JPH0117414B2 - - Google Patents

Info

Publication number
JPH0117414B2
JPH0117414B2 JP55106010A JP10601080A JPH0117414B2 JP H0117414 B2 JPH0117414 B2 JP H0117414B2 JP 55106010 A JP55106010 A JP 55106010A JP 10601080 A JP10601080 A JP 10601080A JP H0117414 B2 JPH0117414 B2 JP H0117414B2
Authority
JP
Japan
Prior art keywords
catalyst composition
alumina
diameter
carrier
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55106010A
Other languages
Japanese (ja)
Other versions
JPS5730550A (en
Inventor
Jun Juki
Jun Fuchigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP10601080A priority Critical patent/JPS5730550A/en
Publication of JPS5730550A publication Critical patent/JPS5730550A/en
Publication of JPH0117414B2 publication Critical patent/JPH0117414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重質油の水素化分解に使用する触媒組
成物に関するものであつて、さらに詳しくは温和
な反応条件下で重質油を、特に所謂残油を水素化
分解して灯軽油沸点範囲の中間留分を高収率で取
得するのに好適な触媒組成物に係る。 世界的に原油が重質化する傾向にあるのに引き
替え、石油製品の需要は益々軽質化する傾向にあ
る。このため重質油を高価値の軽質分に転化させ
る水素化分解プロセスは、その重要性が一段と高
まつている。 水素化分解プロセスで使用される触媒は、従来
から数多く提案されているが、その大半は減圧軽
油などの比較的良質な油を対象とした水素化分解
プロセスに有効な触媒であつて、常圧残油、減圧
残油などの所謂残油を水素化分解する場合には、
適していない。何故なら、重質油、殊に残油中に
はバナジウム、ニツケルなどの重金属、有機窒素
化合物、さらには巨大分子を形成しているアスフ
アルテンが多量に含まれており、バナジウム、ニ
ツケルなどの重金属は触媒の細孔を閉塞し、有機
窒素化合物は触媒上の活性点を被毒し、さらにア
スフアルテンは触媒上に炭素質を形成するため、
良質な油の水素化分解に有効な触媒であつても、
これを残油の水素化分解に使用した場合には、触
媒の失活が生じるからである。 ちなみに、米国特許第3431196号明細書には、
シリカ−アルミナマトリツクスに超安定結晶質ア
ルミノケイ酸ゼオライトを含有せしめて担体と
し、この担体にニツケル及び/又はコバルトを担
持せしめた触媒が紹介されているが、この触媒は
軽油などの比較的良質な油の水素化分解に対して
有効であるものの、残油の如き劣悪な油に対して
は水素化分解活性が著しく低い。 残油などの重質油を対象とした水素化分解触媒
に限つて言えば、従来触媒はシリカ−アルミナ又
はシリカ−チタニアなどの非晶質担体に水素化活
性金属を担持させた触媒と、前記の非晶質担体に
通常の結晶質アルミノケイ酸塩ゼオライトを含有
させ、これに水素化活性金属を担持させた触媒と
に大別できる。前者の触媒は重質油から灯軽油沸
点範囲の所謂中間留分を高収率で生成させること
ができるが、活性が低いため高反応温度、低液空
間速度といつた極めて過酷な反応条件を採用しな
ければならない欠点がある。一方、後者の触媒は
前者の触媒に比較して著しく高活性であるので、
比較的温和な反応条件が採用できるが、中間留分
に対する選択性に乏しく、生成物の大半がナフサ
とガス分で占められる欠点がある。 本発明は上述した従来触媒の問題点を鑑みて、
比較的温和な反応条件下でも残油などの重質油か
ら中間留分を高収率で生成させることができる水
素化分解触媒組成物を提供するものであつて、そ
の触媒組成物は超安定結晶質アルミノケイ酸
(塩)ゼオライトを含有するアルミナ又はアルミ
ナ−ボリアに、周期律表の第族金属と第族金
属を担持させてなり、その組成物の水銀圧入法で
測定した細孔特性が下記の(a)〜(c)式を満足するこ
とを特徴とする。なお、水銀圧入法の測定は、接
触角130゜、表面張力473dyn/cm2の条件で行ない、
細孔の平均直径は細孔分布曲線から求めた細孔容
積の50%に相当する直径である。 (a) 直径62〜4000Åの範囲にある細孔の平均直径
=80〜150Å (b) 直径62〜80Åの細孔の容積/直径62〜4000Åの細
孔の容積≦30% (c) 直径150Å以上の細孔の容積/直径62〜4000Åの細
孔の容積≦50% 本発明の触媒組成物に於ては、アルミナ又はア
ルミナ−ボリアをマトリツクスとし、これに超安
定結晶質アルミノケイ酸ゼオライト(US−ゼオ
ライトを略記する)を分散含有させたものが触媒
担体として使用される。通常の結晶質アルミノケ
イ酸塩ゼオライトは、固体酸性が強過ぎるため、
これを使用した場合には、水素化分解が過度に進
んでナフサ及びガス分の生成量が増大する虞れが
ある。これに対し、US−ゼオライトは重質油を
中間留分に分解するのに必要な固体酸強度を保持
していながら、通常の結晶質アルミノケイ酸塩ゼ
オライトに較べて固体酸密度が低いので、中間留
分からナフサ乃至はガス分への過分解が抑制され
る。 本発明で使用されるUS−ゼオライトは下記の
酸化物モル比で表示され、且つ24.48Å以下の結
晶格子定数を有し、しかも740℃の温度で2時間
焼成した場合の比表面積が200m2/g以上である
ことで特徴付けられる。 M2/oO:Al2O3:6〜200SiO2:0〜9H2O 〔但し、Mは最低1種類の陽イオンを、nはMの
電荷を表わす〕 本発明の触媒担体は、アルミナ又はアルミナ−
ボリアからなるマトリツクスと、これに分散含有
せしめたUS−ゼオライトとで構成されるが、担
体中のUS−ゼオライトの量は担体の20〜80wt
%、好ましくは40〜60wt%であることを可とす
る。20wt%未満ではUS−ゼオライトに期待する
作用効果が充分発現されず、80wt%以上ではマ
トリツクスに期待する作用効果が充分現われない
ばかりでなく、マトリツクス量が不足するため、
担体の、従つて触媒組成物の保形強度を確保でき
ない。マトリツクスとしてはアルミナを単独で使
用することもできるが、ボリアをB2O3として
30wt%以下、好ましくは10〜20wt%含有するア
ルミナ−ボリアを使用すれば、一段と優れた触媒
活性を得ることができる。これはアルミナ−ボリ
アの固体酸量がB2O3含有量10〜20wt%の範囲で
最大になるためと思われる。 尚、マトリツクスとしてのアルミナ又はアルミ
ナ−ボリアには、結晶子径が40〜80Åの擬ベーマ
イトを含有する非晶質アルミナ水和物を使用する
ことができる。この種のアルミナ水和物はアルミ
ン酸塩又はアルミニウム塩を酸又はアルカリで中
和し、アルミナとして5wt%以上、好ましくは
8wt%以上の濃度を有する非晶質アルミナ水和物
を調製し、この水和物をPH8〜12、好ましくはPH
9〜11の弱アルカリ性条件下で、撹拌しながら50
℃以上、好ましくは80℃以上に加温することによ
つて製造可能である。 上記の触媒担体には水素化活性成分として周期
律表の第族金属並びに第B族金属が公知の方
法によつて担持せしめられる。第族金属として
はニツケル及び/又はコバルトを、第B族金属
としてはタングステン又はモリブデンを使用する
のが好ましく、それらの担持量は第族金属につ
いては金属として触媒組成物の1〜8wt%、好ま
しくは1.5〜5wt%の範囲が、第B族金属につい
ては金属として触媒組成物の5〜24wt%、好ま
しくは7〜16wt%の範囲が選ばれる。 本発明に係る水素化分解触媒組成物は、その担
体がアルミナ又はアルミナ−ボリアからなるマト
リツクスと、これに分散されたUS−ゼオライト
とで構成される点を、組成的な特徴とすれば、今
一つの特徴は当該触媒組成物の細孔特性にある。
一般に水素化分解触媒にあつては、金属活性成分
が水素化に関与し、担体が分解反応に関与する
が、非晶質マトリツクスにUS−ゼオライトを分
散させた担体が関与する分解反応は、まず非結晶
マトリツクスで原料炭化水素が軽度の軽質化を受
け、次いで軽質化された分子が細孔内を拡散し、
細孔内に分散しているUS−ゼオライトによつて
さらに分解されるという機構で進行するものと考
えられる。それ故、非晶質マトリツクスの細孔径
が小さいと、分解すべき長大分子の細孔内への侵
入が困難となるので、分解活性の低下は免れな
い。加えて細孔内へ侵入し、非晶質マトリツクス
で軽度の分解を受けた分子も、細孔径が小さいこ
とに起因して細孔内での分子拡散が遅く、従つて
US−ゼオライトとの接触時間が長くなるので、
過分解が生じ中間留分の収率が低下する。これに
対して非晶質マトリツクスの細孔径が一定以上大
きくなると、アスフアルテンなどの巨大分子が細
孔内に侵入して分解活性点を被毒するばかりでな
く、被分解分子と分解活性点との衝突頻度が、細
孔径が大きいために減少するので分解活性が低下
する。 つまり、アルミナ又はアルミナ−ボリアからな
る非晶質マトリツクスにUS−ゼオライトを分散
させて担体とし、この担体に金属活性成分を担持
させた水素化分解触媒であつても、その細孔特性
が所定の条件を満足していなければ、重質油から
高収率で中間留分を取得することができないので
ある。而して本発明の水素化分解触媒組成物は、
水銀圧入法で測定した場合の当該組成物の細孔特
性が、既述した(a)〜(c)の3式を満たすことが必要
とされる。 本発明の水素化分解触媒組成物は、常圧残油、
減圧残油を代表例とする重質油の水素化分解処理
に特に適しているが、減圧軽油、ビスブレーキン
グ油、タールサンド油などの水素化分解処理にも
使用することができる。本発明の触媒を使用すれ
ば、比較的温和な反応条件から苛酷な反応条件に
亘る広範囲の反応条件で、重質油から灯軽油沸点
範囲の中間留分を高収率で生成させることができ
る。反応条件としては、反応温度300〜500℃、反
応圧力80〜200Kg/cm2、水素/油比500〜3000N
m3/Kl、LHSV0.1〜3.0hr-1、水素濃度75モル%
以上が通常採用されるが、好ましい反応条件は反
応温度350〜450℃、反応圧力100〜170Kg/cm2、水
素/油比700〜2000Nm3/Kl、LHSV0.2〜
1.0hr-1、水素濃度85モル%以上である。 進んで実施例を示して本発明をさらに具体的に
説明する。 実施例 1 Al2O3としての濃度5.0wt%のアルミン酸ソー
ダ溶液に、50%グリコン酸水溶液を加え、次いで
Al2O3としての濃度2.5wt%の硫酸アルミニウム
溶液を添加してPH7.0のスラリーを得た。このス
ラリーをテーブルフイルターで濾別後、フイルタ
ーケーキを0.2重量%のアンモニア水で洗浄して
擬ベーマイト含有アルミナ水和物を調製した。こ
のアルミナ水和物に少量のアンモニア水を加えて
Al2O3濃度8.8wt%、PH10.60のスラリーとして、
これを撹拌しながら95℃で20時間還流後、ニーダ
ーで加熱濃縮して〓和物(X)を得た。 また、SiO2/Al2O3のモル比が8.2であり、
Na2Oとして1.5wt%以下のアルカリ金属を含有
し、24.37Åの結晶格子定数を有し、しかも740℃
の温度で2時間焼成した場合の比表面積が602
m2/gであるUS−Yゼオライトを用意した。 次に上記の〓和物(X)1.5KgにUS−Yゼオラ
イト219gを混合し、ニーダーで加熱濃縮後、直
径0.9mmのペレツトに成型し、空気中110℃で16時
間乾燥後、550℃で3時間焼成してUS−Yゼオラ
イト含量30wt%の触媒担体を得た。 この担体660gにパラタングステン酸アンモン
161g、硝酸ニツケル132gを含む水溶液396mlを
加えて含浸させた後、250℃迄徐々に昇温しなが
ら乾燥し、次いで550℃で2時間焼成してタング
ステン担持量及びニツケル担持量がそれぞれ金属
として13.5wt%及び3.1wt%である触媒Aを製造
した。 実施例 2 US−Yゼオライトの使用量を510gとした以外
は実施例1と同一の処方でUS−Yゼオライト含
量50wt%の触媒担体を調製し、この担体にタン
グステンとニツケルを実施例1と同一の手順で担
持させ、タングステン及びニツケルがそれぞれ金
属として13.5wt%及び3.1wt%担持された触媒B
を製造した。 実施例 3 US−Yゼオライトの使用量を1190gとした以
外は実施例1と同一の処方でUS−Yゼオライト
含量70wt%の触媒担体を調製し、この担体に金
属活性成分を実施例1と同一の手順で担持させ、
タングステン担体量及びニツケル担持量がそれぞ
れ金属として13.5wt%及び3.1wt%である触媒C
を製造した。 実施例 4 水120c.c.に硼酸85gを加えて加熱溶解した水溶
液と、実施例1で使用したUS−Yゼオライト344
gと、実施例1で調製したアルミナ〓和物(X)
858gを混合し、ニーダーで加熱濃縮後、直径0.9
mmのペレツトに成型した。このペレツトを空気中
110℃で16時間乾燥後、550℃で3時間焼成して触
媒担体を得た。この担体はUS−Yゼオライトを
50wt%含有し、残りの50wt%を占めるアルミナ
−ボリア中のボリア含量は15wt%であつた。 上記の担体に金属活性成分を実施例1と同一手
順で担持させ、タングステン及びニツケルの担持
量がそれぞれ金属として13.5wt%及び3.1wt%で
ある触媒Dを調製した。 実施例1〜4で調製した触媒A〜Dの水銀圧入
法で測定した細孔特性は表−1に示す通りであ
る。
The present invention relates to a catalyst composition used for hydrocracking heavy oil, and more specifically to a catalyst composition for hydrocracking heavy oil, particularly so-called residual oil, under mild reaction conditions to reduce the boiling point range of kerosene and gas oil. The present invention relates to a catalyst composition suitable for obtaining a middle distillate in high yield. While crude oil is becoming heavier worldwide, demand for petroleum products is becoming increasingly lighter. Hydrocracking processes, which convert heavy oil into high-value light fractions, are therefore becoming increasingly important. Many catalysts have been proposed for use in hydrocracking processes, but most of them are effective catalysts for hydrocracking processes targeting relatively high-quality oils such as vacuum gas oil. When hydrocracking so-called residual oil such as residual oil or vacuum residual oil,
Not suitable. This is because heavy oil, especially residual oil, contains large amounts of heavy metals such as vanadium and nickel, organic nitrogen compounds, and even asphaltene, which forms macromolecules. The pores of the catalyst are blocked, organic nitrogen compounds poison the active sites on the catalyst, and asphaltenes form carbonaceous substances on the catalyst.
Even though it is an effective catalyst for hydrocracking high quality oil,
This is because, if this is used for hydrocracking of residual oil, the catalyst will be deactivated. By the way, U.S. Patent No. 3431196 states,
A catalyst has been introduced in which a silica-alumina matrix contains ultra-stable crystalline aluminosilicate zeolite as a carrier, and this carrier supports nickel and/or cobalt. Although it is effective for hydrocracking oil, its hydrocracking activity is extremely low for inferior oils such as residual oil. Regarding hydrocracking catalysts for heavy oils such as residual oil, conventional catalysts include catalysts in which a hydrogenation-active metal is supported on an amorphous carrier such as silica-alumina or silica-titania, and Catalysts can be broadly classified into catalysts in which a crystalline aluminosilicate zeolite is contained in an amorphous carrier, and a hydrogenation-active metal is supported on the amorphous carrier. The former catalyst can produce so-called middle distillates in the boiling point range of kerosene and gas oil from heavy oil in high yield, but because of its low activity, it cannot be used under extremely harsh reaction conditions such as high reaction temperature and low liquid hourly space velocity. There are drawbacks that must be adopted. On the other hand, the latter catalyst has significantly higher activity than the former catalyst, so
Although relatively mild reaction conditions can be employed, the disadvantage is that selectivity to middle distillates is poor and most of the product is comprised of naphtha and gas components. In view of the above-mentioned problems of conventional catalysts, the present invention has been developed by:
The present invention provides a hydrocracking catalyst composition capable of producing a middle distillate in high yield from heavy oil such as residual oil even under relatively mild reaction conditions, and the catalyst composition is ultra-stable. Group metals and group metals of the periodic table are supported on alumina or alumina-boria containing crystalline aluminosilicate (salt) zeolite, and the pore characteristics of the composition measured by mercury porosimetry are as follows. It is characterized by satisfying formulas (a) to (c). The mercury intrusion method was measured under the conditions of a contact angle of 130° and a surface tension of 473 dyn/ cm2 .
The average diameter of the pores is the diameter corresponding to 50% of the pore volume determined from the pore distribution curve. (a) Average diameter of pores in the range of 62 to 4,000 Å in diameter = 80 to 150 Å (b) Volume of pores in the range of 62 to 80 Å in diameter / Volume of pores in the range of 62 to 4,000 Å ≦30% (c) Diameter of 150 Å or more volume of pores/volume of pores with a diameter of 62 to 4000 Å≦50% In the catalyst composition of the present invention, alumina or alumina-boria is used as a matrix, and ultra-stable crystalline aluminosilicate zeolite (US - Zeolite is used as a catalyst carrier. Ordinary crystalline aluminosilicate zeolite has too strong solid acidity.
If this is used, there is a risk that hydrogen cracking will proceed excessively and the amount of naphtha and gas produced will increase. In contrast, US-zeolite retains the solid acid strength necessary to crack heavy oil into middle distillates, but has a lower solid acid density than regular crystalline aluminosilicate zeolites, so it Excessive decomposition of the fraction into naphtha or gas components is suppressed. The US-zeolite used in the present invention is expressed by the following oxide molar ratio, has a crystal lattice constant of 24.48 Å or less, and has a specific surface area of 200 m 2 / g or more. M 2/o O: Al 2 O 3 : 6-200 SiO 2 : 0-9 H 2 O [However, M represents at least one type of cation, and n represents the charge of M] The catalyst carrier of the present invention is made of alumina. Or alumina
It is composed of a matrix made of boria and US-zeolite dispersed therein, and the amount of US-zeolite in the carrier is 20 to 80wt of the carrier.
%, preferably 40 to 60 wt%. If it is less than 20wt%, the expected effects of US-zeolite will not be fully expressed, and if it is more than 80wt%, not only will the expected effects of the matrix not be sufficiently expressed, but the amount of matrix will be insufficient.
The shape-retaining strength of the carrier and therefore of the catalyst composition cannot be ensured. Alumina can be used alone as a matrix, but boria can be used as a matrix with B 2 O 3 .
Even better catalytic activity can be obtained by using alumina-boria containing 30 wt% or less, preferably 10 to 20 wt%. This is thought to be because the amount of solid acid in alumina-boria is maximum in the range of B 2 O 3 content of 10 to 20 wt%. As the alumina or alumina-boria matrix, an amorphous alumina hydrate containing pseudoboehmite having a crystallite diameter of 40 to 80 Å can be used. This type of alumina hydrate is produced by neutralizing aluminate or aluminum salt with acid or alkali, and preferably has a concentration of 5wt% or more as alumina.
Amorphous alumina hydrate having a concentration of 8wt% or more is prepared, and this hydrate is heated to a pH of 8 to 12, preferably PH
9 to 11 under mildly alkaline conditions with stirring.
It can be produced by heating to 80°C or higher, preferably 80°C or higher. The above-mentioned catalyst carrier is loaded with a group metal and a group B metal of the periodic table as a hydrogenation active component by a known method. It is preferable to use nickel and/or cobalt as the group metal, and tungsten or molybdenum as the group B metal, and the supported amount thereof is preferably 1 to 8 wt% of the catalyst composition as metal for the group metal. For group B metals, the metal is selected to be in the range of 5 to 24 wt%, preferably 7 to 16 wt% of the catalyst composition. The hydrocracking catalyst composition according to the present invention is unique in that its carrier is composed of a matrix of alumina or alumina-boria and US-zeolite dispersed therein. is characterized by the pore characteristics of the catalyst composition.
In general, in the case of hydrocracking catalysts, the metal active component participates in the hydrogenation and the carrier participates in the decomposition reaction. The raw material hydrocarbon undergoes slight lightening in the amorphous matrix, and then the lightened molecules diffuse inside the pores,
It is thought that this process proceeds through a mechanism in which it is further decomposed by the US-zeolite dispersed within the pores. Therefore, if the pore diameter of the amorphous matrix is small, it becomes difficult for long molecules to be decomposed to enter the pores, and the decomposition activity inevitably decreases. In addition, molecules that penetrate into the pores and undergo slight decomposition in the amorphous matrix have slow molecular diffusion within the pores due to the small pore diameter, and therefore
Since the contact time with US-zeolite is longer,
Over-decomposition occurs and the yield of the middle distillate decreases. On the other hand, when the pore diameter of an amorphous matrix becomes larger than a certain level, macromolecules such as asphaltene not only invade the pores and poison the decomposition active sites, but also cause the molecules to be decomposed to interact with the decomposition active sites. Collision frequency is reduced due to the large pore size, thus reducing decomposition activity. In other words, even in the case of a hydrocracking catalyst in which US-zeolite is dispersed in an amorphous matrix made of alumina or alumina-boria, and a metal active component is supported on this carrier, its pore characteristics are Unless these conditions are met, middle distillates cannot be obtained from heavy oil in high yield. Therefore, the hydrocracking catalyst composition of the present invention is
The pore characteristics of the composition when measured by mercury intrusion porosimetry are required to satisfy the three formulas (a) to (c) described above. The hydrocracking catalyst composition of the present invention comprises atmospheric residual oil,
It is particularly suitable for hydrocracking treatment of heavy oil, of which vacuum residual oil is a typical example, but it can also be used for hydrocracking treatment of vacuum light oil, visbreaking oil, tar sand oil, and the like. By using the catalyst of the present invention, middle distillates in the boiling point range of kerosene and gas oil can be produced from heavy oil in high yield under a wide range of reaction conditions ranging from relatively mild to severe reaction conditions. . The reaction conditions are: reaction temperature 300~500℃, reaction pressure 80~200Kg/ cm2 , hydrogen/oil ratio 500~3000N.
m3 /Kl, LHSV0.1~3.0hr -1 , hydrogen concentration 75 mol%
The above is usually adopted, but the preferred reaction conditions are reaction temperature 350-450°C, reaction pressure 100-170Kg/cm 2 , hydrogen/oil ratio 700-2000Nm 3 /Kl, LHSV 0.2-
1.0hr -1 , hydrogen concentration is 85 mol% or more. The present invention will now be described in more detail with reference to Examples. Example 1 A 50% aqueous glyconic acid solution was added to a sodium aluminate solution with a concentration of 5.0 wt% as Al 2 O 3 , and then
An aluminum sulfate solution with a concentration of 2.5 wt% as Al 2 O 3 was added to obtain a slurry with a pH of 7.0. After filtering this slurry using a table filter, the filter cake was washed with 0.2% by weight ammonia water to prepare a pseudo-boehmite-containing alumina hydrate. Add a small amount of ammonia water to this alumina hydrate
As a slurry with Al 2 O 3 concentration 8.8wt% and pH 10.60,
This was refluxed at 95° C. for 20 hours with stirring, and then heated and concentrated using a kneader to obtain a hydrate (X). In addition, the molar ratio of SiO 2 /Al 2 O 3 is 8.2,
Contains 1.5wt% or less of alkali metal as Na 2 O, has a crystal lattice constant of 24.37Å, and is heated at 740℃
The specific surface area when fired for 2 hours at a temperature of 602
m 2 /g US-Y zeolite was prepared. Next, 219 g of US-Y zeolite was mixed with 1.5 kg of the above hydrate (X), heated and concentrated in a kneader, formed into pellets with a diameter of 0.9 mm, dried in air at 110°C for 16 hours, and then heated at 550°C. After firing for 3 hours, a catalyst carrier having a US-Y zeolite content of 30 wt% was obtained. Add ammonium paratungstate to 660g of this carrier.
After adding 396 ml of an aqueous solution containing 161 g of tungsten and 132 g of nickel nitrate for impregnation, it was dried while gradually increasing the temperature to 250°C, and then calcined at 550°C for 2 hours to achieve a supported amount of tungsten and nickel of 13.5 as metals, respectively. Catalyst A was prepared with wt% and 3.1 wt%. Example 2 A catalyst carrier with a US-Y zeolite content of 50 wt% was prepared using the same recipe as in Example 1, except that the amount of US-Y zeolite used was 510 g, and tungsten and nickel were added to this carrier in the same manner as in Example 1. Catalyst B was supported by the following procedure, and 13.5 wt% and 3.1 wt% of tungsten and nickel were supported as metals, respectively.
was manufactured. Example 3 A catalyst carrier with a US-Y zeolite content of 70 wt% was prepared using the same recipe as in Example 1, except that the amount of US-Y zeolite used was 1190 g, and the metal active component was added to this carrier in the same manner as in Example 1. It is supported by the procedure of
Catalyst C in which the amount of tungsten supported and the amount of nickel supported are respectively 13.5 wt% and 3.1 wt% as metal
was manufactured. Example 4 An aqueous solution prepared by adding 85 g of boric acid to 120 c.c. of water and dissolving it by heating, and US-Y Zeolite 344 used in Example 1.
g and the alumina hydrate (X) prepared in Example 1
Mix 858g, heat and concentrate with a kneader, and make a diameter of 0.9
It was molded into pellets of mm. this pellet in the air
After drying at 110°C for 16 hours, the mixture was calcined at 550°C for 3 hours to obtain a catalyst carrier. This carrier uses US-Y zeolite.
The boria content in the alumina-boria, which contains 50 wt% and occupies the remaining 50 wt%, was 15 wt%. A metal active component was supported on the above carrier in the same manner as in Example 1 to prepare catalyst D in which the supported amounts of tungsten and nickel were 13.5 wt% and 3.1 wt% as metals, respectively. The pore characteristics of catalysts A to D prepared in Examples 1 to 4 measured by mercury porosimetry are shown in Table 1.

【表】 比較例 1 混合塩化希土(主成分;CeCl3、LaCl3
NdCl3)の0.5%溶液中にY型ゼオライトを入れ、
アンモニア水でPH5に調整し、80℃で30分間撹拌
してから脱水、洗浄を行なう操作によつて72.4%
の希土金属イオン交換を行ない、しかる後に5%
硝酸アンモニウム溶液にてアンモニウムイオン交
換を行なつて希土類金属−アンモニウム交換Y型
ゼオライトを製造した。このY型ゼオライトの希
土類金属交換率は65.2%、アンモニウム交換率は
25.4%であつて、Na2O含有率は1.04%であつた。 上記Y型ゼオライト510gに実施例1で得たア
ルミナ〓和物(X)1.5Kgを加えニーダーで加熱
濃縮した後、直径0.9mmのペレツトに成型し、空
気中110℃で16時間乾燥後、550℃で3時間焼成し
てY型ゼオライト含有量50wt%の触媒担体を得
た。 この触媒担体に金属活性成分を実施例1と同一
手順で担持させ、タングステン及びニツケルの担
持量がそれぞれ金属として13.5wt%及び3.1wt%
である触媒Rを得た。 比較例 2 実施例1で調製したアルミナ〓和物(X)1.01
KgにSiO2としての濃度が3wt%であるシリカヒド
ロゲル16Kgを加え、ニーダーで加熱濃縮後、直径
0.9mmのペレツトに成型し、空気中110℃で16時間
乾燥してから550℃で3時間焼成してシリカ含量
60wt%の触媒担体を得た。 この担体に金属活性成分を実施例1と同一手順
で担持させ、タングステン及びニツケルの担持量
がそれぞれ金属として13.5wt%及び3.1wt%であ
る触媒Sを得た。 比較例 3 Al2O3としての濃度2.0wt%のアルミン酸ソー
ダ溶液に、Al2O3としての濃度1.0wt%の硫酸ア
ルミニウム溶液を添加してPH7.0のスラリーを得
た。このスラリーをテーブルフイルターで濾別
後、フイルターケーキをアンモニア水で洗浄して
擬ベーマイト含有アルミナ水和物を調製した。こ
のアルミナ水和物を二分し、その一方に少量のア
ンモニア水を加えてAl2O3濃度8.5wt%、PH10.5の
スラリーとして、これを撹拌しながら95℃で20時
間還流後、先に二分したアルミナ水和物の残余を
加えて噴霧乾燥した。次いで得られた粉末にアン
モニア水を加えてニーダーにて加熱濃縮し、成型
可能な〓和物(Y)を得た。 上記の〓和物(Y)1.5Kgに実施例1で使用し
たUS−Yゼオライト515gを混合してニーダーで
加熱濃縮し、以下実施例1と同一の手順でUS−
Yゼオライト含量50wt%の触媒担体を得た。 この担体に金属活性成分を実施例1と同一の手
順で担持させ、タングステン及びニツケルの担持
量がそれぞれ金属として13.5wt%及び3.1wt%で
ある触媒Tを調製した。 比較例 4 実施例1で調製されるアルミナ〓和物(X)の
前駆物たる擬ベーマイト含有アルミナ水和物をス
ラリー状にして噴霧乾燥し、得られたアルミナ水
和物の粉末にアンモニア水を加えて〓和物(Z)
を得た。 上記の〓和物(Z)1.5Kgに実施例1で使用し
たUS−Yゼオライト515Kgに混合し、以下実施例
1と同一手順でUS−Yゼオライト含量50wt%の
触媒担体を得た。この担体に実施例1と同一手順
で金属活性成分を担持させ、タングステン及びニ
ツケルの担持量がそれぞれ金属として13.5wt%及
び3.1wt%である。触媒Uを調製した。 比較例1〜4で調製した触媒R〜Uの水銀圧入
法で測定した細孔特性を表−2に示す。
[Table] Comparative example 1 Mixed rare earth chloride (main components: CeCl 3 , LaCl 3 ,
Y-type zeolite was placed in a 0.5% solution of NdCl 3 ),
72.4% by adjusting the pH to 5 with ammonia water, stirring at 80℃ for 30 minutes, then dehydrating and washing.
After performing rare earth metal ion exchange, 5%
A rare earth metal-ammonium exchanged Y-type zeolite was produced by performing ammonium ion exchange with an ammonium nitrate solution. The rare earth metal exchange rate of this Y-type zeolite is 65.2%, and the ammonium exchange rate is
25.4%, and the Na 2 O content was 1.04%. 1.5 kg of the alumina hydrate (X) obtained in Example 1 was added to 510 g of the above Y-type zeolite, heated and concentrated in a kneader, formed into pellets with a diameter of 0.9 mm, and dried in air at 110°C for 16 hours. C. for 3 hours to obtain a catalyst carrier having a Y-type zeolite content of 50 wt%. A metal active component was supported on this catalyst carrier in the same manner as in Example 1, and the supported amounts of tungsten and nickel were 13.5wt% and 3.1wt% as metals, respectively.
A catalyst R was obtained. Comparative Example 2 Alumina hydrate (X) prepared in Example 1 1.01
16 kg of silica hydrogel with a concentration of 3 wt% as SiO 2 was added to the kg, and after heating and concentrating with a kneader, the diameter
Formed into 0.9 mm pellets, dried in air at 110°C for 16 hours, and then calcined at 550°C for 3 hours to determine the silica content.
A 60wt% catalyst support was obtained. A metal active component was supported on this carrier in the same manner as in Example 1 to obtain a catalyst S in which the supported amounts of tungsten and nickel were 13.5 wt% and 3.1 wt% as metals, respectively. Comparative Example 3 An aluminum sulfate solution with a concentration of 1.0 wt% as Al 2 O 3 was added to a sodium aluminate solution with a concentration of 2.0 wt % as Al 2 O 3 to obtain a slurry with a pH of 7.0. After filtering this slurry using a table filter, the filter cake was washed with aqueous ammonia to prepare a pseudo-boehmite-containing alumina hydrate. This alumina hydrate was divided into two parts, and a small amount of aqueous ammonia was added to one half to form a slurry with an Al 2 O 3 concentration of 8.5 wt% and a pH of 10.5. After refluxing this at 95 °C for 20 hours with stirring, first The remainder of the bisected alumina hydrate was added and spray dried. Next, aqueous ammonia was added to the obtained powder, and the mixture was heated and concentrated in a kneader to obtain a moldable hydrate (Y). 1.5 kg of the above hydrate (Y) was mixed with 515 g of US-Y zeolite used in Example 1, heated and concentrated in a kneader, and then the US-Y zeolite was mixed in the same manner as in Example 1.
A catalyst carrier having a Y zeolite content of 50 wt% was obtained. A metal active component was supported on this carrier in the same manner as in Example 1 to prepare a catalyst T in which the supported amounts of tungsten and nickel were 13.5 wt% and 3.1 wt% as metals, respectively. Comparative Example 4 The pseudoboehmite-containing alumina hydrate, which is a precursor of the alumina hydrate (X) prepared in Example 1, was made into a slurry and spray-dried, and ammonia water was added to the obtained alumina hydrate powder. In addition = Japanese food (Z)
I got it. 1.5 kg of the above hydrate (Z) was mixed with 515 kg of US-Y zeolite used in Example 1, and the same procedure as in Example 1 was followed to obtain a catalyst carrier having a US-Y zeolite content of 50 wt%. A metal active component was supported on this carrier in the same manner as in Example 1, and the amounts of tungsten and nickel supported as metals were 13.5 wt% and 3.1 wt%, respectively. Catalyst U was prepared. Table 2 shows the pore characteristics of catalysts R to U prepared in Comparative Examples 1 to 4, measured by mercury intrusion method.

【表】 触媒使用例 本発明の効果を確認するため、触媒A〜D及び
比較触媒R〜Uを用いて下記の条件下で常圧残油
の水素化分解を行なつた。反応装置には触媒200
gを充填した内径19mm長さ3mの固定床反応器を
使用した。 原料残油性状 比 重 0.896(15/4℃) 343℃+ 95vol% 粘 度 194cst(於50℃) 硫 黄 0.17wt% 残留炭素 4.5wt% 窒 素 2380ppm バナジウム >0.1ppm ニツケル 5.6ppm 反応条件 反応圧力 150Kg/cm2 反応温度 410℃ 水素/油比 2000Nm3/Kl LHSV 0.6hr-1 水素濃度 90mol% 反応開始後400時間目のデータを表−3に示す。
ここで343℃-転化率とは原料残油の重質分(343
+)が水素化分解反応により沸点343℃以下の成
分に転化した割合を言う。
[Table] Example of using catalyst In order to confirm the effect of the present invention, hydrogenolysis of atmospheric residual oil was carried out under the following conditions using catalysts A to D and comparative catalysts R to U. Catalyst 200 in reactor
A fixed bed reactor with an inner diameter of 19 mm and a length of 3 m was used. Raw material residual oil properties Specific gravity 0.896 (15/4℃) 343℃ + 95vol% Viscosity 194cst (at 50℃) Sulfur 0.17wt% Residual carbon 4.5wt% Nitrogen 2380ppm Vanadium >0.1ppm Nickel 5.6ppm Reaction conditions Reaction pressure 150Kg/cm 2 Reaction temperature 410°C Hydrogen/oil ratio 2000Nm 3 /Kl LHSV 0.6hr -1 Hydrogen concentration 90mol% Table 3 shows the data 400 hours after the start of the reaction.
Here, 343℃ - conversion rate refers to the heavy content of the residual oil (343℃).
+ ) is converted to components with a boiling point of 343℃ or less by hydrogenolysis reaction.

【表】 上室から明らかな通り、アルミナ又はアルミナ
−ボリアからなるマトリツクスと、これに分散さ
せたUS−ゼオライトとで構成される担体に、金
属活性成分を担持させた触媒であつて、特定の細
孔特性を有する本発明の水素化分解触媒は、残油
などの重質油に対し優れた分解活性(343℃-転化
率)と中間留分選択性(中間留分収率)を発揮す
る。
[Table] As is clear from the upper chamber, this is a catalyst in which a metal active component is supported on a carrier consisting of a matrix of alumina or alumina-boria and US-zeolite dispersed therein. The hydrocracking catalyst of the present invention, which has pore characteristics, exhibits excellent cracking activity (conversion rate at 343 ° C) and middle distillate selectivity (middle distillate yield) for heavy oils such as residual oil. .

Claims (1)

【特許請求の範囲】 1 超安定結晶質アルミノケイ酸ゼオライトを含
有するアルミナ又はアルミナ−ボリアを担体と
し、これに周期律表第族金属と第族金属を担
持させた触媒組成物であつて、当該触媒組成物の
水銀圧入法で測定した細孔特性が、下記の(a)〜(c)
式を満足することを特徴とする水素化分解触媒組
成物。 (a) 直径が62〜4000Åの範囲にある細孔の平均直
径=80〜150Å (b) 直径62〜80Åの細孔の容積/直径62〜4000Åの細
孔の容積≦30% (c) 直径150Å以上の細孔の容積/直径62〜4000Åの細
孔の容積≦50% 2 前記の超安定結晶質アルミノケイ酸ゼオライ
トが下記の酸化物モル比で表示され、且つ24.48
Å以下の結晶格子定数を有し、しかも740℃の温
度で2時間焼成した際に200m2/g以上の比表面
積を保持することを特徴とする特許請求の範囲第
1項記載の触媒組成物。 M2/oO:Al2O3:6〜200SiO2:0〜9H2O 〔但し、Mは最低1種類の陽イオンを表わし、n
はMの電荷を表わす〕 3 担体中の超安定結晶質アルミノケイ酸ゼオラ
イトの量が担体の20〜80wt%であることを特徴
とする特許請求の範囲第1項記載の触媒組成物。 4 担体に使用するアルミナ−ボリアのアルミナ
対ボリアの重量比が7:3以下であることを特徴
とする特許請求の範囲第1項記載の触媒組成物。 5 周期律表第族金属の担持量が金属として触
媒組成物の1〜8wt%であり、第族金属の担持
量が金属として触媒組成物の5〜24wt%である
ことを特徴とする特許請求の範囲第1項記載の触
媒組成物。 6 第族金属がニツケルであり、第族金属が
タングステンであることを特徴とする特許請求の
範囲第1項記載の触媒組成物。
[Scope of Claims] 1. A catalyst composition in which a group metal and a group metal of the periodic table are supported on alumina or alumina-boria containing ultra-stable crystalline aluminosilicate zeolite, which The pore characteristics of the catalyst composition measured by mercury porosimetry are as shown in (a) to (c) below.
A hydrocracking catalyst composition characterized by satisfying the formula: (a) Average diameter of pores with a diameter in the range of 62 to 4000 Å = 80 to 150 Å (b) Volume of pores with a diameter of 62 to 80 Å / Volume of pores with a diameter of 62 to 4000 Å ≦ 30% (c) Diameter Volume of pores of 150 Å or more / Volume of pores of 62 to 4000 Å in diameter ≦50% 2. The ultrastable crystalline aluminosilicate zeolite is expressed in the following oxide molar ratio, and 24.48
The catalyst composition according to claim 1, which has a crystal lattice constant of Å or less and maintains a specific surface area of 200 m 2 /g or more when calcined at a temperature of 740° C. for 2 hours. . M 2/o O: Al 2 O 3 : 6-200 SiO 2 : 0-9 H 2 O [However, M represents at least one type of cation, and n
represents the charge of M] 3. Catalyst composition according to claim 1, characterized in that the amount of ultrastable crystalline aluminosilicate zeolite in the carrier is 20 to 80 wt% of the carrier. 4. The catalyst composition according to claim 1, wherein the alumina-boria weight ratio of the alumina-boria used in the carrier is 7:3 or less. 5. A patent claim characterized in that the supported amount of the Group metal of the Periodic Table is 1 to 8 wt% of the catalyst composition as a metal, and the supported amount of the Group metal is 5 to 24 wt% of the catalyst composition as a metal. The catalyst composition according to item 1. 6. The catalyst composition according to claim 1, wherein the group metal is nickel and the group metal is tungsten.
JP10601080A 1980-07-31 1980-07-31 Catalyst composition for hydrogenolysis Granted JPS5730550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10601080A JPS5730550A (en) 1980-07-31 1980-07-31 Catalyst composition for hydrogenolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10601080A JPS5730550A (en) 1980-07-31 1980-07-31 Catalyst composition for hydrogenolysis

Publications (2)

Publication Number Publication Date
JPS5730550A JPS5730550A (en) 1982-02-18
JPH0117414B2 true JPH0117414B2 (en) 1989-03-30

Family

ID=14422693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10601080A Granted JPS5730550A (en) 1980-07-31 1980-07-31 Catalyst composition for hydrogenolysis

Country Status (1)

Country Link
JP (1) JPS5730550A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141492A (en) * 1981-02-26 1982-09-01 Res Assoc Residual Oil Process<Rarop> Hydrogenolysis of heavy oil
JPS60238150A (en) * 1984-05-14 1985-11-27 Res Assoc Residual Oil Process<Rarop> Preparation of nickel-containing crystalline alumino silicate
US4789654A (en) * 1985-03-29 1988-12-06 Catalysts & Chemicals Industries Co., Ltd. Hydrotreating catalysts
JP4808172B2 (en) * 2006-03-30 2011-11-02 Jx日鉱日石エネルギー株式会社 Hydrocracking catalyst and fuel substrate production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449070A (en) * 1963-02-21 1969-06-10 Grace W R & Co Stabilized zeolites
US3835027A (en) * 1972-04-17 1974-09-10 Union Oil Co Hydrogenative conversion processes and catalyst for use therein
JPS50157300A (en) * 1973-11-24 1975-12-19

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3449070A (en) * 1963-02-21 1969-06-10 Grace W R & Co Stabilized zeolites
US3835027A (en) * 1972-04-17 1974-09-10 Union Oil Co Hydrogenative conversion processes and catalyst for use therein
JPS50157300A (en) * 1973-11-24 1975-12-19

Also Published As

Publication number Publication date
JPS5730550A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
US4517073A (en) Hydrocracking process and catalyst therefor
KR100478078B1 (en) A hydrocracking catalyst for producing middle distillates and a process for the preparation thereof
US4576711A (en) Hydrocracking process and catalyst therefor
US3304254A (en) Catalytic hydrocracking with a physical mixture of a crystalline aluminosilicate and a porous support containing a hydrogenation component
CN1332757C (en) Cracking catalyst and its application
RU2100074C1 (en) Composition appropriate to be used as basic catalyst in hydrogenation processes, catalytic composition for converting hydrocarbon petroleum products, and method for converting hydrocarbon petroleum products
KR20070084402A (en) Iron-containing crystalline aluminosilicate, hydrocracking catalyst comprising the aluminosilicate, and method 0f hydrocracking with the catalyst
JPH0239305B2 (en)
US4563434A (en) Hydrocracking catalyst
JPH0536099B1 (en)
US10723960B2 (en) Method for hydrocracking hydrocarbon feedstocks using a catalyst comprising a zeolite and an amorphous mesoporous alumina
JP7366043B2 (en) Catalyst for hydrotreating hydrocarbon oil, method for producing the same, and method for hydrotreating hydrocarbon oil
JPH051290A (en) Method for manufacturing oxidation-stable and low temperature-stable base oil and middle cut
JPH02214544A (en) Catalyst for hydrocracking of heavy oils
JPH0228522B2 (en)
JPH0117414B2 (en)
JPS6148979B2 (en)
JP2000086233A (en) Iron-containing crystalline alumino-silicate
JPH03273092A (en) Catalyst for hydrogenation of residual oil
JPS6244974B2 (en)
US4554263A (en) Catalysts for hydrotreating heavy oils
US4572779A (en) Process for the dewaxing of hydrocarbon fractions
JPH0112540B2 (en)
US3346482A (en) Hydrocracking heavy hydrocarbon oils
US4263172A (en) Cracking catalysts