JP2021004288A - Method for hydrotreating heavy oil - Google Patents

Method for hydrotreating heavy oil Download PDF

Info

Publication number
JP2021004288A
JP2021004288A JP2019117577A JP2019117577A JP2021004288A JP 2021004288 A JP2021004288 A JP 2021004288A JP 2019117577 A JP2019117577 A JP 2019117577A JP 2019117577 A JP2019117577 A JP 2019117577A JP 2021004288 A JP2021004288 A JP 2021004288A
Authority
JP
Japan
Prior art keywords
group
catalyst
metal
mass
periodic table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019117577A
Other languages
Japanese (ja)
Other versions
JP7321790B2 (en
Inventor
山根 健治
Kenji Yamane
健治 山根
泰 新宅
Yasushi Shintaku
泰 新宅
内田 稔
Minoru Uchida
内田  稔
久也 石原
Hisaya Ishihara
久也 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2019117577A priority Critical patent/JP7321790B2/en
Priority to KR1020227000429A priority patent/KR20220024427A/en
Priority to PCT/JP2020/023441 priority patent/WO2020262078A1/en
Priority to TW109121147A priority patent/TW202108752A/en
Publication of JP2021004288A publication Critical patent/JP2021004288A/en
Application granted granted Critical
Publication of JP7321790B2 publication Critical patent/JP7321790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

To provide a combination of hydrotreating catalysts of heavy oil that exhibits higher performance than conventional catalyst systems and a method for treating the heavy oil.SOLUTION: Provided is the method for hydrotreating the heavy oil comprising a demetallization part, a transition part, and a desulfurization part. The desulfurization part is formed by laminating two or more layers of a catalyst group A and a catalyst group B that contain Group 8 metals in a periodic table in different ratios, the catalyst group A is composed of one or more catalysts in which Co-containing Group 8 metal in the periodic table and Mo are supported as active metal components on a carrier, the catalyst group B is composed of one or more catalysts in which Ni-containing Group 8 metal in the periodic table and Mo are supported as the active metal components on the carrier, the catalyst group A and the catalyst group B are alternately filled from an upstream side of the desulfurization part, 10-90% of the catalyst group A is used in a volume ratio in a hydrodesulfurization part on an upstream side, and 10-90% of the catalyst group B is used in the volume ratio in the hydrodesulfurization part on a downstream side.SELECTED DRAWING: Figure 1

Description

高い脱硫、脱窒素、脱残済効率で処理可能な重質油の水素化処理方法を提供する。 Provided is a hydrogenation treatment method for heavy oil that can be treated with high desulfurization, denitrification, and de-residual efficiency.

重質油の水素化処理プロセスにおいては、異なる機能を有する触媒を組み合わせて使用することで、個々の触媒単独よりも優れた性能が得られることが知られている。たとえば、非特許文献1に記載されている通り、担体の細孔径分布を制御することで、脱メタル選択性に優れた脱メタル触媒と、脱硫選択性に優れた脱硫触媒および、両者の中間の反応特性を示すトランジション触媒を調製し、それらを組み合わせて使用することなどが知られている。 In the hydrogenation process of heavy oil, it is known that by using a combination of catalysts having different functions, superior performance can be obtained as compared with individual catalysts alone. For example, as described in Non-Patent Document 1, by controlling the pore size distribution of the carrier, a demetallization catalyst having excellent demetallization selectivity and a desulfurization catalyst having excellent desulfurization selectivity, and an intermediate between the two. It is known that transition catalysts exhibiting reaction characteristics are prepared and used in combination.

しかしながら、重質油の水素化処理プロセスでは、近年の原料油の更なる重質化への対応や、重質油の水素化処理プロセス後の残油接触分解装置の処理量増加へ対応するには、従来の触媒システムでは不十分であり、更なる触媒性能(脱硫、脱窒素、脱メタル、脱残炭活性)の向上が求められている。 However, in the hydrogenation treatment process of heavy oil, it is necessary to cope with the further increase in weight of raw material oil in recent years and the increase in the processing amount of the residual oil catalytic cracking device after the hydrogenation treatment process of heavy oil. Is not sufficient with the conventional catalyst system, and further improvement of catalyst performance (desulfurization, denitrification, demetallization, deresidual coal activity) is required.

水素化処理触媒を用いた重質油処理方法の改良法としては、脱硫触媒単品の性能向上だけでなく、異なる細孔径や担体組成の触媒を適切に組み合わせる方法が知られている。しかしながら、それでは、近年の原料油の更なる重質化への対応や、重質油の水素化処理プロセス後の残油接触分解装置の処理量増加への対応としては不十分である。 As an improvement method of the heavy oil treatment method using a hydrogenation treatment catalyst, not only a method of improving the performance of a desulfurization catalyst alone but also a method of appropriately combining catalysts having different pore diameters and carrier compositions is known. However, this is not sufficient as a response to the further increase in the weight of raw material oil in recent years and to the increase in the processing amount of the residual oil catalytic cracking apparatus after the hydrogenation treatment process of the heavy oil.

たとえば重質油の処理方法としては、特許文献1には、アルミナ担体にニッケル、コバルト、モリブデン、バナジウム、タングステンから選ばれた少なくとも1種類の活性金属およびホウ素化合物が担持され第1層と、通常の水素化処理触媒を充填した第2層からなる触媒層の存在下、残油を水素化する残油の水素化処理方法が開示されている。 For example, as a method for treating heavy oil, Patent Document 1 states that an alumina carrier is supported with at least one active metal selected from nickel, cobalt, molybdenum, vanadium, and tungsten, and a boron compound, and is usually used as a first layer. A method for hydrogenating a residual oil is disclosed, in which the residual oil is hydrogenated in the presence of a catalyst layer composed of a second layer filled with the hydrogenation treatment catalyst.

また、特許文献2には、重質油を水素化処理する方法において、原料重質油および原料重質油に対し0.3〜10質量%の割合で熱処理油、部分核水素化油を混合し、特定の細孔分布を有する水素化脱硫触媒、水素化脱メタル触媒の存在下に重質油を水素化処理する重質油の水素化処理法が開示されている。 Further, Patent Document 2 describes that in a method for hydrogenating heavy oil, heat-treated oil and partially nuclear hydrogenated oil are mixed at a ratio of 0.3 to 10% by mass with respect to the raw material heavy oil and the raw material heavy oil. However, a method for hydrogenating a heavy oil is disclosed, in which the heavy oil is hydrogenated in the presence of a hydrodesulfurization catalyst having a specific pore distribution and a hydrodesulfurization catalyst.

一方で、軽油脱硫用途においては異なる助触媒(Ni、Co)を含む触媒を組み合わせる手法が知られており、たとえば、Co及びMoを活性金属に含む触媒と、Ni及びMoを活性金属に含む触媒とを積層して使用することも提案されている。 On the other hand, in light oil desulfurization applications, a method of combining catalysts containing different co-catalysts (Ni, Co) is known. For example, a catalyst containing Co and Mo in an active metal and a catalyst containing Ni and Mo in an active metal are known. It has also been proposed to stack and use.

特許文献3には、軽油留分を含む原料油の超深度脱硫方法として、原料油を水素とともにアルミナを主体として含む担体にモリブデン、コバルト、およびリンを含み且つ有機添加剤を含まない第1触媒に接触させて水素化脱硫する工程と、第1触媒で水素化脱硫された原料油を、アルミナを主体として含む担体に担持されたモリブデンおよびタングステンの少なくとも一方並びにニッケルおよびリンを含み、ニッケルの第8〜10族金属元素に占める割合が金属元素換算で80質量%以上であり且つ有機添加剤を含まない第2触媒に接触させて水素化脱硫する工程とを含む超深度脱硫方法が開示されている。 In Patent Document 3, as a method for ultra-deep desulfurization of a raw material oil containing a light oil distillate, a first catalyst containing molybdenum, cobalt, and phosphorus in a carrier containing the raw material oil as a main component of alumina together with hydrogen and not containing an organic additive. The step of hydrodesulfurizing by contacting with, and the raw material oil hydrodesulfurized by the first catalyst, containing at least one of molybdenum and tungsten supported on a carrier containing mainly alumina, and nickel and phosphorus containing nickel and phosphorus. An ultra-deep desulfurization method including a step of hydrodesulfurizing by contacting with a second catalyst containing no organic additive and having a ratio of 80% by mass or more in terms of metal elements to Group 8 to 10 metal elements is disclosed. There is.

また、特許文献4には、固定床反応器の入り口から第一水素化域、第二水素化域、第三水素化域とし、第一水素化域にはアルミナを主成分とする多孔質担体にコバルトとモリブデンを担持した触媒を全触媒量に対して20〜60容積%充填し、第二水素化域にはアルミナ85〜99質量%とゼオライト1〜15質量%とを含む多孔質担体にニッケルとモリブデンを担持した触媒を全触媒量に対して20〜60容積%充填し、第三水素化域にはアルミナを主成分とする多孔質担体にコバルトおよび/またはニッケルと、モリブデンを担持した触媒を全触媒量に対して5〜20容積%充填して、硫黄を含有する軽油を通油して水素化脱硫する、硫黄分を含有する軽油の水素化脱硫方法が開示されている。
さらに、特許文献5には、軽油留分をニッケルとモリブデンを担持した触媒の存在下に水素化脱硫し、次いでコバルトとモリブデンを担持した触媒の存在下に水素化脱硫する脱硫方法であり、硫黄分0.05質量%以下の軽油留分が得られる水素圧力および温度において水素化脱硫を行う軽油の深度脱硫方法が開示されている。
Further, in Patent Document 4, the primary hydrogenation region, the second hydrogenation region, and the tertiary hydrogenation region are defined from the entrance of the fixed bed catalyst, and the primary hydrogenation region is a porous carrier containing alumina as a main component. Is filled with 20 to 60% by volume of a catalyst carrying cobalt and molybdenum with respect to the total amount of the catalyst, and a porous carrier containing 85 to 99% by mass of alumina and 1 to 15% by mass of zeolite is prepared in the second hydride region. A catalyst supporting nickel and molybdenum was filled in an amount of 20 to 60% by volume based on the total amount of the catalyst, and cobalt and / or nickel and molybdenum were supported on a porous carrier containing alumina as a main component in the tertiary hydride region. A method for hydrodesulfurizing a light oil containing sulfur is disclosed, wherein the catalyst is filled in an amount of 5 to 20% by volume based on the total amount of the catalyst, and the light oil containing sulfur is passed through the oil to hydrosulfurize.
Further, Patent Document 5 is a hydrodesulfurization method in which a gas oil distillate is hydrodesulfurized in the presence of a catalyst supporting nickel and molybdenum, and then hydrodesulfurized in the presence of a catalyst supporting cobalt and molybdenum. A method for deep desulfurization of gas oil is disclosed in which hydrodesulfurization is performed at a hydrogen pressure and temperature at which a gas oil fraction of 0.05% by mass or less is obtained.

しかしながら、非特許文献1に記載されている通り灯軽油留分の脱硫と重質油の脱硫は技術自体が大きく相違する。例えば軽油と比較して重質油はS、N、Ni、V、Asphaltene、多環芳香族等の含量が非常に高く、脱メタル触媒等との組み合わせが必須であるほか、それら不純分による反応阻害が大きく働くことも考慮が必要となる。さらに、反応温度、反応圧力、液空間速度なども異なる。求められる生成油性状も大きく異なり、重質油では生成油の硫黄濃度が灯軽油よりも100倍程度高くなるが、色相は問われない。更には上記特性を反映して、既存の灯軽油用途の触媒は活性金属量が多く、かつ比表面積が高く細孔径が小さいものが脱硫活性に優れているとされており、一方で重質油用途の触媒は比較的活性金属量が少なく、かつ原料油の拡散性に適した細孔径の大きいものが脱硫活性に優れているとされるなど、灯軽油留分の脱硫触媒は、重質油水素化脱硫触媒とは明らかに技術的思想が相違しており、別の技術分野に属しているものである。
したがって、重質油の水素化処理用途において、より高い触媒活性を示す触媒システムの開発が求められていた。
However, as described in Non-Patent Document 1, the techniques themselves for desulfurization of kerosene distillate and desulfurization of heavy oil are significantly different. For example, compared to light oil, heavy oil has a very high content of S, N, Ni, V, Asphaltene, polycyclic aromatics, etc., and it is essential to combine it with a demetallizing catalyst, etc., and the reaction due to these impurities It is also necessary to consider that the inhibition works greatly. Furthermore, the reaction temperature, reaction pressure, liquid space velocity, etc. are also different. The required properties of the produced oil are also significantly different. In heavy oil, the sulfur concentration of the produced oil is about 100 times higher than that of kerosene oil, but the hue does not matter. Furthermore, reflecting the above characteristics, it is said that existing catalysts for kerosene light oil have a large amount of active metal, a high specific surface area and a small pore diameter, and have excellent desulfurization activity, while heavy oil. The catalysts used are heavy oils, such as those with a relatively small amount of active metal and large pore diameter suitable for the diffusivity of raw material oil are said to have excellent desulfurization activity. The technical idea is clearly different from that of hydrodesulfurization catalysts, and they belong to another technical field.
Therefore, in the hydrogenation treatment application of heavy oil, the development of a catalyst system showing higher catalytic activity has been required.

特開平5−093190号公報Japanese Unexamined Patent Publication No. 5-093190 特開平7−062357号公報Japanese Unexamined Patent Publication No. 7-062357 国際公開2002/010314号International Publication No. 2002/010314 特開2000−109854号公報Japanese Unexamined Patent Publication No. 2000-109854 特開平4−183786号公報Japanese Unexamined Patent Publication No. 4-183786

加部敏明監修 「水素化精製 Science & Technology」 2000年 株式会社アイピーシーSupervised by Toshiaki Kabe "Hydrogenation Purification Science & Technology" 2000 IPC Co., Ltd.

本発明の課題は、従来の触媒システムよりも高い性能を示す重質油の水素化処理触媒の組み合わせおよび、重質油の処理方法を提供する。 An object of the present invention is to provide a combination of a hydrogenation-treated catalyst for heavy oil, which exhibits higher performance than a conventional catalyst system, and a method for treating heavy oil.

上記課題を解決すべく鋭意検討した結果、本発明者らは炭化水素油の水素化処理は、様々な反応阻害を受けながら進行することに着目した。特に直接脱硫反応では、原料油である重質油中に高い濃度で、S、N、Ni、V、Asphaltene、多環芳香族などの成分を含み、それらが協奏的に反応を阻害していると本発明者らは考えた。そして、水素化処理システムの全てにわたって、同じ反応特性の触媒を使用することは、常に同様の阻害を受け続ける反応があるということになり、より優れた触媒システムとするには、阻害の受けやすさの異なる触媒を組み合わせることで、それぞれに得意とする反応が進行させることで相乗的な効果が発揮され、より高活性な触媒システムとするには有効であると考えた。 As a result of diligent studies to solve the above problems, the present inventors have focused on the fact that the hydrogenation treatment of hydrocarbon oil proceeds while undergoing various reaction inhibitions. In particular, in the direct desulfurization reaction, heavy oil, which is a raw material oil, contains components such as S, N, Ni, V, Asphaltene, and polycyclic aromatics at a high concentration, and these components synergistically inhibit the reaction. The present inventors thought. And, using a catalyst with the same reaction characteristics throughout the hydrogenation treatment system means that there is always a reaction that continues to receive the same inhibition, and in order to make a better catalyst system, it is susceptible to inhibition. By combining different catalysts, synergistic effects are exhibited by advancing the reactions that each is good at, and it is thought that it is effective for making a more active catalyst system.

そして、触媒の構成として、脱メタル部および脱硫部の上流側と下流側と脱メタル部と脱硫部との間のトランジション部における、NiおよびCo、Moの組み合わせを検討し、所定の組み合わせを採用することで、従来になく高活性で重質油の水素化脱硫処理が可能な触媒システムを構築できることを見出し、本発明を完成するに至った。 Then, as a catalyst configuration, the combination of Ni, Co, and Mo in the upstream and downstream sides of the demetallized portion and the desulfurized portion and the transition portion between the demetallized portion and the desulfurized portion was examined, and a predetermined combination was adopted. By doing so, it was found that a catalyst system capable of hydrodesulfurization treatment of heavy oil with unprecedented high activity can be constructed, and the present invention has been completed.

本発明の構成は以下の通りである。
[1]脱メタル部、トランジション部、脱硫部からなる重質油の水素化処理方法であって、脱硫部が周期表第8族金属を異なる比率で含む触媒A群と触媒B群が2層以上で積層したものであり、触媒A群は、担体に、Coを含む周期表第8族金属とMoを活性金属成分として担持した一種以上の触媒から構成され、触媒B群は、担体に、Niを含む周期表第8族金属とMoを活性金属成分として担持した一種以上の触媒から構成されたものであり、脱硫部上流側から触媒A群と触媒B群が交互に充填され、上流側に触媒A群が水素化脱硫部中の容積割合で10〜90%使用され、下流側に触媒B群が水素化脱硫部中の容積割合で10〜90%使用されることを特徴とする水素化処理方法。
[2]触媒A群の活性金属成分は、触媒A群における周期表第8族金属がCoであり、CoがCoO換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、Co/Moモル比が0.25〜0.75の範囲で担持されたものである、[1]の水素化処理方法。
[3]触媒A群の活性金属成分はさらに、周期表第8族金属であるNiを含み、触媒A群における周期表第8族金属が金属酸化物(例えばCoならCoO)換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、周期表第8族金属/Moモル比が0.25〜0.75であり、Co/周期表第8族金属モル比が、0.6以上の範囲で担持されたものである、[1]または[2]の水素化処理方法。
[4]触媒B群の活性金属成分は、触媒B群における周期表第8族金属がNiであり、NiがNiO換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、Ni/Moモル比が0.25〜0.75の範囲で担持されたものである、[1]〜[3]の水素化処理方法。
[5]触媒B群の活性金属成分はさらに、周期表第8族金属であるCoを含み、触媒B群における周期表第8族金属が金属酸化物(例えばCoならCoO)換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、周期表第8族金属/Moモル比が0.25〜0.75であり、Co/周期表第8族金属モル比が、0.4以下の範囲で担持されたものである、[1]〜[4]の水素化処理方法。
[6]担体が、酸化物基準で、アルミナを70%以上の量で含む、[1]の水素化処理方法。
[7]前記担体が、さらに、シリカ、チタニア、ジルコニア、ボリア、マグネシアおよびリン酸化物から選ばれる少なくとも1種の成分を含む、[6]の水素化処理方法。
[8]触媒A群およびB群の調製に用いた担体が水銀圧入法で測定した平均細孔径(PD)が8.0〜16.0nm、水のポアフィリング法で測定した細孔容積(PV)が0.5〜1.1ml/gであり、触媒AおよびBの窒素のBET法で測定した比表面積が、140〜290m2/gである、[1]の水素化処理方法。
[9]重質油の水素化処理条件が、水素分圧が5.0〜20MPa、反応温度が350〜420℃、液空間速度が0.1〜3.0hr-1である、[1]の水素化処理方法。
[10]原料重質油は、比重が0.9〜1.05、硫黄分1〜6質量%、360℃以上の沸点である成分を80質量%以上含む蒸留性状を有する、[1]の水素化処理方法。
The configuration of the present invention is as follows.
[1] A method for hydrotreating heavy oil consisting of a demetallized part, a transition part, and a desulfurized part, wherein the decalcified part contains two layers of catalyst A group and catalyst B group containing Group 8 metal of the periodic table in different proportions. The catalyst group A is composed of one or more catalysts on which Co-containing Group 8 metal of the periodic table and Mo are supported as active metal components, and the catalyst group B is on the carrier. It is composed of one or more catalysts carrying Ni-containing Group 8 metal of the periodic table and Mo as active metal components, and catalyst A group and catalyst B group are alternately packed from the upstream side of the desulfurization part, and the upstream side. The catalyst group A is used in a volume ratio of 10 to 90% in the hydride desulfurization portion, and the catalyst group B is used in a volume ratio of 10 to 90% in the hydride desulfurization portion on the downstream side. Chemical processing method.
[2] As for the active metal component of the catalyst group A, the metal of Group 8 of the periodic table in the catalyst group A is Co, Co is 1.5 to 6.0% by mass in terms of CoO, and Mo is converted to MoO 3 . The hydrogenation treatment method according to [1], wherein the hydrogenation treatment method is carried in the range of 0 to 25.0% by mass and the Co / Mo molar ratio is 0.25 to 0.75.
[3] The active metal component of the catalyst group A further contains Ni, which is a metal of the group 8 of the periodic table, and the metal of the group 8 of the periodic table in the catalyst group A is 1.5 in terms of metal oxide (for example, CoO for Co). ~ 6.0% by mass, Mo is 8.0 to 25.0% by mass in terms of MoO 3 , the periodic table Group 8 metal / Mo molar ratio is 0.25 to 0.75, and the Co / periodic table 8th. The hydrogenation treatment method of [1] or [2], wherein the group metal molar ratio is supported in the range of 0.6 or more.
[4] As for the active metal component of the catalyst group B, the metal of Group 8 of the periodic table in the catalyst group B is Ni, Ni is 1.5 to 6.0% by mass in terms of NiO, and Mo is converted to MoO 3 . The hydrogenation treatment method according to [1] to [3], wherein the hydrogenation treatment method is carried in the range of 0 to 25.0% by mass and the Ni / Mo molar ratio is 0.25 to 0.75.
[5] The active metal component of the catalyst B group further contains Co, which is a metal of Group 8 of the periodic table, and the metal of Group 8 of the periodic table in the catalyst B group is 1.5 in terms of metal oxide (for example, CoO for Co). ~ 6.0% by mass, Mo is 8.0 to 25.0% by mass in terms of MoO 3 , the periodic table Group 8 metal / Mo molar ratio is 0.25 to 0.75, and the Co / periodic table 8th. The hydrogenation treatment method of [1] to [4], wherein the group metal molar ratio is supported in the range of 0.4 or less.
[6] The hydrogenation treatment method of [1], wherein the carrier contains alumina in an amount of 70% or more based on an oxide.
[7] The hydrogenation treatment method of [6], wherein the carrier further comprises at least one component selected from silica, titania, zirconia, boria, magnesia and phosphorylation.
[8] The average pore diameter (PD) of the carrier used for preparing the catalysts A and B was 8.0 to 16.0 nm measured by the mercury intrusion method, and the pore volume (PV) measured by the pore filling method of water. ) Is 0.5 to 1.1 ml / g, and the specific surface area of the catalysts A and B measured by the BET method is 140 to 290 m 2 / g, according to the hydrogenation treatment method of [1].
[9] The hydrogenation treatment conditions for heavy oil are a hydrogen partial pressure of 5.0 to 20 MPa, a reaction temperature of 350 to 420 ° C., and a liquid space velocity of 0.1 to 3.0 hr -1 . [1] Hydrogenation treatment method.
[10] The raw material heavy oil has a distillation property having a specific gravity of 0.9 to 1.05, a sulfur content of 1 to 6% by mass, and a component having a boiling point of 360 ° C. or higher of 80% by mass or more. Hydrogenation treatment method.

本発明の技術的な着想は、細孔径の組み合わせによる拡散制御に基づいた触媒性能の向上のような物理的積層手法とは全く異なり、化学的な反応特性、特に被毒の受けやすさの違いに着目したものである。よって、助触媒種の積層システムと、細孔径に着目した積層システムの両方の特性を併せ持つ触媒の組み合わせシステムが、最も有効である。 The technical idea of the present invention is completely different from the physical lamination method such as the improvement of the catalytic performance based on the diffusion control by the combination of the pore diameters, and the difference in the chemical reaction characteristics, particularly the susceptibility to poisoning. It focuses on. Therefore, a combination system of catalysts having both characteristics of a stacking system of co-catalyst species and a stacking system focusing on pore diameter is the most effective.

水素化脱硫触媒として、異なる反応性を示す触媒を積層して、各触媒層で異なる反応を促進させることで、システムとして高い触媒性能を示す水素化触媒を構築できる。
このため、本発明によれば、従来の直脱触媒積層系システムで達成しえなかった、低い硫黄分、窒素分を含み、かつ比重の低い生成油を得られる。また、触媒の生産工程上は大きな変更・改造が必要でないので、従来触媒と同じ装置を用いて、高い生産性を維持しながら直脱システムの性能を向上させることができる。
By stacking catalysts showing different reactivity as a hydrodesulfurization catalyst and promoting different reactions in each catalyst layer, it is possible to construct a hydrogenation catalyst showing high catalytic performance as a system.
Therefore, according to the present invention, it is possible to obtain a product oil containing low sulfur content and nitrogen content and having a low specific gravity, which cannot be achieved by the conventional direct removal catalyst laminated system. In addition, since no major changes or modifications are required in the catalyst production process, the performance of the direct removal system can be improved while maintaining high productivity by using the same equipment as the conventional catalyst.

本発明の方法の工程図を示す。The process diagram of the method of this invention is shown.

以下、本発明の実施形態を説明するが、本発明はこれらの記載に何ら限定されるものでない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to these descriptions.

直接脱硫装置は、図1に示されるように、脱メタル部と脱硫部と、その間のトランジション部からなり、脱メタル部では、水素ガス存在下で、脱メタル触媒による脱メタルが主に行われ、原料油中のメタル成分が除去される。一方、脱硫部では、水素ガスの存在下で、主として脱硫触媒による水素化反応が行われ、硫黄分、窒素分及び残炭分などが除去される。 As shown in FIG. 1, the direct desulfurization apparatus consists of a demetallization part, a desulfurization part, and a transition part between them. In the demetallization part, demetallization by a demetallization catalyst is mainly performed in the presence of hydrogen gas. , The metal component in the raw material oil is removed. On the other hand, in the desulfurization section, a hydrogenation reaction is mainly carried out by a desulfurization catalyst in the presence of hydrogen gas, and sulfur content, nitrogen content, residual coal content and the like are removed.

本発明は、 脱メタル部、トランジション部、脱硫部からなる重質油の水素化処理方法であり、各部ごとに触媒が積層されている。また本発明では、脱硫部に触媒A群と触媒B群が積層したものを使用する。 The present invention is a method for hydrogenating heavy oil, which comprises a demetallized part, a transition part, and a desulfurized part, and a catalyst is laminated for each part. Further, in the present invention, a catalyst group A and a catalyst group B are laminated on the desulfurization portion.

脱硫部
本発明では、脱硫部に、少なくとも2種の触媒(それぞれ触媒A群と触媒B群)を用いる。触媒A群は、担体に、Coを含む周期表第8族金属とMoを活性金属成分として担持した一種以上の触媒から構成され、触媒B群は、担体に、Niを含む周期表第8族金属とMoを活性金属成分として担持した一種以上の触媒から構成され、トランジション部側の上流側から、触媒A群と触媒B群を交互に充填して使用される。このように異なる助触媒を含む触媒を使い分けることにより、高い触媒性能を維持でき、脱硫、脱窒素、脱メタル、脱残炭活性が上昇し、特に脱硫活性の向上が顕著である。
また、この触媒A群および触媒B群の積層を繰り返してもよく、たとえば、A群−B群−A群でも、A群−B群−A群−B群のように繰り返してもよい。脱硫部に触媒を3層以上組み合わせる場合には、触媒A群の触媒は一種である必要はなく、担体に、Coを含む周期表第8族金属とMoを活性金属成分として担持したものであればよい。また同様に、触媒B群の触媒は一種である必要はなく、担体に、Coを含む周期表第8族金属とMoを活性金属成分として担持したものであればよい。
脱硫部に触媒を3層以上組み合わせる場合の各触媒の充填比率は様々な組み合わせが可能となるが、少なくともすべての触媒がそれぞれ脱硫部中5容積%以上は含まれていることが好ましく、さらにはすべての触媒がそれぞれ脱硫部中10容積%以上含まれることがより好ましい。
Desulfurization section In the present invention, at least two types of catalysts (catalyst A group and catalyst B group, respectively) are used in the desulfurization section. The catalyst group A is composed of one or more catalysts in which Co-containing Group 8 metal of the periodic table and Mo are supported as active metal components on the carrier, and the catalyst group B is the group 8 of the periodic table containing Ni in the carrier. It is composed of one or more catalysts carrying a metal and Mo as an active metal component, and is used by alternately filling the catalyst A group and the catalyst B group from the upstream side of the transition portion side. By properly using catalysts containing different co-catalysts in this way, high catalytic performance can be maintained, desulfurization, denitrification, demetallization, and residual carbonation activity increase, and the improvement in desulfurization activity is particularly remarkable.
Further, the lamination of the catalyst group A and the catalyst group B may be repeated, for example, the catalyst group A-group B-group A or the group A-group B-group A-group-B may be repeated. When three or more layers of catalysts are combined in the desulfurization part, the catalyst of the catalyst group A does not need to be one kind, and the carrier may be a carrier supported with a Group 8 metal containing Co and Mo as active metal components. Just do it. Similarly, the catalyst of the catalyst group B does not have to be one kind, and may be a carrier supported with a metal of Group 8 of the periodic table containing Co and Mo as active metal components.
When three or more layers of catalysts are combined in the desulfurization section, various combinations of filling ratios of each catalyst are possible, but it is preferable that at least all the catalysts are contained in the desulfurization section in an amount of 5% by volume or more. It is more preferable that all catalysts are contained in the desulfurized portion in an amount of 10% by volume or more.

触媒A群の活性金属成分は、触媒A群における周期表第8族金属がCoであり、CoがCoO換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、CoO/MoO3モル比が0.25〜0.75の範囲で担持されたものが好ましく、さらに、CoがCoO換算で2.5〜4.5質量%、MoがMoO3換算で10〜18質量%、Co/Moモル比が0.30〜0.70の範囲で担持されたものがより好ましい。このような組成では、活性金属成分の量が好適であり、触媒活性点が少なすぎることがなく、かつ活性金属が多い場合に発生する活性金属の凝集が抑えられ好適に分散した活性金属成分を得ることができ、さらに周期表第8族金属の凝集が発生せず、触媒の活性点数が最大となると考えられ、高い脱硫能、脱窒素能、脱メタル能及び脱残炭活性を示す触媒システムとなる。 As for the active metal component of the catalyst group A, the metal of Group 8 of the periodic table in the catalyst group A is Co, Co is 1.5 to 6.0% by mass in terms of CoO, and Mo is 8.0 to 25 in terms of MoO 3. It is preferable that the mixture is supported in a range of 0.0% by mass and a CoO / MoO 3 molar ratio of 0.25 to 0.75, further, Co is 2.5 to 4.5% by mass in terms of CoO, and Mo is MoO 3. It is more preferable that the metal is supported in the range of 10 to 18% by mass and the Co / Mo molar ratio is 0.30 to 0.70 in terms of conversion. In such a composition, the amount of the active metal component is suitable, the catalytic activity site is not too small, and the active metal component generated when the amount of the active metal is large is suppressed and the active metal component is preferably dispersed. A catalyst system that can be obtained, does not cause aggregation of Group 8 metals in the periodic table, has the maximum number of active points of the catalyst, and exhibits high desulfurization ability, denitrification ability, demetallization ability, and deresidue charcoal activity. It becomes.

触媒A群の活性金属成分はさらに、周期表第8族金属であるNiを含んでもよく、その場合の触媒A群における周期表第8族金属が金属酸化物(例えばCoならCoO)換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、周期表第8族金属/Moモル比が0.25〜0.75であり、Co/周期表第8族金属モル比が、0.6以上の範囲で担持されたものが好ましく、さらに、周期表第8族金属が金属酸化物(例えばCoならCoO)換算で2.5〜4.5質量%、MoがMoO3換算で10〜18質量%、周期表第8族金属/Moモル比が0.30〜0.70であり、Co/周期表第8族金属モル比が、0.7以上の範囲で担持されたものがより好ましい。このような組成であると活性金属成分の量が好適であり、高い脱硫能、脱窒素能、脱メタル能及び脱残炭活性を示す触媒システムとなる。 The active metal component of Group A of the catalyst may further contain Ni, which is a metal of Group 8 of the periodic table, and in that case, the metal of Group 8 of the periodic table in Group A of the periodic table is 1 in terms of metal oxide (for example, CoO for Co). .5 to 6.0% by mass, Mo is 8.0 to 25.0% by mass in terms of MoO 3 , Periodic Table Group 8 metal / Mo molar ratio is 0.25 to 0.75, and Co / Periodic Table It is preferable that the Group 8 metal molar ratio is supported in the range of 0.6 or more, and the Group 8 metal in the periodic table is 2.5 to 4.5 mass in terms of metal oxide (for example, CoO for Co). %, Mo is 10 to 18% by mass in terms of MoO 3 , the periodic table Group 8 metal / Mo molar ratio is 0.30 to 0.70, and the Co / periodic table Group 8 metal molar ratio is 0.7. Those supported in the above range are more preferable. With such a composition, the amount of the active metal component is suitable, and the catalyst system exhibits high desulfurization ability, denitrification ability, demetallization ability and deresidue charcoal activity.

触媒B群の活性金属成分は、触媒B群における周期表第8族金属のNiであり、NiがNiO換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25質量%、NiO/MoO3モル比が0.25〜0.75の範囲で担持されたものが好ましく、さらに、NiがNiO換算で2.5〜4.5質量%、MoがMoO3換算で10〜18質量%、Ni/Moモル比が0.30〜0.70の範囲で担持されたものがより好ましい。このような組成であると活性金属成分の量が好適であり、かつ触媒A群と異なる反応特性であることから、高い脱硫能、脱窒素能、脱メタル能及び脱残炭活性を示す触媒システムとなる。 The active metal component of the catalyst group B is Ni, which is a metal of Group 8 of the periodic table in the catalyst group B. Ni is 1.5 to 6.0% by mass in terms of NiO, and Mo is 8.0 to 25 in terms of MoO 3. Those supported in the range of mass% and NiO / MoO 3 molar ratio of 0.25 to 0.75 are preferable, and Ni is 2.5 to 4.5 mass% in terms of NiO and Mo is converted to MoO 3 . More preferably, it is supported in the range of 10 to 18% by mass and the Ni / Mo molar ratio is 0.30 to 0.70. With such a composition, the amount of the active metal component is suitable, and the reaction characteristics are different from those of the catalyst group A. Therefore, a catalyst system exhibiting high desulfurization ability, denitrification ability, demetallization ability and deresidue charcoal activity. It becomes.

触媒B群の活性金属成分はさらに、周期表第8族金属であるCoを含んでもよく、その場合の触媒B群における周期表第8族金属が金属酸化物(例えばCoならCoO)換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25質量%、周期表第8族金属/Moモル比が0.25〜0.75であり、Co/周期表第8族金属モル比が、0.4未満範囲で担持されたものが好ましく、さらに、周期表第8族金属が酸化物換算で2.5〜4.5質量%、MoがMoO3換算で10〜18質量%、Co/周期表第8族金属モル比が、0.3未満の範囲で担持されたものがより好ましい。このような組成であると活性金属成分の量が適度であり、かつ触媒A群と異なる反応特性であることから、高い脱硫、脱窒素、脱メタル、脱残炭活性を示す触媒システムとなる。 The active metal component of the catalyst B group may further contain Co, which is a metal of Group 8 of the periodic table, and in that case, the metal of Group 8 of the periodic table in the catalyst B group is 1 in terms of metal oxide (for example, CoO for Co). .5 to 6.0% by mass, Mo is 8.0 to 25% by mass in terms of MoO 3 , the periodic table Group 8 metal / Mo molar ratio is 0.25 to 0.75, and the Co / periodic table No. 8 It is preferable that the group metal molar ratio is supported in the range of less than 0.4, and further, the group 8 metal of the periodic table is 2.5 to 4.5% by mass in terms of oxide, and Mo is 10 to 10 in terms of MoO 3. It is more preferable that the metal is supported in a range of 18% by mass and a Co / periodic table Group 8 metal molar ratio of less than 0.3. With such a composition, the amount of the active metal component is appropriate and the reaction characteristics are different from those of the catalyst group A, so that the catalyst system exhibits high desulfurization, denitrification, demetallization, and deresidue charcoal activity.

水素化処理触媒に使用される無機複合酸化物担体として、公知の水素化脱硫触媒などに使用される担体であって、各種の無機物からなるものを挙げることができる。本発明の担体は、アルミニウムを主体とした無機複合酸化物である。好ましくは、担体が、酸化物基準で、アルミナを70%以上の量で含む。
担体を構成するアルミニウム以外の無機物成分としては、例えばリン酸化物、シリカ、チタニア、ジルコニア、ボリア、マグネシア等から選ばれる少なくとも一種とアルミナとの複合酸化物などを使用することができる。さらには、ゼオライト、タルク、カオリナイト、モンモリロナイト等の鉱物をアルミナと混合させてもよい。
Examples of the inorganic composite oxide carrier used in the hydrogenation treatment catalyst include known carriers used in hydrodesulfurization catalysts and the like, which are composed of various inorganic substances. The carrier of the present invention is an inorganic composite oxide mainly composed of aluminum. Preferably, the carrier contains in an amount of 70% or more of alumina on an oxide basis.
As the inorganic component other than aluminum constituting the carrier, for example, a composite oxide of alumina and at least one selected from phosphorylation, silica, titania, zirconia, boria, magnesia and the like can be used. Furthermore, minerals such as zeolite, talc, kaolinite and montmorillonite may be mixed with alumina.

複合酸化物の具体例としては、例えば、アルミニウム−ケイ素、ゼオライト、アルミニウム−チタニウム、アルミニウム−リン、アルミニウム−ホウ素、アルミニウム−マグネシウム、アルミニウム−ジルコニウム、アルミニウム−ケイ素−リン、アルミニウム−チタニウム−リン等の複合酸化物が例示されるが、これらに限定されるものではない。無機複合酸化物担体の性状および形状は、担持する金属成分の種類や組成等の種々の条件および触媒の用途に応じて、適宜選択される。
前記活性金属成分を担体に高分散状態に有効に担持して触媒活性を十分に確保するためには、通常、多孔質で所定の細孔を有する担体が好適に使用される。また、担体あるいは触媒体の機械的強度や耐熱性等の物性を制御するために、担体あるいは触媒体の形成に際して適当なバインダー成分や添加剤を含有させることもできる。
Specific examples of the composite oxide include, for example, aluminum-silicon, zeolite, aluminum-titanium, aluminum-phosphorus, aluminum-boron, aluminum-magnesium, aluminum-zirconium, aluminum-silicon-phosphorus, aluminum-titanium-phosphorus, and the like. Composite oxides are exemplified, but not limited to these. The properties and shape of the inorganic composite oxide carrier are appropriately selected according to various conditions such as the type and composition of the metal component to be supported and the use of the catalyst.
In order to effectively support the active metal component on the carrier in a highly dispersed state and sufficiently secure the catalytic activity, a carrier that is porous and has predetermined pores is usually preferably used. Further, in order to control physical properties such as mechanical strength and heat resistance of the carrier or catalyst, an appropriate binder component or additive may be contained in the formation of the carrier or catalyst.

本発明で使用される触媒A群およびB群の調製に用いた担体は、水銀圧入法で測定した平均細孔径(PD)が8.0〜16.0nm、水のポアフィリング法で測定した細孔容積(PV)が0.5〜1.1ml/gであり、触媒A群およびB群のN2のBET法で測定した比表面積が、140〜290m2/gである。このような特性を有する触媒は、重質油の脱硫性能に優れている。 The carriers used for the preparation of the catalysts A and B used in the present invention have an average pore diameter (PD) of 8.0 to 16.0 nm measured by the mercury intrusion method, and are fine as measured by the water pore filling method. The pore volume (PV) is 0.5 to 1.1 ml / g, and the specific surface area of the catalysts A and B measured by the BET method of N 2 is 140 to 290 m 2 / g. A catalyst having such characteristics is excellent in desulfurization performance of heavy oil.

このような、触媒の製造方法は、特開2017−196550号公報などに記載されているように、担体となる無機複合酸化物スラリーから所定の形状の担体を調製したのち、担持成分の金属成分と無機酸及び有機酸などとを含む含浸液を、担体に含浸させて、得られた金属成分が担持された担体を100〜800℃の温度で加熱処理して触媒を得る方法を採用される。
また、担体の調製にあたっては、市販の擬ベーマイト粉末等を原材料に用いてもよい。
As described in JP-A-2017-196550, such a method for producing a catalyst is described in that a carrier having a predetermined shape is prepared from an inorganic composite oxide slurry as a carrier, and then a metal component of a supporting component is prepared. A method is adopted in which a carrier is impregnated with an impregnating solution containing an inorganic acid and an organic acid, and the carrier on which the obtained metal component is supported is heat-treated at a temperature of 100 to 800 ° C. to obtain a catalyst. ..
Further, in preparing the carrier, commercially available pseudo-boehmite powder or the like may be used as a raw material.

たとえば、先ず塩基性金属塩水溶液と酸性金属塩の水溶液を、pHが6.5〜9.5、好ましくは6.5〜8.5、より好ましくは6.8〜8.0になるように混合して無機複合酸化物の水和物を得る。この際、塩基性金属塩水溶液には、カルボン酸塩を含むこともできる。そして無機複合酸化物の水和物のスラリーを所望の手法により熟成した後、洗浄して副生成塩を除き、アルミナを主成分とした複合酸化物スラリーを得る。ここで用いるカルボン酸塩は、ポリアクリル酸、ヒドロキシプロピルセルロース、およびシュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、グルコン酸、フマル酸、フタル酸、クエン酸などの塩が挙げられる。 塩基性アルミニウム塩としては、アルミン酸ナトリウム、アルミン酸カリウムなどが好適に使用される。また、酸性アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどが好適に使用され、リン源としては亜リン酸イオンを包含し、リン酸アンモニア、リン酸カリウム、リン酸ナトリウム、リン酸、亜リン酸などの水中でリン酸イオンを生じるリン酸化合物が使用可能である。ケイ素鉱酸塩としては、ケイ酸ナトリウム、四塩化ケイ素などが使用可能である。また、チタン鉱酸塩としては、四塩化チタン、三塩化チタン、硫酸チタン、硫酸チタニル、硝酸チタンなどが例示され、特に硫酸チタン、硫酸チタニルは安価であるので好適に使用される。 For example, first, the pH of the aqueous solution of the basic metal salt and the aqueous solution of the acidic metal salt are adjusted to 6.5 to 9.5, preferably 6.5 to 8.5, and more preferably 6.8 to 8.0. Mix to obtain hydrate of inorganic composite oxide. At this time, the aqueous solution of the basic metal salt may contain a carboxylate. Then, the slurry of the hydrate of the inorganic composite oxide is aged by a desired method and then washed to remove the by-product salt to obtain a composite oxide slurry containing alumina as a main component. Carboxylates used here include polyacrylic acid, hydroxypropyl cellulose, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, gluconic acid, fumaric acid, phthalic acid, citric acid and the like. Salt is mentioned. As the basic aluminum salt, sodium aluminate, potassium aluminate and the like are preferably used. Further, as the acidic aluminum salt, aluminum sulfate, aluminum chloride, aluminum nitrate and the like are preferably used, and as a phosphorus source, phosphite ion is included, and ammonia phosphate, potassium phosphate, sodium phosphate, phosphoric acid, etc. Phosphate compounds that generate phosphate ions in water, such as phosphorous acid, can be used. As the silicon mineral acid salt, sodium silicate, silicon tetrachloride and the like can be used. Examples of the titanium mineral salt include titanium tetrachloride, titanium trichloride, titanium sulfate, titanyl sulfate, titanium nitrate and the like, and titanium sulfate and titanyl sulfate are particularly preferably used because they are inexpensive.

得られた水和物のスラリーに、必要に応じて、有機酸類または糖類から選ばれる少なくとも1種の有機添加剤を添加して熟成することもできる。有機酸類としては、クエン酸、リンゴ酸、酒石酸、グルコン酸、酢酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)が挙げられる。また糖類としては、単糖類、二糖類、多糖類等があげられる。
この時、さらに前記有機添加剤を添加し、その後にさらに捏和してもよい。
If necessary, at least one organic additive selected from organic acids or sugars can be added to the obtained hydrate slurry for aging. Examples of organic acids include citric acid, malic acid, tartaric acid, gluconic acid, acetic acid, ethylenediaminetetraacetic acid (EDTA), and diethylenetriaminetetraacetic acid (DTPA). Examples of saccharides include monosaccharides, disaccharides and polysaccharides.
At this time, the organic additive may be further added and then further kneaded.

混合物(熟成物)をスチームジャケット付双腕式ニーダーに入れて加熱捏和して成型可能な捏和物とした後、押し出し成型などにより所望の形状に成型する。
得られた成型物を、次いで例えば70〜150℃、好ましくは90〜130℃で加熱乾燥し、更に例えば400〜800℃、好ましくは400〜600℃で、例えば0.5〜10時間、好ましくは2〜5時間焼成してアルミナ担体を得る。得られた担体に、金属成分と炭素成分とを含む含浸液を接触させる。前記した金属成分の原料としては、例えば、三酸化モリブデン、モリブデン酸アンモニウム、硝酸コバルト、炭酸コバルト、硝酸ニッケル、炭酸ニッケル、オルトリン酸(以下、単に「リン酸」ともいう)、リン酸二水素アンモニウム、リン酸水素二アンモニウム、トリメタリン酸、ピロリン酸、トリポリリン酸などが用いられる。
The mixture (aged product) is placed in a double-armed kneader with a steam jacket and heat-kneaded to form a kneaded product that can be molded, and then molded into a desired shape by extrusion molding or the like.
The obtained molded product is then heat-dried at, for example, 70 to 150 ° C., preferably 90 to 130 ° C., and further, for example, 400 to 800 ° C., preferably 400 to 600 ° C., for example, 0.5 to 10 hours, preferably. Baking for 2-5 hours to obtain an alumina carrier. The obtained carrier is brought into contact with an impregnating solution containing a metal component and a carbon component. Examples of the raw materials for the above-mentioned metal components include molybdenum trioxide, ammonium molybdate, cobalt nitrate, cobalt carbonate, nickel nitrate, nickel carbonate, orthophosphoric acid (hereinafter, also simply referred to as “phosphoric acid”), and ammonium dihydrogen phosphate. , Diammonium hydrogen phosphate, trimetaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid and the like are used.

含浸液は、有機酸を用いてpHを4以下にして、金属成分を溶解させることが好ましい。有機酸としては、例えば、クエン酸、リンゴ酸、酒石酸、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)が使用でき、特に、クエン酸、リンゴ酸が好適に用いられる。有機添加剤としては、糖類(単糖類、二糖類、多糖類等)が用いられる。なお有機酸に有機添加剤、例えば、ブドウ糖(グルコース;C6126)、果糖(フルクトース;C6126)、麦芽糖(マルトース;C122211)、乳糖(ラクトース;C122211)、ショ糖(スクロース;C122211)等を加えてもよい。 The impregnating solution preferably has a pH of 4 or less using an organic acid to dissolve the metal component. As the organic acid, for example, citric acid, malic acid, tartaric acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminetetraacetic acid (DTPA) can be used, and citric acid and malic acid are particularly preferably used. As the organic additive, saccharides (monosaccharides, disaccharides, polysaccharides, etc.) are used. In addition, organic additives such as glucose (glucose; C 6 H 12 O 6 ), fructose (fructose; C 6 H 12 O 6 ), malt sugar (maltos; C 12 H 22 O 11 ), lactose (lactos; C 12 H 22 O 11 ), sucrose (sucrose; C 12 H 22 O 11 ) and the like may be added.

含浸液と接触させて得られる金属成分を担持した担体を、100〜800℃、好ましくは110〜700℃、さらに好ましくは450〜650℃で、0.5〜10時間、好ましくは1〜8時間で加熱処理して、触媒を製造する。
本発明では、上記脱硫部の上流に脱メタル部とトランジション部を有するが、上記脱硫部を採用する限り、これらの構成は特に制限されない。
The carrier carrying the metal component obtained by contacting with the impregnating solution is placed at 100 to 800 ° C., preferably 110 to 700 ° C., more preferably 450 to 650 ° C. for 0.5 to 10 hours, preferably 1 to 8 hours. Heat treatment with to produce a catalyst.
In the present invention, the desulfurized portion has a demetallized portion and a transition portion upstream of the desulfurized portion, but these configurations are not particularly limited as long as the desulfurized portion is adopted.

以下に好ましい一態様例について説明する。
脱メタル部
脱メタル部にて、脱硫触媒にとっての触媒毒であるメタル成分を除去することにより、脱硫工程における脱硫触媒の失活を抑制し、脱硫触媒の寿命を延ばすことが可能になる。
An example of a preferred embodiment will be described below.
Demetallization section By removing the metal component, which is a catalytic poison for the desulfurization catalyst, in the demetallization section, it is possible to suppress the deactivation of the desulfurization catalyst in the desulfurization step and extend the life of the desulfurization catalyst.

脱メタル触媒は、炭化水素油中に含まれるバナジウム,ニッケル,鉄等のメタル成分が下流側の脱硫触媒の活性点上に堆積し触媒を失活させるのを防ぐために設けるものである。
脱メタル触媒としては市販のものなど、従来使用されているいずれのものも使用可能である。一般に、脱メタル触媒はアルミナ含有担体に、周期律表第6族金属および第8〜10族金属を担持したものが使用される。周期律表第6族の金属としては、モリブデン、タングステンなどを挙げることができるが、モリブデンが好ましい。第6族金属の担持量は、触媒基準で、酸化物基準で2〜15質量%、好ましくは4〜12質量%である。周期律表第8〜10族の金属として、コバルト、ニッケルなどを挙げることができるが、ニッケルが好ましい。第8〜10族金属の担持量は、触媒基準で、酸化物基準で1〜4質量%、好ましくは1.5〜2.5質量%である。担体としては、アルミナが主成分であることが望ましく、触媒の細孔径は10〜25nm、好ましくは15〜22nm、比表面積は、80〜220m2 /g、好ましくは100〜190m2 /g、細孔容量は0.4〜1.0cc/g、好ましくは0.5〜0.9cc/gである。
The demetallizing catalyst is provided to prevent metal components such as vanadium, nickel, and iron contained in the hydrocarbon oil from accumulating on the active point of the desulfurization catalyst on the downstream side and deactivating the catalyst.
As the demetallizing catalyst, any conventionally used catalyst such as a commercially available catalyst can be used. Generally, as the demetallizing catalyst, one in which an alumina-containing carrier is supported with a group 6 metal and a metal group 8 to 10 in the periodic table is used. Examples of the metal of Group 6 of the periodic table include molybdenum and tungsten, but molybdenum is preferable. The amount of the Group 6 metal supported is 2 to 15% by mass, preferably 4 to 12% by mass, based on the catalyst and the oxide. Examples of the metal of Group 8 to 10 of the periodic table include cobalt and nickel, but nickel is preferable. The amount of the Group 8 to 10 metals supported is 1 to 4% by mass, preferably 1.5 to 2.5% by mass, based on the catalyst and the oxide. As the carrier, it is desirable that alumina is the main component, the pore diameter of the catalyst is 10 to 25 nm, preferably 15 to 22 nm, and the specific surface area is 80 to 220 m 2 / g, preferably 100 to 190 m 2 / g, fine. The pore capacity is 0.4 to 1.0 cc / g, preferably 0.5 to 0.9 cc / g.

脱メタル部は、アルミナ担体に、CoやNiやMoを活性金属成分として担持した触媒がより好ましく使用され、必要に応じて2種類以上の触媒を積層して用いてもよい。
重質油に含まれるメタル成分は、金属と炭化水素とを含む含メタル化合物である。含メタル化合物の構造は特に限定されないが、例えば、炭化水素と金属とが化学結合(例えば配位結合)を形成したり、炭化水素が微粒子状の金属を被覆している。炭化水素は、例えば、鎖状炭化水素若しくはその異性体、環状炭化水素、ヘテロ環式化合物、または芳香族炭化水素等である。また炭化水素には、アスファルテンといった、ヘキサンなどの軽質の炭化水素に溶けない成分で縮合環の芳香族炭化水素が架橋結合した成分も含まれる。
As the demetallized portion, a catalyst in which Co, Ni, or Mo is supported as an active metal component on an alumina carrier is more preferably used, and two or more types of catalysts may be laminated and used as necessary.
The metal component contained in the heavy oil is a metal-containing compound containing a metal and a hydrocarbon. The structure of the metal-containing compound is not particularly limited, but for example, a hydrocarbon and a metal form a chemical bond (for example, a coordination bond), or the hydrocarbon coats a fine particle metal. Hydrocarbons are, for example, chain hydrocarbons or isomers thereof, cyclic hydrocarbons, heterocyclic compounds, aromatic hydrocarbons and the like. Hydrocarbons also include components such as asphaltene that are insoluble in light hydrocarbons such as hexane and in which aromatic hydrocarbons of the fused ring are crosslinked.

脱メタル反応では、水素を導入して、脱メタル触媒による含メタル化合物の水素化や分解を進行させて、含メタル化合物から分離されたメタルは、脱メタル触媒に形成された無数の細孔内に取り込まれ、除去される。
触媒担体としては、水素化処理触媒として一般に使用されている多孔性無機酸化物が使用可能であり、例えば、アルミナ、シリカ、シリカ−アルミナ、アルミナ−チタニア、アルミナ−ボリア、アルミナ−マグネシア、アルミナ−シリカ−チタニアなどが挙げられる。
In the demetallization reaction, hydrogen is introduced to promote hydrogenation and decomposition of the metal-containing compound by the demetallization catalyst, and the metal separated from the metal-containing compound is contained in the innumerable pores formed in the demetallization catalyst. Is taken in and removed.
As the catalyst carrier, a porous inorganic oxide generally used as a hydrogenation treatment catalyst can be used. For example, alumina, silica, silica-alumina, alumina-titania, alumina-boria, alumina-magnesia, alumina- Examples include silica-titania.

トランジション部
本発明では、脱メタル部と脱硫部の間に、トランジション部が設けられる。トランジション部は、脱メタル部と脱硫部での急激な活性変化を避けるために設けられ、脱メタル部・脱硫部のいずれの機能をも有する触媒が使用される。
トランジション部で使用される触媒は、脱メタル部、脱硫部で使用される触媒と同様のものを使用可能であるが、好ましいのは脱メタル部と脱硫部の中間程度の脱硫活性を有するような触媒であり、そのために脱メタル部と脱硫部の中間程度の活性金属量を有する触媒が好ましい。
Transition section In the present invention, a transition section is provided between the demetallized section and the desulfurized section. The transition portion is provided in order to avoid a sudden change in activity between the demetallized portion and the desulfurized portion, and a catalyst having both the functions of the demetallized portion and the desulfurized portion is used.
As the catalyst used in the transition section, the same catalyst as that used in the demetallization section and the desulfurization section can be used, but it is preferable that the catalyst has an intermediate desulfurization activity between the demetallization section and the desulfurization section. It is a catalyst, and therefore, a catalyst having an amount of active metal intermediate between the demetallized portion and the desulfurized portion is preferable.

トランジション部の触媒は、従来使用あるいは市販されている脱メタル触媒・脱硫触媒を使用可能である。一般に、トランジション部の触媒はアルミナ含有担体に、周期律表第6族金属および第8〜10族金属を担持したものが使用される。周期律表第6族の金属としては、モリブデン、タングステンなどを挙げることができるが、モリブデンが好ましい。第6族金属の担持量は、触媒基準で、酸化物基準で4〜18質量%、好ましくは6〜12質量%である。周期律表第8〜10族の金属として、コバルト、ニッケルなどを挙げることができる。第8〜10族金属の担持量は、触媒基準で、酸化物基準で1〜4.5質量%、好ましくは1.5〜3.0質量%である。担体としては、アルミナが主成分であることが望ましく、触媒の平均細孔径は10〜25nm(好ましくは14〜20nm)、比表面積は、100〜240m2 /g(好ましくは120〜190m2 /g)、細孔容量は0.4〜1.0cc/g(好ましくは0.5〜0.9cc/g)である。 As the catalyst of the transition portion, a demetallizing catalyst / desulfurization catalyst which has been conventionally used or is commercially available can be used. Generally, as the catalyst of the transition portion, a catalyst in which a group 6 metal and a metal of group 8 to 10 of the periodic table are supported on an alumina-containing carrier is used. Examples of the metal of Group 6 of the periodic table include molybdenum and tungsten, but molybdenum is preferable. The amount of the Group 6 metal supported is 4 to 18% by mass, preferably 6 to 12% by mass, based on the catalyst and the oxide. Examples of the metals of Group 8 to 10 of the Periodic Table include cobalt and nickel. The amount of the Group 8 to 10 metals supported is 1 to 4.5% by mass, preferably 1.5 to 3.0% by mass, based on the catalyst and the oxide. As the carrier, it is desirable that alumina is the main component, the average pore diameter of the catalyst is 10 to 25 nm (preferably 14 to 20 nm), and the specific surface area is 100 to 240 m 2 / g (preferably 120 to 190 m 2 / g). ), The pore volume is 0.4 to 1.0 cc / g (preferably 0.5 to 0.9 cc / g).

トランジション部は、担体に、NiやCoやMoを活性金属成分として担持した触媒が好ましく使用され、必要に応じて2種類以上の触媒を積層して用いてもよい。
脱メタル部及びトランジション部の触媒の調製方法は、前記脱硫触媒と同様にして行うことができる。
As the transition portion, a catalyst in which Ni, Co, or Mo is supported as an active metal component is preferably used as a carrier, and two or more types of catalysts may be laminated and used as necessary.
The method for preparing the catalyst for the demetallized portion and the transition portion can be carried out in the same manner as for the desulfurization catalyst.

本発明で処理される重質油は原油の蒸留残渣を主成分とするものであり、灯軽油留分と比べて分子量分布が広く、また原油の産地によって性状が大きく異なる。代表的な中東系や中南米系の重質油は、硫黄分やアスファルテンの含有量が多く、またアスファルテン含有量の高いものは残留炭素(残炭)およびバナジウム、ニッケル等の不純物金属を多く含んでいる。重質油は、直接脱硫装置での水素化精製処理によって低硫黄重油の原料や流動接触分解装置(RFCC)の原料油となる。 The heavy oil treated in the present invention is mainly composed of the distillation residue of crude oil, has a wider molecular weight distribution than the kerosene distillate, and its properties differ greatly depending on the origin of the crude oil. Typical Middle Eastern and Latin American heavy oils contain a large amount of sulfur and asphaltene, and those with a high asphaltene content contain a large amount of residual carbon (residual carbon) and impurity metals such as vanadium and nickel. There is. The heavy oil becomes a raw material for low-sulfur heavy oil and a raw material oil for a fluid cracking machine (RFCC) by hydrorefining treatment in a direct desulfurization device.

本発明で使用される重質油に、特に制限はなく、例えば原油の常圧蒸留残渣油(AR)および減圧蒸留残渣油(VR)、接触分解残油、ビスブレーキング油、ビチューメンなどの密度の高い石油留分を挙げることができる。これらの重質油は、通常アスファルテンが1質量%以上含まれているが、これらの重質油から抽出したアスファルテンも原料油として用いることができる。 本発明においては、原料油として、これらを単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、コーカー油、合成原油、ナフサカット原油、重質軽油、減圧軽油、LCO、GTL(Gas To Liquid)油、ワックス等を常圧蒸留残渣油等と混合して重質油として水素化処理をすることもできる。 The heavy oil used in the present invention is not particularly limited, and for example, the density of crude oil such as atmospheric distillation residual oil (AR) and vacuum distillation residual oil (VR), catalytic cracking residual oil, bisbraking oil, bitumen and the like. High oil distillate can be mentioned. These heavy oils usually contain 1% by mass or more of asphaltene, but asphaltene extracted from these heavy oils can also be used as a raw material oil. In the present invention, these may be used alone or in combination of two or more as the raw material oil. In addition, coker oil, synthetic crude oil, naphthacut crude oil, heavy light oil, vacuum light oil, LCO, GTL (Gas To Liquid) oil, wax, etc. are mixed with atmospheric distillation residual oil, etc. and hydrogenated as heavy oil. You can also do it.

原料重質油は、比重が0.9〜1.05、硫黄分が1〜6質量%、窒素分が2000質量ppmを超え10000質量ppm以下、360℃以上の沸点である成分が80質量%以上の蒸留性状を有するものが使用される。
前記触媒を使用した水素化処理は、固定床反応装置に、流通方向に、脱メタル部、トランジション部、脱硫部となるように前記触媒を積層して充填し、水素雰囲気下、高温高圧条件で、重質油を通液して行なわれる。
The raw material heavy oil has a specific gravity of 0.9 to 1.05, a sulfur content of 1 to 6% by mass, a nitrogen content of more than 2000% by mass and 10,000% by mass or less, and 80% by mass of components having a boiling point of 360 ° C. or higher. Those having the above distillation properties are used.
In the hydrogenation treatment using the catalyst, the catalyst is laminated and filled in a fixed bed reactor so as to form a demetallization part, a transition part, and a desulfurization part in the distribution direction, and under high temperature and high pressure conditions under a hydrogen atmosphere. , Heavy oil is passed through.

図1は、1つの反応器を使用する本発明の方法の工程図である。図1に示すように、原料油は反応装置上部から供給され、脱メタル部、トランジション部、脱硫部の各触媒が充填された領域の順に通過して、水素化処理される。各部に応じて、温度領域が設定され、通常メタル部が充填された低温領域と、脱硫部の高温領域および、その中間にある、トランジション部の中温度領域となるが、運転の状況に応じて、それら温度領域が異なることもある。 FIG. 1 is a process diagram of the method of the present invention using one reactor. As shown in FIG. 1, the raw material oil is supplied from the upper part of the reactor, passes through the regions filled with the catalysts of the demetallized portion, the transition portion, and the desulfurized portion in this order, and is hydrogenated. The temperature range is set according to each part, and it is usually the low temperature area filled with the metal part, the high temperature area of the desulfurization part, and the medium temperature range of the transition part in the middle, but depending on the operation situation. , Those temperature ranges may be different.

なお、反応装置内における脱メタル部、トランジション部、脱硫部は、体積比で5〜60:5〜50:20〜85が好ましい。脱メタル触媒が少なすぎると脱硫部の触媒失活と生成油のメタル濃度の上昇の原因となり好ましくない。また脱硫部の触媒が少なすぎると、生成油の硫黄濃度上昇の原因となり好ましくない。
また、脱硫部における、触媒A群と触媒B群の体積比は、10〜90:90〜10が好ましく、25〜75:75〜25がより好ましい。それぞれの触媒量が少なすぎると、異なる被毒特性の触媒積層による相乗効果を得られないため、好ましくない。
The volume ratio of the demetallized portion, the transition portion, and the desulfurized portion in the reactor is preferably 5 to 60: 5 to 50:20 to 85. If the amount of the demetallizing catalyst is too small, it causes catalyst deactivation in the desulfurized portion and an increase in the metal concentration of the produced oil, which is not preferable. Further, if the amount of catalyst in the desulfurization portion is too small, it causes an increase in the sulfur concentration of the produced oil, which is not preferable.
The volume ratio of the catalyst A group to the catalyst B group in the desulfurization section is preferably 10 to 90:90 to 10, and more preferably 25 to 75:75 to 25. If the amount of each catalyst is too small, the synergistic effect of stacking catalysts having different poisoning characteristics cannot be obtained, which is not preferable.

なお、最初に行われる脱メタル部で処理された炭化水素油中には、当該処理によって除去できなかった微量の金属成分が含まれていることもあるが、こうした残留成分は続くトランジション部や水素脱硫部で処理の際に水素化され除去される。
水素化処理反応を行なうに際しては、上記のように1つの断熱型反応器で実施することもできるが、下記のように複数の断熱型反応器を各部ごとに、直列に連結して一連の処理を行なうことができる。各部間には硫化水素やアンモニア等を除去するストリッピング設備や熱回収および加熱手段を設けてもよい。
The hydrocarbon oil treated in the first demetallization part may contain a small amount of metal components that could not be removed by the treatment, but these residual components continue in the transition part and hydrogen. It is hydrocarbonized and removed during treatment in the desulfurization section.
When carrying out the hydrogenation treatment reaction, it is possible to carry out with one adiabatic reactor as described above, but as described below, a series of treatments in which a plurality of adiabatic reactors are connected in series for each part. Can be done. Stripping equipment for removing hydrogen sulfide, ammonia, etc., and heat recovery and heating means may be provided between the parts.

複数の断熱型反応器を使用する場合は、連結された反応器全体について、脱メタル部、トランジション部、脱硫部は、体積比で5〜60:5〜50:20〜85であることが好ましい。また、脱硫部における、触媒A群と触媒B群の体積比は、10〜90:90〜10が好ましく、25〜75:75〜25がより好ましい。
処理条件の一例としては、水素分圧が5.0〜20MPa、温度が350〜420℃、液(被処理液である炭化水素油)空間速度が0.1〜3.0hr-1である。
When a plurality of adiabatic reactors are used, it is preferable that the demetallized portion, the transition portion, and the desulfurized portion have a volume ratio of 5 to 60: 5 to 50:20 to 85 for the entire connected reactor. .. The volume ratio of the catalyst A group to the catalyst B group in the desulfurization section is preferably 10 to 90:90 to 10, and more preferably 25 to 75:75 to 25.
As an example of the treatment conditions, the hydrogen partial pressure is 5.0 to 20 MPa, the temperature is 350 to 420 ° C., and the space velocity of the liquid (hydrocarbon oil to be treated) is 0.1 to 3.0 hr- 1 .

得られた処理油は、必要に応じて、流動接触分解装置にて接触分解処理される。上記流動接触分解装置による接触分解処理は、特に制限はなく、公知の方法、条件で行えばよい。例えば、シリカ−アルミナ、シリカ−マグネシアなどのアモルファス触媒や、フォージャサイト型結晶アルミノシリケートなどのゼオライト触媒を用い、反応温度450〜650℃程度、好ましくは480〜580℃、再生温度550〜760℃程度、反応圧力0.02〜5MPa程度、好ましくは0.2〜2MPaの範囲で適宜選定すればよい。最終工程である流動接触分解装置にて接触分解処理された生成油は、燃料や石油化学製品の原料として使用することができる。 The obtained processed oil is subjected to catalytic cracking treatment by a fluid cracking apparatus, if necessary. The catalytic cracking process by the flow catalytic cracking apparatus is not particularly limited, and may be performed by a known method and conditions. For example, using an amorphous catalyst such as silica-alumina or silica-magnesia or a zeolite catalyst such as faujasite-type crystalline aluminosilicate, the reaction temperature is about 450 to 650 ° C, preferably 480 to 580 ° C, and the regeneration temperature is 550 to 760 ° C. The reaction pressure may be appropriately selected in the range of about 0.02 to 5 MPa, preferably 0.2 to 2 MPa. The produced oil subjected to catalytic cracking in the final step, a fluid cracking apparatus, can be used as a raw material for fuels and petrochemical products.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例になんら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

<担体成分(アルミナ、リン等)および金属成分(モリブデン、コバルト、ニッケル等)の含有量の測定方法>
測定試料3gを容量30mlの蓋付きジルコニアボールに採取し、加熱処理(200℃、20分)させ、焼成(700℃、5分)した後、Na22 2gおよびNaOH 1gを加えて15分間溶融した。さらに、H2SO4 25mlと水200mlを加えて溶解したのち、純水で500mlになるように希釈して試料とした。得られた試料について、ICP装置(島津製作所(株)製、ICPS−8100、解析ソフトウェアICPS−8000)を用いて、各成分の含有量を酸化物換算基準で測定した。
<Method of measuring the content of carrier components (alumina, phosphorus, etc.) and metal components (molybdenum, cobalt, nickel, etc.)>
3 g of the measurement sample is collected in a zirconia ball with a lid having a capacity of 30 ml, heat-treated (200 ° C., 20 minutes), calcined (700 ° C., 5 minutes), and then 2 g of Na 2 O and 1 g of NaOH are added for 15 minutes. It melted. Further, 25 ml of H 2 SO 4 and 200 ml of water were added and dissolved, and then diluted with pure water to 500 ml to prepare a sample. The content of each component of the obtained sample was measured on an oxide conversion basis using an ICP device (ICPS-8100 manufactured by Shimadzu Corporation, analysis software ICPS-8000).

<窒素吸脱着測定のBET一点法により求められる触媒の表面積(比表面積N2)の測定方法>
測定試料を磁製ルツボ(B−2型)に約30mL採取し、500℃の温度で2時間加熱処理後、デシケータに入れて室温まで冷却し、測定用サンプルを得た。次に、このサンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、試料の比表面積(m2/g) をBET法にて測定した。
<Measurement method of the surface area (specific surface area N 2 ) of the catalyst obtained by the BET one-point method for nitrogen adsorption / desorption measurement>
About 30 mL of the measurement sample was collected in a magnetic crucible (B-2 type), heat-treated at a temperature of 500 ° C. for 2 hours, and then placed in a desiccator to cool to room temperature to obtain a measurement sample. Next, 1 g of this sample was taken, and the specific surface area (m 2 / g) of the sample was measured by the BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics, Multisorb 12 type).

<担体および触媒の平均細孔径の測定方法>
測定試料を磁製ルツボに約3g採取し、500℃の温度で1時間加熱処理後、デシケータに入れて室温まで冷却し、測定用サンプルを得たのち、水銀圧入法(水銀の接触角:150度、表面張力:480dyn/cm)によって測定した。平均細孔径は細孔容積の50 %に相当する細孔直径とした。
<Measuring method of average pore diameter of carrier and catalyst>
Approximately 3 g of the measurement sample is collected in a porcelain rut, heat-treated at a temperature of 500 ° C. for 1 hour, placed in a desiccator and cooled to room temperature to obtain a sample for measurement, and then a mercury injection method (mercury contact angle: 150). The surface tension: 480 dyn / cm). The average pore diameter was set to a pore diameter corresponding to 50% of the pore volume.

<担体および触媒の細孔容積の測定方法>
測定試料を磁製ルツボに約採取し、500℃の温度で1時間加熱処理後、デシケータに入れて室温まで冷却し、測定用サンプルを得たのち、水のポアフィリング法により細孔容積を測定した。
<Measuring method of pore volume of carrier and catalyst>
The measurement sample is collected in a porcelain crucible, heat-treated at a temperature of 500 ° C. for 1 hour, placed in a desiccator and cooled to room temperature to obtain a measurement sample, and then the pore volume is measured by the pore filling method of water. did.

<炭化水素油の分析方法>
硫黄濃度はJIS K 2541−7に準拠して測定した。窒素濃度はJIS K2609に準拠して測定した。メタル(Ni及びV)濃度は石油学会JPI−5S−62に準拠して測定した。比重はJIS K 2249−1に準拠して測定した。蒸留性状はASTM D2892に準拠して測定した。
<Analysis method for hydrocarbon oil>
Sulfur concentration was measured according to JIS K 2541-7. Nitrogen concentration was measured according to JIS K2609. The metal (Ni and V) concentrations were measured according to the Petroleum Society JPI-5S-62. The specific gravity was measured according to JIS K 2249-1. Distillation properties were measured according to ASTM D2892.

<担体の調製>
担体Aの調製
薬液添加口2箇所を持つ循環ラインを設けたタンクに純水35.2kgを張り込み、攪拌しながら酸性アルミニウム塩水溶液である硫酸アルミニウム水溶液(Al23として濃度7質量%)13.0kgを添加し、60℃に加温して循環させた。この時の硫酸アルミニウム水溶液(A1)のpHは2.3であった。次に、塩基性アルミニウム塩水溶液であるアルミン酸ナトリウム水溶液9.5kg(Al23として濃度22質量%)を攪拌及び循環させながら60℃を保ちながら、上記の硫酸アルミニウム水溶液(A1)に180分で添加し、アルミナ水和物(A)を得た。添加後のpHは、9.5であった。アルミナ水和物(A)を60℃の純水で洗浄し、ナトリウム、硫酸根等の不純物を除去した。洗浄ケーキに純水を加えて、Al23濃度が8質量%となるように調製した後、還流器のついた熟成タンクにて95℃で3時間熟成し、さらに脱水することでケーキ状のアルミナ水和物(A)を得た。
こうして得られたケーキ状のアルミナ水和物(A)を、スチームジャケットを備えた双腕式ニーダーにて練りながら所定の水分量まで濃縮捏和した。得られた捏和物を押出成型機にて1.7mmの四つ葉型の柱状に押し出し成型した。得られたアルミナ成型品は、110℃で12時間乾燥した後、さらに500℃で3時間焼成して担体Aを得た。
<Preparation of carrier>
Preparation of carrier A 35.2 kg of pure water is placed in a tank provided with a circulation line having two chemical solution addition ports, and while stirring, an aqueous solution of aluminum sulfate (al 2 O 3 with a concentration of 7% by mass) 13 0.0 kg was added, and the mixture was heated to 60 ° C. and circulated. The pH of the aqueous aluminum sulfate solution (A1) at this time was 2.3. Next, while maintaining 60 ° C. while stirring and circulating 9.5 kg of an aqueous sodium aluminate solution (22% by mass as Al 2 O 3 ), which is a basic aqueous aluminum salt solution, 180 was added to the above aqueous aluminum sulfate solution (A1). The mixture was added in minutes to obtain alumina hydrate (A). The pH after the addition was 9.5. The alumina hydrate (A) was washed with pure water at 60 ° C. to remove impurities such as sodium and sulfate roots. Pure water is added to the washing cake to adjust the Al 2 O 3 concentration to 8% by mass, then aged in an aging tank equipped with a reflux device at 95 ° C. for 3 hours, and further dehydrated to form a cake. Alumina hydrate (A) was obtained.
The cake-like alumina hydrate (A) thus obtained was concentrated and kneaded to a predetermined water content while kneading with a double-armed kneader equipped with a steam jacket. The obtained kneaded product was extruded into a 1.7 mm four-leaf column using an extrusion molding machine. The obtained alumina molded product was dried at 110 ° C. for 12 hours and then fired at 500 ° C. for 3 hours to obtain a carrier A.

担体Bの調製
担体Aの調製時に、硫酸アルミニウム水溶液を添加する際に、同時にリン酸49.2g(関東化学(株)製、P25として濃度61.6質量%)を添加した以外は同様にして、担体Bを得た。担体BにはリンがP25濃度換算で1.2質量%、アルミニウムがAl23濃度換算で98.8質量%(いずれも担体全量基準)含有されていた。担体Bの性状は表1に示す。
Preparation of carrier B 49.2 g of phosphoric acid (manufactured by Kanto Chemical Co., Ltd., concentration 61.6% by mass as P 2 O 5 ) was added at the same time as the aqueous aluminum sulfate solution was added during the preparation of carrier A. Similarly, carrier B was obtained. The carrier B contained 1.2% by mass of phosphorus in terms of P 2 O 5 concentration and 98.8% by mass of aluminum in terms of Al 2 O 3 concentration (both based on the total amount of the carrier). The properties of carrier B are shown in Table 1.

担体Cの調製
担体Aの調製時に、硫酸アルミニウム水溶液を添加する際に、同時に硫酸チタニル水溶液1.91kg(TiO2として濃度5.0質量%)及びケイ酸ナトリウム水溶液0.40kg(SiO2として濃度24質量%)を添加した以外は同様にして、担体Cを得た。担体CにはチタンがTiO2濃度換算で3.2質量%、シリカがSiO2濃度換算で3質量%、アルミニウムがAl23濃度換算で93.8質量%(いずれも担体全量基準)含有されていた。担体Cの性状は表1に示す。
Preparation of Carrier C When the aqueous aluminum sulfate solution was added during the preparation of the carrier A, 1.91 kg of the titanyl sulfate aqueous solution (5.0% by mass as TiO 2 ) and 0.40 kg of the sodium silicate aqueous solution (concentration as SiO 2 ) were simultaneously added. Carrier C was obtained in the same manner except that 24% by mass) was added. Carrier C contains 3.2% by mass of titanium in terms of TiO 2 concentration, 3% by mass of silica in terms of SiO 2 concentration, and 93.8% by mass of aluminum in terms of Al 2 O 3 concentration (all based on the total amount of carrier). It had been. The properties of carrier C are shown in Table 1.

<含浸液の調製>
含浸液aの調製
三酸化モリブデン(関東化学(株)製、純度100質量%)73.2gと炭酸コバルト(関東化学(株)製、CoOとして濃度61.3質量%)29.9gを、イオン交換水300mlに懸濁させ、この懸濁液を90℃で5時間液容量が減少しないように適当な還流装置を施して加熱した後、リン酸(関東化学(株)製、P25として濃度61.6質量%)29.71gとクエン酸(関東化学(株)、純度100質量%)27.44gを加えて溶解させ、含浸液aを作製した。
<Preparation of impregnating solution>
Preparation of impregnating solution a
73.2 g of molybdenum trioxide (manufactured by Kanto Chemical Co., Ltd., purity 100% by mass) and 29.9 g of cobalt carbonate (manufactured by Kanto Chemical Co., Ltd., concentration 61.3% by mass as CoO) are suspended in 300 ml of ion-exchanged water. After turbidity and heating this suspension at 90 ° C. for 5 hours with an appropriate reflux device so that the liquid volume does not decrease, phosphoric acid (manufactured by Kanto Chemical Co., Ltd., concentration 61.6 as P 2 O 5 ) 29.71 g (% by mass) and 27.44 g of citric acid (Kanto Kagaku Co., Ltd., purity 100% by mass) were added and dissolved to prepare an impregnating solution a.

含浸液bの調製
三酸化モリブデン73.2gと炭酸ニッケル(富士フィルム和光純薬(株)製、NiOとして濃度55質量%)33.3gを、イオン交換水300mlに懸濁させることに変更した以外は、含浸液aの調製法と同様にして、含浸液bを作製した。
Preparation of impregnating solution b 73.2 g of molybdenum trioxide and 33.3 g of nickel carbonate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., concentration 55% by mass as NiO) were changed to suspend in 300 ml of ion-exchanged water. Made an impregnating liquid b in the same manner as in the preparation method of the impregnating liquid a.

含浸液cの調製
三酸化モリブデン73.2gと炭酸コバルト19.9gと炭酸ニッケル11.1gを、イオン交換水300mlに懸濁させることに変更した以外は、含浸液aの調製法と同様にして、含浸液cを作製した。
Preparation of impregnating solution c
The impregnating solution c was prepared in the same manner as the impregnating solution a, except that 73.2 g of molybdenum trioxide, 19.9 g of cobalt carbonate and 11.1 g of nickel carbonate were suspended in 300 ml of ion-exchanged water. Made.

含浸液dの調製
三酸化モリブデン73.2gと炭酸コバルト10.0gと炭酸ニッケル22.2gを、イオン交換水300mlに懸濁させることに変更した以外は、含浸液aの調製法と同様にして、含浸液dを作製した。
Preparation of impregnating solution d
The impregnating solution d was prepared in the same manner as the impregnating solution a, except that 73.2 g of molybdenum trioxide, 10.0 g of cobalt carbonate and 22.2 g of nickel carbonate were suspended in 300 ml of ion-exchanged water. Made.

<製造例1:脱硫触媒アの調製>
担体A500gに含浸液aを噴霧含浸させた後、250℃で乾燥し、更に電気炉にて550℃で1時間焼成して脱硫触媒ア(以下、単に「触媒ア」ともいう。以下の実施例についても同様である。)を得た。
<Production Example 1: Preparation of desulfurization catalyst A>
After impregnating 500 g of the carrier A with the impregnating solution a by spraying, the carrier A is dried at 250 ° C. and further calcined at 550 ° C. for 1 hour in an electric furnace to obtain a desulfurization catalyst A (hereinafter, also simply referred to as “catalyst A”. The same applies to the above.)

<製造例2:脱硫触媒イの調製>
含浸液を含浸液bに変更した以外は、触媒アの製法と同様にして、脱硫触媒イ(以下、単に「触媒イ」ともいう。以下の実施例についても同様である。)を得た。
<Production Example 2: Preparation of desulfurization catalyst a>
A desulfurization catalyst a (hereinafter, also simply referred to as “catalyst a”; the same applies to the following examples) was obtained in the same manner as in the production method of catalyst a except that the impregnating liquid was changed to impregnating liquid b.

<製造例3:脱硫触媒ウの調製>
含浸液を含浸液cに変更した以外は、触媒アの製法と同様にして、脱硫触媒ウ(以下、単に「触媒ウ」ともいう。以下の実施例についても同様である。)を得た。
<Production Example 3: Preparation of desulfurization catalyst c>
A desulfurization catalyst c (hereinafter, also simply referred to as “catalyst c”; the same applies to the following examples) was obtained in the same manner as in the production method of catalyst A except that the impregnating liquid was changed to impregnating liquid c.

<製造例4:脱硫触媒エの調製>
含浸液を含浸液dに変更した以外は、触媒アの製法と同様にして、脱硫触媒エ(以下、単に「触媒エ」ともいう。以下の実施例についても同様である。)を得た。
<Production Example 4: Preparation of desulfurization catalyst d>
A desulfurization catalyst d (hereinafter, also simply referred to as "catalyst d"; the same applies to the following examples) was obtained in the same manner as in the production method of catalyst a except that the impregnating liquid was changed to impregnating liquid d.

<製造例5:脱硫触媒オの調製>
担体を担体B500gに変更した以外は、触媒アの製法と同様にして、脱硫触媒オ(以下、単に「触媒オ」ともいう。以下の実施例についても同様である。)を得た。
<Production Example 5: Preparation of desulfurization catalyst E>
A desulfurization catalyst O (hereinafter, also simply referred to as “catalyst O”; the same applies to the following examples) was obtained in the same manner as in the production method of catalyst A except that the carrier was changed to carrier B 500 g.

<製造例6:脱硫触媒カの調製>
担体を担体C500gに変更した以外は、触媒アの製法と同様にして、脱硫触媒カ(以下、単に「触媒カ」ともいう。以下の実施例についても同様である。)を得た。
<Production Example 6: Preparation of desulfurization catalyst power>
A desulfurization catalyst (hereinafter, also simply referred to as “catalyst”; the same applies to the following examples) was obtained in the same manner as in the method for producing catalyst A, except that the carrier was changed to 500 g of carrier C.

Figure 2021004288
Figure 2021004288

<実施例1〜10、比較例1〜3>
製造例で作製した触媒を、表2のように、脱硫部1層、脱硫部2層及び脱硫部3層に使用するように、各触媒を固定床流通式反応装置(触媒充填容積350ml)に充填した。脱メタル部には市販の脱メタル触媒CDS−DMS10(日揮触媒化成株式会社)およびトランジション部には市販のトランジション触媒CDS−DMS50(日揮触媒化成株式会社)を使用した。
<Examples 1 to 10, Comparative Examples 1 to 3>
As shown in Table 2, each catalyst is applied to a fixed-bed flow reactor (catalyst filling volume 350 ml) so that the catalyst produced in the production example is used for the desulfurization section 1 layer, the desulfurization section 2 layer, and the desulfurization section 3 layer. Filled. A commercially available demetallizing catalyst CDS-DMS10 (Nikki Catalyst Kasei Co., Ltd.) was used for the demetallization section, and a commercially available transition catalyst CDS-DMS50 (Nikki Catalyst Kasei Co., Ltd.) was used for the transition section.

充填した触媒に対し、触媒に含まれている酸素原子を脱離させて活性化するために、予備硫化処理した。この処理は、硫黄化合物を含む液体または気体を200℃〜400℃の温度、常圧〜100MPaの水素圧雰囲気下の管理された反応容器中で流通させることによって行われる。 The charged catalyst was pre-sulfurized in order to desorb and activate the oxygen atoms contained in the catalyst. This treatment is carried out by circulating a liquid or gas containing a sulfur compound in a controlled reaction vessel at a temperature of 200 ° C. to 400 ° C. and a hydrogen pressure atmosphere of normal pressure to 100 MPa.

固定床流通式反応装置内に、重質油(15℃における密度0.9759g/cm3、硫黄分4.051質量%、メタル(Ni+V)分Ni83.2質量ppm、窒素分2240質量ppm、アスファルテン4.3質量%、残留炭素分11.2質量%)を導入して水素化処理を行なった。その際の反応条件は、水素分圧が13.5MPa、液空間速度が0.3h-1、水素油比が800Nm3/klである。そして反応温度を360〜380℃の範囲で変化させ、最終的に得られる生成油中の硫黄分、メタル分、窒素分、残留炭素分の分析を行った。
活性試験における試験結果は、アレニウスプロットより反応速度定数を求め、脱硫触媒部に触媒アのみを充填した組み合わせ評価結果の反応速度定数を100%とし、脱メタル活性及び脱硫活性を算出した(相対活性)。反応速度定数は、下記(1)式に基づいて求めた。
Heavy oil (density 0.9759 g / cm 3 at 15 ° C., sulfur content 4.051 mass%, metal (Ni + V) content Ni 83.2 mass ppm, nitrogen content 2240 mass ppm) in a fixed bed flow reactor , Asphaltene (4.3% by mass, residual carbon content: 11.2% by mass) was introduced to carry out the hydrogenation treatment. The reaction conditions at that time were a hydrogen partial pressure of 13.5 MPa, a liquid space velocity of 0.3 h -1 , and a hydrogen oil ratio of 800 Nm 3 / kl. Then, the reaction temperature was changed in the range of 360 to 380 ° C., and the sulfur content, metal content, nitrogen content, and residual carbon content in the finally obtained produced oil were analyzed.
For the test results in the activity test, the reaction rate constant was obtained from the Arrhenius plot, and the reaction rate constant of the combination evaluation result in which the desulfurization catalyst part was filled with only catalyst A was set to 100%, and the demetallization activity and desulfurization activity were calculated (relative activity). ). The reaction rate constant was determined based on the following equation (1).

n=LHSV×1/(n−1)×(1/Pn-1−1/Fn-1) …(1)
ここで、
n:反応速度定数
n:脱メタル反応では1.01、脱硫反応では2.0
P:処理油中のメタル濃度(質量ppm)、硫黄濃度(質量%)、残留炭素分(質量%)
F:原料油中のメタル濃度(質量ppm)、硫黄濃度(質量%)、残留炭素分(質量%)
LHSV:液空間速度(hr-1
結果を表2に示す。
K n = LHSV × 1 / (n-1) × (1 / P n-1 / 1 / F n-1 )… (1)
here,
K n : Reaction rate constant n: 1.01 for demetallization reaction, 2.0 for desulfurization reaction
P: Metal concentration (mass ppm), sulfur concentration (mass%), residual carbon content (mass%) in the treated oil
F: Metal concentration (mass ppm), sulfur concentration (mass%), residual carbon content (mass%) in raw material oil
LHSV: Liquid space velocity (hr -1 )
The results are shown in Table 2.

Figure 2021004288
Figure 2021004288

Claims (10)

脱メタル部、トランジション部、脱硫部からなる重質油の水素化処理方法であって、
脱硫部が周期表第8族金属を異なる比率で含む触媒A群と触媒B群が2層以上で積層したものであり、
触媒A群は、担体に、Coを含む周期表第8族金属とMoを活性金属成分として担持した一種以上の触媒から構成され、
触媒B群は、担体に、Niを含む周期表第8族金属とMoを活性金属成分として担持した一種以上の触媒から構成され、
脱硫部上流側から触媒A群と触媒B群が交互に充填され、
触媒A群が脱硫部中の容積割合で、10〜90%使用され、触媒B群が脱硫部中の容積割合で10〜90%使用されることを特徴とする水素化処理方法。
A method for hydrogenating heavy oil consisting of a demetallized part, a transition part, and a desulfurized part.
The desulfurized part contains two or more layers of catalyst A group and catalyst group B containing Group 8 metals in the periodic table in different ratios.
The catalyst group A is composed of one or more catalysts in which a metal containing Group 8 of the periodic table containing Co and Mo are supported as active metal components on a carrier.
The catalyst group B is composed of one or more catalysts in which Ni-containing Group 8 metal of the periodic table and Mo are supported as active metal components on the carrier.
The catalyst group A and the catalyst group B are alternately filled from the upstream side of the desulfurization section.
A hydrogenation treatment method, wherein the catalyst group A is used in a volume ratio of 10 to 90% in the desulfurized portion, and the catalyst group B is used in a volume ratio of 10 to 90% in the desulfurized portion.
触媒A群の活性金属成分は、触媒A群における周期表第8族金属がCoであり、CoがCoO換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、Co/Moモル比が0.25〜0.75の範囲で担持されたものである、請求項1に記載の水素化処理方法。 As for the active metal component of the catalyst group A, the metal of Group 8 of the periodic table in the catalyst group A is Co, Co is 1.5 to 6.0% by mass in terms of CoO, and Mo is 8.0 to 25 in terms of MoO 3. The hydrogenation treatment method according to claim 1, wherein the hydrogenation treatment method is carried in a range of 0.0% by mass and a Co / Mo molar ratio of 0.25 to 0.75. 触媒A群の活性金属成分はさらに、周期表第8族金属であるNiを含み、触媒A群における周期表第8族金属が金属酸化物(例えばCoならCoO)換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、周期表第8族金属/Moモル比が0.25〜0.75であり、Co/周期表第8族金属モル比が、0.6以上の範囲で担持されたものである、請求項1または2に記載の水素化処理方法。 The active metal component of the catalyst group A further contains Ni, which is a metal of group 8 of the periodic table, and the metal of group 8 of the periodic table in the catalyst group A is 1.5 to 6 in terms of metal oxide (for example, CoO for Co). 0% by mass, Mo is 8.0 to 25.0% by mass in terms of MoO 3 , the periodic table Group 8 metal / Mo molar ratio is 0.25 to 0.75, and Co / periodic table Group 8 metal molar. The hydrogenation treatment method according to claim 1 or 2, wherein the ratio is supported in the range of 0.6 or more. 触媒B群の活性金属成分は、触媒B群における周期表第8族金属がNiであり、NiがNiO換算で1.5〜6.0質量量%、MoがMoO3換算で8.0〜25.0質量%、Ni/Moモル比が0.25〜0.75の範囲で担持されたものである、請求項1〜3のいずれか1項に記載の水素化処理方法。 As for the active metal component of the catalyst group B, the metal of Group 8 of the periodic table in the catalyst group B is Ni, Ni is 1.5 to 6.0% by mass in terms of NiO, and Mo is 8.0 to 8.0 in terms of MoO 3. The hydrogenation treatment method according to any one of claims 1 to 3, wherein the hydrogenation treatment method is supported in a range of 25.0% by mass and a Ni / Mo molar ratio of 0.25 to 0.75. 触媒B群の活性金属成分はさらに、周期表第8族金属であるCoを含み、触媒B群における周期表第8族金属が金属酸化物(例えばCoならCoO)換算で1.5〜6.0質量%、MoがMoO3換算で8.0〜25.0質量%、周期表第8族金属/Moモル比が0.25〜0.75であり、Co/周期表第8族金属モル比が、0.4以下の範囲で担持されたものである、請求項1〜4のいずれか1項に記載の水素化処理方法。 The active metal component of the catalyst B group further contains Co, which is a metal of Group 8 of the periodic table, and the metal of Group 8 of the periodic table in the catalyst B group is 1.5 to 6 in terms of metal oxide (for example, CoO for Co). 0% by mass, Mo is 8.0 to 25.0% by mass in terms of MoO 3 , the periodic table Group 8 metal / Mo molar ratio is 0.25 to 0.75, and Co / periodic table Group 8 metal molar. The hydrogenation treatment method according to any one of claims 1 to 4, wherein the ratio is supported in the range of 0.4 or less. 前記担体が、酸化物基準で、アルミナを70質量%以上の量で含む、請求項1に記載の水素化処理方法。 The hydrogenation treatment method according to claim 1, wherein the carrier contains alumina in an amount of 70% by mass or more based on an oxide. 前記担体が、さらに、シリカ、チタニア、ジルコニア、ボリア、マグネシアおよびリン酸化物から選ばれる少なくとも1種の成分を含む、請求項6に記載の水素化処理方法。 The hydrogenation treatment method according to claim 6, wherein the carrier further contains at least one component selected from silica, titania, zirconia, boria, magnesia and phosphorylation. 触媒A群およびB群の調製に用いた担体が水銀圧入法で測定した平均細孔径(PD)が8.0〜16.0nm、水のポアフィリング法で測定した細孔容積(PV)が0.5〜1.1ml/gであり、
触媒A群およびB群の窒素のBET法で測定した比表面積が、140〜290m2/gである、請求項1に記載の水素化処理方法。
The carriers used to prepare the catalysts A and B have an average pore diameter (PD) of 8.0 to 16.0 nm measured by the mercury intrusion method and a pore volume (PV) of 0 measured by the water pore filling method. .5-1.1 ml / g,
The hydrogenation treatment method according to claim 1, wherein the specific surface area of the nitrogen of the catalysts A and B measured by the BET method is 140 to 290 m 2 / g.
重質油の水素化処理条件が、水素分圧が5.0〜20MPa、反応温度が350〜420℃、液空間速度が0.1〜3.0hr-1である、請求項1に記載の水素化処理方法。 The first aspect of claim 1, wherein the hydrogenation treatment conditions for the heavy oil are a hydrogen partial pressure of 5.0 to 20 MPa, a reaction temperature of 350 to 420 ° C., and a liquid space velocity of 0.1 to 3.0 hr -1 . Hydrogenation treatment method. 原料重質油は、比重が0.9〜1.05、硫黄分1〜6質量%、360℃以上の沸点である成分を80質量%以上含む蒸留性状を有する、請求項1に記載の水素化処理方法。 The hydrogen according to claim 1, wherein the raw material heavy oil has a distillation property containing a specific gravity of 0.9 to 1.05, a sulfur content of 1 to 6% by mass, and a component having a boiling point of 360 ° C. or higher of 80% by mass or more. Chemical processing method.
JP2019117577A 2019-06-25 2019-06-25 Method for hydrotreating heavy oil Active JP7321790B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019117577A JP7321790B2 (en) 2019-06-25 2019-06-25 Method for hydrotreating heavy oil
KR1020227000429A KR20220024427A (en) 2019-06-25 2020-06-15 Hydroprocessing method of heavy oil
PCT/JP2020/023441 WO2020262078A1 (en) 2019-06-25 2020-06-15 Heavy oil hydrogenation processing method
TW109121147A TW202108752A (en) 2019-06-25 2020-06-22 Hydrogenation treatment method for heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117577A JP7321790B2 (en) 2019-06-25 2019-06-25 Method for hydrotreating heavy oil

Publications (2)

Publication Number Publication Date
JP2021004288A true JP2021004288A (en) 2021-01-14
JP7321790B2 JP7321790B2 (en) 2023-08-07

Family

ID=74061907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117577A Active JP7321790B2 (en) 2019-06-25 2019-06-25 Method for hydrotreating heavy oil

Country Status (4)

Country Link
JP (1) JP7321790B2 (en)
KR (1) KR20220024427A (en)
TW (1) TW202108752A (en)
WO (1) WO2020262078A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190233741A1 (en) 2017-02-12 2019-08-01 Mag&#275;m&#257; Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
CN115212889A (en) * 2021-04-15 2022-10-21 北京绿岸壹号能源科技有限公司 Catalyst combination unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176589A (en) * 1984-08-27 1986-04-19 シエブロン リサーチ コンパニー Two stage crosslinkable hydrogenation of heavy hydrocarbon raw material oil
JPS6241996B2 (en) * 1977-02-08 1987-09-05 Chiyoda Chem Eng Construct Co
WO2001094012A1 (en) * 2000-06-08 2001-12-13 Japan Energy Corporation Hydrofining catalyst and hydrofining process
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2995081B2 (en) 1990-11-19 1999-12-27 株式会社ジャパンエナジー Gas oil deep desulfurization method
JPH0593190A (en) 1991-03-29 1993-04-16 Nippon Oil Co Ltd Hydrogenation of residual oil
JPH0762357A (en) 1993-08-30 1995-03-07 Nippon Oil Co Ltd Hydrotreatment of heavy oil
JP4233154B2 (en) 1998-10-05 2009-03-04 新日本石油株式会社 Hydrodesulfurization method of light oil
KR20020010314A (en) 2000-07-29 2002-02-04 황한규 Regenerator of adsorption type refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6241996B2 (en) * 1977-02-08 1987-09-05 Chiyoda Chem Eng Construct Co
JPS6176589A (en) * 1984-08-27 1986-04-19 シエブロン リサーチ コンパニー Two stage crosslinkable hydrogenation of heavy hydrocarbon raw material oil
WO2001094012A1 (en) * 2000-06-08 2001-12-13 Japan Energy Corporation Hydrofining catalyst and hydrofining process
JP2013209529A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Hydrogenation purification method for heavy residual oil

Also Published As

Publication number Publication date
KR20220024427A (en) 2022-03-03
TW202108752A (en) 2021-03-01
WO2020262078A1 (en) 2020-12-30
JP7321790B2 (en) 2023-08-07

Similar Documents

Publication Publication Date Title
WO2020262078A1 (en) Heavy oil hydrogenation processing method
JP6643810B2 (en) Hydrotreating catalyst for hydrocarbon oil, method for producing the same, and hydrotreating method
KR100863822B1 (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process
JP2008531263A (en) Gasoline sulfur reduction catalyst for fluid catalytic cracking process.
EP2969185B1 (en) Novel resid hydrotreating catalyst
EP2334759B1 (en) Use of a catalyst in a method for the production of light olefins in a catalytic cracking unit with energy deficiency to maximise the yield of propylene and ethylene and to minimise the energy deficiency
KR101509826B1 (en) Catalytic cracking catalyst compositions having improved bottoms conversion
JP7366043B2 (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil
JP4959083B2 (en) Nickel-iron-silica-alumina
JP3772285B2 (en) Hydrocracking catalyst for hydrocarbon oil and hydrocracking method
KR101472498B1 (en) A method for preparing light oil from extra heavy oil using cesium substituted heteropolyacid catalyst and method for regenerating the catalyst
JP6026782B2 (en) Heavy oil hydroprocessing method
US11661554B2 (en) Hydrotreating catalyst for heavy hydrocarbon oil, method for producing the same, and method for hydrotreating heavy hydrocarbon oil
EP2874744B1 (en) Method to prepare MAGNESIUM STABILIZED ULTRA LOW SODA CRACKING CATALYSTS
JP4969754B2 (en) Hydrodesulfurization method for gas oil fraction and reactor for hydrodesulfurization
US3553106A (en) Catalytic removal of vanadium and nickel from oils
JP5426308B2 (en) Fluid catalytic cracking method
EP2055760B1 (en) Fluid catalytic cracking process for maximisation of light olefins in operations of low severity
JP2021122771A (en) Catalyst for hydrotreating hydrocarbon oil, method for manufacturing the same, and hydrotreatment method
JP5852892B2 (en) Heavy oil hydroprocessing method
KR20190072533A (en) Gasoline treatment method
WO2023033172A1 (en) Catalyst for hydrotreatment of heavy hydrocarbon oil and method for producing same, and method for hydrotreatment of heavy hydrocarbon oil
JPH0117414B2 (en)
JPH01224049A (en) Hydrocracking catalyst for residual oil
WO2021193617A1 (en) Hydroprocessing catalyst for heavy hydrocarbon oil, method for producing hydroprocessing catalyst for heavy hydrocarbon oil, and method for hydroprocessing heavy hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230726

R150 Certificate of patent or registration of utility model

Ref document number: 7321790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150