JPH02214544A - Catalyst for hydrocracking of heavy oils - Google Patents

Catalyst for hydrocracking of heavy oils

Info

Publication number
JPH02214544A
JPH02214544A JP3495889A JP3495889A JPH02214544A JP H02214544 A JPH02214544 A JP H02214544A JP 3495889 A JP3495889 A JP 3495889A JP 3495889 A JP3495889 A JP 3495889A JP H02214544 A JPH02214544 A JP H02214544A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
hydrocracking
alumina
usy zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3495889A
Other languages
Japanese (ja)
Inventor
Yasuyuki Ooishi
庸之 大石
Masato Sakai
酒井 眞人
Akira Inoue
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Nippon Oil Corp filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP3495889A priority Critical patent/JPH02214544A/en
Publication of JPH02214544A publication Critical patent/JPH02214544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To increase the rate of conversion of heavy oils by using a catalyst for hydrocracking formed by supporting a specified metal active to hydrogenation and B and/or P on a carrier consisting of alumina and USY zeolite. CONSTITUTION:A soln. contg. at least one kind of metal active to hydrogenation selected among the groups Vb, VIb and VIII metals of the periodic table, preferably Ni, Co, Mo, W or V and B and/or P is prepd. and the components are supported on a carrier consisting of alumina and USY zeolite to produce a catalyst for hydrocracking of heavy oils. The support may be carried out by kneading the soln. with the carrier or immersing the carrier in the soln. The pref. zeolite content of the carrier is 1-50wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は重質石油類の水素化分解触媒に関するもので、
更に詳しくは、高分解率でかつ沸点範囲170〜360
℃留分の選択性が高い水素化分解触媒に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a hydrocracking catalyst for heavy petroleum.
More specifically, it has a high decomposition rate and a boiling point range of 170 to 360
This invention relates to a hydrocracking catalyst that has high selectivity for the °C fraction.

[従来の技術および発明が解決しようとする課題]最近
の石油類の需要は軽質化傾向にあり、ガソリン、ナフサ
に関しては流動接触分解によって増産が図られ、一方中
間留分と呼ばれる灯油、軽油留分は流動接触分解では好
ましいものが得られず、減圧軽油を水素化分解する方法
が用いられる。
[Prior art and problems to be solved by the invention] Recently, the demand for petroleum products has been trending toward lighter petroleum products, and production of gasoline and naphtha has been increased through fluid catalytic cracking, while kerosene and gas oil distillates, called middle distillates, have been increasing in production. For this reason, fluid catalytic cracking cannot produce a desirable result, and a method of hydrocracking vacuum gas oil is used.

ところで、減圧軽油の水素化分解は高温、高圧で原料油
を触媒と接触し、目的の留分を得るが、そのため反応条
件と触媒の選定は重要である。例えば、転化率を上げる
には、反応条件をより厳しくするか、固体酸性の強いゼ
オライト系の触媒を用いればよい。しかしながら、その
際の転化率は高くなるものの中間留分の選択率が悪くな
り、ガスやナフサが多量に生成すると言う欠点がある。
By the way, in the hydrocracking of vacuum gas oil, the feedstock oil is brought into contact with a catalyst at high temperature and pressure to obtain the desired fraction, and therefore the selection of reaction conditions and catalyst is important. For example, to increase the conversion rate, the reaction conditions may be made stricter, or a zeolite-based catalyst with strong solid acidity may be used. However, although the conversion rate at that time is high, the selectivity of the middle distillate is poor, and there is a drawback that a large amount of gas and naphtha are produced.

また、一般にアモルファス系の触媒、例えばアルミナ・
ボリア等は中間留分の選択率が高いといわれるが、転化
率が低いという欠点がある。そこで転化率を高くし、か
つ中間留分の選択性を向上できれば大きなメリットが得
られる。
Additionally, amorphous catalysts such as alumina and
Boria etc. are said to have a high selectivity for middle distillates, but have the disadvantage of a low conversion rate. Therefore, it would be a great advantage to increase the conversion rate and improve the selectivity of middle distillates.

本発明は、かかる従来技術の課題を解決すべくなされた
もので、重質石油類、特に減圧原油に対して転化率が高
く、しかも中間留分の選択性を向上させた水素化分解触
媒を提供することを目的とする。
The present invention was made to solve the problems of the prior art, and provides a hydrocracking catalyst that has a high conversion rate for heavy petroleum products, especially vacuum crude oil, and has improved selectivity for middle distillates. The purpose is to provide.

[課題を解決するための手段] 本発明者らは前記の課題を解決するために鋭意検討を行
なった結果、USYゼオライトを用い、さらにホウ素お
よび/またはリンを触媒に含有させることで中間留分の
選択性を向上できると言う知見に基づいて本発明を完成
するに至った。
[Means for Solving the Problems] The present inventors conducted extensive studies to solve the above problems, and found that by using USY zeolite and further containing boron and/or phosphorus in the catalyst, middle distillate The present invention has been completed based on the knowledge that the selectivity of the method can be improved.

すなわち本発明は、アルミナとUSYゼオライトからな
る担体に、周期律表第Vb族金属、第■b族金属および
第■族金属から選ばれる少なくとも 1種の水素化活性
金属とホウ素および/またはリンを担持してなることを
特徴とする重質石油類の水素化分解触媒を提供するもの
である。
That is, the present invention provides a carrier comprising alumina and USY zeolite, at least one hydrogenation-active metal selected from Group Vb metals, Group IIb metals, and Group II metals of the periodic table, and boron and/or phosphorus. The present invention provides a catalyst for hydrocracking heavy petroleum, which is characterized by being supported on the catalyst.

本発明に使用されるアルミナは、公知の調製法により調
製できる。例えば、硫酸アルミニウム等のアルミニウム
塩をアンモニア等のアルカリで中和し、あるいはアルミ
ン酸ソーダ等のアルミン酸塩で中和し、生成したアルミ
ナ水和物に適当なアルカリを添加しアルミナ水和物スラ
リーのpHを8〜IOの弱アルカリ性に調整し、60〜
100℃で熟成した擬ベーマイトより得られる。ただし
、熟成が不十分であったりすると好ましい担体は得られ
ないこともある。また市販されているベーマイトの粉末
を用いることもできる。
Alumina used in the present invention can be prepared by known preparation methods. For example, an aluminum salt such as aluminum sulfate is neutralized with an alkali such as ammonia, or an aluminate such as sodium aluminate, and an appropriate alkali is added to the resulting alumina hydrate to form an alumina hydrate slurry. Adjust the pH to a weak alkalinity of 8 to IO, and
Obtained from pseudoboehmite aged at 100°C. However, if the ripening is insufficient, a preferred carrier may not be obtained. Moreover, commercially available boehmite powder can also be used.

本発明で用いられるUSYゼオライトとは、超安定Yゼ
オライト(U 1tra  S table Yゼオラ
イト)のことで、高温および水蒸気処理により結晶性の
劣化に高い抵抗力を有し、約4重量%未満、好ましくは
約 1重量%未満のR20含有Et(RはNa、Kまた
はその他のアルカリ金属イオン)かつ約24.50人未
満の単位格子サイズ、並びに3.5〜7.0またはそれ
以上の範囲のシリカ(S02)/アルミナ(Al103
 )モル比により特徴づけられるY型ゼオライトである
The USY zeolite used in the present invention refers to ultra-stable Y zeolite, which has high resistance to deterioration of crystallinity by high temperature and steam treatment, and contains less than about 4% by weight, preferably silica containing less than about 1% by weight of R20 (where R is Na, K or other alkali metal ion) and a unit cell size of less than about 24.50 and a range of 3.5 to 7.0 or greater. (S02)/Alumina (Al103
) is a Y-type zeolite characterized by its molar ratio.

USYゼオライトはアンモニウム交換Yゼオライトを、
例えばEDTA等を用いて脱アルミニウムして安定化す
る方法、スチーミング処理して安定化する方法、高温焼
成およびイオン交換を繰返して安定化する方法、鉱酸処
理して安定化する方法等によって製造することができる
。かくして得られるUSYゼオライトは、そのまま本発
明における担体として使用することができ、さらに、ラ
ンタン、セリウム等の希土類金属イオンでイオン交換し
て得られたUSYゼオライトも本発明におけるとして使
用することもできる。
USY zeolite is ammonium exchanged Y zeolite,
For example, it is produced by a method of stabilizing by dealuminating using EDTA etc., a method of stabilizing by steaming treatment, a method of stabilizing by repeating high temperature calcination and ion exchange, a method of stabilizing by treating with mineral acid, etc. can do. The USY zeolite thus obtained can be used as it is as a carrier in the present invention, and furthermore, USY zeolite obtained by ion exchange with rare earth metal ions such as lanthanum and cerium can also be used as in the present invention.

このようにして得られるUSYゼオライトは極めて水熱
安定性に優れているとともに、処理の過程において酸性
質も変化し、水素化分解触媒の担体として好ましいもの
となる。USYゼオライトはシリカ/アルミナモル比で
特徴づけられるが、本発明で好ましく用いられるのはシ
リカ/アルミナモル比で5〜50のものである。
The USY zeolite thus obtained has extremely excellent hydrothermal stability, and its acid properties change during the treatment process, making it suitable as a support for a hydrocracking catalyst. USY zeolite is characterized by its silica/alumina molar ratio, and those with a silica/alumina molar ratio of 5 to 50 are preferably used in the present invention.

本発明において、担体に用いるUSYゼオライトの割合
は、担体に対して1〜50wt%、好ましくはlO〜4
0vt%である。
In the present invention, the proportion of USY zeolite used in the carrier is 1 to 50 wt%, preferably lO to 4
It is 0vt%.

本発明に用いられるアルミナとUSYゼオライトを主成
分とする担体の製造方法は、アルミナ水和物ゲルとUS
Yゼオライトを混合する方法がある。すなわち、前述し
た熟成ベーマイトにUSYゼオライトを所定量混ぜ込み
、混練し成型後、乾燥し、焼成することによって製造で
きる。
The method for producing the carrier mainly composed of alumina and USY zeolite used in the present invention includes alumina hydrate gel and USY zeolite.
There is a method of mixing Y zeolite. That is, it can be manufactured by mixing a predetermined amount of USY zeolite into the above-mentioned aged boehmite, kneading and shaping, drying, and firing.

また、ベーマイト粉を硝酸で解膠し、アンモニアによっ
て中和したゲル中にUSYゼオライトを混ぜ込むことに
よっても本発明における担体を製造することができる。
The carrier of the present invention can also be produced by peptizing boehmite powder with nitric acid and mixing USY zeolite into a gel that has been neutralized with ammonia.

本発明でいう水素化活性金属としては周期律表第Vb族
金属、第■b族金属および第■族金属から選ばれる少な
くとも 1種類の金属が用いられる。
The hydrogenation-active metal used in the present invention is at least one metal selected from group Vb metals, group (b) metals, and group (i) metals of the periodic table.

特ニニッケル(Ni )  コバルト(CO)、モリブ
デン(MO)  タングステン(W)、バナジウム(V
)から選ばれる少なくとも 1種の金属が好ましい。
Special Nickel (Ni) Cobalt (CO), Molybdenum (MO) Tungsten (W), Vanadium (V)
) is preferred.

これら水素化活性金属を複合化する場合、NlMo 、
 Co −Mo 、 Ni −Co −Mo 、NiW
、Co  −WS N1 −Co  −WS Ni  
−VS C。
When these hydrogenation active metals are combined, NlMo,
Co-Mo, Ni-Co-Mo, NiW
, Co -WS N1 -Co -WS Ni
-VS C.

−VSCo−V−Mo等が挙げられる。好ましい組合せ
として、Co −Mo 、 Ni −Mo 、 NiC
o −Mo 、Co−WSNl −Wが特に挙げられる
。これ以外の活性金属も少量であれば含んでもよい。
-VSCo-V-Mo and the like. Preferred combinations include Co-Mo, Ni-Mo, NiC
Particular mention may be made of o-Mo, Co-WSNl-W. Other active metals may also be included as long as they are in small amounts.

この活性金属は金属酸化物、金属硫化物の形で担体に含
浸法等の公知の方法で担持することができる。活性金属
の担持量は金属として最終触媒の1〜25wt%、好ま
しくは5〜20wt%である。
This active metal can be supported on a carrier in the form of a metal oxide or metal sulfide by a known method such as an impregnation method. The amount of active metal supported is 1 to 25 wt%, preferably 5 to 20 wt% of the final catalyst as metal.

また活性化金属を複合化する場合、Coが0,5−10
wt%、Niが0.5〜1OvL%、MOが2〜20v
t%、Wが2〜20vt%、Vが2〜20vt%の範囲
が好ましい。活性金属の担持法は特に限定しないが、通
常行なわれる水溶液による含浸担持が好ましい。
In addition, when compositing activated metals, Co is 0.5-10
wt%, Ni 0.5-1OvL%, MO 2-20v
t%, W is preferably in the range of 2 to 20 vt%, and V is preferably in the range of 2 to 20 vt%. The method of supporting the active metal is not particularly limited, but the usual method of impregnating and supporting with an aqueous solution is preferred.

本発明で用いるリンの化合物としては、リン酸、亜リン
酸、次亜リン酸、リンモリブデン酸、リンモリブデン酸
アンモニウム、リンタングステン酸、リンタングステン
酸アンモニウム等がある。
Examples of phosphorus compounds used in the present invention include phosphoric acid, phosphorous acid, hypophosphorous acid, phosphomolybdic acid, ammonium phosphomolybdate, phosphotungstic acid, and ammonium phosphotungstate.

また、ホウ素の化合物としてはホウ酸、ホウ酸アンモニ
ウム、酸化ホウ素、塩化ホウ素、フッ化ホウ素等がある
Examples of boron compounds include boric acid, ammonium borate, boron oxide, boron chloride, and boron fluoride.

リンおよび/またはホウ素の化合物を担体に担持するた
め、これらの化合物を含有する溶液と担体との接触は常
法により、例えば溶液中に担体を浸漬する方法、担体と
溶液とを混練する方法、担体上へ溶液を滴下する方法、
溶液中に担体を浸漬してイオン交換する方法等によるこ
とができる。
In order to support the phosphorus and/or boron compounds on the carrier, the solution containing these compounds may be brought into contact with the carrier by a conventional method, such as by immersing the carrier in a solution, kneading the carrier and the solution, A method of dropping a solution onto a carrier,
A method such as ion exchange by immersing the carrier in a solution can be used.

上記溶液と接触させる担体は成型したものでも、成型し
ないものでもよい。
The carrier brought into contact with the solution may be molded or unmolded.

ホウ素、リンの含有率は、酸化物で最終触媒の1−15
wt%、好ましくは l−10vt%である。
The content of boron and phosphorus is 1-15% of the final catalyst as an oxide.
wt%, preferably l-10vt%.

本発明の触媒にホウ素および/またはリンを含Hさせる
ことにより、触媒の脱硫活性や水素化活性が向上する。
By adding boron and/or phosphorus to the catalyst of the present invention, the desulfurization activity and hydrogenation activity of the catalyst are improved.

そのため生成油の品質は良く、また中間留分の収率が高
い。
Therefore, the quality of the produced oil is good and the yield of middle distillates is high.

本発明で言う重質石油類とは、アスファルテン分を実質
含む重質石油類で、原油の常圧残油、減圧残油、あるい
はアスファルテン分を実質含まない常圧留出油、減圧留
出油、溶剤脱歴油が挙げられる。本発明においては減圧
留出油のうち減圧軽油が好ましく、沸点範囲360〜5
60℃の留分が90%以上あるものが用いられる。
In the present invention, heavy petroleum refers to heavy petroleum containing substantially asphaltene content, such as atmospheric residual oil or vacuum residue of crude oil, or atmospheric distillate oil or vacuum distillate oil that does not substantially contain asphaltene content. , solvent deasphalted oil. In the present invention, among vacuum distillate oils, vacuum gas oil is preferred, with a boiling point range of 360 to 5.
The one containing 90% or more of the fraction at 60°C is used.

本発明でいう減圧軽油とは、常圧蒸留で得られた残油を
更に減圧蒸留にて分留したもので、沸点範囲が実質的に
360〜560℃程度のものである。
The vacuum gas oil referred to in the present invention is obtained by further fractionating the residual oil obtained by atmospheric distillation by vacuum distillation, and has a boiling point range of substantially 360 to 560°C.

この減圧軽油中の硫黄は約2.0wt%以下で、窒素は
約0.2vt%以下である。
Sulfur in this vacuum gas oil is about 2.0 wt% or less, and nitrogen is about 0.2 wt% or less.

水素化分解の反応条件としては、圧力20〜200Kg
 / cri、好ましくは50〜15(Hg/ 7で、
温度300〜450℃、好ましく let 350〜4
30℃で、LH3V0.1〜2.0、好ましくは、0.
1〜1.5が用いられる。
The reaction conditions for hydrogenolysis are a pressure of 20 to 200 kg.
/cri, preferably 50-15 (Hg/7,
Temperature 300~450℃, preferably let 350~4
At 30°C, LH3V is 0.1-2.0, preferably 0.
1 to 1.5 is used.

[発明の効果] 以上に示した本発明の水素化分解触媒によって、重質石
油類、特に減圧軽油の水素化分解において高い転化率で
、しかも中間留分を多く得ることができる。
[Effects of the Invention] The hydrocracking catalyst of the present invention described above makes it possible to obtain a high conversion rate and a large amount of middle distillate in the hydrocracking of heavy petroleum products, especially vacuum gas oil.

[実施例] 次に、実施例等によって本発明を更に詳しく述べる。[Example] Next, the present invention will be described in more detail with reference to Examples.

実施例1 ベーマイト粉を希硝酸で解膠し、アンモニア水によって
中和したゲルを濾別した。そのゲルにUSYゼオライト
を最終的に20vt%含むような割合で加えて充分に加
熱混練した。さらに混練ゲルを押出し成型し、乾燥後、
温度500℃で3時間焼成することにより、アルミナ・
USYゼオライト担体を製造した。
Example 1 Boehmite powder was peptized with dilute nitric acid, and the gel neutralized with aqueous ammonia was filtered. USY zeolite was added to the gel in such a proportion that the final content was 20 vt%, and the mixture was sufficiently heated and kneaded. Furthermore, the kneaded gel is extruded, and after drying,
By firing at a temperature of 500℃ for 3 hours, alumina
A USY zeolite carrier was produced.

このアルミナ・USYゼオライト担体(ゼオライト20
vt%含有)に、ニッケル、モリブデンをそれぞれ酸化
物で4.0wt%、12.0wt%およびホウ素を酸化
物で5゜Ovt%担持したものを触媒として、沸点範囲
380〜560℃の留分が90voJ%以上ある減圧軽
油を用い、以下の反応条件で水素化分解を行なった。な
お、ここで用いたUSYゼオライトのシリカ・アルミナ
比は6.0である。
This alumina/USY zeolite carrier (zeolite 20
Using 4.0wt% and 12.0wt% of nickel and molybdenum supported as oxides and 5°Ovt% of boron supported as oxides on a mixture of Hydrocracking was carried out using vacuum gas oil having a content of 90 voJ% or more under the following reaction conditions. Note that the silica/alumina ratio of the USY zeolite used here is 6.0.

圧力     noKy/cm L HS V   0.25 反応温度  390℃ 実施例2 ホウ素の代わりにリンを酸化物で1.ovt%用いた以
外は、実施例1と同様な触媒を用いて水素化分解を行な
った。
Pressure noKy/cm L HS V 0.25 Reaction temperature 390°C Example 2 1. Hydrocracking was carried out using the same catalyst as in Example 1, except that ovt% was used.

比較例1〜2 担体としてアルミナ(比較例1)とボリア20νt%を
含むアルミナ・ボリア(比較例2)を用い、ニッケル、
モリブデンの担持量が実施例1〜2と同じである触媒で
水素化分解を行なった。
Comparative Examples 1 to 2 Alumina (Comparative Example 1) and alumina/boria containing 20 νt% of boria (Comparative Example 2) were used as carriers, and nickel,
Hydrocracking was carried out using a catalyst having the same amount of molybdenum supported as in Examples 1 and 2.

以上の様にして得られた評価結果を第1表にまとめる。The evaluation results obtained as described above are summarized in Table 1.

第1表 第1表に示したように、本発明に係る実施例1〜2の触
媒は比較例1〜2と比較して高い転化率が得られるのと
同時に、中間留分の選択率も、比較例2のアモルファス
系触媒を用いた場合と同等であることが判る。
Table 1 As shown in Table 1, the catalysts of Examples 1 and 2 according to the present invention can obtain higher conversion rates than Comparative Examples 1 and 2, and at the same time have a lower selectivity for middle distillates. , it can be seen that it is equivalent to the case of Comparative Example 2 using the amorphous catalyst.

Claims (1)

【特許請求の範囲】 1、アルミナとUSYゼオライトからなる担体に、周期
律表第Vb族金属、第VIb族金属および第VIII族金属か
ら選ばれる少なくとも1種の水素化活性金属とホウ素お
よび/またはリンを担持してなることを特徴とする重質
石油類の水素化分解触媒。 2、前記担体がUSYゼオライトを1〜50%含有する
ものである特許請求の範囲1項記載の水素化分解触媒。 3、前記水素化活性金属がニッケル、コバルト、モリブ
デン、タングステン、バナジウムから選ばれる少なくと
も1種の金属である特許請求の範囲1項記載の水素化分
解触媒。
[Claims] 1. At least one hydrogenation-active metal selected from Group Vb metals, Group VIb metals, and Group VIII metals of the periodic table, boron, and/or a carrier consisting of alumina and USY zeolite. A heavy petroleum hydrocracking catalyst characterized by supporting phosphorus. 2. The hydrocracking catalyst according to claim 1, wherein the carrier contains 1 to 50% of USY zeolite. 3. The hydrogenation cracking catalyst according to claim 1, wherein the hydrogenation-active metal is at least one metal selected from nickel, cobalt, molybdenum, tungsten, and vanadium.
JP3495889A 1989-02-16 1989-02-16 Catalyst for hydrocracking of heavy oils Pending JPH02214544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3495889A JPH02214544A (en) 1989-02-16 1989-02-16 Catalyst for hydrocracking of heavy oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3495889A JPH02214544A (en) 1989-02-16 1989-02-16 Catalyst for hydrocracking of heavy oils

Publications (1)

Publication Number Publication Date
JPH02214544A true JPH02214544A (en) 1990-08-27

Family

ID=12428660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3495889A Pending JPH02214544A (en) 1989-02-16 1989-02-16 Catalyst for hydrocracking of heavy oils

Country Status (1)

Country Link
JP (1) JPH02214544A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686374A (en) * 1994-09-01 1997-11-11 Japan Energy Corporation Catalyst for hydroprocessing
EP0967012A1 (en) * 1998-06-25 1999-12-29 Institut Français du Pétrole Hydrocracking catalyst comprising a not globally dealuminated zeolite Y, a group VB element and a promoter
FR2780310A1 (en) * 1998-06-25 1999-12-31 Inst Francais Du Petrole New bifunctional hydrocracking catalyst comprising an amorphous oxide matrix , a dealuminised zeolite Y, a group VB element and a promoter
FR2780305A1 (en) * 1998-06-25 1999-12-31 Inst Francais Du Petrole Bifunctional hydrocracking catalyst composition based on a non-globally dealuminized zeolite and a mixed sulfide phase
FR2780307A1 (en) * 1998-06-25 1999-12-31 Inst Francais Du Petrole Bifunctional hydrocracking catalysts based on a dealuminized zeolite and a mixed sulfide phase
JP2002045698A (en) * 2000-05-26 2002-02-12 Petroleum Energy Center Process for hydrogenation treatment of hydrocarbon
WO2005092500A1 (en) * 2004-03-29 2005-10-06 Nippon Oil Corporation Hydrocracking catalyst and process for producing liquid hydrocarbon
WO2008062595A1 (en) * 2006-11-21 2008-05-29 Nippon Oil Corporation Process for producing liquid fuel
US8288303B2 (en) 2006-03-30 2012-10-16 Nippon Oil Corporation Hydrocracking catalyst and process for producing fuel base material
US11935827B2 (en) 2021-09-15 2024-03-19 Saudi Arabian Oil Company Catalysts with modified active phase dispersion and method to prepare catalysts with modified active phase dispersion

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686374A (en) * 1994-09-01 1997-11-11 Japan Energy Corporation Catalyst for hydroprocessing
EP0967012A1 (en) * 1998-06-25 1999-12-29 Institut Français du Pétrole Hydrocracking catalyst comprising a not globally dealuminated zeolite Y, a group VB element and a promoter
FR2780310A1 (en) * 1998-06-25 1999-12-31 Inst Francais Du Petrole New bifunctional hydrocracking catalyst comprising an amorphous oxide matrix , a dealuminised zeolite Y, a group VB element and a promoter
FR2780305A1 (en) * 1998-06-25 1999-12-31 Inst Francais Du Petrole Bifunctional hydrocracking catalyst composition based on a non-globally dealuminized zeolite and a mixed sulfide phase
FR2780307A1 (en) * 1998-06-25 1999-12-31 Inst Francais Du Petrole Bifunctional hydrocracking catalysts based on a dealuminized zeolite and a mixed sulfide phase
FR2780311A1 (en) * 1998-06-25 1999-12-31 Inst Francais Du Petrole HYDROCRACKING CATALYST COMPRISING A NON-GLOBALLY DESALUMINATED Y ZEOLITE, A VB GROUP ELEMENT, AND A PROMOTING ELEMENT SELECTED IN THE GROUP FORMED BY BORON, PHOSPHORUS AND SILICON
JP2002045698A (en) * 2000-05-26 2002-02-12 Petroleum Energy Center Process for hydrogenation treatment of hydrocarbon
WO2005092500A1 (en) * 2004-03-29 2005-10-06 Nippon Oil Corporation Hydrocracking catalyst and process for producing liquid hydrocarbon
US7700818B2 (en) 2004-03-29 2010-04-20 Nippon Oil Corporation Process for producing liquid hydrocarbon with hydrocracking catalyst
US8288303B2 (en) 2006-03-30 2012-10-16 Nippon Oil Corporation Hydrocracking catalyst and process for producing fuel base material
WO2008062595A1 (en) * 2006-11-21 2008-05-29 Nippon Oil Corporation Process for producing liquid fuel
AU2007322907B2 (en) * 2006-11-21 2011-11-24 Nippon Oil Corporation Process for producing liquid fuel
JP2013079402A (en) * 2006-11-21 2013-05-02 Jx Nippon Oil & Energy Corp Method for producing liquid fuel
JP5408879B2 (en) * 2006-11-21 2014-02-05 Jx日鉱日石エネルギー株式会社 Method for producing liquid fuel
US11935827B2 (en) 2021-09-15 2024-03-19 Saudi Arabian Oil Company Catalysts with modified active phase dispersion and method to prepare catalysts with modified active phase dispersion

Similar Documents

Publication Publication Date Title
US4517073A (en) Hydrocracking process and catalyst therefor
US7410924B2 (en) Hydrocracking catalyst comprising a microporous crystalline solid material
US4576711A (en) Hydrocracking process and catalyst therefor
KR100348430B1 (en) Mid barrel hydrocracking catalyst and preparation method thereof
US4455390A (en) Catalyst and method for impregnating at a pH less than one
JPH0555189B2 (en)
JPH0239305B2 (en)
US4563434A (en) Hydrocracking catalyst
RU2617987C2 (en) Method for production of hydroconversion catalyst, comprising at least one nu-86 zeolite
US10723960B2 (en) Method for hydrocracking hydrocarbon feedstocks using a catalyst comprising a zeolite and an amorphous mesoporous alumina
RU2626397C1 (en) Crude hydrocarbons hydro-cracking method
JP2000024508A (en) Silicon-containing y-type zeolite base catalyst useful for hydrocracking
JPH02214544A (en) Catalyst for hydrocracking of heavy oils
US6132594A (en) Hydrocracking catalyst and hydrocracking method for hydrocarbon oils
CN1356380A (en) Hydrorefining catalyst for heavy oil
EP1535983B1 (en) Use of a hydrocracking catalyst comprising a microporous crystalline solid material
US4152251A (en) Dinitrogenation of mineral oil utilizing a fluorine-promoted, alumina-supported metal catalyst
EP0070824B2 (en) Hydrocarbon conversion catalyst
US4743359A (en) Reforming and related processes
CN1470609A (en) Catalyst for deep hydrogenation of distillate and its preparing method
JP2000351978A (en) Hydrogenation of heavy oil
JP3057651B2 (en) Hydrocracking method for hydrocarbons
JPS59206048A (en) Hydrogenation catalyst for heavy oil
JPH0117414B2 (en)
JP2996435B2 (en) Hydrodesulfurization of gas oil