JP3949336B2 - Process for producing catalyst composition for catalytic cracking of hydrocarbons - Google Patents

Process for producing catalyst composition for catalytic cracking of hydrocarbons Download PDF

Info

Publication number
JP3949336B2
JP3949336B2 JP2000026706A JP2000026706A JP3949336B2 JP 3949336 B2 JP3949336 B2 JP 3949336B2 JP 2000026706 A JP2000026706 A JP 2000026706A JP 2000026706 A JP2000026706 A JP 2000026706A JP 3949336 B2 JP3949336 B2 JP 3949336B2
Authority
JP
Japan
Prior art keywords
alumina
catalytic cracking
zeolite
hydrocarbons
catalyst composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000026706A
Other languages
Japanese (ja)
Other versions
JP2001212462A (en
Inventor
広 松本
美千代 佃
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP2000026706A priority Critical patent/JP3949336B2/en
Publication of JP2001212462A publication Critical patent/JP2001212462A/en
Application granted granted Critical
Publication of JP3949336B2 publication Critical patent/JP3949336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素接触分解用触媒組成物の製造方法に関し、更に詳しくは、炭化水素、特に、重質炭化水素の接触分解に使用して優れた効果を示す、アルミナ水和物で被覆した超安定性Y型ゼオライトを使用した炭化水素接触分解用触媒組成物の製造方法に関するものである。
【0002】
【従来技術】
近年では、残渣油などの重質炭化水素が接触分解の原料に用いられるため、接触分解触媒組成物は、高いガソリン選択性と共に重質留分を分解する性能がますます要求されている。
【0003】
このような炭化水素接触分解用触媒組成物として、例えば、特開平9−164338号公報に、(1)結晶性アルミノシリケートゼオライトと、(2)結晶子径が45〜105Åの範囲の擬ベーマイト形アルミナ水和物に酸を添加してpH1.0〜4.5の範囲に調製したアルミナ水和物ゾルおよび(3)水硝子に酸を添加してpH1.0〜2.5の範囲に調製したケイ酸液、とを混合し、得られた混合物を噴霧乾燥することを特徴とする炭化水素接触分解用触媒組成物の製造方法が記載されている。
【0004】
また、特公平2−45501号公報には、シリカ系マトリックスに微細なゼオライトを分散させてなる炭化水素流動接触分解用触媒組成物に於いて、前記のゼオライトが単一の金属酸化物で被覆された形でマトリックス中に分散していることを特徴とする炭化水素流動接触分解用触媒組成物が開示されている。
【0005】
しかしながら、従来の接触分解用触媒組成物では、まだ残油分解能が十分でなく、改良された触媒が望まれていた。
【0006】
【発明が解決しようとする課題】
本発明の目的は、炭化水素、特に、ニッケルやバナジウムなどの金属汚染物質を含有する原油、減圧軽油、水素化処理油、常圧残渣油、減圧残渣油などの重質炭化水素の接触分解に使用して、水素、コークの生成量が少なく、ガソリン収率、残油(ボトム)分解能が高く、耐メタル性、耐水熱性に優れた炭化水素接触分解用触媒組成物の製造方法を提供する点にある。
【0007】
【課題を解決するための手段】
本発明に係わる炭化水素接触分解用触媒組成物の製造方法は、NH Y型ゼオライトを水蒸気雰囲気中で焼成することにより結晶構造を破壊することなくゼオライトの骨格を構成するアルミナの一部を骨格から脱離させて得られた、「骨格外アルミナ(NFA)の含有量が2.0wt%以上で、結晶度が80%以上のY型ゼオライト」を酸水溶液中に懸濁し、次いで、該懸濁液とアルカリ水溶液とを系のpHが7.0〜9.5の範囲になる割合で混合した後、これをマトリックス前駆物質中に分散させることを特徴とする。
【0008】
前記Y型ゼオライトの骨格外アルミナ(NFA)の含有量は2.0〜17.0wt%の範囲であることが好ましい。
【0009】
【発明の実施の形態】
以下、本発明の好適な実施形態について、詳細に説明する。
本発明でのY型ゼオライトの骨格外アルミナ(Non Framework
Alumina:NFA)は、ゼオライト中に含まれる全アルミナのうちゼオライト骨格を構成するアルミナ(Framework Alumina:FA)以外のアルミナを言い、骨格外アルミナの量は次式により示される。
【数1】

Figure 0003949336
ゼオライト中に含まれる全アルミナ(NFAとFAの合計)は化学分析により求め、また、ゼオライト中のゼオライト骨格を構成するアルミナ(FA)は、該ゼオライトの単位格子定数の値からBreckの式〔ZEOLITES、p350、Vol9、July(1989)〕により求め、骨格外アルミナ(NFA)は、全アルミナからゼオライト骨格を構成するアルミナ(FA)を差引いた値である。
【0010】
本発明で用いるY型ゼオライトは、骨格外アルミナ(NFA)の含有量が2.0wt%以上であることを要する。骨格外アルミナ(NFA)の含有量が2.0wt%より少ない場合は、該ゼオライトを密接に被覆するアルミナの量が少なくなるため、本発明の所望の効果が得られない。本発明での好ましい該骨格外アルミナ(NFA)の含有量は、2.0〜17.0wt%、更に好ましくは3.3〜8.8wt%の範囲である。
【0011】
また、本発明で用いるY型ゼオライトは、結晶度が80%以上である。該ゼオライトの結晶度が80%よりも小さい場合には、触媒組成物の分解活性が低くなり、本発明の所望の効果が得られない。本発明での好ましい結晶度は、90%以上、更に好ましくは95〜130%の範囲にある。なお、本発明での結晶度は、Linde社、SK−100ゼオライトの結晶度を100%としたときの相対値である。
【0012】
前述の本発明で用いるY型ゼオライトは、NaY型ゼオライトをアンモニウムイオン交換した後、水蒸気雰囲気中で焼成することにより得られるNHY型ゼオライトを水蒸気雰囲気中で焼成することにより、結晶構造を破壊することなくゼオライトの骨格を構成するアルミナの一部が骨格から脱離して骨格外アルミナが生成される。
【0013】
本発明における酸水溶液に使用される酸としては、硫酸、硝酸、塩酸、燐酸などの鉱酸、酢酸、蓚酸などの有機酸など通常脱アルミニウム処理に使用される酸が使用可能である。特に、硫酸は好適である。酸水溶液の濃度は、10〜60wt%の範囲であることが望ましい。酸水溶液の濃度が60wt%より高い場合には、ゼオライトの結晶構造が壊れることがある。また、該濃度が10wt%より低い場合には、処理設備が大きくなり、設備費用が高くなる。また、前述のY型ゼオライトの酸水溶液への懸濁は、20〜80℃の温度範囲でゼオライト濃度が10〜35wt%の範囲となるように調製することが望ましい。
【0014】
本発明でのアルカリ水溶液に使用されるアルカリとしては、苛性ソーダ、アンモニア、アミン、アルミン酸ソーダなどが例示される。特に、アルミン酸ソーダは好適である。また、アルカリ水溶液の濃度は、1〜10wt%の範囲であることが望ましい。
【0015】
本発明では、前述のY型ゼオライト懸濁液と前述のアルカリ水溶液とをpH7.0〜9.5の範囲に混合して、該ゼオライトをアルミナ水和物で被覆する。懸濁液とアルカリ水溶液の混合方法は、アルカリ水溶液に懸濁液を添加しても良いし、懸濁液にアルカリ水溶液を添加しても良い、また、懸濁液とアルカリ水溶液とを同時添加して混合しても良い。混合液のpHが7.0よりも低い場合、あるいは、pHが9.5よりも高い場合には、生成したゼオライトを被覆するアルミナ水和物が不安定で溶解し易いので、マトリックス前駆物質中に分散させた時にゼオライトを被覆するアルミナ水和物が溶出してゼオライトは密接に被覆することができないので、本発明の所望の効果が得られない。本発明での好ましい混合pHは7.5〜8.0の範囲で、温度は40〜80℃で行うことが望ましく、生成アルミナ水和物の結晶形が擬ベーマイトであることが望ましい。
【0016】
該Y型ゼオライトを被覆するアルミナ水和物のアルミナ量は、Alとして1〜20wt%(ゼオライトと被覆アルミナとの合計基準)の範囲が好ましい。該アルミナ量が1wt%より少ない場合には、触媒の耐メタル性が改善されないことがあり、また20wt%よりも多い場合には、分解活性が低下することがある。更に好ましい該アルミナ量は3〜15wt%の範囲にあることが望ましい。
【0017】
本発明では、前述のアルミナ水和物被覆Y型ゼオライトを分散させるマトリックス前駆物質としては、通常の炭化水素接触分解用触媒組成物に使用されるマトリックス前駆物質が使用可能である。マトリックス前駆物質としては、例えば、シリカ、アルミナ、シリカ−アルミナ、シリカ−マグネシア、シリカ−アルミナ−マグネシアなどの前駆物質の外、カオリンなどの粘土鉱物や酸化マンガンなどのメタル補足剤なども包含する。前述のアルミナ水和物被覆Y型ゼオライトを分散させたマトリックス前駆物質スラリーを噴霧乾燥して微小球状粒子とし、該粒子を、必要に応じて、通常の方法で洗浄、乾燥、焼成して炭化水素接触分解用触媒組成物を得ることができる。
【0018】
本発明で得られる炭化水素接触分解用触媒組成物は、通常の接触分解用触媒組成物のY型ゼオライト含有量とすることができ、好適には、アルミナ水和物被覆Y型ゼオライトが酸化物として(水和物中の水を含まない形として)5〜40wt%の範囲であり、マトリックス物質が95〜60wt%の範囲が例示される。なお、該触媒組成物の使用に際しては、通常の接触分解の反応条件が採用される。
【0019】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものでない。
【0020】
比較例1(参照触媒:Y型ゼオライトをアルミナ水和物で被覆しない場合の例)
水硝子を硫酸に加えて調製した12.5wt%のSiOを含むシリカヒドロゾル8000gにカオリンクレー2100g(乾燥基準)、擬ベーマイト形アルミナ水和物250g(Al基準)、水熱処理で調製したNFA含有量5.0wt%、格子常数24.57Åの超安定性Y型ゼオライト(USY)を1650g(SiO−Al基準)、および希釈水として脱イオン水3600gを加えて混合スラリーを調製した。尚この時の得られたスラリーpHは2.9、温度は38℃であった。この混合スラリーを噴霧乾燥して平均粒径65μmの微小球粒子を得た。続いてこの微小球粒子を硫安溶液と60℃の脱イオン水にて洗浄し、Naイオン、SOイオンを洗い出し、最後に塩化レアアース溶液を用いレアアース酸化物として2.2wt%のイオン交換を行い、洗浄、乾燥した後、触媒Aを得た。600℃−2時間焼成した触媒Aの性状を表1〜2に示す。
【0021】
実施例1
比較例1に使用したUSY(水熱処理で調製したNFA含有量5.0wt%、格子常数24.57Åの超安定性Y型ゼオライト)1650g(SiO−Al基準)を3350gの脱イオン水に攪拌しながら懸濁し60℃まで加温した。このゼオライト懸濁スラリーに25wt%濃度の硫酸を加えpHを2.8に調整した。別途、60℃に加温したAl濃度5wt%のアルミン酸ナトリウム溶液2850gを準備した。このアルミン酸ナトリウム溶液に、pH2.8に調整した先のゼオライト懸濁スラリーを5分間で添加した。添加終了後の混合スラリーのpHは7.8であった。混合スラリーを1時間攪拌した後、減圧吸引式濾過器で固液分離し、60℃の脱イオン水を掛けて水洗浄し、残存しているNaイオンやSOイオン等の副生塩を除去してアルミナ水和物で被覆したUSYを調製した。該アルミナ水和物被覆USYを4000gの脱イオン水にスラリーしてスラリー化し、アルミナ水和物被覆USYスラリーを得た。
【0022】
一方、水硝子に硫酸を加えて調製した12.5wt%のSiOを含むシリカヒドロゾル8000gにカオリンクレー2100g(乾燥基準)、擬ベーマイト形アルミナ水和物250g(Al基準)を加えてマトリックス前駆物質スラリーを得た。
【0023】
前記アルミナ水和物被覆USYスラリーと前記マトリックス前駆物質スラリーを38℃で混合し、得られたpH2.9の混合スラリーを噴霧乾燥し、平均粒径65μmの微少球粒子を得た。これを比較例1と同様に洗浄、イオン交換、洗浄、乾燥を行い触媒Bを得た。600℃−2時間焼成した触媒Bの性状を表1〜2に示す。
【0024】
実施例2
実施例1において、pH2.8に調整したUSY懸濁スラリーを攪拌しながら、これにAl濃度5wt%のアルミン酸ソーダ溶液を加えてアルミナ水和物被覆USYを調製した以外は、実施例1と同様にして触媒Cを調製した。600℃−2時間焼成した触媒Cの性状を表1〜2に示す。
【0025】
実施例3
実施例1において、pH2.8に調整したUSY懸濁スラリーとAl濃度5wt%のアルミン酸ソーダ溶液との最終混合pHを9.5としてアルミナ水和物被覆USYを調製した以外は、実施例1と同様にして触媒Dを調製した。600℃−2時間焼成した触媒Dの性状を表1〜2に示す。
【0026】
実施例4
水熱処理にて調製したNFA含有量8.2wt%のUSY(格子常数24.51Å)1650g(SiO−Al基準)を使用し、実施例1と同じ方法でアルミナ水和物被覆USYを調製し、さらに実施例1と同様にして触媒Eを調製した。600℃−2時間焼成した触媒Eの性状を表1〜2に示す。
【0027】
実施例5
比較例1および実施例1〜4の触媒A〜Eを600℃−2時間焼成後、一般的にミッチェル法として知られる処方にてNi/Vを2000/4000ppm(重量単位)担持し、更に810℃−12hr100%水熱処理した。
【0028】
このような前処理を施した触媒をARCO社製連続反応、再生式のパイロット装置を用いて触媒活性を調べた。活性評価結果を測定条件と共に表1〜2に示す。
【0029】
【表1】
Figure 0003949336
【0030】
【表2】
Figure 0003949336
【0031】
比較例1の触媒A(参照触媒)に比べて本発明の触媒B〜Eは分解率が高く、同一分解率での選択性を見た場合、ガソリン、LCO(light CycleOil)の液収率が高く、HCO(Heavy Cycle Oil)、コーク(Coke)、ガス(Dry Gas)が少ないことが表2から分かる。
【0032】
以下に本発明の実施態様項を列記する。
(1)骨格外アルミナ(NFA)の含有量が2.0wt%以上で、結晶度が80%以上のY型ゼオライトを酸水溶液中に懸濁し、次いで、該懸濁液とアルカリ水溶液とを系のpHが7.0〜9.5の範囲になる割合で混合した後、これをマトリックス前駆物質中に分散させることを特徴とする炭化水素接触分解用触媒組成物の製造方法。
(2)前記Y型ゼオライトの骨格外アルミナ(NFA)の含有量が2.0〜17.0wt%の範囲であることを特徴とする前項(1)記載の炭化水素接触分解用触媒組成物の製造方法。
(3)前記酸水溶液が硫酸水溶液であり、前記アルカリ水溶液がアルミン酸ソーダ水溶液であることを特徴とする前項(1)または(2)記載の炭化水素接触分解用触媒組成物の製造方法。
(4)酸水溶液中における前記Y型ゼオライトの懸濁物の濃度は、20〜80℃において10〜35wt%である前項(1)〜(3)いずれか記載の炭化水素接触分解用触媒組成物の製造方法。
(5)前記アルカリ水溶液の濃度は、1〜10wt%である前項(1)〜(4)いずれか記載の炭化水素接触分解用触媒組成物の製造方法。
(6)前記懸濁液とアルカリ水溶液との混合が40〜80℃で行われるものである前項(1)〜(5)いずれか記載の炭化水素接触分解用触媒組成物の製造方法。
(7)前記製造方法により形成されたアルミナ水和物で被覆されたY型ゼオライトにおける全アルミナ量は、Alとして1〜20wt%である前項
(1)〜(6)いずれか記載の炭化水素接触分解用触媒組成物の製造方法。
(8)アルミナ水和物被覆Y型ゼオライトとマトリックス物質との割合は、前者が水和物でない状態で計算して5〜40wt%、後者が95〜60wt%である前項(1)〜(7)いずれか記載の炭化水素接触分解用触媒組成物の製造方法。
【0033】
【効果】
本発明の方法で得られる触媒は、ゼオライト中の骨格外アルミナを所定量以上使用して被覆しているので、アルミナが密接に沈着しており、炭化水素、特に、重質炭化水素の接触分解に使用すると、ガソリン収率、残油(ボトム)分解能が高く、水素、コークの生成量が少なく、耐メタル性、耐水熱性に優れた触媒となる。また、本発明の方法は、超安定性Y型ゼオライトの骨格外アルミナを触媒成分としてはじめて有効に利用できることを発見したことにより、触媒をより経済的に製造することができるというメリットがある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a catalyst composition for catalytic cracking of hydrocarbons, and more particularly, coated with alumina hydrate, which exhibits excellent effects when used for catalytic cracking of hydrocarbons, particularly heavy hydrocarbons. The present invention relates to a method for producing a catalyst composition for catalytic cracking of hydrocarbons using ultrastable Y-type zeolite.
[0002]
[Prior art]
In recent years, since heavy hydrocarbons such as residual oil are used as a raw material for catalytic cracking, catalytic cracking catalyst compositions are increasingly required to have a high gasoline selectivity and the ability to crack heavy fractions.
[0003]
As such a catalyst composition for catalytic cracking of hydrocarbons, for example, JP-A-9-164338 discloses (1) crystalline aluminosilicate zeolite and (2) pseudoboehmite type having a crystallite diameter in the range of 45 to 105 mm. Alumina hydrate sol prepared to pH 1.0-4.5 by adding acid to alumina hydrate, and (3) pH 1.0-2.5 adjusted by adding acid to water glass A method for producing a catalyst composition for catalytic catalytic cracking of hydrocarbons, which comprises mixing the obtained silicic acid solution and spray-drying the resulting mixture.
[0004]
JP-B-2-45501 discloses a hydrocarbon fluid catalytic cracking catalyst composition in which fine zeolite is dispersed in a silica-based matrix, wherein the zeolite is coated with a single metal oxide. A catalyst composition for fluid catalytic cracking of hydrocarbons is disclosed, which is characterized by being dispersed in a matrix.
[0005]
However, the conventional catalytic cracking catalyst composition still does not have sufficient residual oil resolution, and an improved catalyst has been desired.
[0006]
[Problems to be solved by the invention]
The object of the present invention is the catalytic cracking of hydrocarbons, especially heavy hydrocarbons such as crude oil, vacuum gas oil, hydrotreated oil, atmospheric residue oil, and residue oil containing metal contaminants such as nickel and vanadium. A method for producing a catalytic composition for catalytic catalytic cracking of hydrocarbons that produces less hydrogen and coke, has high gasoline yield, high residual oil (bottom) resolution, and is excellent in metal resistance and hydrothermal resistance. It is in.
[0007]
[Means for Solving the Problems]
The method for producing a catalyst composition for catalytic cracking of hydrocarbons according to the present invention comprises calcination of part of alumina constituting the skeleton of the zeolite without destroying the crystal structure by calcining NH 4 Y-type zeolite in a steam atmosphere. “Y-type zeolite having a non-framework alumina (NFA) content of 2.0 wt% or more and a crystallinity of 80% or more” obtained by detachment from the aqueous solution is suspended in an acid aqueous solution, The suspension and the alkaline aqueous solution are mixed at a ratio such that the pH of the system is in the range of 7.0 to 9.5, and then dispersed in the matrix precursor.
[0008]
The content of extra-framework alumina (NFA) in the Y-type zeolite is preferably in the range of 2.0 to 17.0 wt%.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
Non-framework alumina of Y-type zeolite in the present invention (Non Framework)
Alumina (NFA) refers to alumina other than alumina (Framework Alumina: FA) constituting the zeolite skeleton among all the alumina contained in the zeolite, and the amount of extra-framework alumina is represented by the following formula.
[Expression 1]
Figure 0003949336
The total alumina contained in the zeolite (total of NFA and FA) is obtained by chemical analysis, and the alumina (FA) constituting the zeolite framework in the zeolite is determined from the unit cell constant value of the zeolite according to the Breck formula [ZEOLITES P350, Vol9, July (1989)], and the extra-framework alumina (NFA) is a value obtained by subtracting the alumina (FA) constituting the zeolite framework from the total alumina.
[0010]
The Y-type zeolite used in the present invention requires that the content of extra-framework alumina (NFA) is 2.0 wt% or more. When the content of extra-framework alumina (NFA) is less than 2.0 wt%, the amount of alumina that closely coats the zeolite decreases, and the desired effect of the present invention cannot be obtained. The content of the non-framework alumina (NFA) preferred in the present invention is in the range of 2.0 to 17.0 wt%, more preferably 3.3 to 8.8 wt%.
[0011]
The Y-type zeolite used in the present invention has a crystallinity of 80% or more. When the crystallinity of the zeolite is less than 80%, the decomposition activity of the catalyst composition becomes low, and the desired effect of the present invention cannot be obtained. The preferred crystallinity in the present invention is 90% or more, more preferably in the range of 95 to 130%. The crystallinity in the present invention is a relative value when the crystallinity of Linde, SK-100 zeolite is 100%.
[0012]
The Y-type zeolite used in the present invention described above destroys the crystal structure by calcining NH 4 Y-type zeolite obtained by calcining NaY-type zeolite in a steam atmosphere after ammonium ion exchange. Without this, a part of the alumina constituting the skeleton of the zeolite is detached from the skeleton to produce extra-framework alumina.
[0013]
As the acid used in the acid aqueous solution in the present invention, acids usually used for dealumination treatment such as mineral acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid, and organic acids such as acetic acid and oxalic acid can be used. In particular, sulfuric acid is preferred. The concentration of the acid aqueous solution is desirably in the range of 10 to 60 wt%. When the concentration of the aqueous acid solution is higher than 60 wt%, the crystal structure of the zeolite may be broken. Moreover, when the concentration is lower than 10 wt%, the processing equipment becomes large and the equipment cost becomes high. The suspension of the Y-type zeolite in the aqueous acid solution is preferably prepared so that the zeolite concentration is in the range of 10 to 35 wt% in the temperature range of 20 to 80 ° C.
[0014]
Examples of the alkali used in the alkaline aqueous solution in the present invention include caustic soda, ammonia, amine, sodium aluminate and the like. In particular, sodium aluminate is suitable. The concentration of the aqueous alkali solution is desirably in the range of 1 to 10 wt%.
[0015]
In the present invention, the above-mentioned Y-type zeolite suspension and the above-mentioned alkaline aqueous solution are mixed in the range of pH 7.0 to 9.5, and the zeolite is coated with alumina hydrate. The method of mixing the suspension and the aqueous alkaline solution may be added to the aqueous alkaline solution, the aqueous alkaline solution may be added to the suspension, or the suspension and the aqueous alkaline solution are added simultaneously. And may be mixed. When the pH of the mixed solution is lower than 7.0 or higher than 9.5, the alumina hydrate covering the formed zeolite is unstable and easily dissolved. Since the alumina hydrate that coats the zeolite elutes when dispersed in the zeolite and the zeolite cannot be coated closely, the desired effect of the present invention cannot be obtained. The preferred mixing pH in the present invention is in the range of 7.5 to 8.0, the temperature is desirably 40 to 80 ° C., and the crystal form of the product alumina hydrate is desirably pseudoboehmite.
[0016]
The amount of alumina in the alumina hydrate that coats the Y-type zeolite is preferably in the range of 1 to 20 wt% (total basis of zeolite and coated alumina) as Al 2 O 3 . When the amount of alumina is less than 1 wt%, the metal resistance of the catalyst may not be improved, and when it is more than 20 wt%, the decomposition activity may be reduced. The more preferable amount of alumina is desirably in the range of 3 to 15 wt%.
[0017]
In the present invention, as the matrix precursor in which the above-mentioned alumina hydrate-coated Y-type zeolite is dispersed, the matrix precursor used in the usual catalytic catalyst for hydrocarbon cracking can be used. Examples of the matrix precursor include, in addition to precursors such as silica, alumina, silica-alumina, silica-magnesia, and silica-alumina-magnesia, clay minerals such as kaolin and metal supplements such as manganese oxide. The matrix precursor slurry in which the above-mentioned alumina hydrate-coated Y-type zeolite is dispersed is spray-dried to form fine spherical particles, and the particles are washed, dried, and calcined by a usual method as necessary to obtain hydrocarbons. A catalytic cracking catalyst composition can be obtained.
[0018]
The catalyst composition for catalytic catalytic cracking of hydrocarbons obtained in the present invention can have a Y-type zeolite content of a normal catalytic cracking catalyst composition. Preferably, the alumina hydrate-coated Y-type zeolite is an oxide. (As a form that does not contain water in the hydrate) in the range of 5 to 40 wt%, and the matrix material is exemplified in the range of 95 to 60 wt%. In using the catalyst composition, normal reaction conditions for catalytic cracking are employed.
[0019]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[0020]
Comparative Example 1 (Reference catalyst: Example in which Y-type zeolite is not coated with alumina hydrate)
8000 g of silica hydrosol containing 12.5 wt% SiO 2 prepared by adding water glass to sulfuric acid, 2100 g of kaolin clay (dry basis), 250 g of pseudoboehmite-type alumina hydrate (Al 2 O 3 basis), and hydrothermal treatment 1650 g of ultrastable Y-type zeolite (USY) having a NFA content of 5.0 wt% and a lattice constant of 24.57 kg (based on SiO 2 -Al 2 O 3 ) and 3600 g of deionized water as dilution water are added and mixed A slurry was prepared. At this time, the obtained slurry had a pH of 2.9 and a temperature of 38 ° C. This mixed slurry was spray-dried to obtain microsphere particles having an average particle diameter of 65 μm. Subsequently, the microsphere particles are washed with an ammonium sulfate solution and 60 ° C. deionized water, Na ions and SO 4 ions are washed out, and finally, 2.2 wt% ion exchange is performed as a rare earth oxide using a rare earth chloride solution. After washing and drying, catalyst A was obtained. Properties of catalyst A calcined at 600 ° C. for 2 hours are shown in Tables 1-2.
[0021]
Example 1
1350 g (SiO 2 —Al 2 O 3 basis) of 1350 g of deionized USY used in Comparative Example 1 (super stable Y-type zeolite with NFA content of 5.0 wt% prepared by hydrothermal treatment and a lattice constant of 24.57 kg) The suspension was suspended in water and heated to 60 ° C. To this zeolite suspension slurry, 25 wt% sulfuric acid was added to adjust the pH to 2.8. Separately, 2850 g of a sodium aluminate solution having an Al 2 O 3 concentration of 5 wt% heated to 60 ° C. was prepared. The zeolite suspension slurry adjusted to pH 2.8 was added to the sodium aluminate solution over 5 minutes. The pH of the mixed slurry after the addition was 7.8. After stirring the mixed slurry for 1 hour, it is separated into solid and liquid using a vacuum suction filter and washed with deionized water at 60 ° C to remove residual salt such as Na ions and SO 4 ions. Thus, USY coated with alumina hydrate was prepared. The alumina hydrate-coated USY was slurried in 4000 g of deionized water to obtain an alumina hydrate-coated USY slurry.
[0022]
On the other hand, 2100 g of kaolin clay (dry basis) and 250 g of pseudoboehmite type alumina hydrate (Al 2 O 3 basis) were added to 8000 g of silica hydrosol containing 12.5 wt% SiO 2 prepared by adding sulfuric acid to water glass. Thus, a matrix precursor slurry was obtained.
[0023]
The alumina hydrate-coated USY slurry and the matrix precursor slurry were mixed at 38 ° C., and the resulting mixed slurry having a pH of 2.9 was spray-dried to obtain microsphere particles having an average particle diameter of 65 μm. This was washed, ion exchanged, washed and dried in the same manner as in Comparative Example 1 to obtain Catalyst B. Properties of catalyst B calcined at 600 ° C. for 2 hours are shown in Tables 1-2.
[0024]
Example 2
In Example 1, while stirring the USY suspension slurry adjusted to pH 2.8, this was carried out except that an alumina hydrate-coated USY was prepared by adding a sodium aluminate solution having an Al 2 O 3 concentration of 5 wt% to this. Catalyst C was prepared as in Example 1. Properties of catalyst C calcined at 600 ° C. for 2 hours are shown in Tables 1-2.
[0025]
Example 3
In Example 1, except that an alumina hydrate-coated USY was prepared with a final mixing pH of 9.5 between the USY suspension slurry adjusted to pH 2.8 and the sodium aluminate solution having an Al 2 O 3 concentration of 5 wt%, Catalyst D was prepared in the same manner as in Example 1. Properties of catalyst D calcined at 600 ° C. for 2 hours are shown in Tables 1-2.
[0026]
Example 4
Alumina hydrate-coated USY was prepared in the same manner as in Example 1, using 1650 g of USY (lattice constant 24.51 cm) of NFA content of 8.2 wt% prepared by hydrothermal treatment (SiO 2 —Al 2 O 3 standard). Further, catalyst E was prepared in the same manner as in Example 1. Properties of catalyst E calcined at 600 ° C. for 2 hours are shown in Tables 1-2.
[0027]
Example 5
After firing the catalysts A to E of Comparative Example 1 and Examples 1 to 4 at 600 ° C. for 2 hours, Ni / V was supported at 2000/4000 ppm (weight unit) in a formulation generally known as the Mitchell method, and further 810 Hydrothermal treatment was performed at 100 ° C. for 12 hours and 100%.
[0028]
The catalyst activity of the pretreated catalyst was examined using a continuous reaction and regenerative pilot device manufactured by ARCO. The activity evaluation results are shown in Tables 1-2 together with the measurement conditions.
[0029]
[Table 1]
Figure 0003949336
[0030]
[Table 2]
Figure 0003949336
[0031]
Compared with the catalyst A (reference catalyst) of Comparative Example 1, the catalysts B to E of the present invention have a high decomposition rate. When the selectivity at the same decomposition rate is observed, the liquid yield of gasoline and LCO (light Cycle Oil) is high. It can be seen from Table 2 that it is high and has low HCO (Heavy Cycle Oil), coke, and gas (Dry Gas).
[0032]
The embodiments of the present invention are listed below.
(1) A Y-type zeolite having an extra-framework alumina (NFA) content of 2.0 wt% or more and a crystallinity of 80% or more is suspended in an acid aqueous solution, and then the suspension and an alkaline aqueous solution are used as a system. A method for producing a catalyst composition for catalytic catalytic cracking of hydrocarbons, wherein the mixture is mixed in a matrix precursor after mixing at a rate such that the pH of the catalyst is 7.0 to 9.5.
(2) The catalyst composition for catalytic catalytic cracking of hydrocarbon according to (1) above, wherein the content of extra-framework alumina (NFA) in the Y-type zeolite is in the range of 2.0 to 17.0 wt%. Production method.
(3) The method for producing a catalyst composition for catalytic cracking of hydrocarbons according to (1) or (2) above, wherein the aqueous acid solution is an aqueous sulfuric acid solution and the alkaline aqueous solution is a sodium aluminate aqueous solution.
(4) The hydrocarbon catalytic cracking catalyst composition according to any one of (1) to (3) above, wherein the concentration of the suspension of the Y-type zeolite in the acid aqueous solution is 10 to 35 wt% at 20 to 80 ° C. Manufacturing method.
(5) The method for producing a catalyst composition for catalytic catalytic cracking of any one of the preceding items (1) to (4), wherein the concentration of the alkaline aqueous solution is 1 to 10 wt%.
(6) The method for producing a catalyst composition for catalytic catalytic cracking of any one of the preceding items (1) to (5), wherein the suspension and the aqueous alkaline solution are mixed at 40 to 80 ° C.
(7) The total amount of alumina in the Y-type zeolite coated with the alumina hydrate formed by the above production method is 1 to 20 wt% as Al 2 O 3 , according to any one of (1) to (6) above A method for producing a catalyst composition for catalytic cracking of hydrocarbons.
(8) The ratio between the alumina hydrate-coated Y-type zeolite and the matrix material is 5 to 40 wt% calculated in the former not hydrated state, and the latter is 95 to 60 wt% (1) to (7 ) A method for producing a catalyst composition for catalytic catalytic cracking of any one of the above.
[0033]
【effect】
Since the catalyst obtained by the method of the present invention is coated with a predetermined amount or more of extra-framework alumina in zeolite, alumina is closely deposited, and catalytic cracking of hydrocarbons, particularly heavy hydrocarbons. When used in, the catalyst yields high gasoline yield and residual oil (bottom) resolution, produces less hydrogen and coke, and is excellent in metal resistance and hydrothermal resistance. Further, the method of the present invention has an advantage that the catalyst can be produced more economically by discovering that the extrastable alumina of ultrastable Y-type zeolite can be effectively used for the first time as a catalyst component.

Claims (3)

NH Y型ゼオライトを水蒸気雰囲気中で焼成することにより結晶構造を破壊することなくゼオライトの骨格を構成するアルミナの一部を骨格から脱離させて得られた、「骨格外アルミナ(NFA)の含有量が2.0wt%以上で、結晶度が80%以上のY型ゼオライト」を酸水溶液中に懸濁し、次いで、該懸濁液とアルカリ水溶液とを系のpHが7.0〜9.5の範囲になる割合で混合した後、これをマトリックス前駆物質中に分散させることを特徴とする炭化水素接触分解用触媒組成物の製造方法。 By calcination of NH 4 Y-type zeolite in a steam atmosphere, a part of alumina constituting the skeleton of the zeolite was desorbed from the skeleton without destroying the crystal structure. "Y-type zeolite having a content of 2.0 wt% or more and a crystallinity of 80% or more" is suspended in an acid aqueous solution, and then the pH of the system is set between 7.0 and 9. 5. A method for producing a catalyst composition for catalytic catalytic cracking of hydrocarbons, which is mixed in a matrix precursor after mixing at a ratio in the range of 5. 前記骨格外アルミナ(NFA)の含有量が2.0〜17.0wt%の範囲であることを特徴とする請求項1記載の炭化水素接触分解用触媒組成物の製造方法。 The method for producing a catalytic composition for catalytic cracking of hydrocarbons according to claim 1, wherein the content of the extra-framework alumina (NFA) is in the range of 2.0 to 17.0 wt%. 前記酸水溶液が硫酸水溶液であり、前記アルカリ水溶液がアルミン酸ソーダ水溶液であることを特徴とする請求項1または2記載の炭化水素接触分解用触媒組成物の製造方法。  The method for producing a catalyst composition for catalytic cracking of hydrocarbons according to claim 1 or 2, wherein the aqueous acid solution is an aqueous sulfuric acid solution and the alkaline aqueous solution is a sodium aluminate aqueous solution.
JP2000026706A 2000-02-03 2000-02-03 Process for producing catalyst composition for catalytic cracking of hydrocarbons Expired - Lifetime JP3949336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000026706A JP3949336B2 (en) 2000-02-03 2000-02-03 Process for producing catalyst composition for catalytic cracking of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000026706A JP3949336B2 (en) 2000-02-03 2000-02-03 Process for producing catalyst composition for catalytic cracking of hydrocarbons

Publications (2)

Publication Number Publication Date
JP2001212462A JP2001212462A (en) 2001-08-07
JP3949336B2 true JP3949336B2 (en) 2007-07-25

Family

ID=18552402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000026706A Expired - Lifetime JP3949336B2 (en) 2000-02-03 2000-02-03 Process for producing catalyst composition for catalytic cracking of hydrocarbons

Country Status (1)

Country Link
JP (1) JP3949336B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2872152B1 (en) * 2004-06-24 2006-08-11 Inst Francais Du Petrole HIERARCHISED POROSITY MATERIAL COMPRISING SILICON
JP2006142273A (en) * 2004-11-24 2006-06-08 Catalysts & Chem Ind Co Ltd Process for producing catalyst composition for hydrocarbon fluid catalytic cracking
JP4714589B2 (en) 2006-01-20 2011-06-29 石油コンビナート高度統合運営技術研究組合 Heavy oil catalytic cracking catalyst and process for producing olefin and fuel oil
EP2045012A4 (en) * 2006-06-28 2013-10-23 Idemitsu Kosan Co Fluid catalytic cracking catalyst having desulfurizing functions, process for production of the same, and process for production of low-sulfur catalytically cracked gasoline with the catalyst
FR2920758B1 (en) * 2007-09-07 2009-11-13 Inst Francais Du Petrole CRYSTALLIZED MATERIAL WITH HIERARCHISED POROSITY AND COMPRISING SILICON
JP6059944B2 (en) * 2012-10-16 2017-01-11 日揮触媒化成株式会社 Method for producing modified zeolite and method for producing catalyst for catalytic cracking of hydrocarbon

Also Published As

Publication number Publication date
JP2001212462A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
CN101462741B (en) Method for preparing ZSM-5 zeolite by in situ crystallization
JP6486989B2 (en) Phosphorus-modified cracking catalyst with enhanced activity and hydrothermal stability
JPH07106317B2 (en) Process for producing catalyst composition for catalytic cracking of hydrocarbon oil
CN101462740A (en) Method for preparing ZSM-5 zeolite by in situ crystallization
JP2017087204A (en) Catalyst for residual oil decomposition active fluid catalytic cracking and manufacturing method therefor
CN115812006A (en) Catalytic cracking catalyst and preparation method thereof
KR20210066927A (en) Mesopore-rich phosphorus-containing rare earth-containing MFI structure molecular sieve, method for preparing same, catalyst containing same, and use thereof
WO2022063203A1 (en) Catalytic cracking catalyst, preparation method therefor, and application thereof
JP3949336B2 (en) Process for producing catalyst composition for catalytic cracking of hydrocarbons
JP3737155B2 (en) Hydrocarbon catalytic cracking catalyst composition
JPH08173816A (en) Catalyst composition for fluidized catalytic cracking of hydrocarbon and its production
EP0157545B1 (en) Method for preparing hydrocarbon catalytic cracking catalyst compositions
CN102974337B (en) Catalytic cracking auxiliary agent and preparation method thereof
EP0155851B1 (en) Hydrocarbon catalytic cracking catalyst compositions
TW202211982A (en) MFI-zeolite-containing hydrocarbon conversion catalyst and preparation method therefor
US4636484A (en) Method for the preparation of catalyst composition for use in cracking hydrocarbons
JP6059944B2 (en) Method for producing modified zeolite and method for producing catalyst for catalytic cracking of hydrocarbon
JP2933708B2 (en) Modified Y-type zeolite, process for producing the same, and catalyst composition for catalytic cracking of hydrocarbons using the same
CN114425400B (en) Wear-resistant catalytic cracking catalyst and preparation method and application thereof
JP4624610B2 (en) Method for producing hydrotreating catalyst
JP4484677B2 (en) Hydrocarbon catalytic cracking catalyst composition
JPH0245501B2 (en) TANKASUISONORYUDOSETSUSHOKUBUNKAIYOSHOKUBAISOSEIBUTSU
JP3476658B2 (en) Catalyst composition for fluid catalytic cracking of hydrocarbons
JPH05138031A (en) Catalyst composition for catalytic decomposition of hydrocarbon
JP5258281B2 (en) Catalyst composition for catalytic cracking of hydrocarbon and process for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070418

R150 Certificate of patent or registration of utility model

Ref document number: 3949336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term