JP2021015937A - Heating member - Google Patents

Heating member Download PDF

Info

Publication number
JP2021015937A
JP2021015937A JP2019131115A JP2019131115A JP2021015937A JP 2021015937 A JP2021015937 A JP 2021015937A JP 2019131115 A JP2019131115 A JP 2019131115A JP 2019131115 A JP2019131115 A JP 2019131115A JP 2021015937 A JP2021015937 A JP 2021015937A
Authority
JP
Japan
Prior art keywords
heating
aluminum nitride
plasma
porosity
mounting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019131115A
Other languages
Japanese (ja)
Other versions
JP7312631B2 (en
Inventor
元樹 堀田
Genki Hotta
元樹 堀田
耕平 三矢
Kohei Mitsuya
耕平 三矢
丹下 秀夫
Hideo Tange
秀夫 丹下
貴道 小川
Takamichi Ogawa
貴道 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2019131115A priority Critical patent/JP7312631B2/en
Publication of JP2021015937A publication Critical patent/JP2021015937A/en
Application granted granted Critical
Publication of JP7312631B2 publication Critical patent/JP7312631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a technique for improving plasma resistance while also improving thermal uniformity on a placing surface, in a heating member.SOLUTION: A heating member comprises: a first member, mainly consisting of aluminum nitride, which has a placing surface that allows an object to be placed thereon and a rear surface that is on the opposite side in a first direction to the placing surface; a heater electrode part, disposed on the first member, which generates heat by the supply of power; and a second member, mainly consisting of aluminum nitride, which has a columnar shape extending in the first direction, and which is bonded to the rear surface of the first member. The porosity of the first member is lower than that of the second member.SELECTED DRAWING: Figure 1

Description

本発明は、加熱部材に関する。 The present invention relates to a heating member.

従来から、半導体デバイスの製造工程において、半導体ウェハを加熱する加熱部材が知られている(例えば、特許文献1)。 Conventionally, a heating member for heating a semiconductor wafer has been known in the manufacturing process of a semiconductor device (for example, Patent Document 1).

特許4311910号公報Japanese Patent No. 4311910

半導体デバイスの製造工程では、加熱部材の載置面に載置される1枚の半導体ウェハから複数の半導体デバイスが製造される。このため、加熱部材には、半導体デバイスの特性のばらつきを抑制するために、載置面の均熱性の向上が求められている。また、加熱部材は、プラズマに曝される可能性があるため、耐プラズマ性の向上も求められている。しかしながら、載置面の均熱性の向上と耐プラズマ性の向上とを両立することは、容易ではなかった。 In the semiconductor device manufacturing process, a plurality of semiconductor devices are manufactured from one semiconductor wafer mounted on the mounting surface of the heating member. Therefore, the heating member is required to improve the heat equalizing property of the mounting surface in order to suppress the variation in the characteristics of the semiconductor device. Further, since the heating member may be exposed to plasma, improvement in plasma resistance is also required. However, it has not been easy to achieve both improvement in heat equalization of the mounting surface and improvement in plasma resistance.

本発明は、上述した課題を解決するためになされたものであり、加熱部材において、載置面の均熱性を向上しつつ耐プラズマ性を向上する技術を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a technique for improving plasma resistance while improving heat equalization of a mounting surface in a heating member.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。 The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as the following forms.

(1)本発明の一形態によれば、加熱部材が提供される。この加熱部材は、窒化アルミニウムを主成分とし、対象物を載置可能な載置面と、第1の方向において前記載置面とは反対側の裏面とが形成された第1部材と、前記第1部材に配置され、通電により発熱するヒータ電極部と、窒化アルミニウムを主成分とし、前記第1の方向に延びる柱状であり、前記第1部材の裏面に接合される第2部材と、を備え、前記第1部材の気孔率は、前記第2部材の気孔率より小さい。 (1) According to one embodiment of the present invention, a heating member is provided. This heating member is composed of a first member containing aluminum nitride as a main component and having a mounting surface on which an object can be mounted, and a back surface opposite to the previously described mounting surface in the first direction. A heater electrode portion that is arranged on the first member and generates heat by energization, and a second member that is mainly composed of aluminum nitride and has a columnar shape extending in the first direction and is joined to the back surface of the first member. The porosity of the first member is smaller than the porosity of the second member.

この構成によれば、対象物を載置可能な載置面が形成されている第1部材の気孔率は、第1部材の裏面に接合されている第2部材の気孔率より小さい。対象物をプラズマによってエッチングしているとき、加熱部材においても、表面の気孔を起点としてプラズマによるエッチングが進行する。本発明の加熱部材は、プラズマが照射されやすい第1部材の気孔率を、第2部材の気孔率より小さくすることによって、プラズマが照射されても第1部材がエッチングされにくい。また、気孔率が第1部材より大きい第2部材は、第1部材より熱を伝えにくい。これにより、第1部材に配置されているヒータ電極部によって発生する熱が、第1部材の裏面から第2部材を通って第1部材から逃げることを抑制できるため、第1部材における均熱性を向上させることができる。これにより、載置面の均熱性を向上しつつ耐プラズマ性を向上することができる。 According to this configuration, the porosity of the first member on which the mounting surface on which the object can be placed is formed is smaller than the porosity of the second member joined to the back surface of the first member. When the object is etched by plasma, the etching by plasma proceeds from the pores on the surface of the heating member as well. In the heating member of the present invention, the porosity of the first member, which is easily irradiated with plasma, is made smaller than the porosity of the second member, so that the first member is less likely to be etched even when plasma is irradiated. Further, the second member having a porosity larger than that of the first member is less likely to transfer heat than the first member. As a result, it is possible to prevent the heat generated by the heater electrode portion arranged on the first member from escaping from the back surface of the first member through the second member to the first member, so that the heat equalization property of the first member can be improved. Can be improved. As a result, the plasma resistance can be improved while improving the heat soaking property of the mounting surface.

(2)上記形態の加熱部材において、前記第1部材に含まれる窒化アルミニウムの平均粒度は、前記第2部材に含まれる窒化アルミニウムの平均粒度より小さくてもよい。この構成によれば、第1部材の気孔率は、第2部材の気孔率より小さくなりやすい。これにより、載置面の均熱性をさらに向上しつつ耐プラズマ性をさらに向上することができる。 (2) In the heating member of the above embodiment, the average particle size of the aluminum nitride contained in the first member may be smaller than the average particle size of the aluminum nitride contained in the second member. According to this configuration, the porosity of the first member tends to be smaller than the porosity of the second member. As a result, the plasma resistance can be further improved while further improving the heat equalizing property of the mounting surface.

(3)上記形態の加熱部材において、前記第1部材と前記第2部材をそれぞれプラズマエッチングしたとき、前記第1部材の表面粗さRaは、前記第2部材の表面粗さRaより小さくなってもよい。この構成によれば、第1部材は、第2部材よりエッチングされにくい。これにより、加熱部材の寿命が延びるとともに、エッチングによるパーティクルの発生が抑制されるため、パーティクルによる対象物の汚染を抑制することができる。 (3) In the heating member of the above embodiment, when the first member and the second member are plasma-etched, the surface roughness Ra of the first member becomes smaller than the surface roughness Ra of the second member. May be good. According to this configuration, the first member is less likely to be etched than the second member. As a result, the life of the heating member is extended, and the generation of particles due to etching is suppressed, so that contamination of the object by the particles can be suppressed.

(4)上記形態の加熱部材において、前記第1部材の熱伝導率は、前記第2部材の熱伝導率より大きくてもよい。この構成によれば、ヒータ電極部が発生する熱は、第1部材の全体に伝わりやすいため、第1部材は、均等に加熱されやすくなる。また、第1部材の裏面に接合されている第2部材は、第1部材より熱伝導率が小さいため、第1部材の熱が、第1部材の裏面から第2部材を通って第1部材から逃げることを抑制できる。これにより、第1部材における均熱性をさらに向上することができる。 (4) In the heating member of the above embodiment, the thermal conductivity of the first member may be larger than the thermal conductivity of the second member. According to this configuration, the heat generated by the heater electrode portion is easily transferred to the entire first member, so that the first member is easily heated evenly. Further, since the second member joined to the back surface of the first member has a lower thermal conductivity than the first member, the heat of the first member passes from the back surface of the first member to the first member through the second member. It is possible to suppress the escape from. As a result, the heat equalizing property of the first member can be further improved.

第1実施形態の加熱部材の斜視図である。It is a perspective view of the heating member of 1st Embodiment. 第1実施形態の加熱部材の断面図である。It is sectional drawing of the heating member of 1st Embodiment. 第1部材および第2部材の特性を測定する位置を説明する図である。It is a figure explaining the position which measures the characteristic of the 1st member and 2nd member. 第1部材および第2部材の特性の測定結果を示す図である。It is a figure which shows the measurement result of the characteristic of the 1st member and the 2nd member.

<第1実施形態>
図1は、第1実施形態の加熱部材1の斜視図である。図2は、本実施形態の加熱部材1の断面図である。本実施形態の加熱部材1は、例えば、CVD(Chemical Vapor Deposition:化学的気相成長法)、PVD(Physical Vapor Deposition:物理的気相成長法)、ALD(Atomic Layer Deposition:原子層堆積法)などにおいて、「対象物」としての半導体ウェハ3を加熱するために利用するセラミックヒータである。加熱部材1は、第1部材10と、第2部材20と、ヒータ電極部30を備える。
<First Embodiment>
FIG. 1 is a perspective view of the heating member 1 of the first embodiment. FIG. 2 is a cross-sectional view of the heating member 1 of the present embodiment. The heating member 1 of the present embodiment includes, for example, CVD (Chemical Vapor Deposition: Chemical Vapor Deposition), PVD (Physical Vapor Deposition), ALD (Atomic Layer Deposition), ALD (Atomic Layer Deposition). In the above, it is a ceramic heater used for heating the semiconductor wafer 3 as an “object”. The heating member 1 includes a first member 10, a second member 20, and a heater electrode portion 30.

第1部材10は、窒化アルミニウムとイットリウムを含む酸化物からなる円形状の板状部材であり、載置面11と、裏面12と、外周面13を形成する。載置面11は、第1部材10の一方の主面に形成されており、半導体ウェハ3が載置される。本実施形態では、載置面11の面積は、半導体ウェハ3の面積と同じである。裏面12は、第1部材10において、載置面11が形成されている一方の主面と反対側の主面に形成されている。裏面12は、第2部材20と接合する。外周面13は、第1部材10の外周部14において、載置面11と裏面12とを接続する。なお、本実施形態では、裏面12に垂直な直線が延びる方向を、第1の方向とする。 The first member 10 is a circular plate-shaped member made of an oxide containing aluminum nitride and yttrium, and forms a mounting surface 11, a back surface 12, and an outer peripheral surface 13. The mounting surface 11 is formed on one main surface of the first member 10, and the semiconductor wafer 3 is mounted on the mounting surface 11. In the present embodiment, the area of the mounting surface 11 is the same as the area of the semiconductor wafer 3. The back surface 12 is formed on the main surface of the first member 10 opposite to the one main surface on which the mounting surface 11 is formed. The back surface 12 is joined to the second member 20. The outer peripheral surface 13 connects the mounting surface 11 and the back surface 12 at the outer peripheral portion 14 of the first member 10. In the present embodiment, the direction in which the straight line perpendicular to the back surface 12 extends is defined as the first direction.

第2部材20は、窒化アルミニウムからなる柱状部材であり、断面が円環形状の中空筒状に形成されている。第2部材20は、第1部材10の裏面12から第1の方向に延びる状態で、第1部材10に接合されている。このため、第1部材10の載置面11に載置されている半導体ウェハ3がプラズマによってエッチングされるとき、第2部材20にはプラズマが届きにくいため、エッチングされにくい。第2部材20には、第1部材10の裏面12と接合する接合面21が形成されている。 The second member 20 is a columnar member made of aluminum nitride, and is formed in a hollow tubular shape having a ring-shaped cross section. The second member 20 is joined to the first member 10 in a state of extending in the first direction from the back surface 12 of the first member 10. Therefore, when the semiconductor wafer 3 mounted on the mounting surface 11 of the first member 10 is etched by plasma, the plasma does not easily reach the second member 20, so that the etching is difficult. The second member 20 is formed with a joint surface 21 for joining with the back surface 12 of the first member 10.

第1部材10と第2部材20とを比較すると、第1部材10の気孔率は、第2部材20の気孔率より小さい。また、第1部材10に含まれる窒化アルミニウムの平均粒度は、第2部材20に含まれる窒化アルミニウムの平均粒度より小さく、第1部材10の熱伝導率は、第2部材20の熱伝導率より大きい。さらに、第1部材10と第2部材20をそれぞれプラズマエッチングしたとき、第1部材10の表面粗さRaは、第2部材20の表面粗さRaより小さくなる。 Comparing the first member 10 and the second member 20, the porosity of the first member 10 is smaller than the porosity of the second member 20. Further, the average particle size of the aluminum nitride contained in the first member 10 is smaller than the average particle size of the aluminum nitride contained in the second member 20, and the thermal conductivity of the first member 10 is larger than the thermal conductivity of the second member 20. large. Further, when the first member 10 and the second member 20 are plasma-etched, the surface roughness Ra of the first member 10 becomes smaller than the surface roughness Ra of the second member 20.

ヒータ電極部30は、図2に示すように、第1部材10の内部に配置されている導電性部材である。ヒータ電極部30は、第2部材20の内部に配置されている給電端子22を介して図示しない外部の電源に接続されており、通電によって熱を発生する。ヒータ電極部30は、通電によって発生する熱を載置面11に載置される半導体ウェハ3に均等に伝えることができるように、載置面11と同じ大きさまたは載置面11より若干大きい大きさに形成されている。 As shown in FIG. 2, the heater electrode portion 30 is a conductive member arranged inside the first member 10. The heater electrode portion 30 is connected to an external power source (not shown) via a power supply terminal 22 arranged inside the second member 20, and generates heat by energization. The heater electrode portion 30 has the same size as the mounting surface 11 or slightly larger than the mounting surface 11 so that the heat generated by energization can be evenly transferred to the semiconductor wafer 3 mounted on the mounting surface 11. It is formed to a size.

次に、加熱部材1の製造方法について説明する。まず、第1部材10を製造するに当たり、100重量部の窒化アルミニウム粉末と、0.1〜5重量部の酸化イットリウム(Y23)粉末と、バインダとを混合した混合物を作る。次に、前述の混合物にヒータ電極部30を埋設した成形体を作製し、作製した成形体を、脱脂および焼成することによって、第1部材10を作製する。第1部材10は、グリーンシートの積層体や、造粒粉を冷間等方圧加圧(CIP)したものからでも作製可能である。グリーンシートの積層体から作製する場合、ヒータ電極部30は、グリーンシートに、タングステンやモリブデンなどの金属ペーストを印刷することによって形成される。また、CIPを利用して造粒粉から作製する場合、ヒータ電極部30は、金属部材を埋設することによって形成される。焼成は、常圧焼成、ホットプレス(HP)、ホットアイソトロピックプレス(HIP)のいずれでもよいが、第1部材10内の気孔の数を少なくするためには、HPやHIPが望ましい。 Next, a method of manufacturing the heating member 1 will be described. First, in manufacturing the first member 10, 100 parts by weight of aluminum nitride powder, 0.1 to 5 parts by weight of yttrium oxide (Y 2 O 3 ) powder, and a binder are mixed to prepare a mixture. Next, a molded body in which the heater electrode portion 30 is embedded in the above-mentioned mixture is produced, and the produced molded body is degreased and fired to produce the first member 10. The first member 10 can also be produced from a laminated body of green sheets or a cold isotropic pressure (CIP) of the granulated powder. When manufactured from a laminated body of green sheets, the heater electrode portion 30 is formed by printing a metal paste such as tungsten or molybdenum on the green sheet. Further, in the case of producing from granulated powder using CIP, the heater electrode portion 30 is formed by embedding a metal member. The firing may be normal pressure firing, hot press (HP), or hot isotropic press (HIP), but HP or HIP is desirable in order to reduce the number of pores in the first member 10.

第2部材20は、100重量部の窒化アルミニウム粉末と、バインダとを混合し成形した成形体を、脱脂および焼成することによって、作製される。このとき、第2部材20内の気孔の数を多くするため、成形体の材料として、酸化イットリウムなどの焼結助材を入れないことが望ましい。第2部材20の成形体は、造粒粉の冷間等方圧加圧したものからでも作製可能である。焼成は、常圧焼成、ホットプレス、ホットアイソトロピックプレスのいずれでもよいが、第2部材20内の気孔の数を多くするため、常圧焼成が望ましい。 The second member 20 is produced by degreasing and firing a molded product formed by mixing 100 parts by weight of aluminum nitride powder and a binder. At this time, in order to increase the number of pores in the second member 20, it is desirable not to include a sintering aid such as yttrium oxide as the material of the molded product. The molded body of the second member 20 can also be produced from a cold isotropically pressurized granulated powder. The firing may be any of normal pressure firing, hot pressing, and hot isotropic pressing, but normal pressure firing is desirable in order to increase the number of pores in the second member 20.

上述したように、本実施形態の加熱部材1では、第1部材10を作製するとき、材料に酸化イットリウム粉末を焼結助剤として添加しているため、焼結が進行しやすくなり、気孔率が小さくなりやすい。一方、第2部材20を作製するとき、焼結助剤は添加されていないため、焼結させるには高温での焼結を長時間行う必要があり、結晶粒が成長しやすい。また、第1部材10と第2部材20の焼結を比較すると、第2部材20は、焼結助剤を添加した第1部材10に比べ焼結が進みにくいため、気孔率が高くなりやすい。このように、第1部材10と第2部材20とは、焼結助剤の添加量および焼結の条件によって気孔率を変更することが可能である。 As described above, in the heating member 1 of the present embodiment, when the first member 10 is manufactured, yttrium oxide powder is added to the material as a sintering aid, so that sintering can easily proceed and the porosity Is easy to get smaller. On the other hand, when the second member 20 is manufactured, since the sintering aid is not added, it is necessary to perform sintering at a high temperature for a long time in order to sinter, and crystal grains tend to grow. Further, comparing the sintering of the first member 10 and the second member 20, the second member 20 tends to have a higher porosity than the first member 10 to which the sintering aid is added because the sintering does not proceed easily. .. As described above, the porosity of the first member 10 and the second member 20 can be changed depending on the amount of the sintering aid added and the sintering conditions.

最後に、ヒータ電極部30を含む第1部材10と、第2部材20を接合する。具体的には、第1部材10の裏面12と第2部材20の接合面21を、例えば、ラップ研磨またはロータリ研磨などによって、表面粗さRaを1μm以下とし、平坦度を10μm以下とする。研磨された第1部材10の裏面12と第2部材20の接合面21を合わせて荷重をかけ、焼成温度以下で熱処理を行うことで、第1部材10と第2部材20とが接合される。このとき、接合面21には希土類を含む酸化物などから構成される接合材を介在させてもよく、これにより、第1部材10と第2部材20を緻密に接合することが可能である。 Finally, the first member 10 including the heater electrode portion 30 and the second member 20 are joined. Specifically, the surface roughness Ra of the joint surface 21 of the back surface 12 of the first member 10 and the second member 20 is set to 1 μm or less and the flatness is set to 10 μm or less by, for example, lap polishing or rotary polishing. The first member 10 and the second member 20 are joined by applying a load to the back surface 12 of the polished first member 10 and the joint surface 21 of the second member 20 and performing heat treatment at a firing temperature or lower. .. At this time, a bonding material composed of an oxide containing rare earths or the like may be interposed in the bonding surface 21, whereby the first member 10 and the second member 20 can be precisely bonded.

次に、第1部材10と第2部材20の特性の違いについて説明する。本実施形態では、第1部材10と第2部材20のそれぞれの特性について、次に説明する測定部分と測定方法を用いて測定した。 Next, the difference in characteristics between the first member 10 and the second member 20 will be described. In the present embodiment, the characteristics of the first member 10 and the second member 20 are measured by using the measuring portion and the measuring method described below.

図3は、第1部材10および第2部材20の特性を測定する位置を説明する図である。図4は、第1部材10および第2部材20の特性の測定結果を示す図である。図3に示す加熱部材1の拡大断面図では、説明の便宜上、ヒータ電極部30の図示を省略している。図3(a)に示す第1部材10の内部の領域A11、A12、A13と、図3(b)に示す第2部材20の内部の領域A21、A22は、それぞれの部材において特性が測定された部分のおおよその位置を示している。また、図4には、参考値として、アルキメデス法によって測定された焼結体密度の理論密度に対する割合を示す理論密度比を示した。ここで、理論密度とは、焼結体を構成する各元素成分の含有量を酸化物に換算し、各酸化物の含有量から混合則によって計算される密度を指す。本実施形態では、第1部材10と第2部材20のそれぞれについて、特性として、気孔率と、窒化アルミニウム粒子の平均粒度と、プラズマ照射後の表面粗さRaと、プラズマによるエッチング深さと、熱伝導率を測定した。 FIG. 3 is a diagram illustrating positions for measuring the characteristics of the first member 10 and the second member 20. FIG. 4 is a diagram showing measurement results of the characteristics of the first member 10 and the second member 20. In the enlarged cross-sectional view of the heating member 1 shown in FIG. 3, the heater electrode portion 30 is not shown for convenience of explanation. The characteristics of the internal regions A11, A12, and A13 of the first member 10 shown in FIG. 3 (a) and the internal regions A21 and A22 of the second member 20 shown in FIG. 3 (b) were measured in each member. It shows the approximate position of the part. Further, as a reference value, FIG. 4 shows a theoretical density ratio showing the ratio of the sintered body density measured by the Archimedes method to the theoretical density. Here, the theoretical density refers to the density calculated by the mixing law from the content of each oxide by converting the content of each element component constituting the sintered body into an oxide. In the present embodiment, the characteristics of each of the first member 10 and the second member 20 are the porosity, the average particle size of the aluminum nitride particles, the surface roughness Ra after plasma irradiation, the etching depth by plasma, and the heat. The conductivity was measured.

(気孔率)
・測定部分
第1部材10:載置面11から第1部材10の深さ方向で0.5mm以内に位置し、かつ、外周面13から第1部材10の内側に向かう方向で1mm以内に位置する部分(図3(a)に示す領域A11)
第2部材20:接合面21から第2部材20の深さ方向で2mm以上4mm以下に位置する部分(図3(b)に示す領域A21)
・測定方法
脱粒なく鏡面研磨した上記測定部分の倍率1000倍でのSEM写真(図4のSEM写真参照)を用いて、(気孔面積)/(全体面積)から算出した。
(Porosity)
Measurement part 1st member 10: Located within 0.5 mm in the depth direction of the first member 10 from the mounting surface 11 and within 1 mm in the direction from the outer peripheral surface 13 toward the inside of the 1st member 10. (Region A11 shown in FIG. 3A)
Second member 20: A portion located between the joint surface 21 and the second member 20 in the depth direction of 2 mm or more and 4 mm or less (region A21 shown in FIG. 3B).
-Measuring method It was calculated from (pore area) / (total area) using an SEM photograph (see the SEM photograph of FIG. 4) of the above-mentioned measurement portion mirror-polished without bleaching at a magnification of 1000 times.

(窒化アルミニウム粒子の平均粒度)
・測定部分
第1部材10:載置面11から第1部材10の深さ方向で0.5mm以内に位置し、かつ、外周面13から第1部材10の内側に向かう方向で1mm以内に位置する部分(図3(a)に示す領域A11)
第2部材20:接合面21から第2部材20の深さ方向で2mm以上4mm以下に位置する部分(図3(b)に示す領域A21)
・測定方法
鏡面研磨とサーマルエッチングを行った後の上記測定部分の倍率1000倍でのSEM写真(図4参照)を用いて、インターセプト法で粒子を50個以上カウントし、得られた平均切片長さに係数1.5を掛けることによって算出した。
(Average particle size of aluminum nitride particles)
Measurement part 1st member 10: Located within 0.5 mm in the depth direction of the first member 10 from the mounting surface 11 and within 1 mm in the direction from the outer peripheral surface 13 toward the inside of the 1st member 10. (Region A11 shown in FIG. 3A)
Second member 20: A portion located between the joint surface 21 and the second member 20 in the depth direction of 2 mm or more and 4 mm or less (region A21 shown in FIG. 3B).
-Measuring method Using an SEM photograph (see FIG. 4) at a magnification of 1000 times of the above-mentioned measured portion after mirror polishing and thermal etching, 50 or more particles were counted by the intercept method, and the obtained average section length was obtained. It was calculated by multiplying this by a coefficient of 1.5.

(プラズマエッチング後の表面状態)
・測定部分
第1部材10:載置面11から第1部材10の深さ方向で0.5mm以内に位置し、かつ、外周面13から第1部材10の内側に向かう方向で1mm以内に位置する範囲を含む部分(図3(a)に示す領域A12)
第2部材20:接合面21から第2部材20の深さ方向で2mm以上30mm以下に位置する部分(図3(b)に示す領域A22)
・測定方法
本測定では、鏡面研磨によって表面粗さRaが0.1μmとなった上記測定部分に対して、エッチングガスCF4を用いて平均粒子径以上の深さまでプラズマエッチングするプラズマ暴露実験を行い、プラズマ暴露実験後の試験サンプルの表面粗さRaを測定した。なお、表面粗さRaは、JISB0601−2013にて規定される値である。また、エッチング深さは、接触式形状測定器を用いて測定した。
(Surface condition after plasma etching)
Measurement part 1st member 10: Located within 0.5 mm in the depth direction of the first member 10 from the mounting surface 11 and within 1 mm in the direction from the outer peripheral surface 13 toward the inside of the 1st member 10. Part including the range to be used (region A12 shown in FIG. 3A)
Second member 20: A portion located between the joint surface 21 and the second member 20 in the depth direction of 2 mm or more and 30 mm or less (region A22 shown in FIG. 3B).
-Measurement method In this measurement, a plasma exposure experiment was conducted in which the above-mentioned measured portion whose surface roughness Ra was 0.1 μm due to mirror polishing was plasma-etched to a depth equal to or larger than the average particle size using etching gas CF 4. , The surface roughness Ra of the test sample after the plasma exposure experiment was measured. The surface roughness Ra is a value specified by JISB0601-2013. The etching depth was measured using a contact type shape measuring device.

(熱伝導率)
・測定部分
第1部材10:外周面13から第1部材10の内側に向かう方向で1mm以内に位置する範囲を含む部分(図3(a)に示す領域A13)
第2部材20:プラズマエッチング後の表面状態を評価する範囲と同じ部分(図3(a)に示す領域A22)
なお、領域A13、A22の部分には、ヒータ電極部30や、トンネル、ガス穴などは含まれていない。
・測定方法
レーザーフラッシュ法によって測定した。
(Thermal conductivity)
-Measuring part 1st member 10: A part including a range located within 1 mm in the direction from the outer peripheral surface 13 toward the inside of the 1st member 10 (region A13 shown in FIG. 3A).
Second member 20: The same portion as the range for evaluating the surface state after plasma etching (region A22 shown in FIG. 3A).
The regions A13 and A22 do not include the heater electrode portion 30, the tunnel, the gas hole, and the like.
-Measurement method Measured by laser flash method.

上述したように、第1部材10の特性を測定する部分としては、外周面13の近傍である外周部14が選択されている。この理由としては、外周面13は、プラズマが照射されやすく、プラズマエッチングされる可能性があるためである。また、外周部14は、載置面11に載置されている半導体ウェハ3の外周部から近いため、プラズマが照射されやすいためである。 As described above, the outer peripheral portion 14 in the vicinity of the outer peripheral surface 13 is selected as the portion for measuring the characteristics of the first member 10. The reason for this is that the outer peripheral surface 13 is easily irradiated with plasma and may be plasma-etched. Further, since the outer peripheral portion 14 is close to the outer peripheral portion of the semiconductor wafer 3 mounted on the mounting surface 11, plasma is easily irradiated.

図4に示す第1部材10および第2部材20の評価結果から、気孔率では、第1部材10(0.154%)は、第2部材20(0.424%)より小さく、その差は、0.1%以上であることが明らかとなった。また、窒化アルミニウム粒子の平均粒度では、第1部材10(7.1μm)は、第2部材20(9.9μm)より小さく、その差は、1μm以上であることが明らかとなった。第1部材10と第2部材20とを比較すると、第1部材10の窒化アルミニウム粒子の平均粒度が第2部材20の窒化アルミニウム粒子の平均粒度より小さいため、第1部材10の気孔率が、第2部材20の気孔率より小さくなっていることがわかる。 From the evaluation results of the first member 10 and the second member 20 shown in FIG. 4, the porosity of the first member 10 (0.154%) is smaller than that of the second member 20 (0.424%), and the difference is , 0.1% or more was revealed. Further, it was revealed that the average particle size of the aluminum nitride particles was smaller in the first member 10 (7.1 μm) than in the second member 20 (9.9 μm), and the difference was 1 μm or more. Comparing the first member 10 and the second member 20, the porosity of the first member 10 is higher because the average particle size of the aluminum nitride particles of the first member 10 is smaller than the average particle size of the aluminum nitride particles of the second member 20. It can be seen that the porosity of the second member 20 is smaller than that of the second member 20.

また、図4に示すように、プラズマエッチング後の表面状態では、第1部材10の表面粗さRaは、138.7μmであり、エッチング深さは、8.3μmとなっている。一方、第2部材20の表面粗さRaは、172.7μmである。このことから、プラズマエッチング後の第1部材10の表面粗さRaは、第2部材20の表面粗さRaの90%以下となっており、第2部材20の表面粗さRaより小さくなっていることがわかる。また、第2部材20のエッチング深さは、10.1μmとなっており、第1部材10と第2部材20とを比較すると、第1部材10は、プラズマによるエッチングの起点となる気孔が第2部材20より少ないため、プラズマによるエッチングが進行しにくくなっていることがわかる。なお、加熱部材1上の半導体ウェハ3をプラズマによってエッチングしているとき、第2部材20は、プラズマが照射される側とは反対側に位置するため、プラズマによるエッチングの起点となる気孔が多くても、エッチングされにくい。 Further, as shown in FIG. 4, in the surface state after plasma etching, the surface roughness Ra of the first member 10 is 138.7 μm, and the etching depth is 8.3 μm. On the other hand, the surface roughness Ra of the second member 20 is 172.7 μm. From this, the surface roughness Ra of the first member 10 after plasma etching is 90% or less of the surface roughness Ra of the second member 20, which is smaller than the surface roughness Ra of the second member 20. You can see that there is. Further, the etching depth of the second member 20 is 10.1 μm, and when the first member 10 and the second member 20 are compared, the first member 10 has pores that are the starting points of etching by plasma. Since it is less than 2 members 20, it can be seen that etching by plasma is difficult to proceed. When the semiconductor wafer 3 on the heating member 1 is etched by plasma, the second member 20 is located on the side opposite to the side irradiated with plasma, so that there are many pores that are the starting points of etching by plasma. However, it is difficult to etch.

また、熱伝導率では、第1部材10(119.2W/m・K)は、第2部材20(91.5W/m・K)より大きく、その差は、5W/m・K以上となることが明らかとなった。これにより、ヒータ電極部30が発生する熱は、第1部材10の全体に伝わりやすく、第1部材10は、均等に加熱されやすくなる。また、第1部材10の熱は、第2部材20を通って第1部材10から逃げにくくなっている。 Further, in terms of thermal conductivity, the first member 10 (119.2 W / m · K) is larger than the second member 20 (91.5 W / m · K), and the difference is 5 W / m · K or more. It became clear. As a result, the heat generated by the heater electrode portion 30 is easily transferred to the entire first member 10, and the first member 10 is easily heated evenly. Further, the heat of the first member 10 is difficult to escape from the first member 10 through the second member 20.

以上、説明した本実施形態の加熱部材1によれば、半導体ウェハ3を載置可能な載置面11が形成されている第1部材10の気孔率は、第2部材20の気孔率より小さい。載置面11に載置されている半導体ウェハ3をプラズマによってエッチングしているとき、加熱部材1では、表面の気孔を起点としてプラズマによるエッチングが進行する。本実施形態の加熱部材1は、プラズマが照射されやすい第1部材10の気孔率を、第2部材20の気孔率より小さくすることによって、プラズマが照射されてもエッチングされにくい。また、気孔率が第1部材10より大きい第2部材20は、第1部材10より熱を伝えにくい。これにより、第1部材10に配置されているヒータ電極部30によって発生する熱が、第1部材10の裏面12から第2部材20を通って第1部材10から逃げることを抑制できるため、第1部材10における均熱性を向上させることができる。したがって、載置面11の均熱性を向上しつつ耐プラズマ性を向上することができる。 According to the heating member 1 of the present embodiment described above, the porosity of the first member 10 on which the mounting surface 11 on which the semiconductor wafer 3 can be mounted is formed is smaller than the porosity of the second member 20. .. When the semiconductor wafer 3 mounted on the mounting surface 11 is etched by plasma, the etching by plasma proceeds in the heating member 1 starting from the pores on the surface. The heating member 1 of the present embodiment is less likely to be etched even if it is irradiated with plasma by making the porosity of the first member 10 that is easily irradiated with plasma smaller than the porosity of the second member 20. Further, the second member 20 having a porosity larger than that of the first member 10 is less likely to transfer heat than the first member 10. As a result, it is possible to prevent heat generated by the heater electrode portion 30 arranged on the first member 10 from escaping from the back surface 12 of the first member 10 through the second member 20 and from the first member 10. The heat equalizing property of one member 10 can be improved. Therefore, the plasma resistance can be improved while improving the heat soaking property of the mounting surface 11.

また、本実施形態の加熱部材1によれば、第1部材10に含まれる窒化アルミニウムの平均粒度は、第2部材20に含まれる窒化アルミニウムの平均粒度より小さい。これにより、第1部材10の気孔率は、第2部材20の気孔率より小さくなりやすい。したがって、載置面11の均熱性をさらに向上しつつ耐プラズマ性をさらに向上することができる。また、平均粒度が小さいことそのものによっても、耐プラズマ性をさらに向上することができる。 Further, according to the heating member 1 of the present embodiment, the average particle size of the aluminum nitride contained in the first member 10 is smaller than the average particle size of the aluminum nitride contained in the second member 20. As a result, the porosity of the first member 10 tends to be smaller than the porosity of the second member 20. Therefore, the plasma resistance can be further improved while further improving the heat equalizing property of the mounting surface 11. Further, the plasma resistance can be further improved by the small average particle size itself.

また、本実施形態の加熱部材1によれば、第1部材10と第2部材20をそれぞれプラズマエッチングしたとき、第1部材10の表面粗さRaは、第2部材20の表面粗さRaより小さくなる。すなわち、第1部材10は、第2部材20よりエッチングされにくくなっている。これにより、加熱部材1の寿命が延びるとともに、エッチングによるパーティクルの発生が抑制されるため、パーティクルによる半導体ウェハ3の汚染を抑制することができる。 Further, according to the heating member 1 of the present embodiment, when the first member 10 and the second member 20 are plasma-etched, the surface roughness Ra of the first member 10 is higher than the surface roughness Ra of the second member 20. It becomes smaller. That is, the first member 10 is less likely to be etched than the second member 20. As a result, the life of the heating member 1 is extended, and the generation of particles due to etching is suppressed, so that the contamination of the semiconductor wafer 3 by the particles can be suppressed.

また、本実施形態の加熱部材1によれば、第1部材10の熱伝導率は、第2部材20の熱伝導率より大きい。これにより、ヒータ電極部30が発生する熱は、第1部材10の全体に伝わりやすく、第1部材10は、均等に加熱されやすくなる。また、第1部材10の裏面12に接合されている第2部材20は、第1部材10より熱伝導率が小さいため、第1部材10の熱が、第1部材10の裏面12から第2部材20を通って第1部材10から逃げることを抑制できる。これにより、第1部材10における均熱性をさらに向上することができる。 Further, according to the heating member 1 of the present embodiment, the thermal conductivity of the first member 10 is larger than the thermal conductivity of the second member 20. As a result, the heat generated by the heater electrode portion 30 is easily transferred to the entire first member 10, and the first member 10 is easily heated evenly. Further, since the second member 20 joined to the back surface 12 of the first member 10 has a lower thermal conductivity than the first member 10, the heat of the first member 10 is transferred from the back surface 12 to the second member 10 of the first member 10. It is possible to suppress the escape from the first member 10 through the member 20. As a result, the heat equalizing property of the first member 10 can be further improved.

<本実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
<Modified example of this embodiment>
The present invention is not limited to the above-described embodiment, and can be implemented in various aspects without departing from the gist thereof. For example, the following modifications are also possible.

[変形例1]
上述の実施形態では、第1部材10は、窒化アルミニウムとイットリウムを含む酸化物から形成されているとした。しかしながら、第1部材10は、窒化アルミニウムとイットリウムを含む酸化物以外の材料を含んでいてもよく、窒化アルミニウムを主成分としていればよい。
[Modification 1]
In the above embodiment, it is assumed that the first member 10 is formed of an oxide containing aluminum nitride and yttrium. However, the first member 10 may contain a material other than the oxide containing aluminum nitride and yttrium, and may contain aluminum nitride as a main component.

[変形例2]
上述の実施形態では、第1部材10に含まれる窒化アルミニウムの平均粒度は、第2部材20に含まれる窒化アルミニウムの平均粒度より小さいとした。しかしながら、窒化アルミニウムの平均粒度の大小関係は、これに限定されない。
[Modification 2]
In the above-described embodiment, the average particle size of the aluminum nitride contained in the first member 10 is smaller than the average particle size of the aluminum nitride contained in the second member 20. However, the magnitude relationship of the average particle size of aluminum nitride is not limited to this.

[変形例3]
上述の実施形態では、第1部材10と第2部材20をそれぞれプラズマエッチングしたとき、第1部材10の表面粗さRaは、第2部材20の表面粗さRaより小さくなるとした。しかしながら、表面粗さRaの大小関係はこれに限定されない。特に、第1部材10と第2部材20をそれぞれプラズマエッチングしたとき、第1部材10の表面粗さRaが第2部材20の表面粗さRaの2/3以下になると、加熱部材1の寿命がさらに延びるとともに、パーティクルによる半導体ウェハ3の汚染をさらに抑制することができる。
[Modification 3]
In the above-described embodiment, when the first member 10 and the second member 20 are plasma-etched, the surface roughness Ra of the first member 10 is smaller than the surface roughness Ra of the second member 20. However, the magnitude relationship of the surface roughness Ra is not limited to this. In particular, when the first member 10 and the second member 20 are plasma-etched, if the surface roughness Ra of the first member 10 is 2/3 or less of the surface roughness Ra of the second member 20, the life of the heating member 1 is reached. Can be further extended, and contamination of the semiconductor wafer 3 by particles can be further suppressed.

[変形例4]
上述の実施形態では、第1部材10の熱伝導率は、第2部材20の熱伝導率より大きいとした。しかしながら、熱伝導率の大小関係はこれに限定されない。
[Modification example 4]
In the above-described embodiment, the thermal conductivity of the first member 10 is larger than the thermal conductivity of the second member 20. However, the magnitude relationship of thermal conductivity is not limited to this.

[変形例5]
上述の実施形態では、載置面11の面積は、載置面11に載置される半導体ウェハ3の面積と同じであるとした。しかしながら、載置面11の面積と半導体ウェハ3の面積の関係は、これに限定されない。例えば、載置面11の面積が半導体ウェハ3の面積より大きく、載置面11に半導体ウェハ3を載置すると、載置面11の外周部が露出してもよい。
[Modification 5]
In the above-described embodiment, the area of the mounting surface 11 is the same as the area of the semiconductor wafer 3 mounted on the mounting surface 11. However, the relationship between the area of the mounting surface 11 and the area of the semiconductor wafer 3 is not limited to this. For example, when the area of the mounting surface 11 is larger than the area of the semiconductor wafer 3 and the semiconductor wafer 3 is mounted on the mounting surface 11, the outer peripheral portion of the mounting surface 11 may be exposed.

以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。 Although the present embodiment has been described above based on the embodiments and modifications, the embodiments of the above-described embodiments are for facilitating the understanding of the present embodiment, and do not limit the present embodiment. This aspect may be modified or improved without departing from its spirit and claims, and this aspect includes its equivalents. In addition, if the technical feature is not described as essential in the present specification, it may be deleted as appropriate.

1…加熱部材
3…半導体ウェハ
10…第1部材
11…載置面
12…裏面
13…外周面
14…外周部
20…第2部材
21…接合面
22…給電端子
30…ヒータ電極部
A11、A12、A13、A21、A22…領域
1 ... Heating member 3 ... Semiconductor wafer 10 ... First member 11 ... Mounting surface 12 ... Back surface 13 ... Outer peripheral surface 14 ... Outer peripheral part 20 ... Second member 21 ... Joint surface 22 ... Power supply terminal 30 ... Heater electrode parts A11, A12 , A13, A21, A22 ... Area

Claims (4)

加熱部材であって、
窒化アルミニウムを主成分とし、対象物を載置可能な載置面と、第1の方向において前記載置面とは反対側の裏面とが形成された第1部材と、
前記第1部材に配置され、通電により発熱するヒータ電極部と、
窒化アルミニウムを主成分とし、前記第1の方向に延びる柱状であり、前記第1部材の裏面に接合される第2部材と、を備え、
前記第1部材の気孔率は、前記第2部材の気孔率より小さい、
加熱部材。
It is a heating member
A first member containing aluminum nitride as a main component and having a mounting surface on which an object can be mounted and a back surface opposite to the previously described mounting surface in the first direction.
A heater electrode portion that is arranged in the first member and generates heat when energized,
It is provided with a second member having aluminum nitride as a main component, which is a columnar shape extending in the first direction and is joined to the back surface of the first member.
The porosity of the first member is smaller than the porosity of the second member.
Heating member.
請求項1に記載の加熱部材であって、
前記第1部材に含まれる窒化アルミニウムの平均粒度は、前記第2部材に含まれる窒化アルミニウムの平均粒度より小さい、
加熱部材。
The heating member according to claim 1.
The average particle size of aluminum nitride contained in the first member is smaller than the average particle size of aluminum nitride contained in the second member.
Heating member.
請求項1または請求項2に記載の加熱部材であって、
前記第1部材と前記第2部材をそれぞれプラズマエッチングしたとき、前記第1部材の表面粗さRaは、前記第2部材の表面粗さRaより小さくなる、
加熱部材。
The heating member according to claim 1 or 2.
When the first member and the second member are plasma-etched, the surface roughness Ra of the first member is smaller than the surface roughness Ra of the second member.
Heating member.
請求項1から請求項3のいずれか一項に記載の加熱部材であって、
前記第1部材の熱伝導率は、前記第2部材の熱伝導率より大きい、
加熱部材。
The heating member according to any one of claims 1 to 3.
The thermal conductivity of the first member is larger than the thermal conductivity of the second member.
Heating member.
JP2019131115A 2019-07-16 2019-07-16 heating element Active JP7312631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131115A JP7312631B2 (en) 2019-07-16 2019-07-16 heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131115A JP7312631B2 (en) 2019-07-16 2019-07-16 heating element

Publications (2)

Publication Number Publication Date
JP2021015937A true JP2021015937A (en) 2021-02-12
JP7312631B2 JP7312631B2 (en) 2023-07-21

Family

ID=74530649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131115A Active JP7312631B2 (en) 2019-07-16 2019-07-16 heating element

Country Status (1)

Country Link
JP (1) JP7312631B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4311910B2 (en) 2002-04-15 2009-08-12 住友電気工業株式会社 Holder for semiconductor manufacturing equipment
WO2010027073A1 (en) 2008-09-05 2010-03-11 株式会社東芝 Semiconductor fabrication device component and semiconductor fabrication device

Also Published As

Publication number Publication date
JP7312631B2 (en) 2023-07-21

Similar Documents

Publication Publication Date Title
TW523855B (en) Wafer holder for semiconductor manufacturing apparatus and method of manufacturing wafer holder
US6365879B1 (en) Wafer holder for semiconductor manufacturing apparatus
WO2006001425A1 (en) Electrostatic chuck
TWI480972B (en) A wafer holding body for improving the connection method of the high-frequency electrode, and a semiconductor manufacturing apparatus including the same
JP6921306B2 (en) Holding device and manufacturing method of holding device
US20040188413A1 (en) Ceramic Susceptor and Semiconductor or Liquid-Crystal Manufacturing Apparatus in Which the Susceptor Is Installed
JP2006005095A (en) Substrate heater and its manufacturing process
WO2002042241A1 (en) Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2003317906A (en) Ceramic heater
JP2005018992A (en) Electrode embedding member for plasma generator
JP7312631B2 (en) heating element
JP5466439B2 (en) Ceramic joined body, ceramic heater, electrostatic chuck and susceptor
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP4529690B2 (en) Wafer holder for semiconductor manufacturing apparatus, manufacturing method thereof, and semiconductor manufacturing apparatus
JP3568194B2 (en) Ceramic heater for semiconductor heat treatment
JP2005022966A (en) Aluminum nitride joined body and its producing method
JP3821075B2 (en) Ceramic heater and manufacturing method thereof
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP4069875B2 (en) Wafer holding member
JP7184652B2 (en) holding device
JP3652862B2 (en) Electrostatic chuck and plasma generator
JP7240232B2 (en) holding device
JP7317506B2 (en) holding device
JP2021170567A (en) Holding device and manufacturing method thereof
JP4148180B2 (en) Wafer holder for semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7312631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150