JP4624610B2 - Method for producing hydrotreating catalyst - Google Patents
Method for producing hydrotreating catalyst Download PDFInfo
- Publication number
- JP4624610B2 JP4624610B2 JP2001268009A JP2001268009A JP4624610B2 JP 4624610 B2 JP4624610 B2 JP 4624610B2 JP 2001268009 A JP2001268009 A JP 2001268009A JP 2001268009 A JP2001268009 A JP 2001268009A JP 4624610 B2 JP4624610 B2 JP 4624610B2
- Authority
- JP
- Japan
- Prior art keywords
- alumina
- zeolite
- hydrotreating catalyst
- aqueous solution
- usy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、炭化水素油の水素化処理触媒の製造方法に関し、更に詳しくは、炭化水素油、特に、重質炭化水素油の水素化処理に使用して分解活性、脱硫活性が高く、灯軽油などの中間留分収率が大きい、アルミナ水和物で被覆された超安定性Y型ゼオライトを使用した水素化処理触媒の製造方法に関するものである。
【0002】
【従来技術】
従来、炭化水素油の水素化分解を主目的とする水素化処理触媒には、超安定Y型ゼオライト(以下、USYということがある)とアルミナなどの多孔性無機酸化物からなる担体に水素化活性金属成分を担持した触媒が使用されてきた。
【0003】
例えば、特開昭53−101003号公報には、ホージャサイト型ゼオライトの骨格アルミニウムを脱離することによって得られるSiO2/Al2O3のモル比を増大させたゼオライトを担体として、これに周期律表VIa族、および/あるいは第VIII族金属から選ばれる1種以上の金属を担持してなる触媒の存在下で、重質油を処理する水素化処理方法が開示されている。
【0004】
特表平10−501456号公報には、少なくとも一つの水素化金属成分、及びゼオライト系クラッキング成分又は無定形のクラッキング成分のいずれか又はこれらの混合物であるクラッキング成分を含む水素化分解触媒において、該クラッキング成分の粒子の外表面の少なくとも50%が予め形成された無機酸化物の層により被覆されており、かつ該層が10nm〜5μmの厚みを持つことを特徴とする触媒が記載されている。
【0005】
しかしながら、重質炭化水素油の水素化処理に於いて、従来の水素分解理触媒は、分解活性は高いものの灯軽油などの中間留分収率が小さく脱硫活性が低いという問題があった。また、ゼオライトを含有しない水素化処理触媒では、脱硫活性は高いものの分解活性が低く中間留分収率が小さいという問題があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、炭化水素油、特に、原油、減圧軽油、常圧残渣油、減圧残渣油などの重質炭化水素の水素化処理に使用して、分解活性が高くて灯軽油などの中間留分収率が大きく、しかも、脱硫活性が高い水素化処理触媒の製造方法を提供する点にある。
【0007】
【課題を解決するための手段】
本発明に係わる水素化処理触媒の製造方法は、Y型ゼオライトと多孔性無機酸化物からなる担体に水素化活性金属成分を担持させる水素化処理触媒の製造方法に於いて、骨格外アルミナ(NFA)の含有量が5wt%以上で、結晶度が80%以上のY型ゼオライトを酸水溶液中に懸濁し、次いで、該懸濁液とアルカリ水溶液とを系のpHが7.0〜9.5の範囲になる割合で混合した後、これを多孔性無機酸化物前駆物質と混合することを特徴とする。
【0008】
前記Y型ゼオライトの骨格外アルミナ(NFA)の含有量は10〜24wt%範囲であることが好ましい。
【0009】
【発明の実施の形態】
以下、本発明の好適な実施形態について、詳細に説明する。
本発明でのY型ゼオライトの骨格外アルミナ(Non Framework Alumina:NFA)は、ゼオライト中に含まれる全アルミナのうちゼオライト骨格を構成するアルミナ(Framework Alumina:FA)以外のアルミナを言い、骨格外アルミナの量は次式により示される。
【0010】
【数1】
【0011】
ゼオライト中に含まれる全アルミナ(NFAとFAの合計)は化学分析により求め、また、ゼオライト中のゼオライト骨格を構成するアルミナ(FA)は、該ゼオライトの単位格子定数の値からBreckの式[ZEOLITES、p350、Vol9、July(1989)]により求め、骨格外アルミナ(NFA)は、全アルミナからゼオライト骨格を構成するアルミナ(FA)を差引いた値である。
【0012】
本発明で用いるY型ゼオライトは、骨格外アルミナ(NFA)の含有量が5wt%以上であることを要する。骨格外アルミナ(NFA)の含有量が5wt%より少ない場合は、Y型ゼオライトのSiO2/Al2O3モル比が大きくないので水熱安定性が悪く、また、該ゼオライトを密接に被覆するアルミナの量が少なくなるため本発明の所望の効果が得られない。本発明での好ましい該骨格外アルミナ(NFA)の含有量は、10〜24wt%、更に好ましくは15〜23wt%の範囲である。
【0013】
また、本発明で用いるY型ゼオライトは、結晶度が80%以上である。該ゼオライトの結晶度が80%よりも小さい場合には、触媒の分解活性が低くなり、本発明の所望の効果が得られない。本発明での好ましい結晶度は、90%以上、更に好ましくは95〜130%の範囲にある。なお、本発明での結晶度は、Linde社、SK−100ゼオライトの結晶度を100%としたときの相対値である。
【0014】
前述のY型ゼオライトは、NaY型ゼオライトをアンモニウムイオン交換した後、水蒸気雰囲気中で焼成することにより得られる。NH4Y型ゼオライトを水蒸気雰囲気中で焼成することにより、結晶構造を破壊することなくゼオライトの骨格を構成するアルミナの一部が骨格から脱離して骨格外アルミナが生成される。
【0015】
本発明における酸水溶液に使用される酸としては、硫酸、硝酸、塩酸、燐酸などの鉱酸、酢酸、蓚酸などの有機酸など通常脱アルミニウム処理に使用される酸が使用可能である。特に、硫酸は好適である。酸水溶液の濃度は10〜60wt%の範囲で、酸量は骨格外アルミナを溶解するのに必要かつ十分な量であることが望ましい。酸水溶液の濃度が60wt%より高い場合には、ゼオライトの結晶構造が壊れることがある。また、該濃度が10wt%より低い場合には、処理設備が大きくなり、設備費用が高くなる。 また、前述のY型ゼオライトの酸水溶液への懸濁は、20〜80℃の温度範囲でゼオライト濃度が10〜35wt%の範囲となるように調製することが望ましい。
【0016】
本発明でのアルカリ水溶液に使用されるアルカリとしては、苛性ソーダ、アンモニア、アミン、アルミン酸ソーダなどが例示される。特に、アルミン酸ソーダは好適である。また、アルカリ水溶液の濃度は、1〜10wt%の範囲であることが望ましい。
【0017】
本発明では、前述のY型ゼオライト懸濁液と前述のアルカリ水溶液とをpH7.0〜9.5の範囲に混合して、該ゼオライトをアルミナ水和物で被覆する。懸濁液とアルカリ水溶液の混合方法は、アルカリ水溶液に懸濁液を添加しても良いし、懸濁液にアルカリ水溶液を添加しても良い。また、懸濁液とアルカリ水溶液とを同時添加して混合しても良い。混合液のpHが7.0よりも低い場合、あるいは、pHが9.5よりも高い場合には、生成したゼオライトを被覆するアルミナ水和物が不安定で溶解し易いので、多孔性無機酸化物前駆物質中に分散させた時にゼオライトを被覆するアルミナ水和物が溶出してゼオライトを密接に被覆することができないので、本発明の所望の効果が得られない。本発明での好ましい混合pHは7.5〜8.0の範囲で、温度は40〜80℃で行うことが望ましく、生成アルミナ水和物の結晶形が擬ベーマイトであることが望ましい。なお、前述のY型ゼオライト懸濁液と前述のアルカリ水溶液とを混合するに際して、グルコン酸などの結晶化抑制剤を添加しても良い。
【0018】
前述の方法で得られたアルミナ水和物被覆ゼオライトは、Al2O3として5〜40wt%(ゼオライトと被覆アルミナとの合計基準)の範囲が望ましい。該アルミナ水和物被覆ゼオライトは、必要に応じて洗浄してアルカリや硫酸根などの副生塩を除去した後、多孔性無機酸化物前駆物質と混合する。また、該アルミナ水和物被覆ゼオライトは、所望により洗浄、乾燥、焼成した後、多孔性無機酸化物前駆物質と混合してもよい。更に、該アルミナ被覆ゼオライトに水素化活性金属成分の一部を担持した後、多孔性無機酸化物前駆物質と混合してもよい。
【0019】
本発明では、多孔性無機酸化物前駆物質として通常の水素化処理触媒に使用される多孔性無機酸化物前駆物質が使用可能である。多孔性無機酸化物前駆物質としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、アルミナーシリカ、アルミナーチタニア、アルミナーボリア、アルミナーリン、アルミナーシリカーボリア、アルミナーボリアーリン、アルミナーチタニアーボリア、アルミナーチタニアーリンなどの前駆物質が例示される。
【0020】
前述のアルミナ被覆ゼオライトと多孔性無機酸化物の混合割合は10/90〜90/10重量比、好ましくは20/80〜80/20重量比の範囲が望ましい。アルミナ被覆ゼオライトの割合が10/90重量比より少ない場合には十分な分解活性が得られないことがあり、また、90/10重量比より大きい場合には十分な脱硫活性が得られないことがある。
【0021】
本発明では、前述のアルミナ水和物被覆ゼオライト又はアルミナ被覆ゼオライトと多孔性性無機酸化物の前駆物質とを混合した後、周知の方法により所望の形状に成型し、乾燥、焼成して得た担体に、水素化活性金属成分を周知の方法により担持して水素化処理触媒を製造することができる。
【0022】
本発明での水素化活性金属成分としては、周期律表第6A族金属および/または第8族金属から選ばれた活性金属成分が使用可能であり、具体的には、モリブデン、タングステン、ニッケル、コバルトロジウム、パラジウム、白金などが例示される。特に、モリブデン、タングステン、ニッケル、コバルトが好ましく、ニッケルおよび/またはコバルトとモリブデンおよび/またはタングステンの組み合わせが望ましい。該水素化活性金属成分の含有量は、通常の水素化処理触媒で使用される量が用いられる。好ましい該水素化活性金属成分の含有量は、酸化物として、モリブデン、タングステンでは5〜25重量%、ニッケル、コバルトでは0.5〜10重量%、ロジウム、パラジウム、白金では0.01〜2重量%の範囲が望ましい。
【0023】
本発明の製造方法で得られる水素化処理触媒は、炭化水素油、特に、原油、減圧軽油、常圧残渣油、減圧残渣油などの重質炭化水素の水素化処理に使用して好適で、通常の水素化処理条件が使用可能である。水素化処理条件としては、例えば、反応温度300〜450℃、水素分圧20〜250kg/cm2G、液空間速度0.1〜4hr−1などの条件が採用される。
【0024】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより限定されるものでない。
【0025】
実施例1
SiO2/Al2O3モル比5.0のNH4Yゼオライトを回転スチミング装置で720℃−1時間飽和水蒸気雰囲気中で焼成して格子定数24.34Å(SiO2/Al2O3モル比20.37)の超安定性Y型ゼオライト(USY)を得た。該USYはNFA含有量が19wt%で結晶度が124%であった。
該USY2.0kg(SiO2−Al2O3基準)を20kgの脱イオン水に撹拌しながら懸濁し60℃まで加温し、次いで、このUSY懸濁スラリーに25wt%濃度の硫酸4.40kgを加え、更に60℃で1時間保持してUSY懸濁液を調製した。
別途、60℃に加温したAl2O3濃度5wt%のアルミン酸ナトリウム水溶液15.28kgを準備した。このアルミン酸ナトリウム水溶液に26.78wt%のグルコン酸ソーダ94.7gを加え、次いで、撹拌しながら60℃に保持し、前述のUSY懸濁液を10分間で添加した。添加終了後の混合スラリーのpHは7.2であった。混合スラリーを更に60℃で1時間撹拌した後、濾過、洗浄して残存しているNaイオンやSO4イオン等の副生塩を除去してアルミナ水和物で被覆したUSYを調製した。このアルミナ水和物被覆USYを110℃で1晩乾燥した後、粉砕し、550℃で3時間焼成してアルミナ被覆USYを調製した。
【0026】
前述のアルミナ被覆USY(吸水率0.65ml/g)1.00kgにNiOとして8.8gの炭酸ニッケルを水に懸濁し、カルボン酸を添加し加熱して溶解した水溶液650mlを含浸した後、ロータリードライヤーにて室温から250℃で1時間で乾燥し、550℃で3時間焼成した。
【0027】
このNiOを担持したアルミナ被覆USY720gとAl2O3濃度36wt%のアルミナ捏和物1336gとをニーダーで30分間混練してNiOを担持したアルミナ被覆USYを60wt%(USYとしての含有量、42.5wt%に相当)含有するアルミナ捏和物を得た。この捏和物を1.8mmΦのダイスから押出し成型した後、110℃で一晩乾燥し、550℃で3時間焼成してアルミナ被覆USYを含有するアルミナ担体を調製した。この担体に、MoO3とCoCO3の懸濁水にカルボン酸を添加し加熱して溶解した水溶液を噴霧しながら含浸した後、ロータリードライヤーにて室温から250℃で1時間で乾燥し、550℃で1時間焼成してMoO310.4wt%CoO4.25wt%含有する触媒Aを調製した。触媒Aの性状を表1に示す。
【0028】
比較例1
SiO2/Al2O3モル比5.0のNH4Yゼオライトを回転スチミング装置で720℃−1時間飽和水蒸気雰囲気中で焼成して格子定数24.34Å(SiO2/Al2O3モル比20.37)の超安定性Y型ゼオライト(USY)を得た。該USYはNFA含有量が19wt%で結晶度が124%であった。
該USY2.0kg(SiO2−Al2O3基準)を20kgの脱イオン水に撹拌しながら懸濁し60℃まで加温し、次いで、このUSY懸濁スラリーに25wt%濃度の硫酸4.40kgを加え、更に60℃で1時間保持して脱アルミニウム処理した後、濾過、洗浄して残存しているSO4イオン等を除去して脱アルミニウムUSYを調製した。この脱アルミニウムUSYを110℃で1晩乾燥した後、粉砕し、550℃で3時間焼成した。
【0029】
この脱アルミニウムUSY510gとAl2O3濃度36wt%のアルミナ捏和物1917gとをニーダーで30分間混練して脱アルミニウムUSYを42.5wt%含有するアルミナ捏和物を得た。この捏和物を1.8mmΦのダイスから押出し成型した後、110℃で一晩乾燥し、550℃で3時間焼成して脱アルミニウムUSYを含有するアルミナ担体を調製した。この担体に、MoO3とCoCO3の懸濁水にカルボン酸を添加し加熱して溶解した水溶液を噴霧しながら含浸した後、ロータリードライヤーにて室温から250℃で1時間で乾燥し、550℃で1時間焼成してMoO310.4wt%CoO4.25wt%含有する触媒Bを調製した。触媒Bの性状を表1に示す。
【0030】
実施例2
実施例1および比較例1の触媒A,Bを固定床式のマイクロリアクターを用いて下記反応条件下で常圧残渣油の水素化処理を行った。
原料油性状
比重 0.971(15/4℃)
粘度 950 (cSt at50℃)
硫黄 4.1 (wt%)
残留炭素 11 (wt%)
窒素 2000 (ppm)
ニッケル 20 (ppm)
バナジウム 60 (ppm)
反応条件
反応圧力 150 (kg/cm2G)
反応温度 370 (℃)
水素/油比 700 (nl/l)
LHSV 0.2 (hr−1)
水素濃度 90 (mol%)
反応結果を相対活性値で表1に示す。
本発明による触媒Aは、比較例の触媒Bに比べ分解率、脱硫率に優れ、しかも中間留分の収率も高い。
【0031】
【表1】
【0032】
【効果】
本発明の製造方法で得られる水素化触媒は、ゼオライト中の骨格外アルミナを使用して被覆しているので、炭化水素油、特に、重質炭化水素油の水素化処理に使用して分解活性、中間留分収率に優れており、しかも、高い脱硫活性を示す。
また、本発明の方法は、USYの骨格外アルミナを触媒担体成分としてはじめて有効に利用できることを発見したことにより、触媒をより経済的に製造することができるというメリットがある。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a hydrocarbon oil hydrotreating catalyst, and more particularly, hydrocarbon oil, particularly heavy hydrocarbon oil used for hydrotreating, and has high cracking activity and desulfurization activity. The present invention relates to a method for producing a hydrotreating catalyst using an ultrastable Y-type zeolite coated with alumina hydrate and having a large middle distillate yield.
[0002]
[Prior art]
Conventionally, hydrotreating catalysts mainly intended for hydrocracking of hydrocarbon oils are hydrogenated on a carrier composed of ultrastable Y-type zeolite (hereinafter sometimes referred to as USY) and porous inorganic oxides such as alumina. Catalysts carrying active metal components have been used.
[0003]
For example, in Japanese Patent Laid-Open No. 53-101003, a zeolite having an increased SiO 2 / Al 2 O 3 molar ratio obtained by desorbing skeletal aluminum of faujasite type zeolite is used as a carrier. There is disclosed a hydroprocessing method for treating heavy oil in the presence of a catalyst comprising one or more metals selected from Group VIa and / or Group VIII metals.
[0004]
JP-A-10-501456 discloses a hydrocracking catalyst comprising at least one metal hydride component, and a cracking component that is either a zeolitic cracking component or an amorphous cracking component, or a mixture thereof. A catalyst is described, characterized in that at least 50% of the outer surface of the cracking component particles is covered by a preformed layer of inorganic oxide and the layer has a thickness of 10 nm to 5 μm.
[0005]
However, in the hydrotreating of heavy hydrocarbon oils, the conventional hydrocracking catalyst has a problem that although the cracking activity is high, the yield of middle distillates such as kerosene oil is small and the desulfurization activity is low. Further, the hydrotreating catalyst containing no zeolite has a problem that the desulfurization activity is high but the cracking activity is low and the middle distillate yield is small.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to use it in the hydroprocessing of hydrocarbon oils, particularly heavy hydrocarbons such as crude oil, vacuum gas oil, atmospheric residue oil, and vacuum residue oil. The object is to provide a method for producing a hydrotreating catalyst having a high fraction yield and high desulfurization activity.
[0007]
[Means for Solving the Problems]
A method for producing a hydrotreating catalyst according to the present invention is a method for producing a hydrotreating catalyst in which a hydrogenation active metal component is supported on a support composed of a Y-type zeolite and a porous inorganic oxide. ) Having a content of 5 wt% or more and a crystallinity of 80% or more is suspended in an acid aqueous solution, and then the pH of the system is adjusted to 7.0 to 9.5. After mixing in the ratio which becomes the range of this, this is mixed with a porous inorganic oxide precursor.
[0008]
The content of extra-framework alumina (NFA) in the Y-type zeolite is preferably in the range of 10 to 24 wt%.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
The non-framework alumina (NFA) of the Y-type zeolite in the present invention refers to an alumina other than the alumina (Framework Alumina: FA) constituting the zeolite skeleton among all the alumina contained in the zeolite, and is an extraframework alumina. Is shown by the following equation.
[0010]
[Expression 1]
[0011]
The total alumina contained in the zeolite (total of NFA and FA) is obtained by chemical analysis, and the alumina (FA) constituting the zeolite skeleton in the zeolite is determined from the unit cell constant value of the zeolite according to the Breck formula [ZEOLITES , P350, Vol9, July (1989)], and extra-framework alumina (NFA) is a value obtained by subtracting alumina (FA) constituting the zeolite framework from total alumina.
[0012]
The Y-type zeolite used in the present invention requires that the content of extra-framework alumina (NFA) is 5 wt% or more. When the content of extra-framework alumina (NFA) is less than 5 wt%, the hydrothermal stability is poor because the SiO 2 / Al 2 O 3 molar ratio of the Y-type zeolite is not large, and the zeolite is covered closely. Since the amount of alumina decreases, the desired effect of the present invention cannot be obtained. The content of the non-framework alumina (NFA) preferred in the present invention is in the range of 10 to 24 wt%, more preferably 15 to 23 wt%.
[0013]
The Y-type zeolite used in the present invention has a crystallinity of 80% or more. When the crystallinity of the zeolite is less than 80%, the decomposition activity of the catalyst becomes low, and the desired effect of the present invention cannot be obtained. The preferred crystallinity in the present invention is 90% or more, more preferably in the range of 95 to 130%. The crystallinity in the present invention is a relative value when the crystallinity of Linde, SK-100 zeolite is 100%.
[0014]
The aforementioned Y-type zeolite can be obtained by calcining NaY-type zeolite in a steam atmosphere after ammonium ion exchange. By calcining NH 4 Y-type zeolite in a water vapor atmosphere, a part of the alumina constituting the skeleton of the zeolite is desorbed from the skeleton without destroying the crystal structure, thereby generating extra-framework alumina.
[0015]
As the acid used in the acid aqueous solution in the present invention, acids usually used for dealumination treatment such as mineral acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid, and organic acids such as acetic acid and oxalic acid can be used. In particular, sulfuric acid is preferred. The concentration of the acid aqueous solution is in the range of 10 to 60 wt%, and the acid amount is desirably an amount necessary and sufficient for dissolving the extra-framework alumina. When the concentration of the aqueous acid solution is higher than 60 wt%, the crystal structure of the zeolite may be broken. Moreover, when the concentration is lower than 10 wt%, the processing equipment becomes large and the equipment cost becomes high. The suspension of the Y-type zeolite in the aqueous acid solution is preferably prepared so that the zeolite concentration is in the range of 10 to 35 wt% in the temperature range of 20 to 80 ° C.
[0016]
Examples of the alkali used in the alkaline aqueous solution in the present invention include caustic soda, ammonia, amine, sodium aluminate and the like. In particular, sodium aluminate is suitable. The concentration of the aqueous alkali solution is desirably in the range of 1 to 10 wt%.
[0017]
In the present invention, the above-mentioned Y-type zeolite suspension and the above-mentioned alkaline aqueous solution are mixed in the range of pH 7.0 to 9.5, and the zeolite is coated with alumina hydrate. As a method of mixing the suspension and the alkaline aqueous solution, the suspension may be added to the alkaline aqueous solution, or the alkaline aqueous solution may be added to the suspension. Further, the suspension and the aqueous alkaline solution may be added simultaneously and mixed. When the pH of the mixed solution is lower than 7.0 or higher than 9.5, the porous inorganic oxidation is not easy because the alumina hydrate covering the formed zeolite is unstable and easily dissolved. Since the alumina hydrate that coats the zeolite elutes when dispersed in the precursor of the precursor and cannot be closely coated with the zeolite, the desired effect of the present invention cannot be obtained. The preferred mixing pH in the present invention is in the range of 7.5 to 8.0, the temperature is desirably 40 to 80 ° C., and the crystal form of the product alumina hydrate is desirably pseudoboehmite. In mixing the Y-type zeolite suspension and the aqueous alkali solution, a crystallization inhibitor such as gluconic acid may be added.
[0018]
The alumina hydrate-coated zeolite obtained by the above-described method is preferably in the range of 5 to 40 wt% (total standard of zeolite and coated alumina) as Al 2 O 3 . The alumina hydrate-coated zeolite is washed as necessary to remove by-product salts such as alkali and sulfate radicals, and then mixed with the porous inorganic oxide precursor. The alumina hydrate-coated zeolite may be mixed with a porous inorganic oxide precursor after washing, drying, and calcining, if desired. Further, a part of the hydrogenation active metal component may be supported on the alumina-coated zeolite and then mixed with the porous inorganic oxide precursor.
[0019]
In this invention, the porous inorganic oxide precursor used for a normal hydroprocessing catalyst can be used as a porous inorganic oxide precursor. Examples of the porous inorganic oxide precursor include alumina, silica, titania, zirconia, alumina-silica, alumina-titania, alumina-boria, alumina-phosphorus, alumina-silica-boria, alumina-borial, and alumina-titani. Precursors such as arboria and alumina-titanialine are exemplified.
[0020]
The mixing ratio of the alumina-coated zeolite and the porous inorganic oxide is 10/90 to 90/10 weight ratio, preferably 20/80 to 80/20 weight ratio. When the proportion of the alumina-coated zeolite is less than 10/90 weight ratio, sufficient decomposition activity may not be obtained, and when it is larger than 90/10 weight ratio, sufficient desulfurization activity may not be obtained. is there.
[0021]
In the present invention, the above-mentioned alumina hydrate-coated zeolite or alumina-coated zeolite and a porous inorganic oxide precursor are mixed, then molded into a desired shape by a well-known method, and dried and fired. A hydroprocessing catalyst can be produced by supporting a hydrogenation active metal component on a support by a known method.
[0022]
As the hydrogenation active metal component in the present invention, an active metal component selected from Group 6A metal and / or Group 8 metal of the periodic table can be used, specifically, molybdenum, tungsten, nickel, Examples include cobalt rhodium, palladium, and platinum. In particular, molybdenum, tungsten, nickel, and cobalt are preferable, and a combination of nickel and / or cobalt and molybdenum and / or tungsten is desirable. As the content of the hydrogenation active metal component, an amount used in a normal hydroprocessing catalyst is used. The content of the hydrogenation active metal component is preferably 5 to 25% by weight for molybdenum and tungsten, 0.5 to 10% by weight for nickel and cobalt, and 0.01 to 2% for rhodium, palladium and platinum as oxides. % Range is desirable.
[0023]
The hydrotreating catalyst obtained by the production method of the present invention is suitable for use in hydrotreating hydrocarbon oils, particularly heavy hydrocarbons such as crude oil, vacuum gas oil, atmospheric residue oil, and vacuum residue oil, Normal hydrotreating conditions can be used. As hydrotreating conditions, for example, conditions such as a reaction temperature of 300 to 450 ° C., a hydrogen partial pressure of 20 to 250 kg / cm 2 G, and a liquid space velocity of 0.1 to 4 hr −1 are employed.
[0024]
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0025]
Example 1
NH 4 Y zeolite having a SiO 2 / Al 2 O 3 molar ratio of 5.0 was calcined in a saturated steam atmosphere at 720 ° C. for 1 hour in a rotary steaming apparatus to obtain a lattice constant of 24.34Å (SiO 2 / Al 2 O 3 molar ratio) 20.37) ultrastable Y-type zeolite (USY) was obtained. The USY had an NFA content of 19 wt% and a crystallinity of 124%.
The USY 2.0 kg (based on SiO 2 —Al 2 O 3 ) was suspended in 20 kg of deionized water with stirring and heated to 60 ° C. Then, 4.40 kg of 25 wt% sulfuric acid was added to the USY suspension slurry. In addition, the suspension was further maintained at 60 ° C. for 1 hour to prepare a USY suspension.
Separately, 15.28 kg of an aqueous sodium aluminate solution having an Al 2 O 3 concentration of 5 wt% heated to 60 ° C. was prepared. To this sodium aluminate aqueous solution, 94.7 g of 26.78 wt% sodium gluconate was added, and then kept at 60 ° C. with stirring, and the aforementioned USY suspension was added over 10 minutes. The pH of the mixed slurry after the addition was 7.2. The mixed slurry was further stirred at 60 ° C. for 1 hour, and then filtered and washed to remove residual by-products such as Na ions and SO 4 ions to prepare USY coated with alumina hydrate. The alumina hydrate-coated USY was dried at 110 ° C. overnight, then pulverized and fired at 550 ° C. for 3 hours to prepare an alumina-coated USY.
[0026]
After 8.8 g of nickel carbonate as NiO was suspended in 1.00 kg of the above-mentioned alumina-coated USY (water absorption 0.65 ml / g) in water, carboxylic acid was added and heated to dissolve 650 ml of an aqueous solution, and then rotary It was dried at room temperature to 250 ° C. for 1 hour with a dryer, and calcined at 550 ° C. for 3 hours.
[0027]
The NiO-supported alumina-coated USY (720 g) and the Al 2 O 3 concentration of 36 wt% alumina kneaded product were kneaded in a kneader for 30 minutes, and the NiO-supported alumina-coated USY was 60 wt% (content as USY, 42.%). (Corresponding to 5 wt%). This kneaded product was extruded from a 1.8 mmφ die, dried at 110 ° C. overnight, and fired at 550 ° C. for 3 hours to prepare an alumina support containing alumina-coated USY. The carrier was impregnated while spraying an aqueous solution in which carboxylic acid was added to MoO 3 and CoCO 3 suspension water and heated and dissolved, and then dried at room temperature to 250 ° C. for 1 hour using a rotary dryer. Catalyst A containing MoO 3 10.4 wt% CoO 4.25 wt% was prepared by calcination for 1 hour. Properties of catalyst A are shown in Table 1.
[0028]
Comparative Example 1
NH 4 Y zeolite having a SiO 2 / Al 2 O 3 molar ratio of 5.0 was calcined in a saturated steam atmosphere at 720 ° C. for 1 hour in a rotary steaming apparatus to obtain a lattice constant of 24.34Å (SiO 2 / Al 2 O 3 molar ratio) 20.37) ultrastable Y-type zeolite (USY) was obtained. The USY had an NFA content of 19 wt% and a crystallinity of 124%.
The USY 2.0 kg (based on SiO 2 —Al 2 O 3 ) was suspended in 20 kg of deionized water with stirring and heated to 60 ° C. Then, 4.40 kg of 25 wt% sulfuric acid was added to the USY suspension slurry. In addition, after further dealumination treatment by holding at 60 ° C. for 1 hour, the remaining SO 4 ions were removed by filtration and washing to prepare dealuminated USY. The dealuminated USY was dried at 110 ° C. overnight, then pulverized and fired at 550 ° C. for 3 hours.
[0029]
The dealuminated USY (510 g) and the Al 2 O 3 concentration of 36 wt% alumina kneaded material were kneaded in a kneader for 30 minutes to obtain an alumina kneaded material containing 42.5 wt% dealuminated USY. This kneaded product was extruded from a 1.8 mmφ die, dried at 110 ° C. overnight, and fired at 550 ° C. for 3 hours to prepare an alumina carrier containing dealuminated USY. The carrier was impregnated while spraying an aqueous solution in which carboxylic acid was added to MoO 3 and CoCO 3 suspension water and heated and dissolved, and then dried at room temperature to 250 ° C. for 1 hour using a rotary dryer. A catalyst B containing MoO 3 10.4 wt% CoO 4.25 wt% was prepared by calcination for 1 hour. Properties of catalyst B are shown in Table 1.
[0030]
Example 2
The catalysts A and B of Example 1 and Comparative Example 1 were subjected to hydrogenation treatment of atmospheric residue oil under the following reaction conditions using a fixed bed type microreactor.
Raw material property specific gravity 0.971 (15/4 ° C)
Viscosity 950 (cSt at 50 ° C)
Sulfur 4.1 (wt%)
Residual carbon 11 (wt%)
Nitrogen 2000 (ppm)
Nickel 20 (ppm)
Vanadium 60 (ppm)
Reaction conditions Reaction pressure 150 (kg / cm 2 G)
Reaction temperature 370 (° C)
Hydrogen / oil ratio 700 (nl / l)
LHSV 0.2 (hr −1 )
Hydrogen concentration 90 (mol%)
The reaction results are shown in Table 1 as relative activity values.
The catalyst A according to the present invention is superior in the decomposition rate and desulfurization rate compared to the catalyst B of the comparative example, and also has a high yield of middle distillate.
[0031]
[Table 1]
[0032]
【effect】
Since the hydrogenation catalyst obtained by the production method of the present invention is coated with extra-framework alumina in zeolite, it is used for hydrotreating hydrocarbon oils, particularly heavy hydrocarbon oils, and cracking activity. The middle distillate yield is excellent and high desulfurization activity is exhibited.
Further, the method of the present invention has an advantage that a catalyst can be produced more economically by discovering that USY extra-framework alumina can be effectively used for the first time as a catalyst carrier component.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001268009A JP4624610B2 (en) | 2001-08-02 | 2001-08-02 | Method for producing hydrotreating catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001268009A JP4624610B2 (en) | 2001-08-02 | 2001-08-02 | Method for producing hydrotreating catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003047856A JP2003047856A (en) | 2003-02-18 |
JP4624610B2 true JP4624610B2 (en) | 2011-02-02 |
Family
ID=19094061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001268009A Expired - Lifetime JP4624610B2 (en) | 2001-08-02 | 2001-08-02 | Method for producing hydrotreating catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4624610B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4808172B2 (en) * | 2006-03-30 | 2011-11-02 | Jx日鉱日石エネルギー株式会社 | Hydrocracking catalyst and fuel substrate production method |
FR2952379B1 (en) * | 2009-11-10 | 2012-05-11 | Inst Francais Du Petrole | HYDROCRACKING PROCESS EMPLOYING A MODIFIED ZEOLITHE BY BASIC TREATMENT |
FR2970259B1 (en) * | 2011-01-07 | 2014-07-18 | IFP Energies Nouvelles | HYDROCRACKING PROCESS USING A ZEOLITHIC CATALYST CONTAINING TWO DISTINCT HYDROGENANT FUNCTIONS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53101003A (en) * | 1977-02-15 | 1978-09-04 | Chiyoda Chem Eng & Constr Co Ltd | Hydrogenation of heavy oil |
JPH0576769A (en) * | 1991-09-25 | 1993-03-30 | Catalysts & Chem Ind Co Ltd | Hydrogenolysis catalyst composition and production thereof |
JPH05138031A (en) * | 1991-11-19 | 1993-06-01 | Catalysts & Chem Ind Co Ltd | Catalyst composition for catalytic decomposition of hydrocarbon |
JPH10501456A (en) * | 1994-06-03 | 1998-02-10 | アクゾ ノーベル ナムローゼ フェンノートシャップ | Hydrocracking catalyst containing coated cracking component particles |
-
2001
- 2001-08-02 JP JP2001268009A patent/JP4624610B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53101003A (en) * | 1977-02-15 | 1978-09-04 | Chiyoda Chem Eng & Constr Co Ltd | Hydrogenation of heavy oil |
JPH0576769A (en) * | 1991-09-25 | 1993-03-30 | Catalysts & Chem Ind Co Ltd | Hydrogenolysis catalyst composition and production thereof |
JPH05138031A (en) * | 1991-11-19 | 1993-06-01 | Catalysts & Chem Ind Co Ltd | Catalyst composition for catalytic decomposition of hydrocarbon |
JPH10501456A (en) * | 1994-06-03 | 1998-02-10 | アクゾ ノーベル ナムローゼ フェンノートシャップ | Hydrocracking catalyst containing coated cracking component particles |
Also Published As
Publication number | Publication date |
---|---|
JP2003047856A (en) | 2003-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101378622B1 (en) | Catalyst composition for hydrogenation treatment of hydrocarbon and hydrogenation treatment method | |
JP6022454B2 (en) | Hydrocracking catalyst for hydrocarbon oil, method for producing hydrocracking catalyst, and hydrocracking method of hydrocarbon oil using hydrocracking catalyst | |
US4738941A (en) | Hydrocracking catalyst for the production of middle distillates | |
JP5547923B2 (en) | Heavy oil hydrocracking catalyst and method for hydrotreating heavy oil using the same | |
JPH0866634A (en) | Hydrocarbon transformation catalyst | |
JP2002255537A (en) | Solid acid catalyst | |
JPS60225646A (en) | New hydrogenating cracking or cracking catalyst of hydrocarbon charge | |
JPH0555189B2 (en) | ||
JPH0536099B1 (en) | ||
US20080194400A1 (en) | Multi-Layer catalyst Made from Niobium for the Catalytic Conversion of Hydrocarbons | |
JPH0239305B2 (en) | ||
EP2258476A1 (en) | Hydrocracking catalyst for heavy oil | |
JP2007313409A (en) | Hydrocracking catalyst composition and its manufacturing method | |
JP6382275B2 (en) | Hydrocracking catalyst for hydrocarbon oil containing high-boiling fraction, method for producing hydrocracking catalyst for hydrocarbon oil containing high-boiling fraction, and hydrocracking method of hydrocarbon oil using hydrocracking catalyst | |
JP4624610B2 (en) | Method for producing hydrotreating catalyst | |
JP4637172B2 (en) | Catalyst for selective ring opening of cyclic paraffins and process for using the catalyst | |
JP2000086233A (en) | Iron-containing crystalline alumino-silicate | |
JP3949336B2 (en) | Process for producing catalyst composition for catalytic cracking of hydrocarbons | |
JP3342504B2 (en) | Method for producing improved metal-supported crystalline aluminosilicate and method for reforming hydrocarbons using the same | |
JP4477266B2 (en) | Hydrotreating catalyst | |
JP2006150185A (en) | Hydrocracking catalyst composition | |
CN107344120B (en) | Carrier of hydrocracking catalyst and its preparation method | |
JP3731615B2 (en) | Method for producing catalyst carrier and method for producing hydrocracking catalyst using the same | |
JP5258281B2 (en) | Catalyst composition for catalytic cracking of hydrocarbon and process for producing the same | |
JP3012013B2 (en) | Method for producing zinc-introduced crystalline aluminosilicate and method for hydrocracking hydrocarbons using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080730 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080730 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20090813 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101026 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4624610 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131112 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |