JP2021017385A - セラミック複合体、波長変換素子、光源装置およびプロジェクター - Google Patents

セラミック複合体、波長変換素子、光源装置およびプロジェクター Download PDF

Info

Publication number
JP2021017385A
JP2021017385A JP2019134359A JP2019134359A JP2021017385A JP 2021017385 A JP2021017385 A JP 2021017385A JP 2019134359 A JP2019134359 A JP 2019134359A JP 2019134359 A JP2019134359 A JP 2019134359A JP 2021017385 A JP2021017385 A JP 2021017385A
Authority
JP
Japan
Prior art keywords
wavelength conversion
phase
light
phosphor
ceramic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019134359A
Other languages
English (en)
Inventor
修 荒川
Osamu Arakawa
荒川  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019134359A priority Critical patent/JP2021017385A/ja
Publication of JP2021017385A publication Critical patent/JP2021017385A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

【課題】所望の蛍光量が得られるセラミック複合体を提供する。【解決手段】本発明のセラミック複合体は、蛍光体と賦活剤とを含む蛍光体相と、透光性セラミックスを含むマトリックス相と、を有し、蛍光体相の含有量は、蛍光体相とマトリックス相とを含む相全体に対する体積比で、56vol%以上、100vol%未満である。【選択図】図2

Description

本発明は、セラミック複合体、波長変換素子、光源装置およびプロジェクターに関する。
プロジェクターに用いる光源装置として、光源から射出された励起光を蛍光体に照射した際に蛍光体から発せられる蛍光を利用した光源装置が提案されている。下記の特許文献1に、賦活剤がドープされたYAG蛍光体を有する多結晶セラミック構造の蛍光体であって、蛍光体が、非発光多結晶アルミナを有するセラミックマトリックスに埋め込まれ、セラミックマトリックスが、80ないし99.99vol%のアルミナと、0.01ないし20vol%の蛍光体とを有することが開示されている。すなわち、特許文献1には、蛍光体相の含有量が、マトリックス相と蛍光体相を含む相全体における体積比で、0.01vol%〜20vol%であることが記載されている。
また、特許文献2に、透光性セラミックスからなるマトリックス相と、Ceを含有するYAGからなる蛍光体相と、を有する無機材料で構成されたセラミックス複合体であって、蛍光体相の含有量が相全体における体積比で、22vol%以上、55vol%以下であることが開示されている。すなわち、特許文献2には、蛍光体相の含有量が、マトリックス相と蛍光体相を含む相全体における体積比で、22vol%〜55vol%であることが記載されている。
特表2008−533270号公報 特開2012−62459号公報
蛍光体に励起光が照射されると、蛍光体が励起光を吸収することによって蛍光体の温度が上昇する。ところが、蛍光体には、温度上昇に伴って発光効率が低下し、蛍光発光量が低下する温度消光と呼ばれる現象がある。温度消光を抑制する手段の一つとして、蛍光体の厚さを薄くすることによって排熱性を高めることが有効である。
しかしながら、蛍光体の厚さを薄くした場合、特許文献1および特許文献2のように、相全体に対する蛍光体相の含有量が少ないと、励起光が蛍光体相に十分に吸収されず、所望の蛍光量を得られないおそれがあった。
上記の課題を解決するために、本発明の一つの態様のセラミック複合体は、蛍光体と賦活剤とを含む蛍光体相と、透光性セラミックスを含むマトリックス相と、を有し、前記蛍光体相の含有量は、前記蛍光体相と前記マトリックス相とを含む相全体に対する体積比で、56vol%以上、100vol%未満である。
本発明の一つの態様のセラミック複合体において、前記蛍光体相は、酸化物蛍光体を含み、前記マトリックス相は、金属酸化物を含んでいてもよい。
本発明の一つの態様のセラミック複合体において、前記酸化物蛍光体は、YAl12、Y(Al,Ga)12、LuAl12、TbAl12、(Y,Gd)Al12の少なくともいずれか一つを含んでいてもよい。
本発明の一つの態様のセラミック複合体において、前記金属酸化物は、Al、MgO、ZnO、TiO、Y、YAlO、BeO、MgAlの少なくともいずれか一つを含んでいてもよい。
本発明の一つの態様のセラミック複合体において、前記蛍光体相は、窒化物蛍光体を含み、前記マトリックス相は、金属窒化物を含んでいてもよい。
本発明の一つの態様のセラミック複合体において、前記賦活剤は、Ce、Euの少なくともいずれか一つを含んでいてもよい。
本発明の一つの態様のセラミック複合体において、前記マトリックス相の構成材料の熱伝導率は、10W/m・K以上であってもよい。
本発明の一つの態様の波長変換素子は、本発明の一つの態様のセラミック複合体を含む波長変換層と、前記波長変換層が設けられる基材と、を備える。
本発明の一つの態様の光源装置は、本発明の一つの態様の波長変換素子と、前記波長変換素子に励起光を射出する光源と、を備える。
本発明の一つの態様のプロジェクターは、本発明の一つの態様の光源装置と、前記光源装置からの光を画像情報に応じて変調する光変調装置と、前記光変調装置により変調された光を投射する投射光学装置と、を備える。
第1実施形態のプロジェクターの概略構成図である。 波長変換素子の断面図である。 波長変換層の厚さが0.05mmの場合における励起光量と蛍光変換効率との関係を示すグラフである。 波長変換層の厚さが0.10mmの場合における励起光量と蛍光変換効率との関係を示すグラフである。 図3のグラフにおいて、励起光量が38Wの近傍を拡大して示すグラフである。 図4のグラフにおいて、励起光量が28Wの近傍を拡大して示すグラフである。 Ce/Y原子比と量子効率との関係を示す図である。 第2実施形態のプロジェクターの概略構成図である。
[第1実施形態]
以下、本発明の第1実施形態について、図1〜図7を用いて説明する。
なお、以下の各図面においては各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
本実施形態に係るプロジェクターの一例について説明する。
本実施形態のプロジェクターは、スクリーン(被投射面)上にカラー映像を表示する投射型画像表示装置である。プロジェクターは、赤色光、緑色光、青色光の各色光に対応した3つの光変調装置を備える。プロジェクターは、励起光を射出する光源として、高輝度・高出力な光が得られる半導体レーザーを備える。
図1は、本実施形態に係るプロジェクター11の光学系を示す概略構成図である。
図1に示すように、本実施形態のプロジェクター11は、第1光源装置101と、第2光源装置102と、色分離導光光学系200と、光変調装置400Rと、光変調装置400Gと、光変調装置400Bと、光合成素子500と、投射光学装置600と、を備えている。本実施形態の第1光源装置101は、特許請求の範囲の光源装置に対応する。
第1光源装置101は、第1光源10と、コリメート光学系70と、ダイクロイックミラー80と、コリメート集光光学系90と、波長変換素子20と、第1レンズアレイ120と、第2レンズアレイ130と、偏光変換素子140と、重畳レンズ150と、を備えている。なお、第1光源装置101から射出される光の中心軸を照明光軸100axと称する。
第1光源10は、第1の波長帯の青色の励起光Eを射出する半導体レーザーから構成されている。励起光Eは、波長範囲が例えば440〜450nmであり、発光強度のピーク波長が例えば445nmである。第1光源10は、1つの半導体レーザーで構成されていてもよいし、複数の半導体レーザーで構成されていてもよい。第1光源10は、第1光源10から射出されるレーザー光の光軸200axが照明光軸100axと直交するように配置されている。なお、第1光源10は、445nm以外のピーク波長、例えば460nmのピーク波長を有する励起光を射出する半導体レーザーが用いられてもよい。第1光源10は、波長変換素子32に向けて励起光Eを射出する。本実施形態の第1光源10は、特許請求の範囲の光源に対応する。
コリメート光学系70は、第1レンズ72と、第2レンズ74と、を備えている。コリメート光学系70は、第1光源10から射出された光を略平行化する。第1レンズ72および第2レンズ74のそれぞれは、凸レンズで構成されている。
ダイクロイックミラー80は、コリメート光学系70からコリメート集光光学系90までの間の光路中に、第1光源10の光軸200axと照明光軸100axとの各々に対して45°の角度で交差する向きに配置されている。ダイクロイックミラー80は、青色光成分からなる励起光Eを反射させ、赤色光成分および緑色光成分を含む黄色の蛍光Yを透過させる。
コリメート集光光学系90は、ダイクロイックミラー80を透過した励起光Eを集光させて波長変換素子20の波長変換層24波長変換層が用いられたに入射させるとともに、波長変換素子20から射出された蛍光Yを略平行化する。コリメート集光光学系90は、第1レンズ92と、第2レンズ94と、を備える。第1レンズ92および第2レンズ94のそれぞれは、凸レンズで構成されている。
第2光源装置102は、第2光源710と、集光光学系760と、拡散板732と、コリメート光学系770と、を備えている。
第2光源710は、第1光源装置101の第1光源10と同一の波長帯を有する半導体レーザーから構成されている。第2光源710は、1つの半導体レーザーで構成されていてもよいし、複数の半導体レーザーで構成されていてもよい。また、第2光源710は、第1光源10の半導体レーザーとは波長帯が異なる半導体レーザーから構成されていてもよい。
集光光学系760は、第1レンズ762と、第2レンズ764と、を備えている。集光光学系760は、第2光源710から射出された青色光Bを拡散板732の拡散面または拡散板732の近傍に集光させる。第1レンズ762および第2レンズ764のそれぞれは、凸レンズで構成されている。
拡散板732は、第2光源710から射出された青色光Bを拡散させ、波長変換素子20から射出された蛍光Yの配光分布に近い配光分布を有する青色光Bを生成する。拡散板732として、例えば光学ガラスからなる磨りガラスを用いることができる。
コリメート光学系770は、第1レンズ772と、第2レンズ774と、を備えている。コリメート光学系770は、拡散板732から射出された光を略平行化する。第1レンズ772および第2レンズ774のそれぞれは、凸レンズで構成されている。
第2光源装置102から射出された青色光Bは、ダイクロイックミラー80で反射され、波長変換素子20から射出されてダイクロイックミラー80を透過した蛍光Yと合成されて白色光Wとなる。白色光Wは、第1レンズアレイ120に入射する。波長変換素子20の詳細な構成については、後で説明する。
第1レンズアレイ120は、複数の第1レンズ122を有する。第1レンズアレイ120は、ダイクロイックミラー80から射出された光を複数の部分光束に分割する。複数の第1レンズ122は、照明光軸100axと直交する面内においてマトリクス状に配列されている。
第2レンズアレイ130は、第1レンズアレイ120の複数の第1レンズ122に対応する複数の第2レンズ132を有する。第2レンズアレイ130は、後段の重畳レンズ150とともに、第1レンズアレイ120を構成する各第1レンズ122の像を光変調装置400R、光変調装置400G、および光変調装置400Bのそれぞれの画像形成領域近傍に結像させる。複数の第2レンズ132は、照明光軸100axに直交する面内においてマトリクス状に配列されている。
偏光変換素子140は、第1レンズアレイ120によって分割された複数の部分光束の各々を、偏光方向が揃った直線偏光光に変換する。
重畳レンズ150は、偏光変換素子140から射出された各部分光束を集光し、光変調装置400R、光変調装置400G、および光変調装置400Bのそれぞれの画像形成領域近傍で互いに重畳させる。第1レンズアレイ120、第2レンズアレイ130、および重畳レンズ150は、波長変換素子20から射出された光の被照射面内での強度分布を均一にするインテグレーター光学系を構成する。
色分離導光光学系200は、第1ダイクロイックミラー210と、第2ダイクロイックミラー220と、反射ミラー230と、反射ミラー240と、反射ミラー250と、リレーレンズ260と、リレーレンズ270と、を備えている。色分離導光光学系200は、第1光源装置101と第2光源装置102とから得られた白色光Wを赤色光LRと緑色光LGと青色光LBとに分離し、赤色光LR、緑色光LGおよび青色光LBを、対応する光変調装置400R,光変調装置400G,および光変調装置400Bに導く。
フィールドレンズ300Rは、色分離導光光学系200と光変調装置400Rとの間に配置されている。フィールドレンズ300Gは、色分離導光光学系200と光変調装置400Gとの間に配置されている。フィールドレンズ300Bは、色分離導光光学系200と光変調装置400Bとの間に配置されている。
第1ダイクロイックミラー210は、赤色光成分を透過させ、緑色光成分および青色光成分を反射させる。第2ダイクロイックミラー220は、緑色光成分を反射させ、青色光成分を透過させる。反射ミラー230は、赤色光成分を反射させる。反射ミラー240および反射ミラー250は、青色光成分を反射させる。
第1ダイクロイックミラー210を透過した赤色光LRは、反射ミラー230で反射し、フィールドレンズ300Rを透過して赤色光用の光変調装置400Rの画像形成領域に入射する。第1ダイクロイックミラー210で反射した緑色光LGは、第2ダイクロイックミラー220でさらに反射し、フィールドレンズ300Gを透過して緑色光用の光変調装置400Gの画像形成領域に入射する。第2ダイクロイックミラー220を透過した青色光LBは、リレーレンズ260、入射側の反射ミラー240、リレーレンズ270、射出側の反射ミラー250、およびフィールドレンズ300Bを経て青色光用の光変調装置400Bの画像形成領域に入射する。
光変調装置400R、光変調装置400G、および光変調装置400Bのそれぞれは、入射された色光を画像情報に応じて変調し、画像光を形成する。光変調装置400R、光変調装置400G、および光変調装置400Bのそれぞれは、液晶ライトバルブから構成されている。図示を省略したが、光変調装置400R、光変調装置400G、および光変調装置400Bの光入射側に、入射側偏光板がそれぞれ配置されている。光変調装置400R、光変調装置400G、および光変調装置400Bの光射出側に、射出側偏光板がそれぞれ配置されている。
光合成素子500は、光変調装置400R、光変調装置400G、および光変調装置400Bから射出された各画像光を合成してフルカラーの画像光を形成する。光合成素子500は、4つの直角プリズムを貼り合わせた平面視で略正方形状をなすクロスダイクロイックプリズムで構成されている。直角プリズム同士を貼り合わせた略X字状の界面には、誘電体多層膜が形成されている。
光合成素子500から射出された画像光は、投射光学装置600によって拡大投射され、スクリーンSCR上で画像を形成する。すなわち、投射光学装置600は、光変調装置400R、光変調装置400G、および光変調装置400Bにより変調された光を投射する。投射光学装置600は、複数の投射レンズ6から構成されている。
以下、波長変換素子20について説明する。
図2は、本実施形態の波長変換素子20の断面図である。
図2に示すように、波長変換素子20は、セラミック複合体25を含む波長変換層24と、波長変換層24が設けられる基材21と、反射層23と、接合層22と、を備えている。
基材21は、第1面21aと第2面21bとを有し、例えば銅、アルミニウム等の熱伝導率が比較的高い金属から構成されている。反射層23は、基材21の第1面21aに対向して設けられている。反射層23は、例えば銀等の反射率が比較的高い金属、または誘電体多層膜から構成されている。接合層22は、基材21と反射層23との間に設けられ、基材21と反射層23とを接着する。接合層22には、熱伝導率が高い材料が用いられることが望ましく、例えば銀ナノ粒子を用いた銀ペースト、金ナノ粒子を用いた金ペースト、金錫はんだ等が用いられる。
波長変換層24は、反射層23および接合層22を挟んで基材21の第1面21aに対向して設けられている。波長変換層24は、後述するセラミック複合体25を含んでいる。波長変換層24の厚さは、例えば0.03mm〜0.30mmである。波長変換層24の厚さが0.03mm以上であれば、波長変換素子20の製造工程において波長変換層24が破損するおそれが少なくなる。また、波長変換層24の厚さが0.30mm以下であれば、蛍光の二次吸収による蛍光変換効率の低下を抑制することができる。
セラミック複合体25は、蛍光体と賦活剤とを含む蛍光体相251と、透光性セラミックスを含むマトリックス相252と、を有し、無機材料で構成されている。蛍光体相251の含有量は、蛍光体相251とマトリックス相252とを含む相全体に対する体積比で、56vol%以上、100vol%未満である。
蛍光体相251は、蛍光体として酸化物蛍光体を含んでいる。酸化物蛍光体は、YAl12(YAG)、Y(Al,Ga)12、LuAl12、TbAl12、(Y,Gd)Al12の少なくともいずれか一つを含んでいる。上記の酸化物蛍光体のうち、例えばYAGの熱伝導率は、約9W/m・Kである。賦活剤は、セリウム(Ce)、ユーロピウム(Eu)の少なくともいずれか一つを含んでいる。
YAG:Ceを例にとると、蛍光体相251として、Y、Al、CeO等の構成元素を含む原料粉末を混合して固相反応させた材料、共沈法、ソルゲル法等の湿式法により得られるY−Al−Oアモルファス粒子、噴霧乾燥法、火炎熱分解法、熱プラズマ法等の気相法により得られるYAG粒子等を用いることができる。
マトリックス相252は、透光性セラミックスとして金属酸化物を含んでいる。金属酸化物は、Al(アルミナ)、MgO、ZnO、TiO、Y、YAlO、BeO、MgAlの少なくともいずれか一つを含んでいる。
各金属酸化物の熱伝導率は、Alが約30W/m・Kであり、MgOが約45W/m・Kであり、ZnOが約25W/m・Kであり、TiOが約43W/m・Kであり、Yが約27W/m・Kであり、YAlOが約12W/m・Kであり、BeOが約250W/m・Kであり、MgAlが約14W/m・Kである。マトリックス相252は、蛍光体相251よりも高い熱伝導率を有する。マトリックス相252の構成材料の熱伝導率は、10W/m・K以上であることが望ましい。
または、蛍光体相251は、蛍光体として窒化物蛍光体を含み、マトリックス相252は、透光性セラミックスとして金属窒化物を含んでいてもよい。窒化物蛍光体としては、例えばα−SiAlON、β−SiAlON等のサイアロン蛍光体を用いることができる。金属窒化物として、例えばAlN等を用いることができる。AlNの熱伝導率は、約255W/m・Kである。このように、蛍光体相251が窒化物蛍光体を含み、マトリックス相252が金属窒化物を含む場合、各結晶相において無用な酸化反応等が生じることなく、セラミック複合体を安定して製造することができる。
または、蛍光体相251は、酸窒化物蛍光体を含み、マトリックス相252は、金属酸窒化物を含んでいてもよい。酸窒化物蛍光体として、例えばLSN蛍光体、LYSN蛍光体、CASN蛍光体、SCASN蛍光体等を用いることができる。
例えばYAG:Ceとアルミナとを含むセラミック複合体は、以下の工程によって製造することができる。
(第1工程)
YAG:Ceの原料粉体である所定量のAl粉体、Y粉体、およびCeO粉体と所定量のエタノールとを混ぜ、ポット内でボールミーリングを行ってスラリーを生成する。その後、スラリーを乾燥させ、造粒後に脱脂、焼結させてYAG:Ce粉体を生成する。
(第2工程)
第1工程で得られた所定量のYAG:Ce粉体と、Al粉体と、を乾燥状態で混合させる。その後、混合物を成形、脱脂、焼結させることによって、YAG:Ceとアルミナとのコンポジット焼結体からなるセラミック複合体が作製される。
本発明者は、蛍光体相とマトリックス相とを含む相全体に対する蛍光体相の体積比を異ならせたセラミック複合体を用いた波長変換素子について、熱伝導率および蛍光変換効率を算出するシミュレーションを行った。なお、蛍光変換効率は、以下の(1)式で表される。
蛍光変換効率=蛍光発光量(W)/励起光投入量(W) …(1)
シミュレーション条件を以下に示す。
各構成材料については、波長変換層における蛍光体相をYAG:Ceとし、マトリックス相をアルミナとした。蛍光体相中の賦活剤濃度は、イットリウムの原子数に対するセリウムの原子数の比で表し、0.01とした。以下、イットリウムの原子数に対するセリウムの原子数の比をCe/Y原子比と称する。また、反射層を銀とし、接合層を銀ペーストとし、基材を銅とした。
YAGの熱伝導率を9W/m・Kとし、アルミナの熱伝導率を30W/m・Kとした。波長変換層を構成するセラミック複合体の大きさを3mm×3mmとし、励起光の照射領域の大きさを0.8mm×0.8mmとした。また、セラミック複合体の厚さを、0.05mm、0.10mmの2通りに異ならせた。また、相全体に対する蛍光体相の体積比を、55vol%、56vol%、57vol%、100vol%の4通りに異ならせた。なお、蛍光体相の体積比が100vol%の波長変換層は、換言すると、YAG単体からなる波長変換層である。
以下、セラミック複合体の厚さを0.05mmとした上で、相全体に対する蛍光体相の体積比を56vol%とした波長変換素子を実施例1とし、相全体に対する蛍光体相の体積比を57vol%とした波長変換素子を実施例2とし、相全体に対する蛍光体相の体積比を55vol%とした波長変換素子を比較例1とし、相全体に対する蛍光体相の体積比を100vol%(YAG単体)とした波長変換素子を比較例2とする。
また、セラミック複合体の厚さを0.10mmとした上で、相全体に対する蛍光体相の体積比を56vol%とした波長変換素子を実施例3とし、相全体に対する蛍光体相の体積比を57vol%とした波長変換素子を実施例4とし、相全体に対する蛍光体相の体積比を55vol%とした波長変換素子を比較例3とし、相全体に対する蛍光体相の体積比を100vol%(YAG単体)とした波長変換素子を比較例4とする。
各セラミック複合体の熱伝導率のシミュレーション結果を表1に示す。なお、熱伝導率は、セラミック複合体の厚さに依らないため、実施例1と実施例3、実施例2と実施例4、比較例1と比較例3、および比較例2と比較例4とで共通の値を取る。
Figure 2021017385
表1に示すように、実施例1〜4および比較例1,3の熱伝導率は、YAGとアルミナとを含むセラミック複合体からなる波長変換層が用いられたことにより、YAG:Ce単体からなる波長変換層が用いられた比較例2,4の熱伝導率に比べて高くなっており、排熱性が向上していることが確認された。
図3は、波長変換層の厚さが0.05mmの場合(実施例1、実施例2、比較例1、および比較例2)において、励起光量と蛍光変換効率との関係を示すグラフである。図4は、波長変換層の厚さが0.10mmの場合(実施例3、実施例4、比較例3、および比較例4)において、励起光量と蛍光変換効率との関係を示すグラフである。図3および図4において、横軸は励起光量(W)を示し、縦軸は蛍光変換効率(無単位)を示す。
図3に示すように、波長変換層の厚さを0.05mmとした場合、実施例1,2および比較例1の波長変換素子においては、蛍光体相の体積比に依らずに略同様の傾向を示しており、励起光量が10Wから増えるにつれて蛍光変換効率が約0.5から約0.4まで徐々に低下した。
これに対し、比較例2の波長変換素子においては、励起光量が10Wから増えるにつれて蛍光変換効率が徐々に低下するが、励起光量が38Wを超えると、蛍光変換効率は急激に低下した。この原因は、比較例2の波長変換素子は、波長変換層にアルミナを含んでおらず、熱伝導率が低いことによって、励起光量が38Wを超える範囲で温度消光が生じているため、と推定される。
また、図4に示すように、波長変換層の厚さを0.10mmとした場合、実施例3,4および比較例2の波長変換素子においては、蛍光体相の体積比に依らずに略同様の傾向を示しており、励起光量が10Wから増えるにつれて蛍光変換効率が約0.5から約0.4まで徐々に低下した。
これに対し、比較例4の波長変換素子においては、励起光量が10Wから増えるにつれて蛍光変換効率が徐々に低下するが、励起光量が28Wを超えると、蛍光変換効率は急激に低下した。この原因は、比較例4の波長変換素子においても、比較例2の波長変換素子と同様、波長変換層にアルミナが含まれておらず、熱伝導率が低いことによって、励起光量が28Wを超える範囲で温度消光が生じているため、と推定される。特に比較例4の場合、比較例2よりも波長変換層の厚さが厚いために排熱性が低くなっており、温度消光が生じる励起光量が比較例2よりも低下している、と推定される。
図5は、図3における励起光量が38Wの近傍、すなわち図3の符号Aの部分を拡大して示すグラフである。図6は、図4における励起光量が28Wの近傍、すなわち図4の符号Bの部分を拡大して示すグラフである。
図5に示すように、実施例1、実施例2および比較例1の3本のグラフに対して比較例2のグラフが交差する個所に着目すると、比較例2の蛍光変換効率に比べて、実施例1および実施例2の蛍光変換効率は高く、比較例1の蛍光変換効率は低い。
同様に、図6に示すように、実施例3、実施例4および比較例3の3本のグラフに対して比較例4のグラフが交差する個所に着目すると、比較例4の蛍光変換効率に比べて、実施例3および実施例4の蛍光変換効率は高く、比較例3の蛍光変換効率は低い。
以上のシミュレーション結果から、実施例1〜4の波長変換素子においては、比較例2および比較例4の波長変換素子に比べて熱伝導率が高く、比較例1〜4の波長変換素子に比べて蛍光変換効率が高くなっていることが判った。したがって、蛍光体相とマトリックス相とを含む相全体に対する蛍光体相の体積比を56vol%以上、100vol%未満とすることによって、蛍光体単体を用いた場合よりも蛍光変換効率が高く、蛍光体相の温度消光を抑制することで所望の蛍光量が得られるセラミック複合体を含む波長変換層24を実現することができる。
また、本実施形態においては、上記の波長変換層24が用いられたことにより、蛍光変換効率が高く、所望の蛍光発光量が得られる波長変換素子20を提供することができる。
また、本実施形態においては、上記の波長変換素子20が用いられたことによって、蛍光変換効率が高く、所望の蛍光発光量が得られる第1光源装置101を提供することができる。
また、本実施形態においては、上記の第1光源装置101が用いられたことによって、表示品質に優れたプロジェクター11を提供することができる。
本発明者は、蛍光体相中に占める賦活剤(セリウム)の比率と量子効率との関係についてシミュレーションを行った。
種々のCe/Y原子比(無単位)に対する量子効率の値(%)を、下記の表2に示す。
なお、量子効率(%)は、蛍光変換効率の指標であって、以下の(2)式で表される。
量子効率(%)=(蛍光の光子数/蛍光体が吸収した励起光の光子数)×100 …(2)
Figure 2021017385
図7は、Ce/Y原子比と量子効率との関係を示すグラフである。図7において、横軸はCe/Y原子比(無単位)であり、縦軸は量子効率(%)である。
表2および図7に示すように、量子効率は、Ce/Y原子比が0.001〜0.014の範囲では95%以上の略一定の値を示すが、Ce/Y原子比が0.014を超えると急激に低下する。この結果から、蛍光体相のCe/Y原子比は、0.014以下とすることが望ましい。
[第2実施形態]
以下、本発明の第2実施形態について、図8を用いて説明する。
第2実施形態のプロジェクターの概略構成は第1実施形態と同様であり、波長変換装置の構成が第1実施形態と異なる。そのため、プロジェクターの全体の説明は省略する。
図8は、第2実施形態のプロジェクター1の概略構成図である。
図8において、図1と共通の構成要素には同一の符号を付し、説明を省略する。
図8に示すように、本実施形態の第1光源装置100は、第1光源10と、コリメート光学系70と、ダイクロイックミラー80と、コリメート集光光学系90と、波長変換装置30と、第1レンズアレイ120と、第2レンズアレイ130と、偏光変換素子140と、重畳レンズ150と、を備えている。
波長変換装置30は、波長変換素子32と、モーター50と、を備えている。波長変換素子32は、基材40と、反射層41と、波長変換層47と、接合層(図示略)と、を備えている。波長変換層47は、第1実施形態と同様のセラミック複合体から構成されている。
波長変換素子32は、回転軸の周りに回転可能とされている。モーター50は、波長変換素子32を回転軸の周りに回転させる。したがって、第1光源10から射出された励起光Eは、回転した状態の波長変換素子32に入射する。
波長変換層47に励起光Eが入射した際には、波長変換層47において熱が発生する。本実施形態では、モーター50によって波長変換素子32を回転させることにより、波長変換層47における励起光Eの入射位置を時間的に移動させている。これにより、波長変換層47の同じ位置に励起光Eが常時照射されることにより、波長変換層47の一部のみが局所的に加熱され、波長変換層47が劣化することが防止される。また、波長変換層47の温度上昇を抑制することによって温度消光を抑制することができる。
本実施形態においても、蛍光変換効率が高く、所望の蛍光発光量が得られるセラミック複合体、波長変換素子32および第1光源装置100を提供することができる、表示品質に優れたプロジェクター1を提供することができる、といった第1実施形態と同様の効果が得られる。
なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば上記実施形態では、第1光源装置100,101から射出される黄色の蛍光Yと第2光源装置102から射出される青色光Bとをダイクロイックミラー80で合成し、白色光Wを得ているが、この構成に代えて、波長変換素子から黄色の蛍光Yと蛍光体の励起に使われなかった青色の励起光とを射出させることによって、波長変換素子から白色光を射出させる構成としてもよい。
セラミック複合体、波長変換素子、光源装置、およびプロジェクターの各構成要素の形状、数、配置、材料、製造方法等の具体的な記載については、上記実施形態に限らず、適宜変更が可能である。上記実施形態では、本発明に係る光源装置を、液晶ライトバルブを用いたプロジェクターに搭載した例を示したが、これに限定されない。例えば本発明に係る光源装置を、光変調装置としてデジタルマイクロミラーデバイスを用いたプロジェクターに搭載してもよい。
また、上記実施形態では、本発明による光源装置をプロジェクターに搭載した例を示したが、これに限られない。本発明による光源装置は、照明器具や自動車のヘッドライト等にも適用することができる。
1,11…プロジェクター、10…第1光源(光源)、20…波長変換素子、21…基材、24…波長変換層、25…セラミック複合体、100,101…第1光源装置(光源装置)、251…蛍光体相、252…マトリックス相、400R,400G,400B…光変調装置、600…投射光学装置。

Claims (10)

  1. 蛍光体と賦活剤とを含む蛍光体相と、透光性セラミックスを含むマトリックス相と、を有し、
    前記蛍光体相の含有量は、前記蛍光体相と前記マトリックス相とを含む相全体に対する体積比で、56vol%以上、100vol%未満である、セラミック複合体。
  2. 前記蛍光体相は、酸化物蛍光体を含み、
    前記マトリックス相は、金属酸化物を含む、請求項1に記載のセラミック複合体。
  3. 前記酸化物蛍光体は、YAl12、Y(Al,Ga)12、LuAl12、TbAl12、(Y,Gd)Al12の少なくともいずれか一つを含む、請求項2に記載のセラミック複合体。
  4. 前記金属酸化物は、Al、MgO、ZnO、TiO、Y、YAlO、BeO、MgAlの少なくともいずれか一つを含む、請求項2または請求項3に記載のセラミック複合体。
  5. 前記蛍光体相は、窒化物蛍光体を含み、
    前記マトリックス相は、金属窒化物を含む、請求項1に記載のセラミック複合体。
  6. 前記賦活剤は、Ce、Euの少なくともいずれか一つを含む、請求項1から請求項5までのいずれか一項に記載のセラミック複合体。
  7. 前記マトリックス相の構成材料の熱伝導率は、10W/m・K以上である、請求項1から請求項6までのいずれか一項に記載のセラミック複合体。
  8. 請求項1から請求項7までのいずれか一項に記載のセラミック複合体を含む波長変換層と、
    前記波長変換層が設けられる基材と、
    を備えた、波長変換素子。
  9. 請求項8に記載の波長変換素子と、
    前記波長変換素子に励起光を射出する光源と、
    を備えた、光源装置。
  10. 請求項9に記載の光源装置と、
    前記光源装置からの光を画像情報に応じて変調する光変調装置と、
    前記光変調装置により変調された光を投射する投射光学装置と、
    を備えた、プロジェクター。
JP2019134359A 2019-07-22 2019-07-22 セラミック複合体、波長変換素子、光源装置およびプロジェクター Pending JP2021017385A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019134359A JP2021017385A (ja) 2019-07-22 2019-07-22 セラミック複合体、波長変換素子、光源装置およびプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019134359A JP2021017385A (ja) 2019-07-22 2019-07-22 セラミック複合体、波長変換素子、光源装置およびプロジェクター

Publications (1)

Publication Number Publication Date
JP2021017385A true JP2021017385A (ja) 2021-02-15

Family

ID=74563991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019134359A Pending JP2021017385A (ja) 2019-07-22 2019-07-22 セラミック複合体、波長変換素子、光源装置およびプロジェクター

Country Status (1)

Country Link
JP (1) JP2021017385A (ja)

Similar Documents

Publication Publication Date Title
JP2019066880A (ja) 蛍光体、波長変換素子、光源装置およびプロジェクター
JP6891648B2 (ja) 波長変換素子、波長変換装置、光源装置およびプロジェクター
WO2016181768A1 (ja) 蛍光体基板、光源装置および投射型表示装置
JP2016099558A (ja) 波長変換素子、光源装置、プロジェクターおよび波長変換素子の製造方法
JP2013029831A (ja) 照明装置及び投写型映像表示装置
US10865950B2 (en) Light source unit and projection-type display
JP2017075973A (ja) 光源装置、および投写型映像表示装置
US11279871B2 (en) Ceramic composite, light source apparatus, and projector
JP2020132847A (ja) 蛍光体、波長変換素子、光源装置およびプロジェクター
JP6743813B2 (ja) 蛍光体基板、光源装置および投射型表示装置
CN111580334B (zh) 荧光体、波长转换元件、光源装置以及投影仪
JP6582645B2 (ja) 波長変換素子、波長変換素子の製造方法、照明装置およびプロジェクター
CN108767099B (zh) 波长变换设备、光源装置、照明装置及影像显示装置
JP6613583B2 (ja) 波長変換素子、光源装置及びプロジェクター
JP2022041435A (ja) 波長変換素子、光源装置、および画像投射装置
JP2018036457A (ja) 波長変換素子、光源装置、およびプロジェクター
TWI817246B (zh) 螢光發光模組及發光裝置
JP2021017385A (ja) セラミック複合体、波長変換素子、光源装置およびプロジェクター
JP2019028120A (ja) 照明装置及びプロジェクター
JP2022089745A (ja) 蛍光発光モジュール及び発光装置
CN112859500B (zh) 波长转换元件、光源装置以及投影仪
JP2019105783A (ja) 波長変換装置、光源装置、及びプロジェクター
JP2022112662A (ja) 光源装置およびプロジェクター
JP2024131052A (ja) 蛍光体素子、波長変換装置、照明装置およびプロジェクター
JP2022112948A (ja) 光源装置およびプロジェクター

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211102