JP2005022966A - Aluminum nitride joined body and its producing method - Google Patents

Aluminum nitride joined body and its producing method Download PDF

Info

Publication number
JP2005022966A
JP2005022966A JP2004174638A JP2004174638A JP2005022966A JP 2005022966 A JP2005022966 A JP 2005022966A JP 2004174638 A JP2004174638 A JP 2004174638A JP 2004174638 A JP2004174638 A JP 2004174638A JP 2005022966 A JP2005022966 A JP 2005022966A
Authority
JP
Japan
Prior art keywords
aluminum nitride
metal layer
joined
joined body
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004174638A
Other languages
Japanese (ja)
Inventor
Tatsuo Ezaki
龍夫 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2004174638A priority Critical patent/JP2005022966A/en
Publication of JP2005022966A publication Critical patent/JP2005022966A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a joined structural body which is a plate joined body being useful as a plate heater or an electrostatic chuck to process a mounted semiconductor wafer and consisting of an aluminum nitride sintered body joined through a metal layer, which can process the semiconductor wafer uniformly when used for the above mentioned uses and which has excellent durability. <P>SOLUTION: The plate joined body of the aluminum nitride sintered body is intervened by the metal layer for a part of a joined plane. The joining between the aluminum nitride sintered body and the metal layer and the joining between the aluminum nitride sintered bodies are directly joined not through an adhering agent layer. A plurality of voids having a mean diameter of 0.5-4 μm exist along a joining interface in a direct joining area where plate sintered bodies at the joining interface are directly faced to each other looking from the side sectional plane passing the center of the joined body. A part not joined is formed by the voids and the rate of the part not joined at the side sectional plane is within the range of 0.1-0.5% on the average. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体製造装置において、半導体ウエハーを載置して処理するためのプレートヒーターや静電チャックとして有用な窒化アルミニウム接合体に関する。詳しくは、金属層を介して接合された窒化アルミニウム焼結体よりなる板状接合体であり、上記用途として使用した場合、半導体ウエハーの処理を均一に行うことが可能であり、且つ、耐久性も良好な接合構造体である。   The present invention relates to an aluminum nitride bonded body useful as a plate heater or an electrostatic chuck for mounting and processing a semiconductor wafer in a semiconductor manufacturing apparatus. Specifically, it is a plate-like joined body made of an aluminum nitride sintered body joined through a metal layer, and when used as the above-mentioned application, the semiconductor wafer can be processed uniformly and is durable. Is a good bonded structure.

シリコンウエハー等の半導体ウエハーに膜付けやエッチング処理等を施す半導体製造装置において、該半導体ウエハーを載置する台として、ヒーターあるいは電極として作用する金属層を内部に埋め込んだセラミックの板状焼結体が使用される。たとえば、ヒーターとして金属層を埋め込んだものはプレートヒーターとして、電極を埋め込んだものは、静電チャックとして使用される。また、静電チャックにおいては、電極と共にヒーターとして機能する金属層を埋め込む場合もある。   In a semiconductor manufacturing apparatus for performing film deposition or etching treatment on a semiconductor wafer such as a silicon wafer, a ceramic plate-like sintered body in which a metal layer acting as a heater or an electrode is embedded as a stage for mounting the semiconductor wafer Is used. For example, a heater embedded with a metal layer is used as a plate heater, and a heater embedded with an electrode is used as an electrostatic chuck. In an electrostatic chuck, a metal layer that functions as a heater may be embedded together with an electrode.

近年、上記用途に使用するセラミックとして、熱伝導率が良好な窒化アルミニウム焼結体が使用されるようになった。   In recent years, an aluminum nitride sintered body having a good thermal conductivity has been used as a ceramic used in the above applications.

一方、近年の技術革新による高集積化により益々高精度化が要求されていると共に、処理される半導体ウエハーの径も大型化し、例えば、表面に膜付けを行う処理においては、大面積に均一、均質な薄膜を精度良く作製することが、また、エッチング処理においては、半導体ウエハー上に形成された各種薄膜を大面積に均一にエッチングすることが要求されるようになった。   On the other hand, higher precision is required due to higher integration due to technological innovation in recent years, and the diameter of the semiconductor wafer to be processed is also increased. It has become necessary to produce a uniform thin film with high accuracy, and in the etching process, various thin films formed on a semiconductor wafer must be uniformly etched over a large area.

このような状況下において、前記プレートヒーターや静電チャックとして使用される金属層を埋め込んだ窒化アルミニウムの板状焼結体は、埋め込まれた金属層がその半導体ウエハーとの接触表面から均一な厚みで存在することが必要である。   Under such circumstances, the plate-like sintered body of aluminum nitride embedded with the metal layer used as the plate heater or electrostatic chuck has a uniform thickness from the contact surface with the semiconductor wafer. It is necessary to exist in.

従来、金属層を埋め込んだ窒化アルミニウムの板状焼結体の製造は、予め金属層を埋め込んで焼結する際の寸法変化により、金属層の断線や変形が著しいため、一旦板状或いはシート状の焼結体を製造した後、これらの焼結体間に金属層を介して接合することによって金属層を埋め込んだ窒化アルミニウム焼結体よりなる板状接合体として得るのが一般的であった。   Conventionally, manufacturing of a plate-like sintered body of aluminum nitride in which a metal layer is embedded has a remarkable disconnection or deformation of the metal layer due to a dimensional change when the metal layer is embedded and sintered in advance, so it is once plate-shaped or sheet-shaped. It was common to obtain a plate-like joined body made of an aluminum nitride sintered body in which a metal layer was embedded by manufacturing a sintered body of the above and then joining these sintered bodies through a metal layer. .

例えば、窒化アルミニウム焼結体の板状物の間に金属層を介在せしめて接着剤によって接合する方法が実施されていた。ところが、従来の接着剤は、焼結体の接合に高温を要し、かかる熱によって焼結体の変形が起こり、これに伴って金属層にも反りが発生するという問題があった。   For example, a method has been implemented in which a metal layer is interposed between plate-like objects of an aluminum nitride sintered body and bonded with an adhesive. However, the conventional adhesive has a problem that a high temperature is required for joining the sintered bodies, and the sintered body is deformed by the heat, and accordingly, the metal layer is warped.

そこで、かかる接着剤として組成を改良してその接着温度を低下せしめた接着剤を使用することによって反りを改善する方法が提案されている(特許文献1参照)。   Then, the method of improving a curvature by using the adhesive agent which improved the composition and lowered | hung the adhesive temperature as this adhesive agent is proposed (refer patent document 1).

上記方法によって、得られる接合体の反りはある程度改良することができるが、改善の余地があった。また、接着剤層とこれによって接合される窒化アルミニウム焼結体とは異種材料で構成されるため、金属層が部分的に存在し、窒化アルミニウム焼結体同士が該接着剤層によって接合されている場合は、熱履歴により接合部の強度が経時的に低下するという現象を招くことがある。   Although the warpage of the obtained bonded body can be improved to some extent by the above method, there is room for improvement. In addition, since the adhesive layer and the aluminum nitride sintered body joined by the adhesive layer are made of different materials, the metal layer partially exists and the aluminum nitride sintered bodies are joined by the adhesive layer. If so, there may be a phenomenon in which the strength of the bonded portion decreases with time due to the thermal history.

特開2000−252045号公報JP 2000-252045 A

したがって、本発明の目的は、金属層を部分的に介して接合された窒化アルミニウム焼結体よりなる板状接合体において、接着剤を使用することなく、且つ、該金属層の反りが極めて低く抑えられた接合体を得ることを目的とするものである。   Accordingly, an object of the present invention is to provide a plate-like joined body made of an aluminum nitride sintered body joined partially through a metal layer, without using an adhesive, and with a very low warpage of the metal layer. The object is to obtain a suppressed bonded body.

本発明者らは、上記課題を解決するため鋭意研究を重ねた。その結果、窒化アルミニウム焼結体の接合面に対して、特定の圧力をかけながら、特定の温度制御下に加熱することによって、接着層を介すことなく、十分な強度で窒化アルミニウム焼結体と金属層、及び窒化アルミニウム焼結体同士の接着を行うことが可能であり、しかも、内在する金属層の反りが著しく低く抑えられた、従来に無い窒化アルミニウム焼結体よりなる接合体の開発に成功した。さらに、上記方法によって得られた接合体を解析した結果、窒化アルミニウム焼結体の接合界面において、かかる方法に由来する微細な大きさの非接合部分が、特徴的に残存していることを見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the aluminum nitride sintered body with sufficient strength can be obtained without applying an adhesive layer by heating the joint surface of the aluminum nitride sintered body under a specific temperature control while applying a specific pressure. Development of an unprecedented aluminum nitride sintered body that can be bonded to each other and the metal layer and aluminum nitride sintered body, and the warpage of the underlying metal layer is extremely low succeeded in. Furthermore, as a result of analyzing the joined body obtained by the above method, it was found that a non-joint portion having a fine size derived from the method remains characteristically at the joining interface of the aluminum nitride sintered body. The present invention has been completed.

即ち、本発明は、接合面の一部に金属層を介在せしめた窒化アルミニウム焼結体の板状接合体であって、上記窒化アルミニウム焼結体と金属層、及び窒化アルミニウム焼結体同士が接着剤層を介することなく直接接合され、且つ、前記接合体の中心を通る側断面でみて、前記接合界面における前記焼結体板同士が直接対面している直接接合領域には、接合界面に沿って、平均して0.5〜4μmの空孔が複数存在し、且つ該空孔により非接合部が形成されており、前記側断面における非接合率が、平均して0.1〜0.5%の範囲にあることを特徴とする窒化アルミニウム接合体(以下、AlN板状接合体ともいう。)である。   That is, the present invention is a plate-like joined body of an aluminum nitride sintered body in which a metal layer is interposed on a part of the joining surface, and the aluminum nitride sintered body, the metal layer, and the aluminum nitride sintered body are Directly joined without an adhesive layer, and when viewed in a side cross section passing through the center of the joined body, a direct joining region where the sintered plates directly face each other at the joining interface has a bonding interface. A plurality of pores having an average size of 0.5 to 4 μm are present, and non-joining portions are formed by the pores, and the non-joining rate in the side cross section is 0.1 to 0 on average. An aluminum nitride joined body (hereinafter also referred to as an AlN plate-like joined body) characterized by being in the range of 0.5%.

また、本発明は、得られる接合体の反りを低減するための前記製造方法をも提供する。即ち、本発明は、焼結助剤の含有率が1重量%以下の2つの窒化アルミニウム焼結体を、一方の窒化アルミニウム焼結体の表面に厚さ20μm以下の金属層を部分的に存在させた状態で、該金属層を介して他方の窒化アルミニウム焼結体を積層し、5〜100kg/cmの圧力で圧接しながら、1650〜1700℃の温度で0.5〜4時間加熱し、次いで、1700℃を越え、1800℃以下の温度で2〜8時間加熱することを特徴とする金属層を有する窒化アルミニウム接合体の製造方法をも提供する。 Moreover, this invention also provides the said manufacturing method for reducing the curvature of the joined body obtained. That is, in the present invention, two aluminum nitride sintered bodies having a sintering aid content of 1% by weight or less are partially present, and a metal layer having a thickness of 20 μm or less is partially present on the surface of one aluminum nitride sintered body. In this state, the other aluminum nitride sintered body is laminated through the metal layer and heated at a temperature of 1650 to 1700 ° C. for 0.5 to 4 hours while being pressed at a pressure of 5 to 100 kg / cm 2. Then, the present invention also provides a method for producing an aluminum nitride joined body having a metal layer characterized by heating at a temperature exceeding 1700 ° C. and not exceeding 1800 ° C. for 2 to 8 hours.

本発明のAlN板状接合体は、前記の特定の接合方法に基づく特徴的な接合界面の構造により、金属層の反りが小さく抑えられていることから、当該金属層に電圧を印加して、誘電体に電界を形成する場合など、表面上の位置に依存することなく、金属層上の何れの箇所においても均一な電界を形成することが可能である。   The AlN plate-like bonded body of the present invention has a characteristic bonding interface structure based on the specific bonding method described above, so that the warpage of the metal layer is suppressed to a small level. A uniform electric field can be formed at any location on the metal layer without depending on the position on the surface, such as when an electric field is formed on a dielectric.

また、接着剤層を介することなく接合されているため、熱履歴に対しても耐久性があり、より信頼性の高い作動が期待できる。   Moreover, since it has joined without going through an adhesive bond layer, it is durable against heat history, and a more reliable operation can be expected.

従って、本発明のAlN板状接合体は、半導体製造装置に使用される静電チャック、プレートヒーターなどとして、極めて有効に使用される。   Therefore, the AlN plate-like joined body of the present invention is extremely effectively used as an electrostatic chuck, a plate heater or the like used in a semiconductor manufacturing apparatus.

(AlN板状接合体)
以下、本発明を図面に従って詳細に説明するが本発明の態様は、かかる図面に示されたものに何ら限定されるものではない。
(AlN plate assembly)
Hereinafter, the present invention will be described in detail with reference to the drawings. However, the embodiments of the present invention are not limited to those shown in the drawings.

図1は、本発明のAlN板状接合体の代表的な態様を示す部分破断斜視図である。また、図2は、AlN板状接合体における金属層の反りの測定方法を示す概念図である。更に、図3は、AlN板状接合体において、空孔を含む接合界面の状態を示す概念図である。   FIG. 1 is a partially broken perspective view showing a typical embodiment of the AlN plate-like joined body of the present invention. FIG. 2 is a conceptual diagram showing a method for measuring the warpage of the metal layer in the AlN plate-like assembly. Furthermore, FIG. 3 is a conceptual diagram showing a state of a bonding interface including pores in the AlN plate-like bonded body.

本発明のAlN板状接合体は、金属層2を介在せしめて窒化アルミニウム焼結体1−a、1−bが直接接合されてなる板状接合体である。   The AlN plate-like joined body of the present invention is a plate-like joined body in which the aluminum nitride sintered bodies 1-a and 1-b are directly joined with the metal layer 2 interposed therebetween.

上記窒化アルミニウム焼結体は、公知の窒化アルミニウム粉末を使用し、公知の方法で成形、焼成して得られたものが特に制限無く使用される。そのうち、焼結体中の酸素濃度が1%以下であり、焼結助剤が0.5%以下の焼結体を使用するのが好ましい。   As the above-mentioned aluminum nitride sintered body, a known aluminum nitride powder is used without particular limitation, which is obtained by molding and firing by a known method. Among them, it is preferable to use a sintered body having an oxygen concentration in the sintered body of 1% or less and a sintering aid of 0.5% or less.

また、本発明において、前記金属層2は、前記ヒータープレートや静電チャックの用途において、電極、ヒーターの回路パターンを形成するものであり、図1に示すように単純にベタのパターンで存在する場合もあるし、線状のパターンで存在する場合もある。   In the present invention, the metal layer 2 forms a circuit pattern of electrodes and heaters in the use of the heater plate and electrostatic chuck, and simply exists in a solid pattern as shown in FIG. In some cases, it may exist in a linear pattern.

また、上記金属層を構成する材質は、タングステン、モリブデン、白金、チタン、銅等の金属が代表的である。   The material constituting the metal layer is typically a metal such as tungsten, molybdenum, platinum, titanium, or copper.

上記金属層の占める割合は、一般に接合面の一部であればいいが、一般に、金属層の反りが発生し易いのは、接合面に対して50〜90%、好ましくは、60〜80%の範囲で金属層が存在する場合であり、本発明はかかる範囲で金属層を有するAlN板状接合体において、より効果的である。また、上記金属層の厚みは、20μm以下、特に、1〜15μmの厚みが好ましい。   The proportion of the metal layer generally suffices if it is a part of the joint surface. In general, the metal layer is likely to warp in the range of 50 to 90%, preferably 60 to 80%, relative to the joint surface. The present invention is more effective in an AlN plate-like joined body having a metal layer in such a range. The thickness of the metal layer is preferably 20 μm or less, particularly preferably 1 to 15 μm.

また、上記金属層は、接合体の中央部となるように設けられるのが一般的である。   Further, the metal layer is generally provided so as to be a central portion of the joined body.

尚、図示されていないが、焼結体板1−a或いは1−bには、スルーホールが形成されており、スルーホールの内部に導体ペーストなどが充填され、金属層2に通電し得るような構造となっている。   Although not shown, the sintered body plate 1-a or 1-b is formed with a through hole so that a conductive paste or the like is filled in the through hole so that the metal layer 2 can be energized. It has a simple structure.

一方、接合前の窒化アルミニウム焼結体1−a、1−bは、接合後に所期の厚みのAlN板状接合体が得られるようにそれぞれの厚みが適宜決定される。例えば、各焼結体が同じ厚みであってもよいし、厚みが異なっていてもよい。一般には、半導体ウエハーを載置する面側の厚みが他方に対して薄くなるように決定することが好ましい。   On the other hand, the thicknesses of the aluminum nitride sintered bodies 1-a and 1-b before joining are appropriately determined so that an AlN plate-like joined body having a desired thickness can be obtained after joining. For example, each sintered body may have the same thickness or may have a different thickness. In general, it is preferable to determine the thickness of the surface on which the semiconductor wafer is placed so as to be thinner than the other.

上記AlN板状接合体の総厚みは、用途によっても多少異なるが、1〜100mmが一般的である。   The total thickness of the AlN plate-like joined body is somewhat different depending on the application, but is generally 1 to 100 mm.

本発明のAlN板状接合体は、上記窒化アルミニウム焼結体が金属層を介在させて、直接接合されてなる。この「直接」とは、従来使用されていた接着剤層を介することなく接合することの意味であり、金属層が部分的に存在する場合は、窒化アルミニウム焼結体同士、及び、窒化アルミニウム焼結体と金属層とが接着剤層を介することなく、直接接合された状態をいう。   The AlN plate-like joined body of the present invention is formed by directly joining the aluminum nitride sintered body with a metal layer interposed. The term “directly” means that bonding is performed without using an adhesive layer that has been used in the past. When the metal layer is partially present, the sintered aluminum nitride bodies and the sintered aluminum nitride are used. A state in which the bonded body and the metal layer are directly joined without an adhesive layer interposed therebetween.

上記直接接合による接合強度は、ダイシェアテスターによって測定されるシェア強度が、窒化アルミニウム焼結体間で9.5〜11.0kg/mm、特に、10.0〜11.0kg/mmであり、窒化アルミニウム焼結体−金属層間で、2.5〜4.0kg/mm、特に、3.0〜4.0kg/mmである。 Bonding strength by the direct bonding, the shear strength as measured by die shear tester, between the aluminum nitride sintered body 9.5~11.0kg / mm 2, in particular, in 10.0~11.0kg / mm 2 There, an aluminum nitride sintered body - with metal layers, 2.5~4.0kg / mm 2, in particular, a 3.0~4.0kg / mm 2.

本発明のAlN板状接合体においては、上記高い接合強度で、接合体が構成されているため、接着剤層を介在させる場合に比べて、異種材料との界面が少なく、熱の繰り返し履歴に対する強度低下が極めて小さいという効果を有する。   In the AlN plate-like joined body of the present invention, since the joined body is configured with the above-described high joint strength, the interface with the dissimilar material is less than the case where an adhesive layer is interposed, and the heat repeated history is reduced. It has the effect that the strength reduction is extremely small.

因みに、本発明のAlN板状接合体は、25℃から350℃までの昇降温による熱履歴を100回繰り返した後における前記金属層と窒化アルミニウム焼結体との接合面のシェア強度が、上記熱履歴前のシェア強度に対して90%以上という極めて良好な耐熱履歴特性を示す。   Incidentally, in the AlN plate-like joined body of the present invention, the shear strength of the joint surface between the metal layer and the aluminum nitride sintered body after repeating the thermal history by raising and lowering the temperature from 25 ° C. to 350 ° C. 100 times is as described above. It exhibits extremely good heat resistance history characteristics of 90% or more with respect to the shear strength before heat history.

本発明のAlN板状接合体の最大の特徴は、上記接合体において、金属層の反りが著しく少ないという点にある。即ち、本発明のAlN板状接合体は、接着剤層を介することなく接合体としたこと自体にも特徴があるが、接合体中に埋設した金属層の反りも極めて小さいという特徴を有する。   The greatest feature of the AlN plate-like joined body of the present invention is that the warp of the metal layer is remarkably small in the joined body. That is, the AlN plate-like joined body of the present invention is characterized in that the joined body itself is not provided with an adhesive layer, but the warpage of the metal layer embedded in the joined body is also extremely small.

本願明細書において、上記金属層の反り(W)は、図2に示すように、金属層に対して直角の切断面において、該金属層の端点を結ぶ線(一点鎖線)より最も遠い金属層の距離(R;μm)を測定し、これを端点間の長さ(T;mm)により下記式によって求めた値である。   In the present specification, as shown in FIG. 2, the warp (W) of the metal layer is a metal layer farthest from a line (dotted line) connecting the end points of the metal layer at a cutting plane perpendicular to the metal layer. The distance (R; μm) is measured, and this is a value obtained by the following formula using the length (T; mm) between the end points.

W(μm/10mm) = R/T × 10
本発明のAlN板状接合体において、前記金属層の存在位置は特に制限されるものではないが、板状接合体の一方の表面から、該板状接合体の全厚みに対して0.1〜50%の深さの位置に存在するように決定することが好ましい。
W (μm / 10 mm) = R / T × 10
In the AlN plate-like joined body of the present invention, the position of the metal layer is not particularly limited, but from one surface of the plate-like joined body, the total thickness of the plate-like joined body is 0.1. It is preferable to determine that it exists at a position having a depth of ˜50%.

本発明にかかるAlN板状接合体は、上記反りが、5〜25μm/10mm、特に、10〜20μm/10mmという優れた物性を示す。   The AlN plate-like joined body according to the present invention exhibits excellent physical properties such that the warpage is 5 to 25 μm / 10 mm, particularly 10 to 20 μm / 10 mm.

このような優れた低反り特性は、従来の接着剤を使用するAlN板状接合体では達成できない値であり、前記直接接合における後記の特殊な製造技術によって初めて達成された値である。   Such an excellent low warpage characteristic is a value that cannot be achieved by an AlN plate-like joined body using a conventional adhesive, and is a value that is achieved for the first time by a special manufacturing technique described later in the direct joining.

上記金属層の反りが抑えられた本発明の接合体は、後で詳述する製造方法によって達成することができるが、かかる製造方法により、反りの低減を実現し得る構造として、本発明の接合体が、前記接合体の中心を通る側断面でみて、前記接合界面における前記焼結体板同士が直接対面している直接接合領域には、接合界面に沿って、長さLが平均して0.5〜4μmの空孔が複数存在し、且つ該空孔により非接合部が形成されているという特徴を有する。尚、上記空孔は長さLが5μm以上のものは存在しないことが好ましい。   The joined body of the present invention in which the warpage of the metal layer is suppressed can be achieved by a manufacturing method described in detail later. The structure of the present invention can be achieved by reducing the warpage by such a manufacturing method. When the body is seen in a side cross section passing through the center of the bonded body, the length L is averaged along the bonded interface in the directly bonded region where the sintered body plates directly face each other at the bonded interface. A plurality of holes having a size of 0.5 to 4 μm are present, and a non-joint portion is formed by the holes. In addition, it is preferable that the said hole does not exist that length L is 5 micrometers or more.

また、前記側断面における非接合率が、平均して0.1〜0.5%、好ましくは0.2〜0.4%の範囲にある構造を採ることも、特徴として挙げられる。   Another feature is that the non-bonding rate in the side cross section is on average 0.1 to 0.5%, preferably 0.2 to 0.4%.

即ち、本発明の接合体の製造方法は、窒化アルミニウム焼結体の熱膨張が比較的に少ない低温領域で接合面を部分的に共焼結させて固定(仮止め)する処理を行い、次いで、上記固定状態を維持する範囲の高温で共焼結を進行させて接合部を形成させるものであり、非接合部が最終的に微細な空孔となって残存する。しかも、その空孔は、周囲からの接合の進行によって形成されるため、比較的球体に近いものとなる。   That is, the method for manufacturing a bonded body according to the present invention performs a process of partially co-sintering and fixing (temporarily fixing) the bonding surface in a low temperature region where the thermal expansion of the aluminum nitride sintered body is relatively small, The co-sintering proceeds at a high temperature within a range that maintains the fixed state to form a joint, and the non-joint part finally remains as fine pores. Moreover, since the holes are formed by the progress of joining from the surroundings, the holes are relatively close to a sphere.

これに対して、本発明の接合方法を実施しないで、窒化アルミニウム焼結体同士を接合した場合、例えば、窒化アルミニウム焼結体の焼結温度付近で接合を実施した場合には、接合の進行によって非接合部が残存するが、接合時に接合界面が自由度を持っており、これが冷却される過程の比較的高温で接合界面の固定が起こるため、冷却後の接合体に歪ができ易く、反りが発生する。また、接合時において接合界面が自由度を持っていることにより、空孔の移動や変形が起こり易く、大きな空孔が偏って存在したり、平面方向に潰れた形状の非接合部の空孔が多く見受けられる。   In contrast, when the aluminum nitride sintered bodies are joined to each other without carrying out the joining method of the present invention, for example, when joining is performed near the sintering temperature of the aluminum nitride sintered body, the progress of joining The non-bonded part remains, but the bonding interface has a degree of freedom at the time of bonding, and fixing of the bonding interface occurs at a relatively high temperature during the process of cooling, so that the bonded body after cooling can easily be distorted, Warping occurs. In addition, since the bonding interface has a degree of freedom at the time of bonding, vacancies are easily moved and deformed, and large vacancies are unevenly distributed or vacant in a non-joined portion in a shape crushed in the plane direction There are many.

また、好ましい構造としては、上記空孔の形状が球に近いことにある。即ち、本発明の窒化アルミニウム接合体の好ましい態様として、前記非接合部を構成する空孔が、界面と垂直方向の長さ(L)と界面と平行方向の長さ(L)との比(L/L)が0.8〜2、好ましくは、1.0〜1.5となる態様が挙げられる。 A preferred structure is that the shape of the holes is close to a sphere. That is, as a preferable aspect of the aluminum nitride joined body of the present invention, the pores constituting the non-joined portion have a length perpendicular to the interface (L Y ) and a length parallel to the interface (L X ). A mode in which the ratio (L X / L Y ) is 0.8 to 2, preferably 1.0 to 1.5 is exemplified.

尚、上記非接合率、及び非接合部の(L/L)を詳細に説明すれば、下記の方法によって測定される。 Incidentally, the non-bonding rate, and will be described in the unbonded portion (L X / L Y) in detail, it is determined by the following method.

1)非接合率
本発明にあっては、接合界面において、非接合部に存在する微細な空孔の存在割合である非接合率は、前記側断面について、下記式(1)によって算出される。
1) Non-joining rate In the present invention, the non-joining rate, which is the proportion of fine pores present in the non-joining portion at the joining interface, is calculated by the following formula (1) for the side cross section. .

非接合率Q=(X/Y)×100 …(1)
(式中、Xは直接結合領域に存在する前記空孔の長さLの合計値で表される前記非接合部の接合界面方向長さであり、Yは前記空孔が存在している直接結合領域の長さである。)
具体的には、接合体の中心から外側に向かって複数の切断面を取り、該切断面の窒化アルミニウム同士の界面を走査型電子顕微鏡(SEM)を用いて、倍率600倍で連続的に写真撮影し、その後、上記撮影写真を基に、図3に示す、界面に存在する空孔により接合していない部分の長さLn(n=1〜N;Nは界面に存在する空孔の総数)を求め、下記式(1)を用いて非接合率を求める。
Non-bonding rate Q = (X / Y) × 100 (1)
(In the formula, X is the length in the bonding interface direction of the non-joined portion represented by the total value of the length L of the holes existing in the direct bonding region, and Y is the direct length where the holes exist. The length of the binding area.)
Specifically, a plurality of cut surfaces are taken from the center of the joined body to the outside, and the interface between the aluminum nitrides on the cut surfaces is continuously photographed at a magnification of 600 times using a scanning electron microscope (SEM). The length Ln (n = 1 to N; N is the total number of vacancies existing at the interface, as shown in FIG. ) And the non-bonding rate is obtained using the following formula (1).

Figure 2005022966
Figure 2005022966

2)非接合部の(L/L
上記切断面において、窒化アルミニウム焼結体同士の界面における非接合部の界面と垂直方向の長さ(L)と界面と平行方向の長さ(L)とを各空孔について測定し、その比(L/L)の平均を求める。
2) (L X / L Y ) of non-joined part
In the cut surface, the length in the vertical direction (L Y ) and the length in the direction parallel to the interface (L X ) are measured for each hole in the interface between the aluminum nitride sintered bodies, The average of the ratio (L X / L Y ) is obtained.

(AlN板状接合体の製造方法)
本発明のAlN板状接合体の製造方法は、特に制限されるものではないが、代表的な方法を例示すれば、下記の方法が挙げられる。
(Method for producing AlN plate-like assembly)
Although the manufacturing method of the AlN plate-like joined body of the present invention is not particularly limited, the following method can be mentioned as a representative method.

即ち、本発明によれば、焼結助剤の含有率が1重量%以下の2つの窒化アルミニウム焼結体を、一方の窒化アルミニウム焼結体の表面に厚さ20μm以下の金属層を存在させた状態で、該金属層を介して他方の窒化アルミニウム焼結体を積層し、5〜100kg/cmの圧力で圧接しながら、1650〜1700℃の温度で0.5〜4時間加熱し、次いで、1700℃を越え、1800℃以下の温度で2〜8時間加熱することを特徴とする金属層を有する窒化アルミニウム接合体の製造方法をも提供される。 That is, according to the present invention, two aluminum nitride sintered bodies having a sintering aid content of 1% by weight or less are present, and a metal layer having a thickness of 20 μm or less is present on the surface of one aluminum nitride sintered body. In this state, the other aluminum nitride sintered body is laminated through the metal layer and heated at a temperature of 1650 to 1700 ° C. for 0.5 to 4 hours while being pressed at a pressure of 5 to 100 kg / cm 2 . Next, a method for producing an aluminum nitride joined body having a metal layer, characterized by heating at a temperature exceeding 1700 ° C. and not exceeding 1800 ° C. for 2 to 8 hours is also provided.

本発明の上記製造方法において、AlN板状接合体を構成するための窒化アルミニウム焼結体は、焼結助剤の含有率を1重量%以下、好ましくは、0.5重量%以下とすることが、後記温度下での処理によって、接着剤を介在させることなく確実に接合を行うために好ましい。また、前記したように、接合する窒化アルミニウム焼結体は、両方が同一の厚みのものでもよいし、異なっていてもよい。   In the above production method of the present invention, the aluminum nitride sintered body for constituting the AlN plate-like joined body has a content of the sintering aid of 1% by weight or less, preferably 0.5% by weight or less. However, it is preferable in order to reliably perform the bonding without interposing an adhesive by the treatment at the temperature described later. Further, as described above, the aluminum nitride sintered bodies to be joined may have the same thickness or may be different.

本発明において、加熱接合すべきAlN焼結体板は、それ自体公知の方法によって作製することができ、例えば、AlN粉末からなる焼成用粉末を有機バインダーと混合して造粒粉末或いはペーストなどの成形用材料を調製し、この成形材料をシート状に成形し、得られたグリーンシートを脱バインダーし、焼成することにより作製することができる。   In the present invention, the AlN sintered body plate to be heat-bonded can be produced by a method known per se. For example, a baking powder made of AlN powder is mixed with an organic binder to form a granulated powder or a paste. It can be produced by preparing a molding material, molding the molding material into a sheet, removing the obtained green sheet, and firing.

上記の焼成用粉末には、必要により、Mg,Ca,Srなどのアルカリ土類金属の酸化物や、Y等の希土類元素の酸化物などを焼結助剤として添加することもできる。このような焼結助剤の添加量は、通常、1重量%以下、特に0.5重量%以下である。   If necessary, an oxide of an alkaline earth metal such as Mg, Ca or Sr, an oxide of a rare earth element such as Y, or the like can be added to the firing powder as a sintering aid. The amount of the sintering aid added is usually 1% by weight or less, particularly 0.5% by weight or less.

また、有機バインダーとしては、これに限定されるものではないが、一般に、ポリビニルブチラール、ポリメチルメタクリレート、カルボキシメチルセルロース、ポリビニルピロリドン、ポリエチレングリコール、酸化ポリエチレン、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、ポリスチレン、ポリアクリル酸などが使用される。このような有機バインダーは、その種類によっても異なるが、一般に、前述した焼成用粉末100重量部当り、0.1乃至30重量部の量で使用される。   The organic binder is not limited to this, but generally polyvinyl butyral, polymethyl methacrylate, carboxymethyl cellulose, polyvinyl pyrrolidone, polyethylene glycol, polyethylene oxide, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, Polystyrene, polyacrylic acid, etc. are used. Such an organic binder is generally used in an amount of 0.1 to 30 parts by weight per 100 parts by weight of the above-mentioned baking powder, although it varies depending on the type.

また、成形用材料の調製にあたっては、必要により、長鎖炭化水素エーテルなどの分散剤、トルエン、エタノールなどの溶剤、及びフタル酸などの可塑剤を適宜の量で用いることもできる。   In preparing the molding material, if necessary, a dispersant such as a long-chain hydrocarbon ether, a solvent such as toluene and ethanol, and a plasticizer such as phthalic acid can be used in appropriate amounts.

上記成形用材料を用いての成形用シート(グリーンシート)の作製は、押出成形法、ドクターブレード法、プレス成形法等の公知の成形法によって行われる。   Production of a molding sheet (green sheet) using the molding material is performed by a known molding method such as an extrusion molding method, a doctor blade method, or a press molding method.

脱バインダーは、一般に、グリーンシートを空気中で300乃至900℃程度に加熱することにより行われ、焼成は、脱バインダー後のグリーンシートを、不活性雰囲気中(例えば窒素雰囲気中)、1700乃至1900℃の温度に加熱することにより行われる。焼成時間は、通常、アルキメデス法による相対密度が98%以上となる程度の時間であればよい。   Debinding is generally performed by heating the green sheet to about 300 to 900 ° C. in air, and firing is performed on the green sheet after debinding in an inert atmosphere (for example, in a nitrogen atmosphere), 1700 to 1900. This is done by heating to a temperature of ° C. The firing time may normally be a time such that the relative density by the Archimedes method is 98% or more.

上記のようにして得られた焼結体の表面は、平均表面粗さRaが0.1〜0.8μm、好ましくは、0.2〜0.6μmとなるように研削加工を施すことが、後記の金属層、更には窒化アルミニウム焼結体同士の密着性を強固にするため好ましい。   The surface of the sintered body obtained as described above is subjected to grinding so that the average surface roughness Ra is 0.1 to 0.8 μm, preferably 0.2 to 0.6 μm. This is preferable in order to strengthen the adhesion between the metal layers described later and the aluminum nitride sintered bodies.

本発明において、加工後の焼結体に3を形成し、当該金属層が形成された面と窒化アルミニウム焼結体2とを密着させ接合体を形成する。接合体を形成する条件は以下のとおりである。   In the present invention, 3 is formed on the sintered body after processing, and the surface on which the metal layer is formed and the aluminum nitride sintered body 2 are adhered to each other to form a joined body. The conditions for forming the joined body are as follows.

窒化アルミニウム焼結体1−aと窒化アルミニウム焼結体1−bとを金属層3を部分的に介して重ね合わせた状態で5〜100kg/mmの圧力で圧接しながら、1650〜1700℃で0.5〜4時間、その後、1750〜1800℃で2〜8時間保持することにより金属層を内面に有する接合体を形成することができる。 The aluminum nitride sintered body 1-a and the aluminum nitride sintered body 1-b are 1650-1700 ° C. while being pressed at a pressure of 5-100 kg / mm 2 with the metal layer 3 partially overlapped. For 0.5 to 4 hours, and then at 1750 to 1800 ° C. for 2 to 8 hours, a joined body having a metal layer on the inner surface can be formed.

前記方法において金属層の形成は、接合される一方の窒化アルミニウム焼結体の表面に予め存在せしめておくことが、確実にその配置を決めることができると共に、回路パターンが複雑な場合、かかるパターンを保護することができるために好ましい。具体的な方法を例示すれば、金属ペーストとして塗布し、これを焼結せしめる方法、イオンプレーティング法等の物理気相堆積法によって窒化アルミニウム焼結体の表面に金属層を形成させる態様等が挙げられる。   In the above-described method, the formation of the metal layer should be preliminarily present on the surface of one of the aluminum nitride sintered bodies to be bonded, so that the arrangement of the metal layer can be determined with certainty. Is preferable because it can be protected. Examples of specific methods include a method of applying a metal paste and sintering it, a mode of forming a metal layer on the surface of an aluminum nitride sintered body by a physical vapor deposition method such as an ion plating method, and the like. Can be mentioned.

上記金属層の厚みは、前記したように20μm以下、特に、1〜15μmの厚みで形成することが、金属層が存在しない部分の窒化アルミニウム焼結体同士の接着を確実に行うために好ましい。   As described above, the thickness of the metal layer is preferably 20 μm or less, and particularly preferably 1 to 15 μm, in order to reliably bond the aluminum nitride sintered bodies at portions where the metal layer does not exist.

本発明のAlN板状接合体の製造方法において、金属層を形成した窒化アルミニウム焼結体と他方の窒化アルミニウム焼体との接合は、金属層を介するように両者を積層し、加圧下に2段階で加熱を行う。   In the method for producing an AlN plate-like joined body according to the present invention, the sintered aluminum nitride formed with the metal layer and the other sintered aluminum nitride are laminated with the metal layer interposed therebetween, and 2 under pressure. Heat in stages.

先ず、1段目では、5〜100kg/cm、好ましくは、10〜30kg/cmの圧力で圧接しながら、1650〜1700℃、好ましくは1650〜1680℃の温度で0.5〜4時間、好ましくは、1〜2時間加熱して処理を行うことが好ましい。 First, in the first stage, the pressure is 1650 to 1700 ° C., preferably 1650 to 1680 ° C. for 0.5 to 4 hours while being pressed at a pressure of 5 to 100 kg / cm 2 , preferably 10 to 30 kg / cm 2. The treatment is preferably carried out by heating for 1 to 2 hours.

また、2段目では、1700℃を越え、1800℃以下、好ましくは1750〜1790℃の温度で2〜8時間、好ましくは、4〜6時間加熱することが目的とするAlN板状接合体を得るために好ましい。   In the second stage, an AlN plate-like joined body that is heated at a temperature exceeding 1700 ° C. and not exceeding 1800 ° C., preferably 1750 to 1790 ° C. for 2 to 8 hours, preferably 4 to 6 hours. Preferred for obtaining.

即ち、上記方法において、1段目の加熱温度を一度に2段目の温度まで上昇して処理を行った場合、接合基板に大きな反りが発生し易くなる。かかる条件で得られる接合体は、前記非接合部の長さが長くなり、また、前記L/Lの値も大きくなり細長い空間となる。これは接合時の接合界面の固定が不十分であることによるものと推定される。 That is, in the above method, when the first stage heating temperature is increased to the second stage temperature at a time, the warping of the bonded substrate is likely to occur. In the joined body obtained under such conditions, the length of the non-joined portion is increased, and the value of L X / L Y is also increased, resulting in an elongated space. This is presumably due to insufficient fixation of the bonding interface during bonding.

また、1段目の加熱温度が1650℃より低い場合、接合が困難となる。上記条件で処理を行った接合体は、接合部が不足し、前記非接合部が多く残存するため、非接合部の割合が多くなる。   Further, when the first stage heating temperature is lower than 1650 ° C., bonding becomes difficult. The joined body that has been treated under the above conditions has a lack of joined parts and a large amount of the non-joined parts remaining, so that the proportion of non-joined parts increases.

また、1段目の加熱時間が上記範囲より短い場合は、仮止め効果が不十分となり、前述の1段目加熱温度を2段目の温度まで上昇させた場合と同様に反りの問題が生じる。   Further, when the first stage heating time is shorter than the above range, the temporary fixing effect is insufficient, and the problem of warping occurs as in the case where the first stage heating temperature is raised to the second stage temperature. .

また、上記範囲より長い場合は、金属層金属の基板への拡散が進み、金属層の基板内分布が不均一になるという問題が生じる。   Further, when the length is longer than the above range, the diffusion of the metal layer metal to the substrate proceeds, and there arises a problem that the distribution of the metal layer in the substrate becomes non-uniform.

一方、2段目の加熱温度が、前記範囲より高い場合、金属層の窒化アルミニウム基板への拡散が進み、金属層分布が不均一になるという問題が生じる。また、加熱温度が1700℃より低い場合、十分な接合強度が得られないという問題が生じる。かかる条件で得られる接合体は、接合部の成長が十分でなく、前記非接合部が多く残存するため、非接合部の割合が多くなる。   On the other hand, when the heating temperature at the second stage is higher than the above range, the diffusion of the metal layer to the aluminum nitride substrate proceeds and the metal layer distribution becomes non-uniform. Moreover, when heating temperature is lower than 1700 degreeC, the problem that sufficient joint strength is not acquired arises. In the joined body obtained under such conditions, the joint portion does not grow sufficiently, and a large amount of the non-joined portion remains, so that the proportion of the non-joined portion increases.

また、2段目の加熱時間が上記範囲より短い場合は、接合不充分により、接合強度が低下する問題が生じ、また、上記範囲より長い場合は、反りが大きくなるという問題が生じる。   Further, when the heating time at the second stage is shorter than the above range, there arises a problem that the bonding strength is lowered due to insufficient bonding, and when it is longer than the above range, there is a problem that warpage becomes large.

さらに、上記1段目、2段目の加熱を通じて、窒化アルミニウム焼結体の接合面に作用する圧力が、前記範囲より小さい場合は、接合力が低下し、前記非接合部が多く残存するため、非接合部の割合が多くなる。また、強すぎる場合は、焼結体の破損が起こり、歩留りが低下する。   Furthermore, when the pressure acting on the joining surface of the aluminum nitride sintered body through the first and second heating steps is smaller than the above range, the joining force is reduced and a large amount of the non-joined portion remains. The proportion of non-joined parts increases. On the other hand, when it is too strong, the sintered body is damaged, and the yield is lowered.

上記本発明の方法により、接着剤を使用せずに、しかも反りの発生を抑えながら、目的とするAlN板状接合体を得ることができる機構について、本発明者らは、次のように推定している。   With respect to the mechanism by which the target AlN plate-like joined body can be obtained by the above-described method of the present invention without using an adhesive and suppressing the occurrence of warpage, the inventors have estimated as follows. is doing.

即ち、1段目の加熱により、比較的低い温度で接触している焼結体粒子同士が接合し、接合される窒化アルミニウム基板が固定化(仮止め)され、かかる位置関係を維持しながら、2段目で接合部分が進行してより強固な接合が起こることにより、接合体に反りが少ない接合体ができると推定される。また、接着剤を使用しないため、著しい粒界移動が起こらないことによっても反りが発生し難くなっているものと推定される。   That is, sintered particles that are in contact with each other at a relatively low temperature are bonded by heating at the first stage, and the aluminum nitride substrate to be bonded is fixed (temporarily fixed), while maintaining such a positional relationship, It is presumed that a joined part with less warpage can be formed by the joining part proceeding at the second stage and causing stronger joining. In addition, since no adhesive is used, it is presumed that warpage hardly occurs even when significant grain boundary movement does not occur.

以下に実施例、比較例を挙げ本発明の効果をより詳しく説明する。尚、本発明は以下に記述する実施例に限定されるものではないことは言うまでもない。   Hereinafter, the effects of the present invention will be described in more detail with reference to Examples and Comparative Examples. Needless to say, the present invention is not limited to the examples described below.

実施例及び比較例における各種測定は下記の方法によって行なった。   Various measurements in Examples and Comparative Examples were performed by the following methods.

(1)非接合率
接合体の中心から外側に向かって、角度90度間隔で4箇所の切断面を取り、該切断面の窒化アルミニウム同士の界面を走査型電子顕微鏡(SEM)を用いて、倍率600倍で連続的に写真撮影した。その後、上記撮影写真を基に、図3に示す、界面に存在する空孔により接合していない部分の長さLn(n=1〜N;Nは界面に存在する空孔の総数)を求め、下記式(1)を用いて非接合率をそれぞれの切断面について求め、その平均値を示した。
(1) Non-bonding rate From the center of the bonded body to the outside, four cut surfaces are taken at intervals of 90 degrees, and the interface between the aluminum nitrides of the cut surface is taken using a scanning electron microscope (SEM). Pictures were taken continuously at a magnification of 600 times. Thereafter, based on the above photograph, the length Ln (n = 1 to N; N is the total number of vacancies existing at the interface) of the portion not joined by the vacancies present at the interface shown in FIG. The non-bonding rate was determined for each cut surface using the following formula (1), and the average value was shown.

Figure 2005022966
Figure 2005022966

(2)非接合部の(L/L
上記それぞれの切断面において、窒化アルミニウム焼結体同士の界面における非接合部の界面と垂直方向の長さ(L)と界面と平行方向の長さ(L)とを測定し、その比(L/L)を各空孔について求め、その平均値を示した。
(2) (L X / L Y ) of non-joined part
At each of the cut surfaces, the length (L Y ) in the direction perpendicular to the interface of the non-joint portion and the length in the direction parallel to the interface (L X ) at the interface between the aluminum nitride sintered bodies are measured, and the ratio (L X / L Y) look for the holes, showed the average value.

(3)金属層の反り(W)の測定
AlN板状接合体を2分割した各断面について、図2に示すように、金属層に対して直角の切断面において、該金属層の端点を結ぶ線(一点鎖線)より最も遠い金属層の距離(R;μm)を測定し、これを端点間の長さ(T;mm)により下記式によって求め、最も大きい値を金属層の反りとして表示した。
(3) Measurement of warpage (W) of metal layer For each cross section obtained by dividing the AlN plate-like joined body into two parts, as shown in FIG. 2, the end points of the metal layer are connected at a cut surface perpendicular to the metal layer. The distance (R; μm) of the metal layer farthest from the line (dashed line) was measured, and this was calculated by the following formula using the length (T; mm) between the end points, and the largest value was displayed as the warp of the metal layer. .

W(μm/10mm) = R/T × 10
(4)耐熱履歴特性
AlN板状接合体をサーマルショックチャンバー(エスペック(株)製、型式TSC−103(W))に入れ、25℃から350℃まで30分で昇温した後、25℃まで30分で冷却する昇降温を100回繰り返した後の接合体の接合界面のシェア強度を測定し、熱履歴を与える前のシェア強度に対する割合を下記式で算出し、耐熱履歴特性として表示した。
W (μm / 10 mm) = R / T × 10
(4) Heat-resistant hysteresis characteristics An AlN plate-like joined body is put in a thermal shock chamber (manufactured by ESPEC Corporation, model TSC-103 (W)), heated from 25 ° C. to 350 ° C. in 30 minutes, and then up to 25 ° C. The shear strength at the joint interface of the joined body after 100 times of raising and lowering the temperature to cool in 30 minutes was measured, and the ratio to the shear strength before giving the thermal history was calculated by the following formula and displayed as the heat resistance history characteristics.

耐熱履歴特性(%)=熱履歴後のシェア強度×100/熱履歴前のシェア強度
実施例1
直径40mm、厚み6mmの焼結助剤無添加窒化アルミニウム基板((株)トクヤマ、SH−50,Y0.02%,Ra0.4)の一方面に外周から5mm幅の部分をアルミ製マスクで覆い、イオンプレーティング法にてTi0.2ミクロン、W1ミクロンの順に成膜した。次に成膜を施していない窒化アルミニウム基板SH−50をTi/W膜が内側になるように重ねてカーボン製試料治具にて固定し、ホットプレス炉に入れた。その後荷重300kgf(圧力23.9kg/cm)をかけながら、窒素気流中1650℃で2時間保持した後、昇温速度10℃/分で1750℃まで昇温後、4時間保持した。室温まで冷却後、炉から取り出し、AlN板状接合体を得た。
Heat-resistant history characteristics (%) = Share strength after thermal history × 100 / Share strength before thermal history Example 1
Cover an area of 5 mm from the outer periphery with an aluminum mask on one side of an aluminum nitride substrate with a diameter of 40 mm and a thickness of 6 mm and without addition of a sintering aid (Tokuyama, SH-50, Y0.02%, Ra0.4) The film was formed in the order of Ti 0.2 micron and W 1 micron by the ion plating method. Next, the aluminum nitride substrate SH-50 on which no film was formed was stacked with the Ti / W film on the inside, fixed with a carbon sample jig, and placed in a hot press furnace. Thereafter, while applying a load of 300 kgf (pressure 23.9 kg / cm 2 ), the mixture was held at 1650 ° C. for 2 hours in a nitrogen stream, then heated to 1750 ° C. at a heating rate of 10 ° C./min, and then held for 4 hours. After cooling to room temperature, it was taken out from the furnace to obtain an AlN plate-like joined body.

かかるAlN板状接合体の製造条件及び各種特性を表1、表2に示した。   Tables 1 and 2 show the production conditions and various characteristics of the AlN plate-like joined body.

得られたAlN板状接合体の金属層の反りWは、12μm/10mmであった。次に、接合界面のシェア強度を測定したところ、金属層を含む界面で3.8kgf/mmであり、金属層を含まない界面では10kgf/mmであった。また、耐熱履歴特性は100%であった。次に、接合体の中心から外側に向かって、角度90度間隔で4箇所の切断面を取り、該切断面の窒化アルミニウム同士の界面を走査型電子顕微鏡(SEM)を用いて、倍率600倍で連続的に写真撮影し、式(1)を用いて非接合率Qを求めたところ、0.2%であり、空孔の長さLの平均は1.8μmであり、また、空孔の長さ比L/Lの平均は1.1であった。 The warp W of the metal layer of the obtained AlN plate-like joined body was 12 μm / 10 mm. Then, by measurement of shear strength of the bonding interface is 3.8kgf / mm 2 at an interface containing a metal layer, at the interface without the metal layer was 10 kgf / mm 2. Moreover, the heat-resistant history characteristic was 100%. Next, from the center of the joined body to the outside, four cut surfaces are taken at intervals of 90 degrees, and the interface between the aluminum nitrides on the cut surface is magnified 600 times using a scanning electron microscope (SEM). When the non-bonding rate Q was calculated using the formula (1), it was 0.2% and the average length L of the holes was 1.8 μm. The average length ratio L X / L Y was 1.1.

実施例2
直径326mm、厚み10mmの焼結助剤無添加窒化アルミニウム基板((株)トクヤマ、SH−50,イットリア0.02%,Ra0.4)の一方面に、イオンプレーティング法にてTi0.2ミクロン、W1ミクロンの順に成膜した。次に成膜面の中心から半径146mmの範囲をマスキングして、外周から17mm幅のTi/W膜を5vol%フッ酸/5vol%硝酸1:1混合溶液に浸漬し除去した。
Example 2
On one side of a 326 mm diameter, 10 mm thick sintering additive-free aluminum nitride substrate (Tokuyama Corporation, SH-50, yttria 0.02%, Ra 0.4), Ti 0.2 micron by ion plating method , W1 microns were formed in this order. Next, a region having a radius of 146 mm from the center of the film formation surface was masked, and a Ti / W film having a width of 17 mm from the outer periphery was removed by dipping in a 1: 1 mixture of 5 vol% hydrofluoric acid / 5 vol% nitric acid.

次に、成膜を施していない窒化アルミニウム基板SH−50をTi/W膜が内側になるように重ねてカーボン製試料治具にて固定し、ホットプレス炉に入れた。その後荷重20tf(圧力24.0kg/cm)をかけながら、窒素気流中1690℃で2時間保持した後、昇温速度3℃/分で1790℃まで昇温後、4時間保持した。室温まで冷却後、炉から取り出し、AlN板状接合体を得た。 Next, the aluminum nitride substrate SH-50 on which no film was formed was stacked with the Ti / W film on the inside, fixed with a carbon sample jig, and placed in a hot press furnace. Thereafter, while applying a load of 20 tf (pressure 24.0 kg / cm 2 ), the mixture was held in a nitrogen stream at 1690 ° C. for 2 hours, then heated to 1790 ° C. at a rate of temperature increase of 3 ° C./min, and then held for 4 hours. After cooling to room temperature, it was taken out from the furnace to obtain an AlN plate-like joined body.

かかるAlN板状接合体の製造条件及び各種特性を表1、表2に示した。   Tables 1 and 2 show the production conditions and various characteristics of the AlN plate-like joined body.

得られたAlN板状接合体について、金属層の反りWは、17μm/10mmであった。次に、接合界面のシェア強度を測定したところ、金属層を含む界面で3.5kg/mmであり、金属層を含まない界面では10kg/mmであった。また、耐熱履歴特性は100%であった。次に非接合率Qを求めたところ、0.2%であり、空孔の長さLの平均は2.4μmであり、また、空孔の長さ比L/Lの平均は1.2であった。 About the obtained AlN plate-shaped joined body, the curvature W of the metal layer was 17 micrometers / 10mm. Next, when the shear strength of the bonding interface was measured, it was 3.5 kg / mm 2 at the interface including the metal layer and 10 kg / mm 2 at the interface not including the metal layer. Moreover, the heat-resistant history characteristic was 100%. Next, when the non-bonding rate Q was determined, it was 0.2%, the average of the length L of the holes was 2.4 μm, and the average of the length ratio L X / L Y of the holes was 1 .2.

実施例3〜5
実施例1と同様の基板を用い、保持温度、保持時間、荷重の接合条件を変えた以外は、実施例1と同様の方法で、AlN板状接合体を得た。
Examples 3-5
An AlN plate-like joined body was obtained in the same manner as in Example 1 except that the same substrate as in Example 1 was used and the joining conditions of holding temperature, holding time, and load were changed.

かかるAlN板状接合体の製造条件及び各種特性を表1、表2に示した。   Tables 1 and 2 show the production conditions and various characteristics of the AlN plate-like joined body.

実施例6
直径40mm、厚み6mmの焼結助剤無添加窒化アルミニウム基板((株)トクヤマ、SH−50,イットリア0.02%,Ra0.4)の一方面に、イオンプレーティング法にてTi0.2ミクロン、W9ミクロンの順に成膜した。次に、実施例2と同じ条件で接合し、AlN板状接合体を得た。
Example 6
One side of a 40 mm diameter, 6 mm thick sintering additive-free aluminum nitride substrate (Tokuyama Corporation, SH-50, yttria 0.02%, Ra 0.4), Ti 0.2 micron by ion plating method And W9 microns in order. Next, bonding was performed under the same conditions as in Example 2 to obtain an AlN plate-like bonded body.

得られたAlN板状接合体について、金属層の反りWは、19μm/10mmであった。次に、接合界面のシェア強度を測定したところ、金属層を含む界面で3.1kg/mmであり、金属層を含まない界面では10kg/mmであった。また、耐熱履歴特性は99%であった。次に非接合率Qを求めたところ0.2%であり、空孔の長さLの平均は3.8μmであり、また、空孔の長さ比L/Lの平均は1.2であった。 About the obtained AlN plate-shaped joined body, the curvature W of the metal layer was 19 micrometers / 10mm. Next, when the shear strength of the bonding interface was measured, it was 3.1 kg / mm 2 at the interface including the metal layer, and 10 kg / mm 2 at the interface not including the metal layer. Further, the heat resistance history characteristic was 99%. Next, the non-bonding rate Q was determined to be 0.2%, the average length L of the holes was 3.8 μm, and the average length ratio L X / L Y of the holes was 1. 2.

比較例1
直径40mm、厚み6mmの焼結助剤無添加窒化アルミニウム基板((株)トクヤマ、SH−50,Y0.02%,Ra0.4)の一方面に外周から5mm幅の部分をアルミ製マスクで覆い、イオンプレーティング法にてTi0.2ミクロン、W1ミクロンの順に成膜した。
Comparative Example 1
Cover an area of 5 mm from the outer periphery with an aluminum mask on one side of an aluminum nitride substrate with a diameter of 40 mm and a thickness of 6 mm and without addition of a sintering aid (Tokuyama, SH-50, Y0.02%, Ra0.4) The film was formed in the order of Ti 0.2 micron and W 1 micron by the ion plating method.

次に、成膜を施していない窒化アルミニウム基板SH−50に、接着剤としてAlN−Yスラリー(AlN100重量部、Y5重量部、アクリルバインダー4重量部、長鎖炭化水素エーテル系分散剤0.5重量部)を塗布した後、Ti/W膜が内側になるように重ねてカーボン製試料治具にて固定し、ホットプレス炉に入れた。 Next, an AlN—Y 2 O 3 slurry (100 parts by weight of AlN, 5 parts by weight of Y 2 O 3 , 4 parts by weight of an acrylic binder, long chain hydrocarbons) is used as an adhesive on an aluminum nitride substrate SH-50 that has not been formed into a film. After applying 0.5 weight part of an ether-based dispersant, the Ti / W films were stacked so that the Ti / W film was on the inside, fixed with a carbon sample jig, and placed in a hot press furnace.

その後、荷重300kgf(圧力23.9kg/cm)をかけながら、窒素気流中1650℃で2時間保持した後、昇温速度10℃/分で1750℃まで昇温後、4時間保持した。室温まで冷却後、炉から取り出し、接着剤層を有するAlN板状接合体を得た。 Thereafter, while applying a load of 300 kgf (pressure 23.9 kg / cm 2 ), the mixture was held in a nitrogen stream at 1650 ° C. for 2 hours, then heated to 1750 ° C. at a heating rate of 10 ° C./min, and then held for 4 hours. After cooling to room temperature, it was taken out from the furnace to obtain an AlN plate-like assembly having an adhesive layer.

得られたAlN板状接合体は、椀状に反っていた。上記AlN板状接合体表面を研削して、平らにした後、測定される金属層の反りは、297μm/10mmであった。次に、接合界面のシェア強度を測定したところ、金属層を含む界面で2.0kg/mmであり、金属層を含まない界面では6kg/mmであった。また、耐熱履歴特性は68%であった。次に非接合率Qを求めたところ21.1%であり、空孔の長さLの平均は6.5μmであり、また、空孔の長さ比L/Lの平均は4.8であった。 The obtained AlN plate-like joined body was warped in a bowl shape. After the surface of the AlN plate-like joined body was ground and flattened, the measured warpage of the metal layer was 297 μm / 10 mm. Next, when the shear strength of the bonding interface was measured, it was 2.0 kg / mm 2 at the interface including the metal layer, and 6 kg / mm 2 at the interface not including the metal layer. Further, the heat resistance history characteristic was 68%. Next, the non-bonding rate Q was calculated to be 21.1%, the average of the length L of the holes was 6.5 μm, and the average of the length ratio L X / L Y of the holes was 4. It was 8.

比較例2
実施例1と同様の基板を用いて、保持温度、保持時間を変えた以外は、比較例1と同様の方法でAlN板状接合体を得た。
Comparative Example 2
An AlN plate-like bonded body was obtained in the same manner as in Comparative Example 1 except that the holding temperature and holding time were changed using the same substrate as in Example 1.

かかるAlN板状接合体の製造条件及び各種特性を表1、表2に示した。   Tables 1 and 2 show the production conditions and various characteristics of the AlN plate-like joined body.

比較例3〜9
実施例1と同様の基板を用い、保持温度、保持時間、荷重の接合条件を変えた以外は、実施例1と同様の方法でAlN板状接合体を得た。
Comparative Examples 3-9
An AlN plate-like joined body was obtained in the same manner as in Example 1 except that the same substrate as in Example 1 was used and the joining conditions of holding temperature, holding time, and load were changed.

かかるAlN板状接合体の製造条件及び各種特性を表1、表2に示した。   Tables 1 and 2 show the production conditions and various characteristics of the AlN plate-like joined body.

Figure 2005022966
Figure 2005022966

Figure 2005022966
Figure 2005022966

本発明のAlN板状接合体の代表的な態様を示す部分破断斜視図The partially broken perspective view which shows the typical aspect of the AlN plate-shaped joined body of this invention 本発明において金属層の反りの測定の概念図Conceptual diagram of measurement of warpage of metal layer in the present invention AlN板状接合体において、空孔を含む接合界面の状態を示す概念図Conceptual diagram showing the state of the bonding interface including pores in the AlN plate-like assembly

符号の説明Explanation of symbols

1 窒化アルミニウム焼結体
2 金属層
1 Aluminum nitride sintered body 2 Metal layer

Claims (8)

接合面の一部に金属層を介在せしめた窒化アルミニウム焼結体の板状接合体であって、上記窒化アルミニウム焼結体と金属層、及び窒化アルミニウム焼結体同士が接着剤層を介することなく直接接合され、且つ、前記接合体の中心を通る側断面でみて、前記接合界面における前記焼結体板同士が直接対面している直接接合領域には、接合界面に沿って、平均して0.5〜4μmの空孔が複数存在し、且つ該空孔により非接合部が形成されており、前記側断面における非接合率が、平均して0.1〜0.5%の範囲にあることを特徴とする窒化アルミニウム接合体。   A plate-like bonded body of an aluminum nitride sintered body in which a metal layer is interposed on a part of a bonding surface, the aluminum nitride sintered body and the metal layer, and the aluminum nitride sintered bodies being interposed with an adhesive layer In the direct bonding region where the sintered plates at the bonding interface are directly facing each other, on the side cross-section passing through the center of the bonded body, the average is along the bonding interface. There are a plurality of holes of 0.5 to 4 μm, and non-bonded portions are formed by the holes, and the non-bonding rate in the side cross section is in the range of 0.1 to 0.5% on average. There is provided an aluminum nitride joined body. 前記非接合部を構成する空孔について、界面と垂直方向の長さ(L)と界面と平行方向の長さ(L)との比(L/L)が0.8〜2である請求項1記載の窒化アルミニウム接合体。 Wherein the air holes constituting the non-bonded portion, the ratio of the length of the interface and the vertical direction (L Y) and the interface parallel direction length and (L X) (L X / L Y) is 0.8 to 2 The aluminum nitride joined body according to claim 1. 前記金属層における反りが25μm/10mm以下である請求項1又は2に記載の窒化アルミニウム接合体。   The aluminum nitride joined body according to claim 1 or 2, wherein the warp in the metal layer is 25 µm / 10 mm or less. 板状接合体の総厚みが1〜100mmのである請求項1〜3の何れか一項に記載の窒化アルミニウム接合体。   The aluminum nitride joined body according to any one of claims 1 to 3, wherein the total thickness of the plate-like joined body is 1 to 100 mm. 金属層が板状接合体の一方の表面から、該板状接合体の全厚みに対して0.1〜50%の深さの位置に存在する請求項1〜4の何れか一項に記載の窒化アルミニウム接合体。   The metal layer is present at a position of a depth of 0.1 to 50% with respect to the total thickness of the plate-like joined body from one surface of the plate-like joined body. Aluminum nitride bonded body. 25℃から350℃までの昇降温による熱履歴を100回繰り返した後における前記金属層と窒化アルミニウム焼結体との接合面のシェア強度が、上記熱履歴前のシェア強度に対して90%以上である請求項1〜5の何れか一項に記載の窒化アルミニウム接合体。   The shear strength of the joint surface between the metal layer and the aluminum nitride sintered body after repeating the thermal history by raising and lowering the temperature from 25 ° C. to 350 ° C. 100 times or more is 90% or more with respect to the shear strength before the thermal history. The aluminum nitride joined body according to any one of claims 1 to 5. 焼結助剤の含有率が1重量%以下の2つの窒化アルミニウム焼結体を、一方の窒化アルミニウム焼結体の表面に厚さ20μm以下の金属層を部分的に存在させた状態で、該金属層を介して他方の窒化アルミニウム焼結体を積層し、5〜100kg/cmの圧力で圧接しながら、1650〜1700℃の温度で0.5〜4時間加熱し、次いで、1700℃を越え、1800℃以下の温度で2〜8時間加熱することを特徴とする金属層を有する窒化アルミニウム接合体の製造方法。 Two aluminum nitride sintered bodies having a sintering aid content of 1% by weight or less, with a metal layer having a thickness of 20 μm or less partially present on the surface of one aluminum nitride sintered body, The other aluminum nitride sintered body is laminated through the metal layer and heated at a temperature of 1650-1700 ° C. for 0.5-4 hours while being pressed at a pressure of 5-100 kg / cm 2. And a method for producing an aluminum nitride joined body having a metal layer, characterized by heating at a temperature of 1800 ° C. or lower for 2 to 8 hours. 窒化アルミニウム焼結体の平均表面粗さRa(JIS B 0601)が、0.1〜0.8μmの範囲にあるものを使用する請求項7記載の窒化アルミニウム接合体の製造方法。
The method for producing an aluminum nitride joined body according to claim 7, wherein the aluminum nitride sintered body has an average surface roughness Ra (JIS B 0601) in the range of 0.1 to 0.8 µm.
JP2004174638A 2003-06-13 2004-06-11 Aluminum nitride joined body and its producing method Pending JP2005022966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004174638A JP2005022966A (en) 2003-06-13 2004-06-11 Aluminum nitride joined body and its producing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003169795 2003-06-13
JP2004174638A JP2005022966A (en) 2003-06-13 2004-06-11 Aluminum nitride joined body and its producing method

Publications (1)

Publication Number Publication Date
JP2005022966A true JP2005022966A (en) 2005-01-27

Family

ID=34197081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004174638A Pending JP2005022966A (en) 2003-06-13 2004-06-11 Aluminum nitride joined body and its producing method

Country Status (1)

Country Link
JP (1) JP2005022966A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214110A (en) * 2007-02-28 2008-09-18 Taiheiyo Cement Corp Ceramic member
JP2011148687A (en) * 2009-12-25 2011-08-04 Taiheiyo Cement Corp Ceramic joined body and method for production thereof
EP2398103A1 (en) 2010-06-15 2011-12-21 NGK Insulators, Ltd. Fuel cell
US8940455B2 (en) 2010-06-15 2015-01-27 Ngk Insulators, Ltd. Fuel cell
JP2015164882A (en) * 2014-02-28 2015-09-17 株式会社日本セラテック Aluminum nitride joined body and method of producing the same
JP2017147126A (en) * 2016-02-17 2017-08-24 日本特殊陶業株式会社 Manufacturing method for ceramic heater
JP2021512845A (en) * 2018-04-17 2021-05-20 ワトロー エレクトリック マニュファクチュアリング カンパニー Ceramic-aluminum assembly with joint grooves

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055451A (en) * 1973-08-31 1977-10-25 Alan Gray Cockbain Composite materials
JPH04324276A (en) * 1991-04-24 1992-11-13 Kawasaki Steel Corp Aln ceramic heater and manufacture thereof
JPH0982786A (en) * 1995-09-19 1997-03-28 Ngk Insulators Ltd Semiconductor processing apparatus and manufacture thereof
JPH11135906A (en) * 1997-10-29 1999-05-21 Tokuyama Corp Board and manufacture thereof
JP2000252045A (en) * 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd Plate heater and its manufacture
JP2001223256A (en) * 2000-02-08 2001-08-17 Ibiden Co Ltd Ceramic substrate for semiconductor production and inspection device
WO2002083597A1 (en) * 2001-04-12 2002-10-24 Ibiden Co., Ltd. Ceramic bonded body and its producing method, and ceramic structure for semiconductor wafer
WO2003008359A1 (en) * 2001-07-19 2003-01-30 Ibiden Co., Ltd. Ceramic connection body, method of connecting the ceramic bodies, and ceramic structural body
JP2003100580A (en) * 2002-05-27 2003-04-04 Ngk Insulators Ltd Semiconductor treatment device
JP2004083366A (en) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd Aluminum nitride ceramic bonded product and its forming process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055451A (en) * 1973-08-31 1977-10-25 Alan Gray Cockbain Composite materials
JPH04324276A (en) * 1991-04-24 1992-11-13 Kawasaki Steel Corp Aln ceramic heater and manufacture thereof
JPH0982786A (en) * 1995-09-19 1997-03-28 Ngk Insulators Ltd Semiconductor processing apparatus and manufacture thereof
JPH11135906A (en) * 1997-10-29 1999-05-21 Tokuyama Corp Board and manufacture thereof
JP2000252045A (en) * 1999-02-26 2000-09-14 Toshiba Ceramics Co Ltd Plate heater and its manufacture
JP2001223256A (en) * 2000-02-08 2001-08-17 Ibiden Co Ltd Ceramic substrate for semiconductor production and inspection device
WO2002083597A1 (en) * 2001-04-12 2002-10-24 Ibiden Co., Ltd. Ceramic bonded body and its producing method, and ceramic structure for semiconductor wafer
WO2003008359A1 (en) * 2001-07-19 2003-01-30 Ibiden Co., Ltd. Ceramic connection body, method of connecting the ceramic bodies, and ceramic structural body
JP2003100580A (en) * 2002-05-27 2003-04-04 Ngk Insulators Ltd Semiconductor treatment device
JP2004083366A (en) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd Aluminum nitride ceramic bonded product and its forming process

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214110A (en) * 2007-02-28 2008-09-18 Taiheiyo Cement Corp Ceramic member
JP2011148687A (en) * 2009-12-25 2011-08-04 Taiheiyo Cement Corp Ceramic joined body and method for production thereof
EP2398103A1 (en) 2010-06-15 2011-12-21 NGK Insulators, Ltd. Fuel cell
US8349511B2 (en) 2010-06-15 2013-01-08 Ngk Insulators, Ltd. Fuel cell
US8940455B2 (en) 2010-06-15 2015-01-27 Ngk Insulators, Ltd. Fuel cell
JP2015164882A (en) * 2014-02-28 2015-09-17 株式会社日本セラテック Aluminum nitride joined body and method of producing the same
JP2017147126A (en) * 2016-02-17 2017-08-24 日本特殊陶業株式会社 Manufacturing method for ceramic heater
JP2021512845A (en) * 2018-04-17 2021-05-20 ワトロー エレクトリック マニュファクチュアリング カンパニー Ceramic-aluminum assembly with joint grooves
JP2021185123A (en) * 2018-04-17 2021-12-09 ワトロー エレクトリック マニュファクチュアリング カンパニー Ceramic-aluminum assembly comprising fitting groove

Similar Documents

Publication Publication Date Title
JP4939232B2 (en) Composite ceramic body, method for producing the same, microchemical chip, and reformer
TWI413438B (en) Supporting unit for semiconductor manufacturing device and semiconductor manufacturing device with supporting unit installed
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
US7547407B2 (en) Manufacturing method for sintered body with buried metallic member
JP5841329B2 (en) Manufacturing method of ceramic joined body
JP3338593B2 (en) Semiconductor processing apparatus and method of manufacturing the same
EP1690845A1 (en) Aluminum nitride joined article and method for manufacture thereof
US20220347799A1 (en) Bonding member, method for producing bonding member and method for producing bonding structure
KR20040030803A (en) Ceramic connection body, method of connecting the ceramic bodies, and ceramic structural body
KR20030007929A (en) Ceramic bonded body and its producing method, and ceramic structure for semiconductor wafer
JPWO2002083596A1 (en) Ceramic bonded body, substrate holding structure and substrate processing apparatus
JP3830382B2 (en) Ceramic sintered body and method for producing the same
JP2005022966A (en) Aluminum nitride joined body and its producing method
JP2003124299A (en) Electrode contained susceptor and its manufacturing method
JP2001308165A (en) Susceptor and its manufacturing method
JPH09270454A (en) Wafer holding apparatus
KR100716100B1 (en) Aluminum Nitride Conjugate Body and Method of Producing the Same
JP3389484B2 (en) Aluminum nitride bonded structure and method of manufacturing the same
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP3426845B2 (en) Electrostatic chuck
JPWO2007000963A1 (en) Method for manufacturing ceramic substrate having steps
JP2003100422A (en) Foil-type heat generation resistor and surface-type ceramics heater
JP4515562B2 (en) Manufacturing method of ceramic circuit board
TW200415693A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP2003100580A (en) Semiconductor treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013