント配線板の製造方法において、デスミア・粗化工程は、フルオロカーボン系ガスを含む反応性イオンエッチング(RIE)により、層間絶縁層2内の熱硬化性樹脂より無機フィラーを優先的にエッチングする条件で行うことを特徴とする。 That is, the printed wiring board of the present invention is a printed wiring board using a mixture of a thermosetting resin and an inorganic filler as the interlayer insulating layer 2, and the via 3 provided on the surface of the interlayer insulating layer 2 and the interlayer insulating layer 2. The side surface and the bottom surface are rough surfaces having recesses without protrusion of the inorganic filler. Further, the method for manufacturing a printed wiring board of the present invention is at least a via forming step of forming a via 3 in an interlayer insulating layer 2 made of a mixture of a thermosetting resin and an inorganic filler, a subsequent desmear / roughening step, and cleaning. In the method for manufacturing a printed wiring board by the SAP method including the process, in the desmear / roughening process, the inorganic filler is prioritized over the thermosetting resin in the interlayer insulating layer 2 by reactive ion etching (RIE) containing a fluorocarbon gas. It is characterized in that it is carried out under the condition of etching.

図2(a)〜(d)は、それぞれ、本発明のプリント配線板の製造方法の一例の各工程を説明するための図である。図2(a)〜(d)に示した例においては、層間絶縁層2の平らな表面を示しているが、本発明の対象となる表面とは、層間絶縁層2の表面の回路を形成する部分のみならず、層間絶縁層2に設けたビア3の側面および底面も対象となる。 2 (a) to 2 (d) are diagrams for explaining each step of an example of the method for manufacturing a printed wiring board of the present invention, respectively. In the examples shown in FIGS. 2 (a) to 2 (d), the flat surface of the interlayer insulating layer 2 is shown, but the surface to be the subject of the present invention forms a circuit on the surface of the interlayer insulating layer 2. Not only the portion to be provided, but also the side surface and the bottom surface of the via 3 provided in the interlayer insulating layer 2.

まず、図2(a)に示すように、基板(図示せず)の上に、熱硬化性樹脂11と無機フィラー12との混合物からなる層間絶縁層2を形成し、レーザービア加工により必要な個所にビア3を形成する。ここで、層間絶縁層2の表面2aは、層間絶縁層2の表面および層間絶縁層2に設けたビア3の側面ならびに底面のいずれかを示している。また、熱硬化性樹脂11および無機フィラー12としては、従来から知られているものを使用することができる。 First, as shown in FIG. 2A, an interlayer insulating layer 2 made of a mixture of a thermosetting resin 11 and an inorganic filler 12 is formed on a substrate (not shown), which is required by laser via processing. Via 3 is formed at the location. Here, the surface 2a of the interlayer insulating layer 2 indicates either the surface of the interlayer insulating layer 2 or the side surface or the bottom surface of the via 3 provided on the interlayer insulating layer 2. Further, as the thermosetting resin 11 and the inorganic filler 12, conventionally known ones can be used.

次に、ビア3形成時のレーザー加工により、層間絶縁層2の表面およびビア3の側面ならびに底面に残る残渣を除去して粗面とするための、デスミア・粗化工程を行い、図2(b)に示すような層間絶縁層2の表面2aを得る。この際、デスミア・粗化工程は、フルオロカーボン系ガスを含む反応性イオンエッチング(RIE)により、層間絶縁層2内の熱硬化性樹脂11より無機フィラー12を優先的にエッチングする条件で行う。その結果、図2(b)に示すように、層間絶縁層2の表面2aを、熱硬化性樹脂11の表面11aと熱硬化性樹脂11の表面11aに対し凹形状に窪んだ無機フィラー12の凹部12aとから構成し、無機フィラー12の熱硬化性樹脂11の表面11aからの突出を少なくしている。 Next, a desmear / roughening step was performed to remove residues remaining on the surface of the interlayer insulating layer 2 and the side surfaces and the bottom surface of the via 3 by laser processing at the time of forming the via 3 to make a rough surface. The surface 2a of the interlayer insulating layer 2 as shown in b) is obtained. At this time, the desmear / roughening step is performed under the condition that the inorganic filler 12 is preferentially etched over the thermosetting resin 11 in the interlayer insulating layer 2 by reactive ion etching (RIE) containing a fluorocarbon gas. As a result, as shown in FIG. 2B, the surface 2a of the interlayer insulating layer 2 is formed by the inorganic filler 12 having a concave shape with respect to the surface 11a of the thermosetting resin 11 and the surface 11a of the thermosetting resin 11. It is composed of recesses 12a to reduce the protrusion of the inorganic filler 12 from the surface 11a of the thermosetting resin 11.

ここで、RIEのプロセスガスが、CHFまたはCHFおよびOからなり、流量比O/(CHF+O)が0〜5%であること、および、RIEのプロセスガスの圧力が10Pa以下であること、が好ましい態様となる。なお、デスミア・粗化工程を行うことにより、上記熱硬化性樹脂の表面11aおよび無機フィラー12の凹部12a上に、フッ化物被膜13が形成される。 Here, the process gas of RIE is composed of CHF 3 or CHF 3 and O 2 , the flow rate ratio O 2 / (CHF 3 + O 2 ) is 0 to 5%, and the pressure of the process gas of RIE is 10 Pa. The following is a preferred embodiment. By performing the desmear / roughening step, the fluoride film 13 is formed on the surface 11a of the thermosetting resin and the recess 12a of the inorganic filler 12.

このフッ化物被膜13を除去するために、クリーニング工程を行い、図2(c)に示すように、表面のフッ化物被膜13を除去した熱硬化性樹脂11の表面11aおよび無機フィラー12の凹部12aを得ている。クリーニング工程は、スパッタリングにより行われることが好ましい。また、クリーニング工程のエッチング量は、RIE時に層間絶縁層2の表面に形成されるフッ化物被膜13の除去に十分な量であり、無機フィラーの露出が少ない状態が保たれるように設定されるこることが好ましい。さらに、クリーニング工程のエッチング量は、1nm〜(無機フィラー12の平均粒径×2)の範囲であることが好ましい。いずれも、その後のシード層の形成に好ましい層間絶縁層2aの表面を得ることができる。 In order to remove the fluoride coating 13, a cleaning step was performed, and as shown in FIG. 2C, the surface 11a of the thermosetting resin 11 from which the fluoride coating 13 on the surface was removed and the recess 12a of the inorganic filler 12 were removed. Is getting. The cleaning step is preferably performed by sputtering. Further, the etching amount in the cleaning step is an amount sufficient for removing the fluoride film 13 formed on the surface of the interlayer insulating layer 2 at the time of RIE, and is set so that the state where the inorganic filler is less exposed is maintained. It is preferable to do this. Further, the etching amount in the cleaning step is preferably in the range of 1 nm to (average particle size of the inorganic filler 12 × 2). In either case, the surface of the interlayer insulating layer 2a, which is preferable for the subsequent formation of the seed layer, can be obtained.

次に、図2(d)に示すように、層間絶縁層2の表面2aに無電解銅めっきによりシード層4を形成する。この際、層間絶縁層2の表面2aとシード層4とは、シード層4と熱硬化性樹脂11の表面11aとの接触面積が大きくなるとともに、シード層4が無機フィラー12の凹形状の窪んだ凹部12aの内部に入り込む状態となる。そのため、層間絶縁層2とシード層4とが強固に密着し、シード層4のピール強度が高くなり、シード層4が層間絶縁層2から脱落することはなくなる。 Next, as shown in FIG. 2D, a seed layer 4 is formed on the surface 2a of the interlayer insulating layer 2 by electroless copper plating. At this time, the surface 2a of the interlayer insulating layer 2 and the seed layer 4 have a large contact area between the seed layer 4 and the surface 11a of the thermosetting resin 11, and the seed layer 4 has a concave recess of the inorganic filler 12. It is in a state of entering the inside of the recess 12a. Therefore, the interlayer insulating layer 2 and the seed layer 4 are firmly adhered to each other, the peel strength of the seed layer 4 is increased, and the seed layer 4 does not fall off from the interlayer insulating layer 2.

(実施例)
以下の条件で、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層の表面に、デスミア・粗化工程およびクリーニング工程を実施した後、銅からなるシード層を形成した。そして、シード層に対し高速加速寿命試験(HAST)を実施し、HAST後のシード層のピール強度を測定した。また、デスミア・粗化工程実施後の表面形状をSEMで撮影した。
(Example)
Under the following conditions, a seed layer made of copper was formed on the surface of the interlayer insulating layer made of a mixture of a thermosetting resin and an inorganic filler after performing a desmear / roughening step and a cleaning step. Then, a high-speed accelerated life test (HAST) was carried out on the seed layer, and the peel strength of the seed layer after HAST was measured. In addition, the surface shape after the desmear / roughening process was photographed by SEM.

条件は以下の通りである。
・層間絶縁材:
ABF(シリカフィラー40%入り、平均粒径100nm)、
・ドライデスミア・粗化工程:
CCP方式RIE装置、O+CHF流量100−500sccm、
/(O+CHF)0%−10%、プロセスガス圧1−10Pa、
RF出力100−500W、処理時間1−20分
・クリーニング処理:
Ar逆スパッタ、500−100W、0.5−5分、
・シード層形成:
スパッタCu/Ti合計100−300nm厚み、
・シード層後銅めっき:
35μm厚み、
・HAST:
130℃/85%RH/100hr。
結果を以下の表1に示す。
The conditions are as follows.
・ Interlayer insulation material:
ABF (40% silica filler, average particle size 100 nm),
・ Dry desmear ・ Roughening process:
CCP RIE apparatus, O 2 + CHF 3 flow rate 100-500 sccm,
O 2 / (O 2 + CHF 3 ) 0% -10%, process gas pressure 1-10 Pa,
RF output 100-500W, processing time 1-20 minutes ・ Cleaning processing:
Ar reverse sputtering, 500-100W, 0.5-5 minutes,
・ Seed layer formation:
Sputtered Cu / Ti total 100-300 nm thickness,
・ Copper plating after seed layer:
35 μm thickness,
・ HAST:
130 ° C / 85% RH / 100hr.
The results are shown in Table 1 below.

表1の結果から、デスミア・粗化工程後の層間絶縁層表面のSEM写真とHAST後ピール強度とから、層間絶縁層の表面(層間絶縁層の表面および層間絶縁層に設けたビアの側面ならびに底面)が、無機フィラーの突出がなく凹部を有する粗面である場合に、高いHAST後ピール強度を得ることができることがわかった。 From the results in Table 1, from the SEM photograph of the surface of the interlayer insulating layer after the desmear / roughening step and the peel strength after HAST, the surface of the interlayer insulating layer (the surface of the interlayer insulating layer and the side surface of the via provided on the interlayer insulating layer and the side surface of the via It was found that a high peel strength after HAST can be obtained when the bottom surface) is a rough surface having recesses without protrusion of the inorganic filler.

また、デスミア・粗化工程のRIEにおけるO/(O+CHF)比とSEM写真(HAST後ピール強度)とから、デスミア・粗化工程のRIEにおけるプロセスガスが、CHFまたはCHFおよびOからなり、流量比O/(CHF+O)が0〜5%であると、上記無機フィラーの突出がなく凹部を有する粗面を得ることができることがわかった。 Further, from the O 2 / (O 2 + CHF 3 ) ratio in the RIE of the desmear / roughening process and the SEM photograph (peel strength after HAST), the process gas in the RIE of the desmear / roughening process is CHF 3 or CHF 3 It was found that when it was composed of O 2 and the flow rate ratio O 2 / (CHF 3 + O 2 ) was 0 to 5%, a rough surface having recesses could be obtained without the above-mentioned inorganic filler protruding.

1 基板
2 層間絶縁層
2a 表面
3 ビア
4 シード層
5 めっきレジスト
11 熱硬化性樹脂
11a 表面
12 無機フィラー
12a 凹部
13 フッ化物被膜
1 Substrate 2 Interlayer insulation layer 2a Surface 3 Via 4 Seed layer 5 Plating resist 11 Thermosetting resin 11a Surface 12 Inorganic filler 12a Recess 13 Fluoride coating

Claims (7)

層間絶縁層として熱硬化性樹脂と無機フィラーとの混合物を用いたプリント配線板において、前記層間絶縁層の表面および前記層間絶縁層に設けたビアの側面ならびに底面が、無機フィラーの突出がなく凹部を有する粗面であることを特徴とするプリント配線板。 In a printed wiring board using a mixture of a thermosetting resin and an inorganic filler as an interlayer insulating layer, the surface of the interlayer insulating layer and the side surfaces and the bottom surface of vias provided in the interlayer insulating layer are recessed without protrusion of the inorganic filler. A printed wiring board characterized by having a rough surface. 少なくとも、熱硬化性樹脂と無機フィラーとの混合物からなる層間絶縁層にビアを形成するビア形成工程、その後のデスミア・粗化工程、クリーニング工程を含むSAP法によるプリント配線板の製造方法において、
前記デスミア・粗化工程は、フルオロカーボン系ガスを含む反応性イオンエッチング(RIE)により、前記層間絶縁層内の前記熱硬化性樹脂より前記無機フィラーを優先的にエッチングする条件で行うことを特徴とするプリント配線板の製造方法。
At least in the method for manufacturing a printed wiring board by the SAP method, which includes a via forming step of forming vias in an interlayer insulating layer composed of a mixture of a thermosetting resin and an inorganic filler, a subsequent desmear / roughening step, and a cleaning step.
The desmear / roughening step is characterized in that the inorganic filler is preferentially etched over the thermosetting resin in the interlayer insulating layer by reactive ion etching (RIE) containing a fluorocarbon-based gas. Manufacturing method of printed wiring board.
前記RIEのプロセスガスが、CHFまたはCHFおよびOからなり、流量比O/(CHF+O)が0〜5%であることを特徴とする請求項2に記載のプリント配線板の製造方法。 The printed wiring board according to claim 2, wherein the process gas of the RIE is composed of CHF 3 or CHF 3 and O 2 , and the flow rate ratio O 2 / (CHF 3 + O 2 ) is 0 to 5%. Manufacturing method. 前記RIEのプロセスガスの圧力が10Pa以下であることを特徴とする請求項3に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to claim 3, wherein the pressure of the process gas of the RIE is 10 Pa or less. 前記クリーニング工程は、スパッタリングにより行われることを特徴とする請求項2〜4のいずれか1項に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 2 to 4, wherein the cleaning step is performed by sputtering. 前記クリーニング工程のエッチング量は、前記RIE時に層間絶縁層の表面に形成されるフッ化物被膜の除去に十分な量であり、無機フィラーの露出が少ない状態が保たれるように設定されることを特徴とする請求項2〜5のいずれか1項に記載のプリント配線板の製造方法。 The etching amount in the cleaning step is an amount sufficient for removing the fluoride film formed on the surface of the interlayer insulating layer during the RIE, and is set so that the exposure of the inorganic filler is kept low. The method for manufacturing a printed wiring board according to any one of claims 2 to 5, which is characterized. 前記クリーニング工程のエッチング量は、1nm〜(無機フィラーの平均粒径×2)の範囲であることを特徴とする請求項2〜6のいずれか1項に記載のプリント配線板の製造方法。 The method for manufacturing a printed wiring board according to any one of claims 2 to 6, wherein the etching amount in the cleaning step is in the range of 1 nm to (average particle size of inorganic filler × 2).
JP2019133339A 2019-07-19 2019-07-19 Printed wiring board and manufacturing method thereof Pending JP2021019061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019133339A JP2021019061A (en) 2019-07-19 2019-07-19 Printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019133339A JP2021019061A (en) 2019-07-19 2019-07-19 Printed wiring board and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2021019061A true JP2021019061A (en) 2021-02-15

Family

ID=74563708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019133339A Pending JP2021019061A (en) 2019-07-19 2019-07-19 Printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2021019061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284504A (en) * 2021-12-22 2022-04-05 上海恩捷新材料科技有限公司 Composite current collector, preparation method thereof, pole piece thereof and battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284504A (en) * 2021-12-22 2022-04-05 上海恩捷新材料科技有限公司 Composite current collector, preparation method thereof, pole piece thereof and battery
CN114284504B (en) * 2021-12-22 2023-11-28 上海恩捷新材料科技有限公司 Composite current collector, preparation method thereof, pole piece and battery

Similar Documents

Publication Publication Date Title
KR102426429B1 (en) Copper foil with carrier, production method for same, production method for coreless support with wiring layer, and production method for printed circuit board
JP3752161B2 (en) Method for roughening copper surface of printed wiring board, printed wiring board, and manufacturing method thereof
JP2000294921A (en) Printed circuit board and manufacture thereof
KR102482171B1 (en) Method for manufacturing transfer film comprising seed layer, method for manufacturing circuit board using selective etching of conductive layer and etchant composition
US20120312775A1 (en) Method for manufacturing a printed circuit board
JP6778667B2 (en) Printed wiring board and its manufacturing method
KR101019154B1 (en) manufacturing method or PCB
JP2009260216A (en) Method for manufacturing wiring board
JP2021019061A (en) Printed wiring board and manufacturing method thereof
JP4632038B2 (en) Copper wiring board manufacturing method
TW201402866A (en) Etching solution composition and production method for multi-layered printed circuit board using the same
JP3692761B2 (en) Printed circuit board manufacturing method and printed circuit board
JP2005050999A (en) Wiring board and method of forming wiring
US8191249B2 (en) Method of manufacturing a printed circuit board
JP2003096593A (en) Roughening treatment method and copper electroplating device
JP2002324968A (en) Method for manufacturing wiring board
JP4097069B2 (en) Printed circuit board manufacturing method
TW202014076A (en) Multilayer wiring board manufacturing method
JP2004235202A (en) Via forming method in wiring board
Sasaki et al. Via formation process for smooth copper wiring on insulation layer with adhesion layer
WO2022264378A1 (en) Method for manufacturing wiring board, and laminated board
KR101015770B1 (en) Forming method of insulation layer in pcb manufactured by semi-additive method, and pcb manufacturing method using the same, and pcb manufactured thereby
JP2024011919A (en) Manufacturing method of wiring board
KR101067055B1 (en) Printed circuit board with fine circuit pattern and manufacturing method the same
TWI268128B (en) PCB ultra-thin circuit forming method