JP5466439B2 - Ceramic joined body, ceramic heater, electrostatic chuck and susceptor - Google Patents

Ceramic joined body, ceramic heater, electrostatic chuck and susceptor Download PDF

Info

Publication number
JP5466439B2
JP5466439B2 JP2009155951A JP2009155951A JP5466439B2 JP 5466439 B2 JP5466439 B2 JP 5466439B2 JP 2009155951 A JP2009155951 A JP 2009155951A JP 2009155951 A JP2009155951 A JP 2009155951A JP 5466439 B2 JP5466439 B2 JP 5466439B2
Authority
JP
Japan
Prior art keywords
ceramic
sintered body
ceramic sintered
joined
joined body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009155951A
Other languages
Japanese (ja)
Other versions
JP2011011931A (en
Inventor
弘徳 石田
昇 宮田
祐介 小松
教夫 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2009155951A priority Critical patent/JP5466439B2/en
Publication of JP2011011931A publication Critical patent/JP2011011931A/en
Application granted granted Critical
Publication of JP5466439B2 publication Critical patent/JP5466439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、セラミックス接合体に関する。本発明のセラミックス接合体は、特にセラミックスヒータ、静電チャックまたはサセプタ等に好適である。 The present invention relates to a ceramic joined body. The ceramic joined body of the present invention is particularly suitable for a ceramic heater, an electrostatic chuck, a susceptor or the like.

半導体製造工程では、シリコンウエハ上に集積回路を形成するために、成膜やエッチング処理が行われる。これらの工程ではシリコンウエハを均一に処理するために、ウエハ全面を所定の温度に均一に加熱維持することが重要である。ウエハの加熱には、セラミックスヒータによる加熱が広く用いられており、発熱抵抗体と静電チャック電極やRF電極を内層したものが広く使用されている。このセラミックスヒータは、発熱抵抗体の端子、静電チャック電極の端子を備え、さらに測温のためにシース熱電対がヒータの一部に挿入される。これら端子は銅線やニッケル線に接続され、シリコンウエハの処理室外に引き出される。シース熱電対も同様である。 In the semiconductor manufacturing process, film formation and etching are performed to form an integrated circuit on a silicon wafer. In these steps, in order to uniformly process the silicon wafer, it is important to uniformly heat and maintain the entire surface of the wafer at a predetermined temperature. For heating the wafer, heating by a ceramic heater is widely used, and a heating resistor, an electrostatic chuck electrode, and an RF electrode are widely used. This ceramic heater includes a heating resistor terminal and an electrostatic chuck electrode terminal, and a sheath thermocouple is inserted into a part of the heater for temperature measurement. These terminals are connected to a copper wire or a nickel wire and drawn out of the processing chamber of the silicon wafer. The same applies to the sheath thermocouple.

シリコンウエハを処理する際の環境は、高温かつ腐食性ガス雰囲気となる。この様な環境下では、上記の端子や導線を保護しないと端子や導線の腐食が発生してしまう。そのため、セラミックスヒータに保護管を設け、その中に端子や熱電対を配置されることが多い(特許文献1参照)。 The environment for processing the silicon wafer is a high temperature and corrosive gas atmosphere. Under such an environment, corrosion of the terminals and conductors occurs unless the terminals and conductors are protected. Therefore, a protective tube is often provided in the ceramic heater, and a terminal and a thermocouple are often disposed therein (see Patent Document 1).

例えば、特許文献1には、その内部に導電体が設けられた窒化物セラミック基板の底面に、窒化物セラミック製の筒状体が接合された接合体であって、上記窒化物セラミック基板の内部には、5質量%以上の焼結助剤が含まれているものが提案されている。この接合体は、上記筒状体の焼結助剤の含有量と上記窒化物セラミック基板の焼結助剤の含有量とは異なるものであるため、上記窒化物セラミック基板と上記筒状体との界面および該界面近傍における、上記窒化物セラミック基板の表面からの距離と焼結助剤の含有量との間には、なだらかな傾斜の曲線を形成する関係を有している。 For example, Patent Document 1 discloses a bonded body in which a cylindrical body made of nitride ceramic is bonded to the bottom surface of a nitride ceramic substrate in which a conductor is provided, and the inside of the nitride ceramic substrate. Has been proposed that contains 5% by mass or more of a sintering aid. Since this joined body is different from the content of the sintering aid in the cylindrical body and the content of the sintering aid in the nitride ceramic substrate, the nitride ceramic substrate, the tubular body, There is a relationship that forms a gentle slope curve between the distance from the surface of the nitride ceramic substrate and the content of the sintering aid at the interface and in the vicinity of the interface.

その結果、上記窒化アルミニウム基板中の焼結助剤が上記焼結助剤の量の少ない筒状体中へ拡散し、窒化アルミニウム基板と筒状体との界面に存在する窒化アルミニウム粒子同士は、上記焼結助剤の拡散に応じて接合し粒成長する。そして、この窒化アルミニウム基板と筒状体との界面において粒成長した窒化アルミニウム粒子が、窒化アルミニウム基板と筒状体とを強固に接合する。このような接合では、窒化物セラミック基板と柱状体とをセラミック接合層を介して接合したり、これらの接合する面に焼結助剤を含有する溶液を塗布したりする必要がないので、接合界面やその近傍の耐腐食性を高めることができる。 As a result, the sintering aid in the aluminum nitride substrate diffuses into the cylindrical body with a small amount of the sintering aid, and the aluminum nitride particles present at the interface between the aluminum nitride substrate and the cylindrical body are: According to the diffusion of the sintering aid, it joins and grows. The aluminum nitride particles that have grown at the interface between the aluminum nitride substrate and the cylindrical body firmly bond the aluminum nitride substrate and the cylindrical body. In such bonding, there is no need to bond the nitride ceramic substrate and the columnar body via the ceramic bonding layer, or to apply a solution containing a sintering aid to the surfaces to be bonded. Corrosion resistance at the interface and its vicinity can be improved.

特開2003−292386号公報JP 2003-292386 A

しかしながら、上記のような接合体では、接合界面で焼結助剤の拡散と粒成長が起こることから、接合界面やその近傍における焼結体の特性が変化してしまう。特に熱伝導率や体積抵抗率が変化すると、接合体をセラミックスヒータ等として用いる場合に、シリコンウエハを均一に処理することが困難になる。 However, in the bonded body as described above, diffusion of the sintering aid and grain growth occur at the bonded interface, and thus the characteristics of the sintered body at the bonded interface and in the vicinity thereof change. In particular, when the thermal conductivity and volume resistivity change, it becomes difficult to uniformly treat the silicon wafer when the joined body is used as a ceramic heater or the like.

また、拡散や粒成長が起きると焼結体の変形が生じ易くなる。特にセラミックスヒータや静電チャックでは、焼結体の内部に発熱抵抗体や電極が埋設されており、シリコンウエハを均一に処理するうえでこれらとシリコンウエハとの距離は、極めて重要であることから焼結体の変形は、好ましくない。 Further, when diffusion or grain growth occurs, the sintered body is likely to be deformed. Especially in ceramic heaters and electrostatic chucks, heating resistors and electrodes are embedded in the sintered body, and the distance between these and the silicon wafer is extremely important for the uniform processing of the silicon wafer. Deformation of the sintered body is not preferable.

本発明は、これらの問題に鑑みてなされたものであり、接合界面およびその近傍における焼結体の特性の変化が無く、変形の少ないセラミックス接合体を提供するものである。 The present invention has been made in view of these problems, and provides a ceramic joined body with little deformation and no change in the properties of the sintered body at and near the joining interface.

本発明は、これらの問題を解決するため、以下に示す(1)〜(8)の発明を提供する。
(1)第1のセラミックス焼結体と第2のセラミックス焼結体とが接合材を介さずに接合されたセラミックス接合体であって、第1及び第2のセラミックス焼結体は、互いに共通して、窒化アルミニウム、酸化アルミニウム及び窒化珪素の何れかを主成分とし、第1及び第2のいずれか一方又は両方のセラミックス焼結体が副成分を含んでおり、第2のセラミックス焼結体の熱伝導率は、第1のセラミックス焼結体の熱伝導率よりも小さく、一方のセラミックス焼結体の前記副成分が、他方のセラミックス焼結体に拡散していないことを特徴とするセラミックス接合体。
(2)第1のセラミックス焼結体及び第2のセラミックス焼結体は、接合時の粒成長が見られない(1)のセラミックス接合体。
(3)前記第1のセラミックス焼結体は、金属導体が埋設された(1)または(2)記載のセラミックス接合体。
(4)前記第1のセラミックス焼結体は、基板を載置する主面を有する板形状を有し、前記第2のセラミックス焼結体は、端部で前記第1のセラミックス焼結体の主面の裏側の面と接合された筒形状を有する(1)〜(3)の何れかに記載のセラミックス接合体。
(5)前記金属導体は、発熱抵抗体、静電電極またはRF電極である(3)記載のセラミックス接合体。
(6)(3)〜(5)の何れかに記載のセラミックス接合体を用いたセラミックスヒータ。
(7)(3)〜(5)の何れかに記載のセラミックス接合体を用いた静電チャック。
(8)(3)〜(5)の何れかに記載のセラミックス接合体を用いたサセプタ。
In order to solve these problems, the present invention provides the following inventions (1) to (8) .
(1) A ceramic joined body in which the first ceramic sintered body and the second ceramic sintered body are joined without using a joining material, and the first and second ceramic sintered bodies are common to each other. to, aluminum nitride, as a main component one of aluminum oxide and silicon nitride, the first and second one or both of the ceramics sintered body includes a subcomponent, the second ceramic sintered body The ceramic has a thermal conductivity smaller than that of the first ceramic sintered body, and the subcomponent of one ceramic sintered body does not diffuse into the other ceramic sintered body. Joined body.
(2) The ceramic joined body according to (1), wherein the first ceramic sintered body and the second ceramic sintered body do not show grain growth during joining.
(3) The ceramic joined body according to (1) or (2), wherein the first ceramic sintered body has a metal conductor embedded therein.
(4) The first ceramic sintered body has a plate shape having a main surface on which the substrate is placed, and the second ceramic sintered body has an end portion of the first ceramic sintered body. The ceramic joined body according to any one of (1) to (3), which has a cylindrical shape joined to a surface on the back side of the main surface.
(5) The ceramic joined body according to (3) , wherein the metal conductor is a heating resistor, an electrostatic electrode, or an RF electrode.
(6) A ceramic heater using the ceramic joined body according to any one of (3) to (5) .
(7) An electrostatic chuck using the ceramic joined body according to any one of (3) to (5) .
(8) A susceptor using the ceramic joined body according to any one of (3) to (5) .

接合界面およびその近傍における焼結体の特性の変化が無く、変形の少ないセラミックス接合体を提供できる。 There is no change in the properties of the sintered body at and near the bonding interface, and a ceramic bonded body with less deformation can be provided.

セラミックス接合体の概略断面図である。It is a schematic sectional drawing of a ceramic joined body. セラミックス接合体の副成分の測定例である。It is an example of a measurement of a subcomponent of a ceramic joined body. セラミックス接合体の平均粒径の測定例である。It is an example of a measurement of the average particle diameter of a ceramic joined body. セラミックスヒータの概略断面図である。It is a schematic sectional drawing of a ceramic heater.

以下、図面を参照してより詳細に説明する。図1は、本発明のセラミックス接合体10の概略断面図である。第1のセラミックス焼結体11と第2のセラミックス焼結体12とが接合材を介さずに接合されている。 Hereinafter, it will be described in more detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a ceramic joined body 10 of the present invention. The first ceramic sintered body 11 and the second ceramic sintered body 12 are joined without using a joining material.

このセラミックス接合体10の接合部Aについて、第1のセラミックス焼結体11から第2のセラミックス焼結体12に向けて両焼結体に含まれる副成分量を測定した例を示したものが、図2である。 What showed the example which measured the amount of the subcomponent contained in both sintered compacts from the 1st ceramic sintered compact 11 toward the 2nd ceramic sintered compact 12 about the junction part A of this ceramic joined body 10 is shown. FIG.

図2では、第1及び第2のセラミックス焼結体は、互いに共通する成分を主成分とし、
第1及び第2の両方のセラミックス焼結体が副成分を含んでおり、第1のセラミックス焼結体が第2のセラミックス焼結体よりも副成分を多く含む場合の測定例を示した。図2から分かるように、セラミックス接合体において、第1のセラミックス焼結体と第2のセラミックス焼結体との境界である接合界面を境に、副成分量が異なることが分かる。それぞれの副成分量は、接合前のものと等しく、接合後において副成分が、相互のセラミックス焼結体に拡散していないことを示す。
In FIG. 2, the first and second ceramic sintered bodies are mainly composed of components common to each other,
An example of measurement was shown in which both the first and second ceramic sintered bodies contain subcomponents, and the first ceramic sintered body contains more subcomponents than the second ceramic sintered body. As can be seen from FIG. 2, in the ceramic joined body, it can be seen that the amount of subcomponents is different at the joining interface which is the boundary between the first ceramic sintered body and the second ceramic sintered body. The amount of each subcomponent is equal to that before bonding, and indicates that the subcomponent has not diffused into the sintered ceramics after bonding.

このような接合体が得られるのは、セラミックス焼結体に含まれる焼結助剤等の副成分を利用して接合させるのではなく、主成分のセラミックス成分の拡散を利用するためである。なお、「第1及び第2のいずれか一方又は両方のセラミックス焼結体が副成分を含んでおり、一方のセラミックス焼結体の前記副成分が、他方のセラミックス焼結体に拡散していない」とは、上記のように両方のセラミックス焼結体が副成分を含んでいるときは、相互に拡散しておらず、一方のセラミックス焼結体が副成分を含み他方が副成分を含んでいないときは、当該一方のセラミックス焼結体から他方のセラミックス焼結体へ副成分が拡散していないことを意味する。 The reason why such a bonded body is obtained is that the bonding is not performed using subcomponents such as a sintering aid contained in the ceramic sintered body, but diffusion of the main ceramic component is used. "One or both of the first and second ceramic sintered bodies contain subcomponents, and the subcomponent of one ceramic sintered body does not diffuse into the other ceramic sintered body. "When both ceramic sintered bodies contain subcomponents as described above, they do not diffuse with each other, one ceramic sintered body contains subcomponents and the other contains subcomponents. If not, it means that the auxiliary component has not diffused from the one ceramic sintered body to the other ceramic sintered body.

このような構成により、接合界面やその近傍で副成分の拡散による焼結体特性の変化が起こらないので、熱伝導率や体積抵抗率が変化しない。したがって、例えば、セラミックス接合体をセラミックスヒータとして用いると、シリコンウエハを均一に処理することが容易になる。 With such a configuration, the sintered body characteristics do not change due to diffusion of subcomponents at or near the bonding interface, so that the thermal conductivity and volume resistivity do not change. Therefore, for example, when a ceramic joined body is used as a ceramic heater, it becomes easy to uniformly treat a silicon wafer.

図3は、このセラミックス接合体10の接合部Aについて、第1のセラミックス焼結体11から第2のセラミックス焼結体12に向けて両焼結体の結晶粒子の各測定位置での平均粒径を測定したものである。図3の例では、セラミックス接合体は、接合界面を境に異なる粒径を有している。そして、両焼結体の粒径は、接合前後で変化が見られない。すなわち接合時の粒成長が見られない。 FIG. 3 shows the average grain at each measurement position of the crystal particles of both sintered bodies from the first ceramic sintered body 11 toward the second ceramic sintered body 12 in the joined portion A of the ceramic joined body 10. The diameter was measured. In the example of FIG. 3, the ceramic bonded body has different particle sizes with the bonding interface as a boundary. And the particle size of both sintered compacts does not change before and after joining. That is, no grain growth is observed during bonding.

このように、粒成長を抑制することによりセラミックス接合体の変形を抑えることが可能となる。特に焼結体の内部に発熱抵抗体や電極が埋設されているセラミックスヒータや静電チャックに適用すると、シリコンウエハを均一に処理するうえで大きな効果を発揮する。 In this way, it is possible to suppress deformation of the ceramic joined body by suppressing grain growth. In particular, when it is applied to a ceramic heater or electrostatic chuck in which a heating resistor or an electrode is embedded in the sintered body, it exerts a great effect in uniformly processing a silicon wafer.

図4は、本発明のセラミックス接合体をセラミックスヒータに適用したものである。セラミックスヒータ20はシリコンウエハなどの被処理物を載置する主面21aを有する板形状の第1のセラミックス焼結体21と、筒形状の第2のセラミックス焼結体22とが接合されてなる。第1のセラミックス焼結体21の裏面21bと第2のセラミックス焼結体22の端部22aをそれぞれ接合面として接合されている。 FIG. 4 shows a ceramic joined body according to the present invention applied to a ceramic heater. The ceramic heater 20 is formed by joining a plate-shaped first ceramic sintered body 21 having a main surface 21a on which a workpiece such as a silicon wafer is placed and a cylindrical second ceramic sintered body 22. . The back surface 21b of the first ceramic sintered body 21 and the end portion 22a of the second ceramic sintered body 22 are joined together as joint surfaces.

第1のセラミックス焼結体21には、発熱抵抗体23、熱電対等の測温素子24等の金属導体が埋設されている。上記の例は、セラミックスヒータであるが、静電チャックやサセプタの場合は、静電電極やRF電極が埋設される。セラミックスヒータと静電チャック、またはサセプタを兼用する場合には、これらが複数埋設される場合もある。このような発熱抵抗体等の金属導体を埋設したセラミックスヒータ等の部材では、均一に加熱したり吸着したりする必要があることから、被処理物を載置する主面21aと金属導体との距離を極めて高精度に制御しなければならない。したがって、第1のセラミックス焼結体と第2のセラミックス焼結体とを接合した時に大きな変形が起きることはセラミックスヒータ等において致命的な欠陥となり得る。 In the first ceramic sintered body 21, metal conductors such as a heating resistor 23 and a temperature measuring element 24 such as a thermocouple are embedded. The above example is a ceramic heater, but in the case of an electrostatic chuck or susceptor, an electrostatic electrode or an RF electrode is embedded. When a ceramic heater and an electrostatic chuck or susceptor are used in combination, a plurality of these may be embedded. In a member such as a ceramic heater in which a metal conductor such as a heating resistor is embedded, it is necessary to uniformly heat or adsorb the member. Therefore, the main surface 21a on which the object to be processed is placed and the metal conductor The distance must be controlled with extremely high accuracy. Therefore, a large deformation occurring when the first ceramic sintered body and the second ceramic sintered body are joined can be a fatal defect in a ceramic heater or the like.

本発明では、接合時の焼結体の変形が抑えられていることから、上記のような問題は生じない。したがって、接合に用いる第1のセラミックス焼結体について、金属導体を精度良く埋設しておけば、接合後の金属導体の精度が維持される。 In this invention, since the deformation | transformation of the sintered compact at the time of joining is suppressed, the above problems do not arise. Therefore, if the metal conductor is embedded with high accuracy in the first ceramic sintered body used for bonding, the accuracy of the metal conductor after bonding is maintained.

図4のセラミックスヒータは、板形状の第1のセラミックス焼結体21の主面21aの裏側の面21bと、筒形状の第2のセラミックス焼結体の端部22aとが接合された構造を有する。セラミックスヒータは、被処理物の処理室である真空チャンバーに設置される。真空チャンバーとセラミックスヒータとは、第2のセラミックス焼結体のもう一方の端部側で固定されている。真空チャンバーとの固定は、例えばフランジ25を介してなされる。フランジには、例えばOリング等の気密機構で真空気密が取られた構成とすることができる。第2のセラミックス焼結体22とフランジ25との固定は、セラミックス、金属、ガラス等の接合材による接合、または、固定用ボルトによっても良い。 The ceramic heater of FIG. 4 has a structure in which a back surface 21b of the main surface 21a of the plate-shaped first ceramic sintered body 21 and an end portion 22a of the cylindrical second ceramic sintered body are joined. Have. The ceramic heater is installed in a vacuum chamber that is a processing chamber for an object to be processed. The vacuum chamber and the ceramic heater are fixed on the other end side of the second ceramic sintered body. The vacuum chamber is fixed via, for example, a flange 25. The flange can be configured to be vacuum-tight by an air-tight mechanism such as an O-ring. The second ceramic sintered body 22 and the flange 25 may be fixed by bonding with a bonding material such as ceramics, metal, glass, or a fixing bolt.

第1のセラミックス焼結体21に埋設された発熱抵抗体23および測温素子24には、給電線26、及び測温素子導線26が接続され、筒形状の第2のセラミックス焼結体の筒内を通り、フランジ25に設けられたフィードスルー28を介して図示しない温度制御装置に接続される。 The heating resistor 23 and the temperature measuring element 24 embedded in the first ceramic sintered body 21 are connected to a power supply line 26 and a temperature measuring element conducting wire 26, and a cylindrical second ceramic sintered body cylinder is formed. It passes through and is connected to a temperature control device (not shown) via a feedthrough 28 provided in the flange 25.

第1のセラミックス焼結体21と第2のセラミックス焼結体22との接合により、第2のセラミックス焼結体22の筒内と、真空チャンバー内とは気密がとられている。したがって、通常筒内は大気に曝されるため、発熱抵抗体23や測温素子24とは、例えば耐酸化性のニッケル製の給電線等を溶接、ロー付け等の方法により接続した構成とすることができる。また、筒内と真空チャンバー外とをフランジに気密機構を設けて接合した場合には、筒内を真空や不活性ガス雰囲気とすることで、酸化に弱い熱電対が使用できる環境にすることができる。 By joining the first ceramic sintered body 21 and the second ceramic sintered body 22, the inside of the cylinder of the second ceramic sintered body 22 and the inside of the vacuum chamber are hermetically sealed. Therefore, since the inside of the cylinder is normally exposed to the atmosphere, the heating resistor 23 and the temperature measuring element 24 are connected to each other by, for example, an oxidation-resistant nickel feeder or the like by a method such as welding or brazing. be able to. In addition, when the inside of the cylinder and the outside of the vacuum chamber are joined to the flange by providing an airtight mechanism, the inside of the cylinder should be in a vacuum or inert gas atmosphere to create an environment where a thermocouple vulnerable to oxidation can be used. it can.

前記第2のセラミックス焼結体22の熱伝導率は、第1のセラミックス焼結体21の熱伝導率よりも小さいことが好ましい。これは第1のセラミックス焼結体の熱が第2のセラミックス焼結体を通じて逃げないようにするためである。第1のセラミックス焼結体の平均粒径を大きくし、第2のセラミックス焼結体の平均粒径を小さくすることで、焼結体の熱伝導率を調整することができる。 The thermal conductivity of the second ceramic sintered body 22 is preferably smaller than the thermal conductivity of the first ceramic sintered body 21. This is to prevent the heat of the first ceramic sintered body from escaping through the second ceramic sintered body. The thermal conductivity of the sintered body can be adjusted by increasing the average particle diameter of the first ceramic sintered body and decreasing the average particle diameter of the second ceramic sintered body.

第2のセラミックス焼結体の体積抵抗率は、1×1014Ωcm以上とすることが好ましい。第1のセラミックス焼結体に埋設された金属導体に電圧を印加したときに、第2のセラミックス焼結体を通じてチャンバーに流れ込む漏洩電流を低減できるからである。 The volume resistivity of the second ceramic sintered body is preferably 1 × 10 14 Ωcm or more. This is because when a voltage is applied to the metal conductor embedded in the first ceramic sintered body, the leakage current flowing into the chamber through the second ceramic sintered body can be reduced.

第1及び第2のセラミックス焼結体を構成するセラミックスは、窒化アルミニウム、酸化アルミニウム、窒化珪素、炭化珪素等とすることができる。各セラミックスの組成は、要求される特性に応じて定められる。特に第1のセラミックス焼結体としては、使用温度における体積抵抗率が1×10Ω・cm以上であるセラミックスを用いることが好ましい。このような物性を有する第1のセラミックス焼結体の材質としては、窒化アルニウムまたは窒化珪素を用いることができる。なかでも窒化アルミニウムは熱伝導性に優れることから、加熱応答性や均熱性が求められるセラミックスヒータに好適である。 The ceramics constituting the first and second ceramic sintered bodies can be aluminum nitride, aluminum oxide, silicon nitride, silicon carbide, or the like. The composition of each ceramic is determined according to the required characteristics. In particular, as the first ceramic sintered body, it is preferable to use a ceramic having a volume resistivity of 1 × 10 8 Ω · cm or more at an operating temperature. As the material of the first ceramic sintered body having such physical properties, aluminum nitride or silicon nitride can be used. Of these, aluminum nitride is excellent in thermal conductivity, and is therefore suitable for ceramic heaters that require heat responsiveness and soaking.

副成分としては、焼結助剤の他、抵抗や色調を調整したり、強度を高めたりするための添加剤が挙げられる。これらは、10質量%未満の含有量とすることが好ましい。副成分が多く含まれると拡散や粒成長を抑制することが困難になるからである。したがって、主成分は90質量%以上含まれることが好ましい。焼結助剤としては、窒化アルミニウムの場合は、例えば酸化イットリウム等の希土類元素酸化物、酸化カルシウム等が用いられる。窒化珪素の場合は、例えば酸化イットリウム、酸化アルミニウム、酸化マグネシウム等を用いることができる。 Examples of the auxiliary component include additives for adjusting resistance and color tone and increasing strength in addition to the sintering aid. It is preferable to make these content less than 10 mass%. This is because it is difficult to suppress diffusion and grain growth when a large amount of subcomponents are contained. Therefore, it is preferable that 90 mass% or more of a main component is contained. As the sintering aid, in the case of aluminum nitride, rare earth element oxides such as yttrium oxide, calcium oxide and the like are used. In the case of silicon nitride, for example, yttrium oxide, aluminum oxide, magnesium oxide, or the like can be used.

第1のセラミックス焼結体に埋設される金属導体としては、箔、板、線、メッシュまたは繊維状のモリブデンやタングステン等の耐熱金属を用いることができる。これらは、発熱抵抗体、静電電極、またはRF電極として機能する。その他金属導体としては、熱電対等の測温素子が挙げられる。例えば、セラミックスとして熱伝導性に優れる窒化アルミニウムを用いた場合、その焼成温度は1600〜2000℃であり、この焼成温度に耐える熱電対としてJIS規定のB熱電対(Pt−Rh合金、耐熱温度1820℃以上)、R熱電対、S熱電対(Pt−Rh合金/Pt、耐熱温度1760℃以上)W−Re系熱電対(2400度以上)、Ir−Rh系熱電対(Ir−40%Rh/Ir−50%Rh、耐熱温度2000℃以上)が使用できる。また、シース熱電対を用いても良い。 As the metal conductor embedded in the first ceramic sintered body, a heat-resistant metal such as foil, plate, wire, mesh, or fibrous molybdenum or tungsten can be used. These function as heating resistors, electrostatic electrodes, or RF electrodes. Other metal conductors include temperature measuring elements such as thermocouples. For example, when aluminum nitride having excellent thermal conductivity is used as the ceramic, the firing temperature is 1600 to 2000 ° C., and as a thermocouple that can withstand this firing temperature, a JIS-regulated B thermocouple (Pt—Rh alloy, heat resistant temperature 1820) ° C or higher), R thermocouple, S thermocouple (Pt-Rh alloy / Pt, heat resistant temperature of 1760 ° C or higher) W-Re thermocouple (2400 ° C or higher), Ir-Rh thermocouple (Ir-40% Rh / Ir-50% Rh, heat resistant temperature of 2000 ° C. or higher) can be used. A sheath thermocouple may be used.

次に、セラミックス接合体の製造方法について説明する。 Next, a method for manufacturing a ceramic joined body will be described.

セラミックス焼結体のセラミックス原料は、市販のセラミックス粉末を使用でき、必要に応じて焼結助剤等の副成分が添加されたセラミックス粉末にバインダを加えて顆粒化したものが好適に使用できる。 As the ceramic raw material of the ceramic sintered body, a commercially available ceramic powder can be used, and a granulated powder obtained by adding a binder to a ceramic powder to which an auxiliary component such as a sintering aid is added can be suitably used.

セラミックス粉末を、一軸成形やCIP等の加圧成形、鋳込み成形等の公知の方法により成形した後、得られたセラミックス成形体を焼結する。 After the ceramic powder is molded by a known method such as uniaxial molding, pressure molding such as CIP, or casting, the obtained ceramic compact is sintered.

焼結は、窒素やアルゴン等に雰囲気を制御した常圧焼結やガス圧焼結、ホットプレス焼結等種々の方法を採用できる。ただし、第1のセラミックス焼結体の作製は、ホットプレス焼結により行うことが好ましい。金属導体を精度良く埋設した焼結体を得るには、ホットプレス焼結が好適である。 For the sintering, various methods such as atmospheric pressure sintering, gas pressure sintering, and hot press sintering in which the atmosphere is controlled to nitrogen or argon can be employed. However, the first ceramic sintered body is preferably produced by hot press sintering. In order to obtain a sintered body in which a metal conductor is embedded with high accuracy, hot press sintering is suitable.

金属導体を精度良く第1のセラミックス焼結体に埋設するには、高精度のプレス冶具を用いて板状の成形体を成形し、その成形体の上に金属導体を配置し、さらにその金属導体が配置された成形体の上にセラミックス粉末を充填してプレス冶具によりプレス成形する方法が有効である。しかる後に、ホットプレス焼結することにより、金属導体が精度良く埋設されたセラミックス焼結体を得ることができる。 In order to embed a metal conductor in the first ceramic sintered body with high accuracy, a plate-shaped formed body is formed using a high-precision press jig, a metal conductor is disposed on the formed body, and the metal A method in which ceramic powder is filled on a molded body on which conductors are arranged and press molding with a press jig is effective. Thereafter, by performing hot press sintering, a ceramic sintered body in which the metal conductor is embedded with high accuracy can be obtained.

セラミックス焼結体の接合面は、ラッピング加工され、平面度が制御されていることが好ましい。接合面の平面度は、10μm以下とし、さらに、例えば10×10mmに区切ったとき、となり合うエリアの平面度の相互差が0.2μm以下とすることが好ましい。また、接合面の表面粗さRz(JISB0601-2001)は、平均粒径の1/2以下とすることが好ましい。接合面をこのように調整することで十分な強度で気密な接合が可能となる。 The joining surface of the ceramic sintered body is preferably lapped and the flatness is controlled. It is preferable that the flatness of the bonding surface is 10 μm or less, and further, for example, when divided into 10 × 10 mm, the mutual difference in flatness of adjacent areas is 0.2 μm or less. Moreover, it is preferable that the surface roughness Rz (JISB0601-2001) of the joint surface is set to ½ or less of the average particle diameter. By adjusting the joining surface in this way, airtight joining with sufficient strength becomes possible.

セラミックス焼結体の接合温度は、焼結収縮が開始される温度以上であって、クリープが発生しない温度とする。例えば、窒化アルミニウムでは、1400〜1650℃、窒化珪素では、1100〜1350℃とすることが好ましい。また第1及び第2のセラミックス焼結体の焼結温度以下、より好ましくは焼結温度よりも低温とする。このような範囲であれば、副成分の拡散及び粒成長を抑えて接合できる。 The bonding temperature of the ceramic sintered body is set to a temperature that is equal to or higher than the temperature at which sintering shrinkage starts and does not generate creep. For example, the temperature is preferably 1400 to 1650 ° C. for aluminum nitride and 1100 to 1350 ° C. for silicon nitride. Also, the sintering temperature is lower than the sintering temperature of the first and second ceramic sintered bodies, more preferably lower than the sintering temperature. If it is such a range, it can join, suppressing the diffusion and grain growth of a subcomponent.

接合時に加える圧力は、1〜20MPaとすることが好ましい。このような範囲とし、上記所定温度で焼結することにより、副成分の拡散及び粒成長を抑えて変形の小さい接合体を得ることができる。 The pressure applied at the time of joining is preferably 1 to 20 MPa. By setting the temperature within such a range and sintering at the predetermined temperature, it is possible to obtain a bonded body with small deformation while suppressing the diffusion and grain growth of subcomponents.

金属導体のうち、熱電対の設置は、焼成後に機械加工で第1のセラミックス焼結体に細穴を設け、シース熱電対を挿入する方法を採用することもできる。その他、ビアホールを介した配線などを適用することができる。 Of the metal conductors, the thermocouple can be installed by forming a fine hole in the first ceramic sintered body by machining after firing and inserting a sheath thermocouple. In addition, wiring via via holes can be applied.

接合後、接合体における第1のセラミックス焼結体の主面についてラッピングやポリッシング加工等の平面研磨を施して被処理物を載置できる面に仕上げる。このとき金属導体が精度良く埋設されているので、金属導体と主面との距離を精度良く仕上げることができる。 After joining, the main surface of the first ceramic sintered body in the joined body is subjected to planar polishing such as lapping and polishing to finish the surface on which the workpiece can be placed. At this time, since the metal conductor is embedded with high accuracy, the distance between the metal conductor and the main surface can be finished with high accuracy.

金属導体と給電線及び導線との接続は、溶接、ロー付け等の方法を採用することができる。その際に、セラミックス焼結体に埋設された金属導体をマシニングセンタ等の研削加工により露出させ、その露出部に接続する。接続は、金属導体と導線等を直接溶接等しても良いし、接続用の端子を用い、端子を介して接続しても良い。 A method such as welding or brazing can be employed for the connection between the metal conductor, the feeder line, and the conductive line. At this time, the metal conductor embedded in the ceramic sintered body is exposed by grinding such as a machining center and connected to the exposed portion. For the connection, a metal conductor and a conductive wire or the like may be directly welded, or a connection terminal may be used and connected via a terminal.

以下、実施例及び比較例を示して、本発明を説明する。 Hereinafter, the present invention will be described with reference to examples and comparative examples.

[窒化アルミニウム焼結体の接合(作製No.1〜5)]
ここでは、金属を埋設した酸化イットリウムを添加した窒化アルミニウム円板(第1のセラミックス焼結体)と、窒化アルミニウムのみからなる円筒(第2のセラミックス焼結体)を接合した。
[Joining of aluminum nitride sintered bodies (production Nos. 1 to 5)]
Here, an aluminum nitride disc (first ceramic sintered body) to which yttrium oxide embedded with metal was added and a cylinder (second ceramic sintered body) made of only aluminum nitride were joined.

[円板の作製]
窒化アルミニウム粉末97質量%、酸化イットリウム粉末3質量%からなる粉末混合物を形成し、それを型に充填して、9.8MPaの圧力で一軸加圧処理を施した。これによって、直径220mm、厚さ10mmの第一層を形成した。
[Production of disc]
A powder mixture composed of 97% by mass of aluminum nitride powder and 3% by mass of yttrium oxide powder was formed, filled in a mold, and subjected to uniaxial pressure treatment at a pressure of 9.8 MPa. As a result, a first layer having a diameter of 220 mm and a thickness of 10 mm was formed.

次に、この第一層の上に、電極となる直径190mmのタングステン製のメッシュ(線径0.1mm、目開き30メッシュ)を載置した。続いて、先に形成した粉末混合物を電極の上に所定の厚さに充填し、第二層を形成した。そして、10MPaの圧力で、焼成温度1800および1850℃、焼成時間2時間でホットプレス焼成を行い、φ220×15mmの焼結体を得た。この焼結体の一部を切り出し、切断面のSEM観察により平均粒径を求めた。平均粒径は、線インターセプト法により算出した。なお、線インターセプト法では、少なくとも15個の粒子に交わる線分をひいて平均粒径を算出した。 Next, a 190 mm diameter tungsten mesh (wire diameter: 0.1 mm, mesh size: 30 mesh) serving as an electrode was placed on the first layer. Subsequently, the previously formed powder mixture was filled on the electrode to a predetermined thickness to form a second layer. Then, hot press firing was performed at a pressure of 10 MPa at a firing temperature of 1800 and 1850 ° C. for a firing time of 2 hours to obtain a sintered body of φ220 × 15 mm. A part of this sintered body was cut out, and the average particle diameter was determined by SEM observation of the cut surface. The average particle size was calculated by the line intercept method. In the line intercept method, the average particle diameter was calculated by drawing a line segment intersecting at least 15 particles.

焼結体を、表面からタングステンまでの距離を1mmおよび9mmとなるように研削加工した。次に、ラッピング加工を行い、表面からタングステンまでの距離が1mmの面(図4における主面21a)の平面度を3μm以下とした。同様に、表面からタングステンまでの距離が9mmの面(図4における接合面21b)については、平面度を10μm以下とし、表面粗さRzが平均粒径の1/2以下となるようにした。また、接合面を10×10mmに区切ったとき、となり合うエリアの平面度の相互差が0.2μm以下となるようにした。 The sintered body was ground so that the distance from the surface to tungsten was 1 mm and 9 mm. Next, lapping was performed, and the flatness of a surface (main surface 21a in FIG. 4) having a distance of 1 mm from the surface to tungsten was set to 3 μm or less. Similarly, for the surface having a distance from the surface to tungsten of 9 mm (joint surface 21b in FIG. 4), the flatness was set to 10 μm or less, and the surface roughness Rz was set to ½ or less of the average particle diameter. Further, when the joint surface was divided into 10 × 10 mm, the mutual difference in flatness of adjacent areas was set to 0.2 μm or less.

[円筒の作製]
原料となる窒化アルミニウムの粉末にIPAおよび有機バインダと可塑剤を添加し、混合、スプレードライ乾燥をすることで、窒化アルミニウム顆粒を得た。この顆粒をCIP成形し、焼成温度1900および2000℃、焼成時間6時間の常圧焼成した後、円筒加工を行い、外径φ70mm、内径φ30mm、長さ120mmの円筒を得た。この円筒の一端面を切断し、SEM観察により平均粒径を求めた。
[Cylinder production]
Aluminum nitride granules were obtained by adding IPA, an organic binder, and a plasticizer to aluminum nitride powder as a raw material, followed by mixing and spray-drying. This granule was CIP-molded, fired at normal pressure with a firing temperature of 1900 and 2000 ° C. and a firing time of 6 hours, and then cylindrical processing was performed to obtain a cylinder with an outer diameter of 70 mm, an inner diameter of 30 mm, and a length of 120 mm. One end face of this cylinder was cut, and the average particle diameter was determined by SEM observation.

円筒の一端面(図4における端部22a)にラッピング加工を行い、平面度を10μm以下とし、表面粗さRzが平均粒径の1/2以下となるようにした。また、一端面を10×10mmに区切ったとき、となり合うエリアの平面度の相互差が0.2μm以下となるようにした。 Lapping was performed on one end surface of the cylinder (end portion 22a in FIG. 4) so that the flatness was 10 μm or less and the surface roughness Rz was 1/2 or less of the average particle diameter. Further, when one end face was divided into 10 × 10 mm, the mutual difference in flatness of adjacent areas was set to 0.2 μm or less.

[接合と評価]
円板の接合面と円筒の一端面とを重ね合わせ、ホットプレス焼成により接合した。円板の主面の接合前と接合後に平面度をレーザ干渉計により測定した。また、接合部の気密度をボンビング法によりヘリウムリークディテクターで測定した。また、接合後の焼結体の粒成長の有無を切断面のSEM観察により、副成分の拡散の有無をEPMAにより測定した。平均粒径の測定は、接合界面から15μmの位置より15μm毎に接合界面に沿って線インターセプト法により各位置での平均粒径を求めた。
[Joint and evaluation]
The joining surface of the disc and the one end surface of the cylinder were superposed and joined by hot press firing. The flatness was measured with a laser interferometer before and after joining the main surfaces of the disks. Further, the air density of the joint was measured with a helium leak detector by a bombing method. Further, the presence or absence of grain growth of the sintered body after bonding was measured by SEM observation of the cut surface, and the presence or absence of diffusion of subcomponents was measured by EPMA. For the measurement of the average particle size, the average particle size at each position was determined by the line intercept method along the bonding interface every 15 μm from the position of 15 μm from the bonding interface.

比較例として、接合材を用いた接合体を作製した(作製No.6)。上記と同様の円板及び円筒の窒化アルミニウム焼結体を用いた。炭酸カルシウム粉末を酸化カルシウム換算で28質量%、酸化イットリウム粉末を26質量%、酸化アルミニウム粉末46質量%となるように配合し、バインダと可塑剤を加えて混合し、ペーストを得た。そのペーストを円板の接合面と円筒の一端面に塗布し、セルフレベリングをした後、500℃で脱脂処理をした。この面を合わせて、表1の条件で接合した。 As a comparative example, a joined body using a joining material was produced (Production No. 6). The same disk and cylindrical aluminum nitride sintered body as described above were used. The calcium carbonate powder was blended so as to be 28 mass% in terms of calcium oxide, the yttrium oxide powder was 26 mass%, and the aluminum oxide powder was 46 mass%, and a binder and a plasticizer were added and mixed to obtain a paste. The paste was applied to the joint surface of the disc and one end surface of the cylinder, self-leveled, and then degreased at 500 ° C. These surfaces were combined and joined under the conditions shown in Table 1.

[窒化珪素焼結体の接合(作製No.7及び8)]
窒化珪素焼結体の接合では、金属導体を埋設せずに円板と円筒の接合試験を行った。なお、窒化珪素焼結体の接合においても金属導体の埋設が適用可能であることはいうまでもない。
[円板の作製]
原料となる窒化ケイ素粉末94質量%、酸化イットリウム粉末3質量%、水酸化マグネシウム粉末を酸化マグネシウム換算で3質量%を混合し、IPAおよび有機バインダと可塑剤を添加し、混合、スプレードライ乾燥をすることで、円板用窒化ケイ素顆粒を得た。この顆粒をCIP成形し、焼成温度1700℃、焼成時間6時間の常圧焼成することで、φ200×10mmの円板を得た。この焼結体の一部を切り出し、切断面のSEM観察により平均粒径を求めた。
[Joining of silicon nitride sintered body (production Nos. 7 and 8)]
In the bonding of the silicon nitride sintered body, a disk and cylinder bonding test was performed without embedding the metal conductor. Needless to say, embedding of a metal conductor can also be applied to bonding of silicon nitride sintered bodies.
[Production of disc]
94% by mass of silicon nitride powder, 3% by mass of yttrium oxide powder, 3% by mass of magnesium hydroxide powder in terms of magnesium oxide, IPA, organic binder and plasticizer are added, mixed, and spray-dried As a result, silicon nitride granules for disks were obtained. This granule was CIP-molded and subjected to normal pressure firing at a firing temperature of 1700 ° C. and a firing time of 6 hours, thereby obtaining a disc having a diameter of 200 × 10 mm. A part of this sintered body was cut out, and the average particle diameter was determined by SEM observation of the cut surface.

この円板の接合面を研削、ラッピング加工し、平面度10μm以下、表面粗さRzが平均粒径の1/2以下となるようにした。また、接合面を10×10mmに区切ったとき、となり合うエリアの平面度の相互差が0.2μm以下となるようにした。この円板の主面は平面度5μm以下にラッピング加工した。 The joint surface of this disk was ground and lapped so that the flatness was 10 μm or less and the surface roughness Rz was ½ or less of the average particle diameter. Further, when the joint surface was divided into 10 × 10 mm, the mutual difference in flatness of adjacent areas was set to 0.2 μm or less. The main surface of this disk was lapped to a flatness of 5 μm or less.

[円筒の作製]
原料となる窒化ケイ素粉末94質量%と酸化イットリウム粉末3質量%、酸化アルミニウム粉末3質量%を混合し、IPAおよび有機バインダと可塑剤を添加し、混合、スプレードライ乾燥をすることで、円筒用窒化ケイ素顆粒を得た。この顆粒をCIP成形し、焼成温度1700℃、焼成時間6時間の常圧焼成した後、円筒加工を行い、外径φ70mm、内径φ30mm、長さ120mmの円筒を得た。この円筒の一端面を切断し、SEM観察により平均粒径を求めた。この円筒の一端面を研削、ラッピング加工し、平面度10μm以下、表面粗さRzが平均粒径の1/2以下となるようにした。また、一端面を10×10mmに区切ったとき、となり合うエリアの平面度の相互差が0.2μm以下となるようにした。
[Cylinder production]
By mixing 94% by mass of silicon nitride powder, 3% by mass of yttrium oxide powder, and 3% by mass of aluminum oxide powder, adding IPA, organic binder and plasticizer, mixing, spray drying and drying Silicon nitride granules were obtained. This granule was CIP-molded and fired at normal pressure with a firing temperature of 1700 ° C. and a firing time of 6 hours, and then cylinder processing was performed to obtain a cylinder with an outer diameter of 70 mm, an inner diameter of 30 mm, and a length of 120 mm. One end face of this cylinder was cut, and the average particle diameter was determined by SEM observation. One end face of this cylinder was ground and lapped so that the flatness was 10 μm or less and the surface roughness Rz was ½ or less of the average particle diameter. Further, when one end face was divided into 10 × 10 mm, the mutual difference in flatness of adjacent areas was set to 0.2 μm or less.

[接合と評価]
円板の接合面と、円筒の一端面を重ね合わせ、表1の条件で接合した。円板の主面の接合前と接合後に平面度をレーザ干渉計により測定した。また、接合部の気密度をボンビング法によりヘリウムリークディテクターで測定した。また、接合後の焼結体の粒成長の有無を切断面のSEM観察により、副成分の拡散の有無をEPMAにより測定した。平均粒径の測定は、接合界面から15μmの位置より15μm毎に接合界面に沿って線インターセプト法により各位置での平均粒径を求めた。
[Joint and evaluation]
The joining surface of the disc and one end surface of the cylinder were overlapped and joined under the conditions shown in Table 1. The flatness was measured with a laser interferometer before and after joining the main surfaces of the disks. Further, the air density of the joint was measured with a helium leak detector by a bombing method. Further, the presence or absence of grain growth of the sintered body after bonding was measured by SEM observation of the cut surface, and the presence or absence of diffusion of subcomponents was measured by EPMA. For the measurement of the average particle size, the average particle size at each position was determined by the line intercept method along the bonding interface every 15 μm from the position of 15 μm from the bonding interface.

[酸化アルミニウム焼結体の接合(作製No.9)]
酸化アルミニウム焼結体の接合では、金属導体を埋設せずに円板と円筒の接合試験を行った。なお、酸化アルミニウム焼結体の接合においても金属導体の埋設が適用可能であることはいうまでもない。
[Joint aluminum oxide sintered body (production No. 9)]
In joining aluminum oxide sintered bodies, a joining test of a disk and a cylinder was performed without embedding a metal conductor. Needless to say, embedding of a metal conductor can also be applied to bonding of aluminum oxide sintered bodies.

[円板の作製]
原料となる純度99.99%の酸化アルミニウム粉末と、IPAおよび有機バインダと可塑剤を添加し、混合、スプレードライ乾燥をすることで、円板用酸化アルミニウム顆粒を得た。この顆粒をCIP成形し、焼成温度1500℃、焼成時間6時間の常圧焼成することで、φ200×10mmの円板を得た。この焼結体の一部を切り出し、切断面のSEM観察により平均粒径を求めた。この円板の主面を研削、ラッピング加工し、平面度5μm、表面粗さRzが平均粒径の1/2以下となるようにした。また、接合面を10×10mmに区切ったとき、となり合うエリアの平面度の相互差が0.2μm以下となるようにした。主面の裏側の接合面は平面度3μmにラッピング加工した。
[Production of disc]
Aluminum oxide granules for disk were obtained by adding 99.99% pure aluminum oxide powder as a raw material, IPA, an organic binder and a plasticizer, mixing, and spray drying. This granule was CIP-molded and subjected to normal pressure firing at a firing temperature of 1500 ° C. and a firing time of 6 hours, thereby obtaining a disc having a diameter of 200 × 10 mm. A part of this sintered body was cut out, and the average particle diameter was determined by SEM observation of the cut surface. The main surface of this disk was ground and lapped so that the flatness was 5 μm and the surface roughness Rz was ½ or less of the average particle diameter. Further, when the joint surface was divided into 10 × 10 mm, the mutual difference in flatness of adjacent areas was set to 0.2 μm or less. The joining surface on the back side of the main surface was lapped to a flatness of 3 μm.

[円筒の作製]
原料となる純度95%の酸化アルミニウム(残部は酸化ケイ素3質量%、酸化カルシウム1質量%、酸化マグネシウム1質量%)と、IPAおよび有機バインダと可塑剤を添加し、混合、スプレードライ乾燥をすることで、円筒用酸化アルミニウム顆粒を得た。
この顆粒をCIP成形し、焼成温度1600℃、焼成時間6時間の常圧焼成した後、円筒加工を行い、外径φ70mm、内径φ30mm、長さ120mmの円筒を得た。この円筒の一端面を切断し、SEM観察により平均粒径を求めた。この円筒の一端面を研削、ラッピング加工し、平面度2μm、表面粗さRzが平均粒径の1/2以下となるようにした。また、一端面を10×10mmに区切ったとき、となり合うエリアの平面度の相互差が0.2μm以下となるようにした。
[Cylinder production]
Add 95% pure aluminum oxide (the balance is 3% by weight silicon oxide, 1% by weight calcium oxide, 1% by weight magnesium oxide), IPA, organic binder and plasticizer, and mix and spray dry. Thereby, the aluminum oxide granule for cylinders was obtained.
The granules were CIP-molded, fired at normal pressure with a firing temperature of 1600 ° C. and a firing time of 6 hours, and then subjected to cylindrical processing to obtain a cylinder with an outer diameter of 70 mm, an inner diameter of 30 mm, and a length of 120 mm. One end face of this cylinder was cut, and the average particle diameter was determined by SEM observation. One end face of this cylinder was ground and lapped so that the flatness was 2 μm and the surface roughness Rz was ½ or less of the average particle diameter. Further, when one end face was divided into 10 × 10 mm, the mutual difference in flatness of adjacent areas was set to 0.2 μm or less.

[接合と評価]
円板の接合面と、円筒の一端面を重ね合わせ、表1の条件で接合した。円板の主面の接合前と接合後に平面度をレーザ干渉計により測定した。また、接合部の気密度をボンビング法によりヘリウムリークディテクターで測定した。また、接合後の焼結体の粒成長の有無を切断面のSEM観察により、副成分の拡散の有無をEPMAにより測定した。平均粒径の測定は、接合界面から15μmの位置より15μm毎に接合界面に沿って線インターセプト法により各位置での平均粒径を求めた。
[Joint and evaluation]
The joining surface of the disc and one end surface of the cylinder were overlapped and joined under the conditions shown in Table 1. The flatness was measured with a laser interferometer before and after joining the main surfaces of the disks. Further, the air density of the joint was measured with a helium leak detector by a bombing method. Further, the presence or absence of grain growth of the sintered body after bonding was measured by SEM observation of the cut surface, and the presence or absence of diffusion of subcomponents was measured by EPMA. For the measurement of the average particle size, the average particle size at each position was determined by the line intercept method along the bonding interface every 15 μm from the position of 15 μm from the bonding interface.

Figure 0005466439
Figure 0005466439

作製No.1〜3では、接合前後で主面の平面度の変化は小さく、接合の気密性も高かった。これらの接合体の副成分の拡散及び粒成長の有無を調べたところ、副成分については、マグネシウム及びイットリウムの拡散が見られなかった、また各測定位置で平均粒径は一定であり、粒成長は認められなかった。副成分の拡散及び平均粒径の測定において、いずれも図2に示したような結果が得られた。 In Production Nos. 1 to 3, the change in flatness of the main surface before and after joining was small and the airtightness of joining was high. As a result of investigating the presence or absence of subcomponent diffusion and grain growth in these joints, no diffusion of magnesium and yttrium was observed for the subcomponent, and the average grain size was constant at each measurement position, and grain growth. Was not recognized. In the measurement of the diffusion of the subcomponents and the average particle diameter, the results as shown in FIG. 2 were obtained.

作製No.4では、接合温度が低いため、接合できなかった。作製No.5では、副成分の拡散及び粒成長が認められた。主面の平面度は著しく悪化しており、大きく変形していた。接合材を用いた作製No.6においても変形は著しかった。EPMAの測定結果から、接合材成分が焼結体に拡散していることが認められた。 Production No. 4 could not be joined because the joining temperature was low. In Production No. 5, diffusion of subcomponents and grain growth were observed. The flatness of the main surface was significantly deteriorated and greatly deformed. In the production No. 6 using the bonding material, the deformation was significant. From the measurement result of EPMA, it was confirmed that the bonding material component diffused into the sintered body.

作製No.7〜9では、接合前後で主面の平面度の変化は小さく、接合の気密性も高かった。これらの接合体の副成分の拡散及び粒成長の有無を調べたところ、副成分については、イットリウム、アルミニウム及びマグネシウム並びにケイ素、カルシウム及びマグネシウムの拡散が見られなかった、また各測定位置で平均粒径は一定であり、粒成長は認められなかった。副成分の拡散及び平均粒径の測定において、いずれも図2に示したような結果が得られた。 In Production Nos. 7 to 9, the change in flatness of the main surface before and after joining was small, and the airtightness of joining was high. As a result of examining the diffusion of subcomponents and the presence or absence of grain growth in these joined bodies, no diffusion of yttrium, aluminum and magnesium, and silicon, calcium and magnesium was observed for the subcomponents. The diameter was constant and no grain growth was observed. In the measurement of the diffusion of the subcomponents and the average particle diameter, the results as shown in FIG. 2 were obtained.

10、20 接合体
11、21 第1のセラミックス焼結体
12、22 第2のセラミックス焼結体
21a 主面
11a、21b 接合面
12a、22a 端部
10, 20 Bonded body 11, 21 First ceramic sintered body 12, 22 Second ceramic sintered body 21a Main surface 11a, 21b Bonded surface 12a, 22a End

Claims (8)

第1のセラミックス焼結体と第2のセラミックス焼結体とが接合材を介さずに接合されたセラミックス接合体であって、
第1及び第2のセラミックス焼結体は、互いに共通して、窒化アルミニウム、酸化アルミニウム及び窒化珪素の何れかを主成分とし、
第1及び第2のいずれか一方又は両方のセラミックス焼結体が副成分を含んでおり、
第2のセラミックス焼結体の熱伝導率は、第1のセラミックス焼結体の熱伝導率よりも小さく、
一方のセラミックス焼結体の前記副成分が、他方のセラミックス焼結体に拡散していないことを特徴とするセラミックス接合体。
A ceramic joined body in which the first ceramic sintered body and the second ceramic sintered body are joined without using a joining material,
The first and second ceramic sintered bodies have one of aluminum nitride, aluminum oxide and silicon nitride as a main component in common with each other,
The ceramic sintered body of either one or both of the first and second contains a subcomponent,
The thermal conductivity of the second ceramic sintered body is smaller than the thermal conductivity of the first ceramic sintered body,
A ceramic joined body, wherein the subcomponent of one ceramic sintered body is not diffused into the other ceramic sintered body.
第1のセラミックス焼結体及び第2のセラミックス焼結体は接合時の粒成長が見られない請求項1記載のセラミックス接合体。   The ceramic joined body according to claim 1, wherein the first ceramic sintered body and the second ceramic sintered body do not show grain growth during joining. 前記第1のセラミックス焼結体は、金属導体が埋設された請求項1または2記載のセラミックス接合体。   The ceramic joined body according to claim 1 or 2, wherein the first ceramic sintered body has a metal conductor embedded therein. 前記第1のセラミックス焼結体は、基板を載置する主面を有する板形状を有し、
前記第2のセラミックス焼結体は、端部が前記第1のセラミックス焼結体の主面の裏側の面と接合された筒形状を有する請求項1〜3の何れか1項に記載のセラミックス接合体。
The first ceramic sintered body has a plate shape having a main surface on which a substrate is placed;
The ceramic according to any one of claims 1 to 3, wherein the second ceramic sintered body has a cylindrical shape in which an end portion is joined to a surface on the back side of the main surface of the first ceramic sintered body. Joined body.
前記金属導体は、発熱抵抗体、静電電極またはRF電極である請求項3記載のセラミックス接合体。 The ceramic joined body according to claim 3 , wherein the metal conductor is a heating resistor, an electrostatic electrode, or an RF electrode. 請求項3〜5の何れか1項に記載のセラミックス接合体を用いたセラミックスヒータ。 A ceramic heater using the ceramic joined body according to any one of claims 3 to 5 . 請求項3〜5の何れか1項に記載のセラミックス接合体を用いた静電チャック。 An electrostatic chuck using the ceramic joined body according to claim 3 . 請求項3〜5の何れか1項に記載のセラミックス接合体を用いたサセプタ。 A susceptor using the ceramic joined body according to any one of claims 3 to 5 .
JP2009155951A 2009-06-30 2009-06-30 Ceramic joined body, ceramic heater, electrostatic chuck and susceptor Active JP5466439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009155951A JP5466439B2 (en) 2009-06-30 2009-06-30 Ceramic joined body, ceramic heater, electrostatic chuck and susceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009155951A JP5466439B2 (en) 2009-06-30 2009-06-30 Ceramic joined body, ceramic heater, electrostatic chuck and susceptor

Publications (2)

Publication Number Publication Date
JP2011011931A JP2011011931A (en) 2011-01-20
JP5466439B2 true JP5466439B2 (en) 2014-04-09

Family

ID=43591193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009155951A Active JP5466439B2 (en) 2009-06-30 2009-06-30 Ceramic joined body, ceramic heater, electrostatic chuck and susceptor

Country Status (1)

Country Link
JP (1) JP5466439B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772146B (en) * 2020-08-25 2022-07-21 大陸商北京北方華創微電子裝備有限公司 Semiconductor reaction chamber and semiconductor processing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855402B2 (en) * 2010-09-24 2016-02-09 日本碍子株式会社 Susceptor and its manufacturing method
US10242890B2 (en) * 2011-08-08 2019-03-26 Applied Materials, Inc. Substrate support with heater
JP7463641B2 (en) * 2020-03-10 2024-04-09 日本特殊陶業株式会社 Joint, manufacturing method thereof, electrode-embedded member, and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292386A (en) * 2002-03-29 2003-10-15 Ibiden Co Ltd Conjugated body and manufacturing method therefor
JP2007261916A (en) * 2006-03-29 2007-10-11 Tokuyama Corp Method for joining ceramics and ceramic joined body
JP2008124265A (en) * 2006-11-13 2008-05-29 Nippon Steel Materials Co Ltd Low-thermal-expansion ceramic member, and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772146B (en) * 2020-08-25 2022-07-21 大陸商北京北方華創微電子裝備有限公司 Semiconductor reaction chamber and semiconductor processing device

Also Published As

Publication number Publication date
JP2011011931A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
TWI413438B (en) Supporting unit for semiconductor manufacturing device and semiconductor manufacturing device with supporting unit installed
TWI714352B (en) Holding device and manufacturing method of holding device
EP1918982A2 (en) Substrate supporting member
JP2001274230A (en) Wafer holder for semiconductor manufacturing device
JP2011148688A (en) Ceramic joined body and method for producing the same
JP5466439B2 (en) Ceramic joined body, ceramic heater, electrostatic chuck and susceptor
JP6495536B2 (en) Manufacturing method of parts for semiconductor manufacturing equipment and parts for semiconductor manufacturing equipment
JP2011148687A (en) Ceramic joined body and method for production thereof
JP4703442B2 (en) Substrate heating device
JP3821075B2 (en) Ceramic heater and manufacturing method thereof
JP5085959B2 (en) Ceramic material
JP2021170567A (en) Holding device and manufacturing method thereof
KR102461995B1 (en) High Temperature Susceptor With Shaft Of Low Thermal Conductance
WO2023176886A1 (en) Electrostatic chuck member, electrostatic chuck device, and method for manufacturing electrostatic chuck member
TWI772767B (en) Electrode-embedded member, method for manufacturing the same, electrostatic clip, and ceramic heater
JP7125265B2 (en) Substrate heating device and manufacturing method thereof
JP2017147126A (en) Manufacturing method for ceramic heater
JP2021197535A (en) Method for manufacturing ceramic sintered body, method for manufacturing electrode embedding member, and electrode embedding member
JP2023138085A (en) Electrostatic chuck member and electrostatic chuck device
JP2020109725A (en) Holding device
JP2019026511A (en) Ceramic joined body and method for producing ceramic joined body
JP2005019067A (en) Ceramics heater of aluminum nitride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140124

R150 Certificate of patent or registration of utility model

Ref document number: 5466439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250