JP4808172B2 - Hydrocracking catalyst and fuel substrate production method - Google Patents

Hydrocracking catalyst and fuel substrate production method Download PDF

Info

Publication number
JP4808172B2
JP4808172B2 JP2007073193A JP2007073193A JP4808172B2 JP 4808172 B2 JP4808172 B2 JP 4808172B2 JP 2007073193 A JP2007073193 A JP 2007073193A JP 2007073193 A JP2007073193 A JP 2007073193A JP 4808172 B2 JP4808172 B2 JP 4808172B2
Authority
JP
Japan
Prior art keywords
catalyst
usy zeolite
mass
hydrocracking
nay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007073193A
Other languages
Japanese (ja)
Other versions
JP2007289931A (en
Inventor
正浩 東
浩幸 関
純夫 斉藤
隆三 黒田
隆 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Eneos Corp
Original Assignee
Catalysts and Chemicals Industries Co Ltd
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, JXTG Nippon Oil and Energy Corp filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2007073193A priority Critical patent/JP4808172B2/en
Publication of JP2007289931A publication Critical patent/JP2007289931A/en
Application granted granted Critical
Publication of JP4808172B2 publication Critical patent/JP4808172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水素の存在下でパラフィン系炭化水素から燃料基材を製造するための触媒およびこの触媒を使用した燃料基材の製造方法に関する。   The present invention relates to a catalyst for producing a fuel substrate from paraffinic hydrocarbons in the presence of hydrogen, and a method for producing a fuel substrate using this catalyst.

硫黄分および芳香族炭化水素の含有量が少ない環境対応型液体燃料への要求が近年急速に高まってきている。また、燃料油製造業界においても既に環境対応型液体燃料の製造方法が検討されている。その中でワックス等のパラフィン系炭化水素を触媒存在下で水素化分解して環境対応型液体燃料に転換するプロセスが1つの方法として検討されている。
パラフィン系炭化水素の水素化分解プロセスにおいては、有用な中間留分を高収率で得ることがプロセスの経済性向上のために特に重要である。これに加えて得られる燃料基材(中間留分)の流動点が低いことも必要である。即ち、分解活性が高く、中間留分得率も高く、かつ燃料基材(中間留分)が低流動点を有する高性能な水素化分解触媒の開発がプロセスの経済性向上の鍵を握っている。
In recent years, there has been a rapid increase in demand for environmentally friendly liquid fuels with low sulfur and aromatic hydrocarbon contents. Also, in the fuel oil manufacturing industry, a method for producing an environmentally friendly liquid fuel has already been studied. Among them, a process of hydrocracking paraffinic hydrocarbons such as wax in the presence of a catalyst to convert it into an environmentally friendly liquid fuel is being studied as one method.
In the hydrocracking process of paraffinic hydrocarbons, obtaining a useful middle distillate in a high yield is particularly important for improving the economics of the process. In addition, the pour point of the fuel substrate (middle distillate) obtained is also required to be low. In other words, the development of a high-performance hydrocracking catalyst with high cracking activity, high middle distillate yield and low pour point in the fuel substrate (middle distillate) is the key to improving the economics of the process. Yes.

減圧軽油の水素化分解は既に商業化されており、数十年の歴史を有する確立した技術である。しかしながら、ノルマルを主成分とするパラフィン系炭化水素の反応性は減圧軽油と大きく異なり、減圧軽油の触媒をそのまま転用することが難しいため、パラフィン系炭化水素用の高性能触媒の開発を目指して研究開発が現在精力的に続けられている。少数ではあるが、既に特許や報文がある。例えば、特許文献1にはシリカアルミナを含有した担体に白金を担持した触媒が開示されている。また、特許文献2においては、USYゼオライトに白金を担持した触媒を用いてパラフィン系炭化水素の水素化分解を行った研究例がある。
一般にゼオライトの分解活性は満足する水準にあるものの、中間留分得率が低く、また流動点が十分に低い燃料基材(中間留分)が得られないという欠点がある。一方、シリカアルミナに代表されるアモルファス固体酸触媒は、中間留分得率および燃料基材(中間留分)の流動点は満足すべき高い水準にあるものの、分解活性が低い。即ち、分解活性、中間留分得率および燃料基材(中間留分)の低流動点の三者を同時に満足する触媒はまだ開発されておらず、これがパラフィン系炭化水素の水素化分解プロセスの経済性向上に大きな障害となっている。
特開平6−41549号公報 特開2004−255241号公報
Hydrocracking of vacuum gas oil has already been commercialized and is an established technology with decades of history. However, the reactivity of paraffinic hydrocarbons with normal as the main component is significantly different from that of vacuum gas oil, and it is difficult to divert the catalyst of vacuum gas oil as it is, so research aimed at developing high-performance catalysts for paraffinic hydrocarbons. Development is ongoing vigorously. There are already a small number of patents and reports. For example, Patent Document 1 discloses a catalyst in which platinum is supported on a carrier containing silica alumina. In Patent Document 2, there is a research example in which hydrocracking of paraffinic hydrocarbons is performed using a catalyst in which platinum is supported on USY zeolite.
In general, although the cracking activity of zeolite is at a satisfactory level, there are disadvantages that the yield of middle distillate is low and a fuel base material (middle distillate) having a sufficiently low pour point cannot be obtained. On the other hand, an amorphous solid acid catalyst typified by silica alumina is low in cracking activity, although the middle distillate yield and the pour point of the fuel substrate (middle distillate) are at a satisfactory level. In other words, a catalyst that simultaneously satisfies the three requirements of cracking activity, middle distillate yield, and low pour point of the fuel substrate (middle distillate) has not been developed yet, and this is the process of hydrocracking of paraffinic hydrocarbons. This is a major obstacle to improving economic efficiency.
JP-A-6-41549 Japanese Patent Laid-Open No. 2004-255241

本発明の目的は、分解活性、中間留分得率および燃料基材(中間留分)の低流動点の三者を同時に満足する、パラフィン系炭化水素から燃料基材を製造するための触媒およびこの触媒を用いた燃料基材の製造方法を提供することによりプロセスの経済性をさらに向上させることにある。   An object of the present invention is to provide a catalyst for producing a fuel substrate from paraffinic hydrocarbons, which simultaneously satisfies the three requirements of cracking activity, middle distillate yield and low pour point of the fuel substrate (middle distillate), and The object of the present invention is to further improve the economics of the process by providing a method for producing a fuel substrate using this catalyst.

本発明者らは鋭意検討した結果、X線回折において111面(2θ=5.0〜6.0°)に現れるピーク強度が30以下であるNaYを原料として得られたUSYゼオライトを触媒とすることで上述の課題を解決できることを見出し、本発明を完成するに至った。
ここでいうピーク強度とは、2θ=4〜120°に現れるピークの高さの総和を100としたときのピークの高さを示す。
すなわち本発明は、X線回折において111面に現れるピークの強度が30以下であるNaYを原料として得られたUSYゼオライトに周期律表第VIII族の貴金属を含むことを特徴とするパラフィン系炭化水素用水素化分解触媒に関する。
さらに本発明は、前記記載の触媒を用いて、パラフィン系炭化水素を水素化分解することを特徴とする燃料基材の製造方法に関する。
As a result of intensive studies, the present inventors used as a catalyst a USY zeolite obtained using NaY having a peak intensity of 30 or less appearing on the 111 plane (2θ = 5.0 to 6.0 °) in X-ray diffraction as a raw material. As a result, the inventors have found that the above-described problems can be solved, and have completed the present invention.
The peak intensity here refers to the peak height when the sum of the peak heights appearing at 2θ = 4 to 120 ° is taken as 100.
That is, the present invention provides a paraffinic hydrocarbon characterized in that a USY zeolite obtained using NaY having a peak intensity of 30 or less appearing on the 111 plane in X-ray diffraction as a raw material contains a Group VIII noble metal The present invention relates to a hydrocracking catalyst.
Furthermore, the present invention relates to a method for producing a fuel substrate, characterized in that paraffinic hydrocarbons are hydrocracked using the catalyst described above.

本発明の触媒をパラフィン系炭化水素の水素化分解に使用することにより、高分解活性、高い中間留分得率、燃料基材(中間留分)の低流動点の三者を同時に満足した液状炭化水素を製造することができる。   By using the catalyst of the present invention for the hydrocracking of paraffinic hydrocarbons, a liquid that satisfies the three requirements of high cracking activity, high middle distillate yield, and low pour point of the fuel substrate (middle distillate) simultaneously. Hydrocarbons can be produced.

以下に本発明を詳述する。
本発明に用いられるUSYゼオライトとは、X線回折において111面に現れるピークの強度が30以下、好ましくは20〜25であるNaYを原料として得られたものである。このUSYゼオライトのケイバン比(シリカとアルミナのモル比)は通常20〜140であり、より好ましくは30〜80である。
また、USYゼオライトの平均粒子径は、1.0μm以下が好ましく、0.5μm以下がより好ましい。
The present invention is described in detail below.
The USY zeolite used in the present invention is obtained from NaY having a peak intensity of 30 or less, preferably 20 to 25, appearing on the 111 plane in X-ray diffraction. The cayban ratio (molar ratio of silica and alumina) of this USY zeolite is usually 20 to 140, more preferably 30 to 80.
Further, the average particle size of USY zeolite is preferably 1.0 μm or less, and more preferably 0.5 μm or less.

本発明の水素化分解触媒は、活性成分としてUSYゼオライト単独で用いることができるが、アモルファス固体酸を含有することで更に性能を向上することができる。アモルファス固体酸としては、シリカアルミナ、シリカチタニア、シリカジルコニア、アルミナボリアなどが挙げられ、より好ましくはシリカアルミナ、シリカジルコニアおよびアルミナボリアの中から選ばれる1種類以上の固体酸が挙げられる。
このときの、触媒中のアモルファス固体酸/USYゼオライトの質量比としては特に制限は無いが0.1〜80の範囲であることが好ましく、1〜60がより好ましい。
The hydrocracking catalyst of the present invention can be used alone as an active component of USY zeolite, but the performance can be further improved by containing an amorphous solid acid. Examples of the amorphous solid acid include silica alumina, silica titania, silica zirconia, and alumina boria, and more preferably one or more kinds of solid acids selected from silica alumina, silica zirconia, and alumina boria.
The mass ratio of the amorphous solid acid / USY zeolite in the catalyst at this time is not particularly limited, but is preferably in the range of 0.1 to 80, and more preferably 1 to 60.

触媒の成型の為に使用されるバインダーについては特に制限は無いが、通常、アルミナ、シリカ、チタニア、マグネシアが好ましく、最も好ましくはアルミナである。本発明で成型に使用されるバインダーの成型触媒全体に対する割合に特に制限は無いが、通常5〜99質量%であり、好ましくは20〜99質量%である。   The binder used for molding the catalyst is not particularly limited, but usually, alumina, silica, titania and magnesia are preferable, and alumina is most preferable. Although there is no restriction | limiting in particular in the ratio with respect to the whole shaping | molding catalyst of the binder used for shaping | molding by this invention, Usually, it is 5-99 mass%, Preferably it is 20-99 mass%.

本発明の触媒におけるUSYゼオライトの含有量は、バインダーを含む成型触媒全量基準で0.1〜15質量%であることが好ましく、1〜10質量%であることがより好ましい。   The content of USY zeolite in the catalyst of the present invention is preferably 0.1 to 15% by mass, and more preferably 1 to 10% by mass based on the total amount of the molded catalyst including the binder.

本発明の触媒は活性成分として周期律表第VIII族の貴金属を含むことが必要である。なお、活性成分として周期律表第VIII族の貴金属以外のものを用いた場合には、中間留分得率が著しく低下するため本発明の目的を達成することができない。
第VIII族の貴金属としては、具体的には、ロジウム、パラジウム、イリジウム、白金などが挙げられる。最も好ましくはパラジウムおよび白金である。これらの貴金属を、前述の成型体に含浸やイオン交換等の常法によって担持することにより本発明の触媒を製造することができる。
担持する貴金属は、必要に応じて2種以上を適宜組み合わせて使用することができる。例えば、白金とパラジウムの両者を担持して使用することができる。これら貴金属の担持量に特に制限はないが、通常、触媒全量基準で0.02〜2質量%である。
The catalyst of the present invention needs to contain a noble metal of Group VIII of the periodic table as an active component. When an active ingredient other than a noble metal of Group VIII of the periodic table is used, the middle distillate yield is remarkably lowered, and the object of the present invention cannot be achieved.
The Group VIII noble metals, specifically, rhodium, palladium, iridium, and platinum. Most preferred are palladium and platinum. The catalyst of the present invention can be produced by supporting these noble metals on the aforementioned molded body by a conventional method such as impregnation or ion exchange.
Two or more kinds of noble metals to be supported can be used in appropriate combination as required. For example, both platinum and palladium can be supported and used. The amount of these noble metals supported is not particularly limited, but is usually 0.02 to 2% by mass based on the total amount of the catalyst.

本発明においてパラフィン系炭化水素とは、パラフィン分子の含有率が70モル%以上の炭化水素を指す。パラフィン系炭化水素分子の炭素数については特に制限はないが、通常、15〜100程度のものが用いられる。本発明の触媒は、通常ワックスと称される炭素数20以上のパラフィン系炭化水素の水素化分解により有効である。
原料となるパラフィン系炭化水素の製法については特に制限はなく、本発明の触媒は石油系および合成系の各種パラフィン系炭化水素に適用することができるが、特に好ましいパラフィン系炭化水素として、フィッシャー・トロプシュ合成により製造されるいわゆるFT−ワックスを挙げることができる。
In the present invention, the paraffinic hydrocarbon refers to a hydrocarbon having a paraffin molecule content of 70 mol% or more. Although there is no restriction | limiting in particular about carbon number of a paraffin type hydrocarbon molecule, Usually, the thing of about 15-100 is used. The catalyst of the present invention is effective by hydrocracking a paraffinic hydrocarbon having 20 or more carbon atoms, usually called a wax.
There is no particular limitation on the method for producing the paraffinic hydrocarbon as a raw material, and the catalyst of the present invention can be applied to various petroleum and synthetic paraffinic hydrocarbons. Mention may be made of so-called FT-waxes produced by Tropsch synthesis.

本発明の触媒の使用にあたっては、従来の固定床反応装置を使用することができる。反応条件として、温度は200〜450℃、水素圧は0.5〜12MPa、パラフィン系炭化水素原料の液空間速度は0.1〜10/hを挙げることができ、好ましくは温度250〜400℃、水素圧は2.0〜8.0MPa、パラフィン系炭化水素原料の液空間速度は0.3〜5.0/hである。   In using the catalyst of the present invention, a conventional fixed bed reactor can be used. As reaction conditions, the temperature is 200 to 450 ° C., the hydrogen pressure is 0.5 to 12 MPa, and the liquid space velocity of the paraffinic hydrocarbon raw material is 0.1 to 10 / h, preferably the temperature is 250 to 400 ° C. The hydrogen pressure is 2.0 to 8.0 MPa, and the liquid space velocity of the paraffinic hydrocarbon raw material is 0.3 to 5.0 / h.

以上のようなX線回折において111面に現れるピークの強度が30以下であるNaYを原料として得られたUSYゼオライトを含み、かつ周期律表第VIII族の貴金属を含む触媒を、パラフィン系炭化水素の水素化分解に使用することにより、高分解活性、高い中間留分得率、燃料基材(中間留分)の低流動点の三者を同時に満足した液状炭化水素を製造することができる。   A catalyst containing USY zeolite obtained by using NaY having a peak intensity of 30 or less appearing on the 111 plane in X-ray diffraction as described above as a raw material and containing a noble metal of Group VIII of the periodic table is used as a paraffin hydrocarbon. By using this for hydrocracking, it is possible to produce a liquid hydrocarbon that simultaneously satisfies the three requirements of high cracking activity, high middle distillate yield, and low pour point of the fuel substrate (middle distillate).

以下に実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.

[実施例1]
X線回折において111面に現れるピークの強度が23であるNaY(a)を原料として得られたUSYゼオライト(a)(ケイバン比が36、平均粒子径が0.8μm)70gとアルミナバインダー930gから成る直径1/16インチ(約1.6mm)の円柱状担体に、白金元素として担体の0.8質量%となる量のジクロロテトラアンミン白金(II)の水溶液を含浸した後、これを120℃で3時間乾燥および500℃で1時間焼成することにより、触媒を調製した。
ここで、USYゼオライト(a)は、以下のようにして作製される。
[Example 1]
From 70 g of USY zeolite (a) (Caban ratio is 36, average particle size is 0.8 μm) obtained from NaY (a) having a peak intensity of 23 appearing on the 111 plane in X-ray diffraction and 930 g of alumina binder. After impregnating a cylindrical support having a diameter of 1/16 inch (about 1.6 mm) with an aqueous solution of dichlorotetraammineplatinum (II) in an amount of 0.8% by mass of the support as a platinum element, The catalyst was prepared by drying for 3 hours and calcining at 500 ° C. for 1 hour.
Here, the USY zeolite (a) is produced as follows.

(第1工程)
NaOとして17.0質量%とAlとして22.0質量%を含有するアルミン酸ナトリウム水溶液0.164kgを、撹拌しながら22.76質量%の水酸化ナトリウム水溶液1.250kgに加えた。この溶液を撹拌しながら、更にSiOの濃度が24.0質量%の3号水硝子1.324kgの中に加え、種子組成物を得た。この種子組成物に含まれる各成分の酸化物のモル比を(1)式に示す。
16NaO・Al・15SiO・320HO・・・(1)
この種子組成物を30分撹拌した後、30〜35℃で13時間静置して熟成させ、Y型ゼオライトのシード(種子)2.737kgを得た。
(First step)
0.164 kg of sodium aluminate aqueous solution containing 17.0% by mass as Na 2 O and 22.0% by mass as Al 2 O 3 was added to 1.250 kg of 22.76% by mass sodium hydroxide aqueous solution while stirring. It was. While stirring this solution, it was further added to 1.324 kg of No. 3 water glass having a SiO 2 concentration of 24.0% by mass to obtain a seed composition. The molar ratio of the oxide of each component contained in this seed composition is shown in the formula (1).
16Na 2 O · Al 2 O 3 · 15SiO 2 · 320H 2 O ··· (1)
The seed composition was stirred for 30 minutes and then allowed to stand at 30 to 35 ° C. for 13 hours for aging to obtain 2.737 kg of Y-type zeolite seed (seed).

(第2工程)
純水19.387kgにSiOの濃度が24.0質量%の3号水硝子22.043kgを添加した後、撹拌して混合し、更にSiOの濃度が30.0質量%のシリカゲル(触媒化成工業社製 Cataloid SI-30)を17.160kg加え、よく撹拌して混合した。これに、第1工程で作製したシード2.737kgを加え、次にNaOとして17.0質量%及びAlとして22.0質量%で示されるアルミン酸ナトリウム水溶液9.109kgを加え、均一になるまで十分混合し、室温で3時間撹拌して熟成し、反応混合物を得た。この反応混合物の組成は、酸化物モル比で(2)式のように示される。
2.9NaO・Al・9.0SiO・150HO・・・(2)
(Second step)
After adding 22.043 kg of No. 3 water glass having a SiO 2 concentration of 24.0% by mass to 19.387 kg of pure water, the mixture was stirred and mixed, and further silica gel (catalyst having a SiO 2 concentration of 30.0% by mass). 17.160 kg of Cataloid SI-30 manufactured by Kasei Kogyo Co., Ltd. was added and mixed with good stirring. To this was added 2.737 kg of the seed prepared in the first step, and then 9.109 kg of an aqueous sodium aluminate solution represented by 17.0% by mass as Na 2 O and 22.0% by mass as Al 2 O 3 was added. The mixture was sufficiently mixed until it became uniform, and aged by stirring at room temperature for 3 hours to obtain a reaction mixture. The composition of this reaction mixture is represented by the formula (2) in terms of oxide molar ratio.
2.9Na 2 O · Al 2 O 3 · 9.0SiO 2 · 150H 2 O ··· (2)

(第3工程)
第2工程で得られた反応混合物をコロイドミルで5回粉砕した後、結晶化槽に移して95℃で48時間、結晶化するまで加温して熟成を行った。熟成終了後、結晶化槽内を冷却し、熟成生成物を取り出し、濾過、洗浄、乾燥を順次行って、NaY(a)約9kgを得た。このNaY(a)は、X線回折において111面に現れるピークの強度が23、平均粒子径が0.8μm、結晶化度が1.05、格子定数が24.67Å、ケイバン比が5.1、比表面積が725m/gであった。
(Third step)
The reaction mixture obtained in the second step was pulverized five times with a colloid mill, then transferred to a crystallization tank and heated at 95 ° C. for 48 hours until crystallization, followed by aging. After completion of aging, the inside of the crystallization tank was cooled, the aging product was taken out, filtered, washed, and dried in order to obtain about 9 kg of NaY (a). This NaY (a) has an intensity of a peak appearing on the 111 plane in X-ray diffraction of 23, an average particle diameter of 0.8 μm, a crystallinity of 1.05, a lattice constant of 24.67Å, and a cayban ratio of 5.1. The specific surface area was 725 m 2 / g.

(第4工程)
第3工程で得られたNaY(a)を、60℃の温水9リットルに懸濁し、NaY(a)に対して等モルの硫酸アンモニウム2.64kgを加えた後、30分間撹拌してイオン交換した。その後、母液をろ別し、イオン交換したゼオライトを再度、硫酸アンモニウム2.64kgを60℃の温水20リットルに溶解した溶液でイオン交換した。これを濾過し、60℃の温水90リットルで洗浄し、乾燥を行い、65%イオン交換されたNHYを得た。
(4th process)
The NaY (a) obtained in the third step was suspended in 9 liters of warm water at 60 ° C., and 2.64 kg of equimolar ammonium sulfate was added to NaY (a), followed by stirring for 30 minutes for ion exchange. . Thereafter, the mother liquor was filtered off, and the ion-exchanged zeolite was ion-exchanged again with a solution obtained by dissolving 2.64 kg of ammonium sulfate in 20 liters of hot water at 60 ° C. This was filtered, washed with 90 liters of warm water at 60 ° C., and dried to obtain 65% ion-exchanged NH 4 Y.

(第5工程)
第4工程で得られたNHYを回転スチーミング装置に入れ、飽和水蒸気雰囲気中で670℃で30分間スチーミング焼成しHYを得た。このHY型ゼオライトを60℃の温水90リットルに懸濁させ、これをコロイドミルに通して固まりをほぐした。次いで、HYに対して4倍モル量の硫酸アンモニウム10.56kgを加え、撹拌しながら90℃で1時間イオン交換した後、これを濾過し、60℃の温水90リットルで洗浄して、乾燥し、90%イオン交換されたNHYを得た。このNHYを回転スチーミング装置に入れ、飽和水蒸気雰囲気中、700℃で30分間スチーミング焼成して粗USYゼオライトを約6.5kg得た。
(5th process)
NH 4 Y obtained in the fourth step was put in a rotary steaming apparatus and steamed and fired at 670 ° C. for 30 minutes in a saturated steam atmosphere to obtain HY. This HY-type zeolite was suspended in 90 liters of hot water at 60 ° C., and passed through a colloid mill to loosen the mass. Next, after adding 10.56 kg of ammonium sulfate having a 4-fold molar amount with respect to HY and ion-exchanged at 90 ° C. for 1 hour with stirring, this was filtered, washed with 90 liters of hot water at 60 ° C., and dried. 90% ion exchanged NH 4 Y was obtained. This NH 4 Y was put in a rotary steaming device and steamed for 30 minutes at 700 ° C. in a saturated steam atmosphere to obtain about 6.5 kg of crude USY zeolite.

(第6工程)
第5工程で得られた粗USYゼオライト5.0kgを水20リットルに懸濁し、これをコロイドミルに通して固まりをほぐした。次いで、25%硫酸5.027kgを加え、70℃で1時間撹拌してアルミナを除いた。これを濾過し、水で洗浄後、乾燥して約1.5kgのUSYゼオライト(a)を得た。このUSYゼオライト(a)は、結晶化度が1.04、格子定数が24.35、ケイバン比が36、比表面積が753m/gであった。
(Sixth step)
The crude USY zeolite (5.0 kg) obtained in the fifth step was suspended in 20 liters of water and passed through a colloid mill to loosen up the mass. Next, 5.027 kg of 25% sulfuric acid was added and stirred at 70 ° C. for 1 hour to remove alumina. This was filtered, washed with water and dried to obtain about 1.5 kg of USY zeolite (a). This USY zeolite (a) had a crystallinity of 1.04, a lattice constant of 24.35, a Keiban ratio of 36, and a specific surface area of 753 m 2 / g.

上記のように調製された触媒(200ml)を固定床の流通式反応器に充填し、パラフィン系炭化水素の水素化分解に用いた。パラフィン系炭化水素として、パラフィン含量が95%で21から80までの炭素数分布を有するFTワックスを原料とした。この時の水素圧は5MPa、原料の液空間速度は2.0/hであった。沸点360℃以下の留分を分解生成物とし、原料に対して80質量%の分解生成物が得られる時の反応温度および原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。   The catalyst (200 ml) prepared as described above was charged into a fixed bed flow reactor and used for hydrocracking of paraffinic hydrocarbons. As a paraffin hydrocarbon, FT wax having a paraffin content of 95% and a carbon number distribution of 21 to 80 was used as a raw material. The hydrogen pressure at this time was 5 MPa, and the liquid space velocity of the raw material was 2.0 / h. A fraction having a boiling point of 360 ° C. or less is regarded as a decomposition product, and a reaction temperature when a decomposition product of 80% by mass is obtained with respect to the raw material, a middle distillate (boiling point is 145 to 360 ° C.) yield, and flow I asked for a point. The results are shown in Table 1.

[実施例2]
実施例1記載のUSYゼオライト(a)70gとシリカアルミナ粉末530gを400gのアルミナをバインダーとして成型し、直径1/16インチ(約1.6mm)の円柱状担体を得た。この担体に実施例1と同様の方法で白金を担体の0.8質量%となるように担持した。さらにこれを120℃で3時間乾燥および500℃で1時間焼成することにより、触媒を調製した。
また、この触媒を用いて実施例1と同様に水素化分解を行い、80質量%の分解生成物が得られる時の反応温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
[Example 2]
70 g of USY zeolite (a) described in Example 1 and 530 g of silica alumina powder were molded using 400 g of alumina as a binder to obtain a cylindrical carrier having a diameter of 1/16 inch (about 1.6 mm). Platinum was supported on this carrier in the same manner as in Example 1 so that it might be 0.8% by mass of the carrier. Furthermore, the catalyst was prepared by drying this at 120 degreeC for 3 hours, and baking at 500 degreeC for 1 hour.
In addition, hydrocracking was carried out using this catalyst in the same manner as in Example 1 to obtain a reaction temperature when a decomposition product of 80% by mass was obtained, a middle distillate (boiling point: 145 to 360 ° C.) yield relative to the raw material, And the pour point was determined. The results are shown in Table 1.

[実施例3]
実施例1記載のUSYゼオライト(a)70gとアルミナボリア530gを400gのアルミナをバインダーとして成型し、直径1/16インチ(約1.6mm)の円柱状担体を得た。この担体に実施例1と同様の方法で白金を担体の0.8質量%となるように担持した。さらにこれを120℃で3時間乾燥および500℃で1時間焼成することにより、触媒を調製した。
また、この触媒を用いて実施例1と同様に水素化分解を行い、80質量%の分解生成物が得られる時の反応温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
[Example 3]
70 g of USY zeolite (a) described in Example 1 and 530 g of alumina boria were molded using 400 g of alumina as a binder to obtain a cylindrical carrier having a diameter of 1/16 inch (about 1.6 mm). Platinum was supported on this carrier in the same manner as in Example 1 so that it might be 0.8% by mass of the carrier. Furthermore, the catalyst was prepared by drying this at 120 degreeC for 3 hours, and baking at 500 degreeC for 1 hour.
In addition, hydrocracking was carried out using this catalyst in the same manner as in Example 1 to obtain a reaction temperature when a decomposition product of 80% by mass was obtained, a middle distillate (boiling point: 145 to 360 ° C.) yield relative to the raw material, And the pour point was determined. The results are shown in Table 1.

[実施例4]
X線回折において111面に現れるピークの強度が23であるNaY(b)を原料として得られたUSYゼオライト(b)(ケイバン比が36、平均粒子径が0.4μm)70gとアルミナボリア530gを400gのアルミナをバインダーとして成型し、直径1/16インチ(約1.6mm)の円柱状担体を得た。この担体に実施例1と同様の方法で白金を担体の0.8質量%となるように担持した。さらにこれを120℃で3時間乾燥および500℃で1時間焼成することにより、触媒を調製した。
ここで、NaY(b)は、実施例1の第2工程で得られた反応混合物を、コロイドミルに通して10回繰り返し粗粒子を充分に粉砕したこと以外は実施例1同様に調製した。NaY(b)の性状は、X線回折において111面に現れるピークの強度が23、平均粒子径が0.4μm、結晶化度が1.04、格子定数が24.66Å、ケイバン比が5.0、比表面積が728m/gであった。また、USYゼオライト(b)は、NaY(b)を使用したこと以外は実施例1と同様に調製した。USYゼオライト(b)の性状は、結晶化度が1.05、格子定数が24.36、ケイバン比が36、比表面積が782m/gであった。
また、この触媒を用いて実施例1と同様に水素化分解を行い、80質量%の分解生成物が得られる時の反応温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
[Example 4]
70 g of USY zeolite (b) (Caban ratio is 36, average particle size is 0.4 μm) obtained from NaY (b) having a peak intensity of 23 appearing on the 111 plane in X-ray diffraction and 530 g of alumina boria. 400 g of alumina was molded as a binder to obtain a cylindrical carrier having a diameter of 1/16 inch (about 1.6 mm). Platinum was supported on this carrier in the same manner as in Example 1 so that it might be 0.8% by mass of the carrier. Furthermore, the catalyst was prepared by drying this at 120 degreeC for 3 hours, and baking at 500 degreeC for 1 hour.
Here, NaY (b) was prepared in the same manner as in Example 1 except that the reaction mixture obtained in the second step of Example 1 was passed through a colloid mill and repeated 10 times to sufficiently pulverize coarse particles. The properties of NaY (b) are as follows: the intensity of the peak appearing on the 111 plane in X-ray diffraction is 23, the average particle size is 0.4 μm, the crystallinity is 1.04, the lattice constant is 24.66 ケ イ, and the caivan ratio is 5. 0, and the specific surface area was 728 m 2 / g. USY zeolite (b) was prepared in the same manner as in Example 1 except that NaY (b) was used. The properties of USY zeolite (b) were a crystallinity of 1.05, a lattice constant of 24.36, a Keiban ratio of 36, and a specific surface area of 782 m 2 / g.
In addition, hydrocracking was carried out using this catalyst in the same manner as in Example 1 to obtain a reaction temperature when a decomposition product of 80% by mass was obtained, a middle distillate (boiling point: 145 to 360 ° C.) yield relative to the raw material, And the pour point was determined. The results are shown in Table 1.

[実施例5]
実施例4記載のUSYゼオライト(b)30gを970gのアルミナをバインダーとして成型し、直径1/16インチ(約1.6mm)の円柱状担体を得た。この担体に実施例1と同様の方法で白金を担体の0.8質量%となるように担持した。さらにこれを120℃で3時間乾燥および500℃で1時間焼成することにより、触媒を調製した。
また、この触媒を用いて実施例1と同様に水素化分解を行い、80質量%の分解生成物が得られる時の反応温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
[Example 5]
30 g of USY zeolite (b) described in Example 4 was molded using 970 g of alumina as a binder to obtain a cylindrical support having a diameter of 1/16 inch (about 1.6 mm). Platinum was supported on this carrier in the same manner as in Example 1 so that it might be 0.8% by mass of the carrier. Furthermore, the catalyst was prepared by drying this at 120 degreeC for 3 hours, and baking at 500 degreeC for 1 hour.
In addition, hydrocracking was carried out using this catalyst in the same manner as in Example 1 to obtain a reaction temperature when a decomposition product of 80% by mass was obtained, a middle distillate (boiling point: 145 to 360 ° C.) yield relative to the raw material, And the pour point was determined. The results are shown in Table 1.

[実施例6]
実施例4記載のUSYゼオライト(b)30gとアルミナボリア530gを440gのアルミナをバインダーとして成型し、直径1/16インチ(約1.6mm)の円柱状担体を得た。この担体に実施例1と同様の方法で白金を担体の0.8質量%となるように担持した。さらにこれを120℃で3時間乾燥および500℃で1時間焼成することにより、触媒を調製した。
また、この触媒を用いて実施例1と同様に水素化分解を行い、80質量%の分解生成物が得られる時の反応温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
[Example 6]
30 g of USY zeolite (b) described in Example 4 and 530 g of alumina boria were molded using 440 g of alumina as a binder to obtain a cylindrical carrier having a diameter of 1/16 inch (about 1.6 mm). Platinum was supported on this carrier in the same manner as in Example 1 so that it might be 0.8% by mass of the carrier. Furthermore, the catalyst was prepared by drying this at 120 degreeC for 3 hours, and baking at 500 degreeC for 1 hour.
In addition, hydrocracking was carried out using this catalyst in the same manner as in Example 1 to obtain a reaction temperature when a decomposition product of 80% by mass was obtained, a middle distillate (boiling point: 145 to 360 ° C.) yield relative to the raw material, And the pour point was determined. The results are shown in Table 1.

[比較例1]
X線回折において111面に現れるピークの強度が37であるNaY(c)を原料として得られたUSYゼオライト(c)(ケイバン比が37、平均粒子径が1.3μm)を用いたこと以外は実施例1と同様に触媒調製および水素化分解反応を行い、80質量%の分解生成物が得られる時の分解温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
ここで、NaY(c)は、実施例1の第2工程で得られた反応混合物をコロイドミルに1回通し、固まりをほぐしたこと以外は実施例1同様に調製した。NaY(c)の性状は、X線回折において111面に現れるピークの強度が37、平均粒子径が1.3μm、結晶化度が1.05、格子定数が24.66Å、ケイバン比が5.1、比表面積が721m/gであった。また、USYゼオライト(c)は、NaY(c)を使用したこと以外は実施例1と同様に調製した。USYゼオライト(c)の性状は、結晶化度が1.03、格子定数が24.35、ケイバン比が37、比表面積が758m/gであった。
[Comparative Example 1]
Except for using USY zeolite (c) obtained by using NaY (c) having a peak intensity of 37 appearing on the 111 plane in X-ray diffraction as a raw material (with a Keiban ratio of 37 and an average particle size of 1.3 μm). The catalyst preparation and the hydrocracking reaction were carried out in the same manner as in Example 1, and the cracking temperature when a cracked product of 80% by mass was obtained, the middle distillate (boiling point: 145 to 360 ° C.) yield, and the pour point. Asked. The results are shown in Table 1.
Here, NaY (c) was prepared in the same manner as in Example 1 except that the reaction mixture obtained in the second step of Example 1 was passed through the colloid mill once to loosen the mass. The properties of NaY (c) are such that the peak intensity appearing on the 111 plane in X-ray diffraction is 37, the average particle diameter is 1.3 μm, the crystallinity is 1.05, the lattice constant is 24.6624, and the caivan ratio is 5. 1. The specific surface area was 721 m 2 / g. USY zeolite (c) was prepared in the same manner as in Example 1 except that NaY (c) was used. The properties of USY zeolite (c) were a crystallinity of 1.03, a lattice constant of 24.35, a Keiban ratio of 37, and a specific surface area of 758 m 2 / g.

[比較例2]
比較例1と同じUSYゼオライト(c)を用いたこと以外は実施例3と同様に触媒調製および水素化分解反応を行い、80質量%の分解生成物が得られる時の分解温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
[Comparative Example 2]
Except that the same USY zeolite (c) as in Comparative Example 1 was used, the catalyst preparation and hydrocracking reaction were carried out in the same manner as in Example 3, and the cracking temperature when an 80% by mass cracked product was obtained, The yield (boiling point: 145 to 360 ° C.) yield and pour point were determined. The results are shown in Table 1.

[比較例3]
比較例1と同じUSYゼオライト(c)を用いたこと以外は実施例6と同様に触媒調製および水素化分解反応を行い、80質量%の分解生成物が得られる時の分解温度、原料に対する中間留分(沸点が145〜360℃)得率、及び流動点を求めた。その結果を表1に示した。
[Comparative Example 3]
Except that the same USY zeolite (c) as in Comparative Example 1 was used, the catalyst preparation and hydrocracking reaction were carried out in the same manner as in Example 6, and the cracking temperature at which a cracked product of 80% by mass was obtained, The yield (boiling point: 145 to 360 ° C.) yield and pour point were determined. The results are shown in Table 1.

表1から明らかなように、X線回折において111面に現れるピークの強度が30以下であるNaYを原料として得られたUSYゼオライトを用いることで、高い分解活性、高い中間留分得率および低流動点を同時に満足することがわかる。さらに、アモルファス固体酸とを組合わせることがより有効であることがわかる。   As is clear from Table 1, by using USY zeolite obtained from NaY having a peak intensity of 30 or less appearing on the 111 plane in X-ray diffraction as a raw material, high decomposition activity, high middle distillate yield and low It can be seen that the pour point is satisfied at the same time. Furthermore, it turns out that combining with an amorphous solid acid is more effective.

Figure 0004808172
Figure 0004808172

Claims (7)

X線回折において、2θ=5.0〜6.0°である111面に現れるピークの、2θ=4〜120°に現れるピークの高さの総和を100としたときの当該ピークの高さによって表される強度が30以下であるNaYを原料として得られたUSYゼオライトに周期律表第VIII族の貴金属を含むことを特徴とするパラフィン系炭化水素用水素化分解触媒。 In X-ray diffraction, depending on the height of the peak when the sum of the heights of the peaks appearing on the 111 plane at 2θ = 5.0 to 6.0 ° and appearing on 2θ = 4 to 120 ° is 100, A hydrocracking catalyst for paraffinic hydrocarbons characterized in that a USY zeolite obtained using NaY having a strength of 30 or less as a raw material contains a noble metal of Group VIII of the periodic table. USYゼオライトの平均粒子径が1.0μm以下であることを特徴とする請求項1に記載の触媒。   The catalyst according to claim 1, wherein the average particle size of USY zeolite is 1.0 µm or less. アモルファス固体酸を含むことを特徴とする請求項1または2に記載の触媒。   The catalyst according to claim 1 or 2, comprising an amorphous solid acid. アモルファス固体酸が、シリカアルミナ、シリカジルコニアおよびアルミナボリアの中から選択される1種類以上であることを特徴とする請求項3に記載の触媒。   The catalyst according to claim 3, wherein the amorphous solid acid is at least one selected from silica alumina, silica zirconia and alumina boria. USYゼオライトの含有量が0.1〜15質量%であることを特徴とする請求項1〜4のいずれかに記載の触媒。   The catalyst according to any one of claims 1 to 4, wherein the content of USY zeolite is 0.1 to 15% by mass. 触媒中のアモルファス固体酸/USYゼオライトの質量比が、1以上60以下であることを特徴とする請求項3に記載の触媒。   The catalyst according to claim 3, wherein the mass ratio of the amorphous solid acid / USY zeolite in the catalyst is 1 or more and 60 or less. X線回折において、2θ=5.0〜6.0°である111面に現れるピークの、2θ=4〜120°に現れるピークの高さの総和を100としたときの当該ピークの高さによって表される強度が30以下であるNaYを原料として得られたUSYゼオライトに周期律表第VIII族の貴金属を含む触媒を用いて、パラフィン系炭化水素を水素化分解することを特徴とする燃料基材の製造方法。 In X-ray diffraction, depending on the height of the peak when the sum of the heights of the peaks appearing on the 111 plane at 2θ = 5.0 to 6.0 ° and appearing on 2θ = 4 to 120 ° is 100, A fuel base characterized by hydrocracking a paraffinic hydrocarbon using a catalyst containing a noble metal of Group VIII of the periodic table on USY zeolite obtained from NaY having a strength of 30 or less as a raw material A method of manufacturing the material.
JP2007073193A 2006-03-30 2007-03-20 Hydrocracking catalyst and fuel substrate production method Active JP4808172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007073193A JP4808172B2 (en) 2006-03-30 2007-03-20 Hydrocracking catalyst and fuel substrate production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006094963 2006-03-30
JP2006094963 2006-03-30
JP2007073193A JP4808172B2 (en) 2006-03-30 2007-03-20 Hydrocracking catalyst and fuel substrate production method

Publications (2)

Publication Number Publication Date
JP2007289931A JP2007289931A (en) 2007-11-08
JP4808172B2 true JP4808172B2 (en) 2011-11-02

Family

ID=38761064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007073193A Active JP4808172B2 (en) 2006-03-30 2007-03-20 Hydrocracking catalyst and fuel substrate production method

Country Status (1)

Country Link
JP (1) JP4808172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY146413A (en) * 2006-03-31 2012-08-15 Nippon Oil Corp Hydrocracking catalyst, and method for production of fuel base material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730550A (en) * 1980-07-31 1982-02-18 Shokubai Kasei Kogyo Kk Catalyst composition for hydrogenolysis
DE3132380C1 (en) * 1981-08-17 1983-02-24 Degussa Ag, 6000 Frankfurt Process for the production of ultra-stable zeolites
JP2933708B2 (en) * 1990-11-22 1999-08-16 触媒化成工業株式会社 Modified Y-type zeolite, process for producing the same, and catalyst composition for catalytic cracking of hydrocarbons using the same
JP4624610B2 (en) * 2001-08-02 2011-02-02 日揮触媒化成株式会社 Method for producing hydrotreating catalyst
JP4833460B2 (en) * 2001-09-26 2011-12-07 Jx日鉱日石エネルギー株式会社 Super stable Y-type zeolite
WO2004028688A1 (en) * 2002-09-24 2004-04-08 Nippon Oil Corporation Hydrocracking catalyst and process for production of liquid hydrocarbons
JP4267936B2 (en) * 2003-02-24 2009-05-27 新日本石油株式会社 Hydrocracking catalyst and method for producing liquid hydrocarbon
JP4313237B2 (en) * 2004-03-29 2009-08-12 新日本石油株式会社 Hydrocracking catalyst and method for producing liquid hydrocarbon
JP5027391B2 (en) * 2004-06-01 2012-09-19 出光興産株式会社 Hydrocracking catalyst for waxy feedstock

Also Published As

Publication number Publication date
JP2007289931A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP4313237B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
JP4418368B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
CN102596404A (en) Heavy oil hydrocracking catalyst and heavy oil hydrotreating method using same
TW202200502A (en) ZSM-5/[beta] core-shell molecular sieve and synthesis and applications thereof including a core phase composed of at least two ZSM-5 molecular sieve grains and a shell layer composed of a plurality of [beta] molecular sieve grains
AU2007233022B2 (en) Hydrocracking catalyst and process for producing fuel substrate
KR20150046398A (en) Activated EU-2 Zeolite and Use Thereof
EP0014023A1 (en) Method for producing crystalline aluminosilicates
US4940531A (en) Catalytic cracking process employing an acid-reacted metakaolin catalyst
JP4808172B2 (en) Hydrocracking catalyst and fuel substrate production method
JP6046776B2 (en) Hydrocracking catalyst and fuel substrate production method
JP4267936B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
KR900000895B1 (en) Dewaxing process of hydrocarbon remains (dregs)
RU2451714C2 (en) Method to produce liquid fuel
JP4477266B2 (en) Hydrotreating catalyst
JPH0286846A (en) Catalyst composition for catalytic cracking of hydrocarbon oil and catalytic cracking method using same
JP3731615B2 (en) Method for producing catalyst carrier and method for producing hydrocracking catalyst using the same
CN114425419B (en) Catalytic cracking catalyst for increasing yield of olefin and aromatic hydrocarbon by hydrogenating LCO (liquid Crystal on gas), and preparation method and application thereof
JP4267937B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
CN104073293B (en) A kind of method that heavy hydrocarbon oil is hydrocracked
JP5408879B2 (en) Method for producing liquid fuel
JP4446032B2 (en) Zeolite catalyst for isoparaffin-olefin alkylation and alkylation method using the catalyst
JP2007083121A (en) Zeolite catalyst for alkylating isoparaffin-olefin and alkylation method of zeolite catalyst
JPS59147085A (en) Dewaxing of hydrocarbon fraction
JP2008169356A (en) Method for producing liquid fuel
JP2009148655A (en) Catalyst composition for catalytic cracking of hydrocarbon and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4808172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250